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Continuum Mechanics and Linearized
Elasticity

We will be concerned with bodies that at the macroscopic level may be re-
garded as being composed of material that is continuously distributed. By
this it is meant, first, that such a body occupies a region of three-dimensional
space that may be identified with R3. The region occupied by the body will
of course vary with time as the body deforms. It is convenient, then, for the
purpose of keeping track of the evolution of the body’s behavior to locate any
point in the body by its position vector x with respect to some previously
chosen origin 0, at a fixed time. For simplicity we will take this to be at the
time t = 0, and we will assume that the body is undeformed and unstressed
in this state, unless stated otherwise. The region occupied by the body at
the time t = 0 is denoted by Ω, and is called the reference configuration. To
emphasize the identification between points in the region Ω and points in the
undeformed body we will often refer to a point x ∈ Ω as a material point . If
we go one step further and place a set of Cartesian axes with the origin 0,
then the position vector x has components xi (i = 1, 2, 3) with respect to the
orthonormal basis {e1, e2, e3} associated with this set of axes. The situation
is illustrated in Figure 2.1, in which Ωt is the current configuration, the region
occupied by the body at the current time t.

The objective will be to obtain a complete description of the motion and
deformations of the body, for given loading conditions, within the framework
of continuum mechanics. There is an extensive literature on continuum me-
chanics; the texts [28, 31, 69] are examples of works that may be consulted
for further details.

Second, it is assumed that both the properties and the behavior of such a
body can be described in terms of functions of position x in the body and time
t. Thus, for example, we may associate with the body a scalar temperature
distribution θ that varies within the body and with the passage of time, so
that the value of the temperature of a material point x at time t is represented
by the function θ(x, t), or equivalently by θ(x1, x2, x3, t).

It will be necessary at some stage to stipulate the properties assumed or
expected of functions defined on the body. For the time being there is no need
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16 2 Continuum Mechanics and Linearized Elasticity

to be too specific about this, except to say that functions will be assumed to
possess as many derivatives as are required in order for what follows to make
sense. Later we will have to be careful about the specification of function
spaces to which these functions are required to belong.

The study of the behavior of continuous media conveniently begins with a
development of a suitable framework within which to describe the motion of
the body. This framework is quite independent of any agencies acting on the
body, and it is also independent of the constitution of the body. In other words,
we are concerned in the first instance solely with the geometry of motion. This
is known as kinematics, and we now proceed to set out a framework that will
be adequate for future needs.

Fig. 2.1. Current and undeformed configurations of an arbitrary material body

2.1 Kinematics

As mentioned above, the position of a body in an undeformed state is identified
with a region Ω in R3. With time the body moves and deforms, as a result
of the action of various forces (we are not interested in the details of these
forces at this point), so that at time t it occupies a new region Ωt, called the
current configuration at time t, as is shown in Figure 2.1. This deformation
may be described mathematically by introducing a vector-valued function y of
position and time, called the motion. Thus a material particle initially located
at x will have position y(x, t) at time t . Clearly, we must have y(x, 0) = x.
For simplicity we denote functions and their values by the same symbol, so
that the motion is described by the equation

y = y(x, t), (2.1)

or in component form,

Ωt

y(x, t)

u(x, t)
Ω

x
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yi = yi(x1, x2, x3, t), 1 ≤ i ≤ 3,

for x ∈ Ω and t ∈ [0, T ].
The function y will have to satisfy certain conditions if it is to be used

to model adequately the motion of the body. First, we must ensure that no
two points get mapped to a single point by y; in other words, y must be
one-to-one, and hence invertible. Second, we must ensure that the motion is
orientation-preserving; that is, the Jacobian J , defined by

J = det (∇y) , (2.2)

must be positive. Here,

∇y =
(
∂yi
∂xj

)
stands for the Jacobian matrix whose (i, j)th element is ∂yi/∂xj . Hence, every
element of nonzero volume in Ω is mapped to an element of nonzero volume
in Ωt. We recall a result from calculus: dy = J dx, where dx and dy denote
the volume elements in Ω and Ωt.

A sufficient condition for the motion y to be invertible is that there exist
a constant c(Ω) > 0, depending only on Ω, such that

sup
Ω
|∇y − I| < c(Ω).

