
2. Elliptic Modules: Analytic Definition

Let p be a prime number, d a positive integer, q = pd, Fq a field of q
elements, C an absolutely irreducible smooth projective curve defined over
Fq, and F the function field Fq(C) of C over Fq, that is, the field of rational
functions on C over Fq. At each place v of F , namely a closed point of C, let
Fv be the completion of F at v and Av the ring of integers in Fv. Fix a place
∞ of F . Let C∞ be the completion of an algebraic closure F∞ of F∞.

Let A = H0 (C − {∞},OC) be the ring of regular functions on C − {∞},
namely the ring of functions in F whose only possible poles are at ∞. For
each v in SpecA = C − {∞}, the quotient field Fv = A/v is finite. Denote its
cardinality by qv. Note that Av is the completion of A at v. For any a in A
let (a) = aA be the ideal in A generated by a. Let |.| = |.|∞ be the absolute
value on A which assigns to a �= 0 in A the cardinality of the quotient ring
A/(a). It extends uniquely to F, F∞, F∞, and C∞. Let πππ∞ be a generator
of the maximal ideal of A∞. Let q∞ be the cardinality |A∞/πππ∞| of the finite
field A∞/πππ∞. If a ∈ A has a pole of order n at ∞, then |a|∞ = |πππ−n

∞ | = qn∞.
A function f from C∞ to C∞ is called entire if it is equal to an everywhere

convergent power series. Thus f =
∑∞

0 anx
n (an ∈ C∞), where |an|1/n → 0.

Lemma 2.1. Let f be a nonconstant entire function on C∞. Then f attains
each value of C∞.

Proof. This is the same as the proof in the case of characteristic zero. See [Ko],
Ex. 13, Section IV.4 (p. 108), where the lemma is proven with C∞ replaced
by the completion Ω of the algebraic closure Qp of Qp. �

A quotient f = h/g of two entire functions h, g on C∞, with g �≡ 0, is called
a meromorphic function on C∞. The divisor Div f of a meromorphic function
f on C∞, with zeroes ai and poles bj of multiplicities ni and mj (respectively),
is the formal sum

∑
i ni(ai)−

∑
j mj(bj).

Corollary 2.2. Let f, g be entire functions on C∞ with Div f = Div g. Then
there is c �= 0 in C∞ with f = cg.

Proof. If g �≡ 0 then f/g is entire, as its Taylor expansion at 0 converges
everywhere. But f/g has no zeroes. Hence it is constant by Lemma 2.1. �

A set L in C∞ is called discrete if for each positive number c the set {x in
L; |x| ≤ c} is finite. Since C∞ is a non-Archimedean field, then for each discrete
set L there is an entire function eL with Div eL = L. If L contains zero then
there is a unique eL normalized so that e′L(0) = 1. It is given by the product

eL(x) = x
∏

a

(1− x/a) (a �= 0 in L).

Proposition 2.3. Let L be an additive discrete subgroup of C∞. Then eL
defines an isomorphism from C∞/L to C∞ as additive groups.
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Proof. (i) From Lemma 2.1 it follows that eL defines a set theoretic surjection
from C∞/L to C∞. (ii) To show that eL is a group homomorphism, we first
consider the case where L is finite. It is clear from the definition of eL that
eL(x+y)−eL(x)−eL(y) = 0 if x or y lie in L. Hence the polynomial eL(x)eL(y),
whose degree in x is |L|, divides the polynomial eL(x+y)−eL(x)−eL(y), whose
degree in x is less than |L|. We conclude that eL(x + y) = eL(x) + eL(y). In
general we can write L as a union of finite subgroups Ln. Then eL = limn eLn ,
and (ii) follows. (iii) Since the kernel of eL is L, the proposition follows from
(i) and (ii). �
Definition 2.1. A lattice L is a discrete, finitely generated A-submodule
of C∞.

Lemma 2.4. A finitely generated module over a Dedekind domain (an integral
domain in which every nonzero proper ideal factors into a product of prime
ideals) is projective if and only if it is torsion free.

Proof. See [BN], VII, Section 4.10, Prop. 22 (p. 543). �
Since C∞ is a field, the lattice L is a torsion-free A-module. Since A is

a Dedekind domain, L is projective. Denote by r = rankL the rank of the
lattice L. We have

Lemma 2.5. For any a �= 0 in A there is an isomorphism from L/aL to
(A/aA)r.

