2. ELLiPTIC MODULES: ANALYTIC DEFINITION

Let p be a prime number, d a positive integer, ¢ = p?, F, a field of ¢
elements, C' an absolutely irreducible smooth projective curve defined over
F,, and F the function field F,(C) of C over F,, that is, the field of rational
functions on C over F,. At each place v of F', namely a closed point of C, let
F, be the completion of F' at v and A, the ring of integers in F,. Fix a place
oo of F'. Let C'x, be the completion of an algebraic closure Fo of Fi.

Let A= H°(C — {0}, Oc¢) be the ring of regular functions on C' — {co},
namely the ring of functions in F' whose only possible poles are at co. For
each v in Spec A = C' — {00}, the quotient field F,, = A/v is finite. Denote its
cardinality by ¢,. Note that A, is the completion of A at v. For any a in A
let (a) = aA be the ideal in A generated by a. Let |.| = |.|o be the absolute
value on A which assigns to @ # 0 in A the cardinality of the quotient ring
A/(a). Tt extends uniquely to F, F, Foo, and Cs. Let T, be a generator
of the maximal ideal of As,. Let ¢o be the cardinality |As /moo| of the finite
field Ao /Troo. If a € A has a pole of order n at oo, then |a|e = |75 = ¢L.

A function f from Cs to C is called entire if it is equal to an everywhere
convergent power series. Thus f = > 0 a,a™ (a, € Cw), where |a,|*/™ — 0.

Lemma 2.1. Let f be a nonconstant entire function on Cs. Then [ attains
each value of Cus.

Proof. This is the same as the proof in the case of characteristic zero. See [Ko],
Ex. 13, Section IV.4 (p. 108), where the lemma is proven with C, replaced
by the completion 2 of the algebraic closure Q,, of Q. O

A quotient f = h/g of two entire functions h, g on Cy,, with g # 0, is called
a meromorphic function on C. The divisor Div f of a meromorphic function
f on C, with zeroes a; and poles b; of multiplicities n; and m; (respectively),
is the formal sum 3, n;(a;) — >, m;(b)).

Corollary 2.2. Let f,g be entire functions on Cs with Div f = Divg. Then
there is ¢ # 0 in Coo with f = cg.

Proof. If g # 0 then f/g is entire, as its Taylor expansion at 0 converges
everywhere. But f/g has no zeroes. Hence it is constant by Lemma 2.1. O

A set L in Cy is called discrete if for each positive number ¢ the set {z in
L; |z| < ¢} is finite. Since C is a non-Archimedean field, then for each discrete
set L there is an entire function e;, with Dive; = L. If L contains zero then
there is a unique ey, normalized so that e} (0) = 1. It is given by the product

eL(x):xH(l—:zr/a) (a#0in L).

Proposition 2.3. Let L be an additive discrete subgroup of Cs,. Then er,
defines an isomorphism from Coo /L to Coo as additive groups.
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Proof. (i) From Lemma 2.1 it follows that ey, defines a set theoretic surjection
from Cw/L to Cs. (ii) To show that ey, is a group homomorphism, we first
consider the case where L is finite. It is clear from the definition of e that
er(z+y)—er(z)—er(y) = 0if x or y liein L. Hence the polynomial ey, (z)er (y),
whose degree in z is | L|, divides the polynomial er, (x+y)—er (z)—er (y), whose
degree in x is less than |L|. We conclude that ey (z +y) = er(x) + er(y). In
general we can write L as a union of finite subgroups L,,. Then ey, = lim, ey,
and (ii) follows. (iii) Since the kernel of ey, is L, the proposition follows from
(i) and (ii). O

Definition 2.1. A lattice L is a discrete, finitely generated A-submodule
of Cu.

Lemma 2.4. A finitely generated module over a Dedekind domain (an integral
domain in which every nonzero proper ideal factors into a product of prime
ideals) is projective if and only if it is torsion free.