In the case where Ω is convex, we may take c(Ω) = 1. This result, as well as
others on the invertibility of the motion, may be found in [31, § 5.5, § 5.6].

Instead of adopting the function y as the primary unknown variable, it is
more convenient to introduce the displacement vector u by

u(x, t) := y(x, t)− x

and to replace the motion by the displacement as the primary unknown. Of
course, the displacement alone does not give complete information about the
deformation of the body. We need to be able to distinguish, for example,
between a simple rigid body motion, in which the body is translated and
rotated to a new position without deformation (Figure 2.2), and a situation
in which the body indeed assumes a new shape. The quantity that we use to
measure deformation is the strain tensor . Let us now see how this quantity
arises.

Consider a point x in Ω and two fibers of material particles emanating
from x. These fibers are described by vectors ∆x and δx, as is shown in
Figure 2.3. The notion of strain emerges naturally if we consider the changes
in lengths of these fibers, and the change in the angle between them, under
the motion y. The fiber ∆x is mapped to the fiber ∆y := y(x+∆x)− y(x).
Likewise, the fiber δx becomes the fiber δy := y(x + δx) − y(x). Here, for
simplicity in writing, we drop the time variable t in the expression for the
motion y. We are now in a position to measure changes in lengths and angles.
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Fig. 2.2. An example of rigid body motion

We assume that the motion is smooth and may be differentiated as many
times as required. Then it is possible to expand the term y(x + ∆x) in a
Taylor series about x to get

y(x+∆x) = y(x) + (∇y)∆x+ o(|∆x|),

with a similar expression for y(x+ δx). Thus

∆y = y(x+∆x)− y(x) = (∇y)∆x+ o(|∆x|).

Since ∇y(x) = I +∇u(x), it follows that

∆y = ∆x+ (∇u)∆x+ o(|∆x|).

In exactly the same way we arrive at the expression

δy = δx+ (∇u) δx+ o(|δx|).

We can now consider the expression

∆y · δy −∆x · δx = (∇u)∆x · δx+ (∇u)δx ·∆x
+ (∇u)∆x · (∇u)δx+ o(|δx|2 + |∆x|2). (2.3)

Though no confusion need arise, it is worth emphasizing that the gradient in
(2.3) is with respect to the variable x.

The point about the expression (2.3) is that if the body deforms as a
rigid body, then obviously we must have ∆y · δy = ∆x · δx for any pair
of fibers emanating from any point in the body, since these fibers will not
change in length, nor will the angle between them. Thus the right-hand side
of (2.3) is identically zero in a rigid body motion. We now go one step further
and consider the limit of (2.3) as the lengths of the fibers go to zero. Set
h = max{|∆x|, |δx|}, n = ∆x/h, and m = δx/h; these are assumed to be
fixed vectors independent of h. Now divide both sides of (2.3) by h2, and take
the limit as h→ 0. This gives
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Fig. 2.3. Deformed and undeformed configurations of material line elements

lim
h→0

∆y · δy −∆x · δx
h2

= 2n · η(u)m. (2.4)

where η is the strain tensor associated with the displacement u, defined by

η(u) := 1
2

[
∇u+ (∇u)T + (∇u)T∇u

]
; (2.5)

in component form this expression reads

ηij(u) = 1
2 (ui,j + uj,i + uk,iuk,j).

Though we have been explicit about the fact that the strain is defined for a
particular displacement field by writing η(u), very often we will simply denote
the strain by η or ηij when there is no danger of confusion.

So we see that the strain tensor is defined in such a way that it is zero if
the body undergoes a rigid body motion.

The components of η are easily interpreted by referring back to equation
(2.4) and by giving the fibers ∆x and δx specific orientations. First, suppose
that we identify δx with ∆x at an arbitrary point in the body, and suppose
that ∆x is chosen so that it lies parallel to the x1-axis. Then (2.4) becomes

lim
h→0

|∆y|2 − |∆x|2

h2
= 2 e1 · ηe1 = 2 η11,

since ∆x/h = e1 here. Thus we see that in this situation η11 equals half the
net change in length (squared) of a material fiber originally oriented so that
it points in the x1 direction. The other two diagonal components of the strain
are interpreted in a similar way.