The isomorphism eL : C∞/L→ C∞ and the A-module structure on C∞/L
define an A-module structure on C∞ by ax = ϕa,L(x) = eL

(
a
(
e−1
L (x)

))
(a in

A, x in C∞).

Lemma 2.6. For each a in A the function ϕa,L is a polynomial of degree |a|r
over C∞.

Proof. Put ψa,L(x) = eL(ax). The kernel of ψa,L is a−1L. Hence there is
some c �= 0 with ψa,L(x) = c

∏
b (eL(x)− eL(b)) (b in a

−1L/L). Consequently
ϕa,L(x) = c

∏
b (x− eL(b)) is a polynomial over C∞ whose degree is equal to

the cardinality |a|r of L/aL. �

Let E∞ be a fixed finite extension of F∞ in C∞. Let Es denote the com-
pletion of the separable closure Es of E∞ in C∞. The fields E∞, Es, and Es

appear only in Chap. 2.

Definition 2.2. A lattice L is called a lattice over E∞ if it lies in Es and it
is invariant under the action of the Galois group Gal(Es/E∞) of Es over E∞.

Example 2.1. The ring L = A is a lattice over F∞, of rank one.

Proposition 2.7. If L is a lattice over E∞ then ϕa,L is a polynomial over E∞.

Proof. The coefficients of the Taylor expansion at 0 of eL lie in Es, and they
are invariant under Gal(Es/E∞) by definition of L. Hence they lie in E∞
(by [Ta], Theorem 1, p. 176). The proposition now follows from the proof of
Lemma 2.6. �
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Definition 2.3. (i) The lattices L,L′ over E∞ are isomorphic if L′ = uL for
some u �= 0 in E∞. (ii) Let L,L′ be lattices of rank r. A morphism from L to
L′ is u in E∞ with uL ⊂ L′.

Lemma 2.8. If L is a lattice over E∞ and u �=0 is in E∞, then u−1ϕa,uL(ux) =
ϕa,L(x).

Proof. Using the identity euL(x) = ueL(u
−1x) we rewrite the relation ϕa,uL

(euL(x)) = euL(ax) in the form ϕa,uL(ueL(u
−1x)) = ueL(au

−1x). This implies
the required identity

u−1ϕa,uL(ueL(x)) = eL(ax) = ϕa,L(eL(x)).

�
Definition 2.4. A polynomial h in C∞[x] is called additive if h(x + y) =
h(x) + h(y).

Lemma 2.9. If h is additive then h(x) =
∑I

i=1 aix
pi

.

Proof. If h(x) =
∑
bix

i is additive, then bi((x+ y)i − xi − yi) = 0. If i = pnj

with j > 1 prime to p, then (x + y)i =
(
xp

n

+ yp
n)j

is not equal to xi + yi,

since it has the term jxp
n(j−1)yp

n

in its binomial expansion. Hence bi = 0 if i
is not a power of p. �

The map ϕL : a 	→ ϕa,L has several properties which suggest the following:

Definition 2.5. (1) A map ϕ : A → E∞[x], a 	→ ϕa, is called an elliptic
module of rank r over E∞ if (i) ϕa(x + y) = ϕa(x) + ϕa(y) (a in
A); (ii) ϕab = ϕa ◦ ϕb, ϕa+b = ϕa + ϕb; (iii) degϕa = |a|r; and (iv)
ϕa(x) ≡ axmodxp.

(2) The elliptic modules ϕ, ϕ′ are isomorphic if there is u �= 0 in E∞ with
ϕ′
a(x) = uϕa(u

−1x) (a in A).
(3) Let ϕ, ϕ′ be two elliptic modules of rank r over E∞. A morphism from

ϕ to ϕ′ is an additive polynomial P in E∞[x] with P ◦ ϕa = ϕ′
a ◦ P

(a in A).

Lemma 2.10. Any morphism P is of the form P (x) =
∑

i aix
qi , where ai lie

in E∞. The group of automorphisms of an elliptic module is F
×
q .

Proof. For any a in the finite subfield Fq of A we have ϕa(x) = ax and ϕ′
a(x) =

ax. Hence aP (x) = P (ax), and the lemma follows. �

Corollary 2.11. (1) For each b in A, we have ϕb(x) =
∑I(b)

i=1 aix
qi , where

I(b) = rvq(b), vq(b) = logq |b|, and aI(b) �= 0. (2) If A = Fq[t] then |t| = q, and

an elliptic module is determined by ϕt(x) = tx +
∑r

i=1 aix
qi with ar �= 0. (3)

In (2), up to isomorphism we may replace ai by aiu
qi−1.