Proof. See [BN], VII, Section 4.10, Prop. 22 (p. 543). O

Since Cy is a field, the lattice L is a torsion-free A-module. Since A is
a Dedekind domain, L is projective. Denote by r = rankL the rank of the
lattice L. We have

Lemma 2.5. For any a # 0 in A there is an isomorphism from L/aL to

(A/aA)".

The isomorphism ey, : Cs /L — Cs and the A-module structure on C,/L
define an A-module structure on Co by az = o 1(z) = e (a (e;'(2))) (a in
A, zin Cy).

Lemma 2.6. For each a in A the function g, 1, is a polynomial of degree |a|”
over Cys.

Proof. Put v, 1(x) = er(ax). The kernel of 1, is a'L. Hence there is
some ¢ # 0 with ¢, 1 (z) = ¢[], (er(x) — er (b)) (bin a~'L/L). Consequently
@a,r.(x) = c]], (x — er(b)) is a polynomial over C'n, whose degree is equal to
the cardinality |a|” of L/aL. O

Let E be a fixed finite extension of Fio in Cu. Let E denote the com-
pletion of the separable closure E; of Foo in Coo. The fields Eoo, Es, and E

appear only in Chap. 2.

Definition 2.2. A lattice L is called a lattice over E if it lies in E, and it
is invariant under the action of the Galois group Gal(Es/E~) of E, over Eo.

Example 2.1. The ring L = A is a lattice over F,, of rank one.
Proposition 2.7. If L is a lattice over Eo then g1 s a polynomial over E.

Proof. The coefficients of the Taylor expansion at 0 of ey, lie in E, and they
are invariant under Gal(Es/E~) by definition of L. Hence they lie in Fo
(by [Ta], Theorem 1, p. 176). The proposition now follows from the proof of
Lemma 2.6. 0
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Definition 2.3. (i) The lattices L, L' over Eo are isomorphic if L' = uL for
some u # 0 in Fw. (ii) Let L, L’ be lattices of rank r. A morphism from L to
L'is uin E,, with uL C L'.

Lemma 2.8. If L is a lattice over Eo, and u#0 is in En, then u™ g o p (uz) =
Pa,r ().

Proof. Using the identity e,r(z) = uer(u~'z) we rewrite the relation ¢, .z,
(eur(z)) = eyr(az) in the form ¢, 1 (uer (u™'z)) = uer(au™tx). This implies
the required identity

u aur (uer(x)) = er(ax) = @a (e (x)).
OJ

Definition 2.4. A polynomial h in Cy[z] is called additive if h(x + y) =
h(z) + h(y).

Lemma 2.9. If h is additive then h(x) = Zi]:l aa?’ .

Proof. If h(z) = 3 bzt is additive, then b;((x +y)" — 2' —y*) = 0. If i = p"j
with j > 1 prime to p, then (z + y)’ = (w”n + ypn)J is not equal to z* + ¥,
since it has the term jzP" U~DyP" in its binomial expansion. Hence b; = 0 if 4
is not a power of p. O

The map ¢y, : a — ¢, 1, has several properties which suggest the following:

Definition 2.5. (1) Amap ¢p: A — Ex[z], a — ¢q, is called an elliptic

module of rank r over E if (i) wu(z + y) = @a(z) + valy) (a in
A); (i) Pab = Pa © P, Pa+b = Pa + wo; (ili) degpq = [al"; and (iv)
vaq(2) = ax mod zP.

(2) The elliptic modules ¢, ¢’ are isomorphic if there is u # 0 in Eo, with
2, (z) = upa(u~'z) (a in A)

(3) Let ¢, ¢’ be two elliptic modules of rank r over E. A morphism from
¢ to ¢ is an additive polynomial P in E[z] with P oy, = ¢, o P
(ain A).

Lemma 2.10. Any morphism P is of the form P(xz) =", aixqi, where a; lie
in Ex. The group of automorphisms of an elliptic module is F .