To see how the off-diagonal components of η may be interpreted we return
to (2.4) and now choose ∆x and δx at an arbitrary point in the body in such

Ω
y

x

x + δx

y + δy

y + Δy

Ωt

x + Δx
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a way that they have equal length h and lie parallel to the x1 and x2 axes,
respectively. Then (2.4) gives

lim
h→0

∆y · δy −∆x · δx
h2

= lim
h→0

∆y · δy
h2

= 2 e1 · ηe2 = 2 η12. (2.6)

Thus the component η12 gives a measure of the change in angle between
two fibers originally at right angles to each other and oriented so that they
were in the x1 and x2 directions. The remaining off-diagonal components are
interpreted in a similar way.

Because the components of the strain have the interpretations described
above, the diagonal components are referred to as direct strains, while the
off-diagonal components are referred to as shear strains.

Earlier we had the result that for a rigid body motion the strain tensor is
zero. Now consider a situation in which the strain tensor is zero; then we see
from the above interpretation of its components and the observation that the
axes may be chosen arbitrarily that no changes in length of fibers take place,
nor are there any changes in angles between fibers. Thus the converse is also
true: if η = 0, then the body necessarily undergoes a rigid body motion.
Infinitesimal strain. There are many problems of practical interest for
which the deformations can be regarded as “small” in some sense, and under
such circumstances it is natural to consider whether the formulation of the
problem might be simplified by exploiting this feature. Of course, it is nec-
essary first to formalize and to quantify what is meant by “small”. For the
purposes of this work the following definition suffices: a body is said to un-
dergo infinitesimal deformation if the displacement gradient ∇u is sufficiently
small so that the nonlinear term in (2.5) can be neglected. When this is the
case, we may replace the strain tensor η by the infinitesimal strain tensor ε,
which is defined by

ε(u) := 1
2 (∇u+ (∇u)T ). (2.7)

Setting h = |∇u|, in the case of infinitesimal strains we assume that h � 1
and that to within an error of O(h2) as h→ 0, ε and η coincide.

Characterization of rigid body motions for infinitesimal strain. We
have seen earlier that the strain tensor η vanishes if and only if the body
undergoes a rigid body motion. Since we will study problems in the context
of infinitesimal strains, it is necessary to characterize a rigid body motion
for situations in which terms of O(h2) are neglected. Suppose that the body
undergoes an infinitesimal rigid body motion, that is, one for which

ε(u) = 0.

Then
∇u = −(∇u)T ,

so that the displacement gradient is skew. Thus the most general representa-
tion of the motion in such a situation is given by
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y(x) = y0 + ω(x− x0),

or, equivalently, by
u(x) = u0 + ω(x− x0),

where x0 is any point, ω is a skew tensor, and y0 and u0 are either given
or arbitrary vectors (for a proof of this result, see [106, Section 3.6]). If the
motion is a pure translation, then ω = 0, while if on the other hand the
motion is a pure rotation, then u0 = 0. An infinitesimal rigid body motion
may be written alternatively as

u(x) = u0 +w ∧ (x− x0),

where w is the unique axial vector corresponding to ω; that is, ωa = w ∧ a
for any vector a.

Changes in volume; incompressibility. We require a simple measure
of the local change in volume accompanying a motion. The volume of the
reference configuration is

V0 =
∫
Ω

dx,

while the volume of the current configuration is

Vt =
∫
Ωt

dy.

Thus the change in volume as a result of the deformation y is simply given
by

∆V := Vt − V0 =
∫
Ωt

dy −
∫
Ω

dx.

Since Ωt = y(Ω, t), we may use the conventional technique for change of
variables in an integral to write∫

Ωt

dy =
∫
Ω

J dx,

where the Jacobian J has been defined in (2.2). Thus the change in volume is

∆V =
∫
Ω

(J(x)− 1) dx. (2.8)

Once again we are interested in determining the expression for the change in
volume for situations in which the underlying deformation can be regarded
as infinitesimal. For this purpose we set h = |∇u| and write the Jacobian in
terms of u; thus

J = det (∇y) = det (I +∇u) = 1 + divu+O(h2).
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The last equality follows directly from the definition of the determinant or
from the identity (see, for example, [28, page 48])

det (A+B) = (1 +B : A−T ) detA+ (1 +A : B−T ) detB

for all invertible matrices A and B. Substitution in (2.8) yields the result that
to within an error of O(h2),

∆V =
∫
Ω

divu dx.