Remark 2.1. (1) An elliptic module of rank r over C∞ is defined on replacing
E∞ by C∞ in Definition 2.5(1). The following theorem holds also with E∞
replaced by C∞. (2) Since the case of r = 0 is trivial, we consider from now
on only the case of r > 0.
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Theorem 2.12. The map L 	→ ϕL defines an equivalence from the category
of (isomorphism classes of) lattices of rank r over E∞ to the category of
(isomorphism classes of) elliptic modules of rank r over E∞.

Proof. (i) Our first aim, accomplished in (iv), is to construct an inverse to
the map L 	→ ϕL. Thus let ϕ be an elliptic module over E∞, of rank r.

Fix a in A−Fq; then |a| > 1. We have ϕa(x) = ax+
∑

i aix
qi with ai

in E∞ (1 ≤ i ≤ s = rvq(a)). We claim that there exists a unique power

series e(x) =
∑∞

i=0 eix
qi with e0 = 1, ei in E∞, and ϕa(e(x)) = e(ax).

To show this we equate the coefficients of xq
n

in ϕa(e(a
−1x)) = e(x)

to obtain

en

(
1− a1−qn

)
= ana

−qn +
n−1∑

i=1

aie
qi

n−ia
−qn

(an = 0 for n > s; ei = 0 for i < 0); this yields a recursive formula
for en.

(ii) We claim that e is entire. To see this we note that for n > s we have

en(a
qn − a) =

s∑

i=1

aie
qi

n−i.

Then

|a|rn ≤ max
{
|ai|p−n

rn−i; 1 ≤ i ≤ s
}
,

where rj = |ej|q−j

. For θ with |a|−1 < θ < 1, there is n′ such that for
n > n′ we have rn ≤ θmax {rn−i; 1 ≤ i ≤ s}. Hence rn → 0, and e is
entire.

(iii) For any b in A we claim that ϕb(e(x)) = e(bx). Indeed, if b �= 0, then
we have

(ϕb◦e◦b−1)(x) = (ϕb◦ϕa◦e◦a−1◦b−1)(x) = (ϕa◦(ϕb◦e◦b−1)◦a−1)(x).

But then the uniqueness of the solution e for the equation ϕa◦e◦a−1=e
implies the claim.

(iv) Let L be the kernel of e. Since the derivative e′ of e is identically
one, the zeroes of e are simple. Hence L lies in Es. The group L is a
discrete, Gal(Es/E∞)-invariant A-module, and we have |L/aL| = |a|r.
Hence L is finitely generated. Indeed, if {bi} are |a|r representatives
in L for L/aL, then the finite set of x in L with |x| ≤ maxi{|bi|}
generates L as an A-module. Now since L is torsion free and A is a
Dedekind domain, L is flat. A finitely generated flat module over a
Noetherian ring is projective. Hence L is a lattice of rank r. Since we
have e = eL and ϕa,L = ϕa for all a in A, we constructed an inverse
to the map L 	→ ϕL, establishing a set theoretic isomorphism.

(v) Let L,L′ be lattices of rank r over E∞ with uL ⊂ L′ for some u in
E∞. Then eL′(ux) is L-invariant. The proof of Lemma 2.6 shows that
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there is a polynomial P over E∞ with P (eL(x)) = eL′(ux). But then
P is additive, and

(P ◦ ϕa,L) (eL(x)) = P (eL(ax)) = eL′(uax)

= ϕa,L′ ((eL′ ◦ u)(x)) = (ϕa,L′ ◦ P ) (eL(x))
implies that P is a morphism from ϕL to ϕL′ .

(vi) Conversely, if P is a polynomial over E∞ with P ◦ϕL = ϕL′ ◦P , then
(P ◦ eL)(x) = (P ◦ ϕa,L ◦ eL)(a−1x) = (ϕa,L′(P ◦ eL)) (a−1x).

Hence we conclude from the uniqueness assertion of (i) that there is
u �= 0 in E∞ with (P ◦ eL)(x) = eL′(ux). Then uL ⊂ L′, and the
theorem follows.

�
Remark 2.2. It is clear from the proof of (vi) that any polynomial P in E∞[x]
with P ◦ ϕa = ϕ′

a ◦ P for all a in A has to be additive.
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