Proof. For any a in the finite subfield F, of A we have ¢, (z) = az and ¢/, (z) =
ax. Hence aP(z) = P(az), and the lemma follows. O

Corollary 2.11. (1) For each b in A, we have @p(x) = Efibl) a;zf, where

I(b) = rv4(b), vg(b) = log, [b, and arpy # 0. (2) If A =F,[t] then |t| = q, and
an elliptic module is determined by ¢(x) =tx+ Y ., a;z? with a, # 0. (3)
In (2), up to isomorphism we may replace a; by aiuqi’l.

Remark 2.1. (1) An elliptic module of rank r over Cw, is defined on replacing
E by Cs in Definition 2.5(1). The following theorem holds also with E.
replaced by Cws. (2) Since the case of r = 0 is trivial, we consider from now

on only the case of r > 0.
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Theorem 2.12. The map L — ¢, defines an equivalence from the category
of (isomorphism classes of) lattices of rank r over Ey to the category of
(isomorphism classes of) elliptic modules of rank r over En.

Proof.

(i)

(iii)

(iv)

(i) Our first aim, accomplished in (iv), is to construct an inverse to
the map L — ¢r. Thus let ¢ be an elliptic module over Eo,, of rank 7.
Fix a in A —F; then |a| > 1. We have ¢,(2) = ax + >, a;27 with a;
in Es (1 <i<s=rvy(a)). We claim that there exists a unique power

series e(x) = ..o, eix? with eg = 1, ¢; in Eoo, and g4 (e(z)) = e(ax).
To show this we equate the coefficients of 29" in ¢, (e(a™'z)) = e(z)
to obtain

n—1 )
—qg" P 0} k3 _.on
en (1—@1 a ):ana T+ E ael a1
i=1

(an, = 0 for n > s; e; = 0 for i < 0); this yields a recursive formula
for e,.
We claim that e is entire. To see this we note that for n > s we have

S
") = ol
en(a a) = g ae) .
i=1
Then

lalr, < max{|ai|pinrn,i; 1< < s} ,
where r; = |e;|? . For 6 with |a|~' < @ < 1, there is n’ such that for
n > n' we have r, < 0max{r,_;;1 <i <s}. Hence r, — 0, and e is
entire.
For any b in A we claim that pp(e(x)) = e(bx). Indeed, if b # 0, then
we have

(gpboeob_l)(x) = (gpbo<paoeoa_lob_l)(:zr) = ((pao(gpboeob_l)oa_l)(x).

But then the uniqueness of the solution e for the equation (p,o0coat=e

implies the claim.

Let L be the kernel of e. Since the derivative ¢’ of e is identically
one, the zeroes of e are simple. Hence L lies in F;. The group L is a
discrete, Gal(Es/ E« )-invariant A-module, and we have |L/aL| = |a|".
Hence L is finitely generated. Indeed, if {b;} are |a|" representatives
in L for L/aL, then the finite set of x in L with |z| < max;{|b;|}
generates L as an A-module. Now since L is torsion free and A is a
Dedekind domain, L is flat. A finitely generated flat module over a
Noetherian ring is projective. Hence L is a lattice of rank r. Since we
have e = e, and ¢, 1 = @, for all a in A, we constructed an inverse
to the map L — ¢, establishing a set theoretic isomorphism.

Let L, L’ be lattices of rank r over Fo, with ulL C L’ for some u in
E. Then e (ux) is L-invariant. The proof of Lemma 2.6 shows that
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there is a polynomial P over E, with P(er(z)) = ers(ux). But then
P is additive, and
(Poa,r)(er(x)) = Pler(ax)) = er (uax)
= a1 ((err o u)(@)) = (Pa, © P) (eL())
implies that P is a morphism from ¢y, to ¢r/.
Conversely, if P is a polynomial over E, with Poy; = ¢r/ o P, then
(Poer)(z) = (Powparoer)(a ) = (par(Poer)) (a z).

Hence we conclude from the uniqueness assertion of (i) that there is
u # 0 in Es with (Poeg)(z) = er(ux). Then wL C L', and the
theorem follows.

O

Remark 2.2. Tt is clear from the proof of (vi) that any polynomial P in E[z]
with P o, = ¢/, o P for all a in A has to be additive.
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