In other words, the quantity divu represents the change in volume per unit
volume in an infinitesimal deformation.

A deformation that experiences no change in volume is called isochoric;
for such a deformation,

J(x, t) = 1 ∀x ∈ Ω, t ∈ [0, T ]. (2.9)

When an isochoric deformation is infinitesimal, then to within an error of
O(h2) the displacement field satisfies the condition

tr ε(u(x, t)) = divu(x, t) = 0 ∀x ∈ Ω, t ∈ [0, T ]. (2.10)

It may alternatively happen that a material has the property, possibly
idealized, that it is unable to experience a change in volume. This idealization
is often made in the case of materials for which, for the range of conditions
under which they are being analyzed, the volume change observed is negli-
gible. Such materials are referred to as incompressible. Note the difference
between isochoric deformations and incompressible materials; in the former
case a particular deformation is accompanied by no change in volume so that
(2.9) and (2.10) are consequences of the deformation, while in the latter case
it is a property of the material that no matter what the deformation, the body
is unable to undergo any change in volume. In this case the conditions (2.9)
or (2.10) represent constraints on the possible classes of deformations that are
admitted.

2.2 Balance of Momentum; Stress

In this section we move away from the purely geometric nature of kinematics
and investigate the consequences for material bodies of the fundamental laws
of balance of linear and angular momentum. A further development is the
introduction in this context of the notion of stress as a tensorial quantity that
characterizes the state of internal forces acting in a body. All variables are
assumed to have the requisite degree of smoothness consistent with develop-
ments in this section.
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It is particularly convenient to develop the notions of momentum and
stress in the context of the reference configuration; that is, we exploit the fact
that field variables are functions of reference position x and time t, so that
while the momentum and stress at time t are quantities associated with the
configuration of the body at time t, these can easily be expressed, via the
mapping (2.1), as functions defined over the reference configuration Ω.

The equations corresponding to local balance of linear and angular mo-
mentum are obtained by writing down the expressions that correspond to
balance of linear and angular momentum for an arbitrary subset of the body.
The local forms of these laws then follow from the arbitrariness of the subset
and appropriate smoothness assumptions on the variables.

Now let Ω represent the reference configuration of the body, as before, and
Ωt the current configuration. Furthermore, let Ω′ be an arbitrary subset of Ω,
which is mapped by the motion to an arbitrary subset Ω′t of Ωt. Under these
circumstances we may express global quantities associated with the current
configuration as integrals over the reference configuration.

The velocity field u̇ and acceleration field ü corresponding to a displace-
ment field u(x, t) are defined by

u̇(x, t) :=
∂u(x, t)
∂t

,

ü(x, t) :=
∂2u(x, t)
∂t2

.

Thus, the linear momentum of the subset Ω′t of Ωt at time t is defined by∫
Ω′
ρu̇ dx,

and its angular momentum by ∫
Ω′
x ∧ ρu̇ dx,

in which ρ denotes the mass density of the body, that is, the mass per unit
reference volume of the body.

The body is subjected to a system of forces, which are of two kinds. There
is the body force b(x, t), which represents the force per unit reference volume
exerted on the material point x at time t by agencies external to the body;
gravity is a canonical example, the body force in this case being ρge, where
g is the gravitational acceleration and e is the unit vector pointing in the
downward vertical direction. The second kind of force acting on the body is
the surface traction. To define this force field it is convenient to begin by
introducing, for a given unit vector n, the stress vector sn(x, t): if γ is a
regular surface in Ω̄ passing through x and having unit normal n at x, then
sn(x, t) is the current force per unit reference area exerted by the portion of
Ω on the side of γ towards which n points, on the portion of Ω that lies on



24 2 Continuum Mechanics and Linearized Elasticity

the other side. Let Γ ′ denote the boundary of Ω′; then the surface traction
at time t is defined to be the stress vector sn(x, t) (x ∈ Γ ′) acting on Γ ′,
with n defined to be the outward unit normal on Γ ′ (see Figure 2.4). While

Fig. 2.4. The surface traction vector field

we have chosen to define quantities such as forces and momentum in terms
of the reference configuration of the body, there is no difficulty in restating
these definitions in terms of the current configuration.

The laws of balance of linear and angular momentum may now be stated.

Balance of linear momentum. The total force acting on Ω′t is equal to the
rate of change of the linear momentum of Ω′t; expressed in terms of integrals
over the reference configuration,∫

Ω′
ρü dx =

∫
Ω′
b dx+

∫
Γ ′
sn ds. (2.11)

Note that in this identity we have used the fact that

∂

∂t

∫
Ω′

(·) dx =
∫
Ω′

∂

∂t
(·) dx,

since Ω′ is chosen independent of time.

Balance of angular momentum. The total moment acting on Ω′t is equal
to the rate of change of the angular momentum of Ω′t; expressed in terms of
integrals over the reference configuration,∫

Ω′
x ∧ ρü dx =

∫
Ω′
x ∧ b dx+

∫
Γ ′
x ∧ sn ds. (2.12)

We have the following two important results.

Ω′

Ω

Γ ′

n sn(x, t)
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Cauchy’s Reciprocal Theorem. Given any unit vector n,

sn = −s−n. (2.13)

This result is clearly a generalization to deformable bodies of Newton’s third
law of action and reaction.

Existence of the stress tensor. There exists on Ω×[0, T ] a second-order
tensor field τ , called the first Piola–Kirchhoff stress field, with the property
that

τn = sn (2.14)

for each unit vector n.

The derivation of the reciprocal theorem of Cauchy and the proof of the
existence of the stress tensor are treated in detail in [4, Chapter 12], [65, page
45], and [106, Section 4.1].

We are now in a position to obtain local forms of the two balance laws. In
the following we assume that all variables have the degree of differentiability
consistent with the manipulations that are carried out.

We begin with the law of balance of linear momentum. From the relation-
ship (2.14) between the surface traction and stress tensor we obtain, using a
variant of the Green–Gauss theorem,∫

Γ ′
sn ds =

∫
Γ ′
τn ds =

∫
Ω′

Div τ dx,

so that (2.11) becomes ∫
Ω′

(ρü− b−Div τ ) dx = 0. (2.15)

Here Div is the divergence operator with respect to the reference configuration
and expressed in terms of derivatives with respect to components of x:

(Div τ )i =
∂τij
∂xj

.

Since the domain Ω′ is arbitrary, the integrand in (2.15) must vanish. We thus
obtain in local form the equation of motion

Div τ + b = ρü. (2.16)

In component form, the equation of motion reads

∂τij
∂xj

+ bi = ρüi, 1 ≤ i ≤ 3.

For situations in which all the given data are independent of time, the
response of the body will also be independent of time. In this case we have
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u = u(x), τ = τ (x), and the equation of motion becomes the equation of
equilibrium

∂τij
∂xj

+ bi = 0, 1 ≤ i ≤ 3. (2.17)

We have chosen to present the arguments leading to the equation of motion
in the setting of the reference configuration, with x and t as independent
variables. Since the motion

y = y(x, t)

is invertible, it is also possible to treat y as the independent variable and
to carry out the development in the current configuration. That is, we have
x = x(y, t) after carrying out the inversion, and so, for example, the velocity
u̇ has the alternative representation

∂

∂t
y(x, t) = u̇(x(y, t), t) = v(y, t).

Similar transformations can be carried out with respect to all variables, and
the principles of balance of linear and angular momentum are then expressed
in terms of integrals over the current configuration Ωt. As far as the stress
goes, an argument identical to that which leads to the existence of the first
Piola–Kirchhoff stress tensor gives the existence of a tensor σ, called the
Cauchy stress, that has the property that the force per unit current area tν
on an elemental surface having unit normal ν is given by

σν = tν . (2.18)

The Cauchy stress therefore has the same relationship to the current config-
uration as does the first Piola–Kirchhoff stress to the reference configuration.

The use of the principle of balance of linear momentum, when applied in
the current configuration, leads to the equation of motion in the form

divσ + b = ρta

in which a is the acceleration and ρt is the mass density per unit current
volume. Here div is the divergence operator in the current configuration, so
that divσ = (∂σij/∂yj)ei.

It can be shown that the first Piola–Kirchhoff and Cauchy stresses are
related according to

σ = J−1τ (I +∇u)T . (2.19)

We have not as yet examined the consequences of the equation (2.12) for
balance of angular momentum; by carrying out manipulations similar to those
that lead to (2.16), it is possible to show that this balance law implies that

τ (I +∇u)T

is symmetric. Equivalently, we have the classical result that the Cauchy stress
is symmetric:
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σT = σ or σji = σij . (2.20)

Stress and the balance laws for infinitesimal deformations. For
problems in which deformations are assumed infinitesimal, the distinction
between the reference and current configurations may be ignored. To be-
gin with, we may neglect the term ∇u appearing in (2.19); furthermore,
since J = det (I + ∇u) = 1 + divu + O(h2), we may set J ≈ 1. Likewise,
ρt = J−1ρ ≈ ρ, to within an error O(h). Thus the distinction between the
first Piola–Kirchhoff and Cauchy stresses disappears. In addition, since

∂

∂xj
=
∂yi
∂xj

∂

∂yi
=
(
δij +

∂ui
∂xj

)
∂

∂yi
,

it follows that when ∇u is small, we may replace derivatives with respect to
yj by derivatives with respect to xj . In summary, then, the principles of bal-
ance of linear and angular momentum are, in local form and for infinitesimal
deformations,

divσ + b = ρü, (2.21)

σT = σ. (2.22)

2.3 Linearly Elastic Materials

We are moving towards a situation in which the behavior of a material body
is described by a system of partial differential equations. So far, we have the
equation of motion (2.16) and the strain–displacement relation (2.5); equiv-
alently, if we assume that the deformation is infinitesimal, we will deal with
equations (2.21) and (2.7). In either case these represent, when written out in
component form, a total of nine equations: three from the equation of motion
and six from the strain–displacement relation (taking into account the sym-
metry of ε). The total number of unknowns is fifteen: three components of
displacement, six components of the strain and six components of the stress
(again accounting for the symmetry of ε and σ). Thus it is clear that six
additional equations are required if we are to have a problem that is at least
in principle solvable.

Physical considerations also dictate that the description of the problem
so far is incomplete: The kinematics have been described, and the balance
laws are accounted for, but as yet there is no description of the particular
material behavior. This information, embodied in the constitutive equations
of the material, will provide the remaining equations of the problem.

Later on, we will embark on a detailed study of the constitutive equations
that describe elastoplastic behavior. An essential precursor to such a study is
an understanding of the equations governing elastic behavior. We review in
this section the salient ideas, confining attention to linearly elastic materials.
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A body is linearly elastic if the stress depends linearly on the infinitesimal
strain, that is, if the stress and strain are related to each other through an
equation of the form

σ = Cε, (2.23)

where C, called the elasticity tensor , is a linear map from the space of sym-
metric matrices or second-order symmetric tensors into itself. Like σ, ε, u,
and other variables, the elasticity tensor is a function of position in the body.
It does not, however, depend on time. If the density ρ and the elasticity tensor
C are independent of position, the body is said to be homogeneous.

The map C may be represented as a fourth-order tensor as follows: relative
to the orthonormal basis {ei} we have

σij = ei · σej
= ei · (Cε)ej
= ei · (C(εklek ⊗ el)) ej
= ei · (C(ek ⊗ el)) ejεkl
= Cijklεkl,

where Cijkl, the components of C, are defined by

Cijkl = ei · (C(ek ⊗ el)) ej .

It follows that the constitutive equation (2.23) has the component form

σij = Cijklεkl. (2.24)

Properties of the elasticity tensor. Without loss of generality, we may
assume the elasticity tensor to have the symmetry properties

Cijkl = Cjikl = Cijlk. (2.25)

This is argued as follows. Since ε is symmetric, we have, from (2.24),

σij = Cijklεlk = Cijlkεkl.

Hence
σij =

1
2

(Cijkl + Cijlk) εkl.

Similarly, using the symmetry of σ, we have

σij =
1
2

(Cijkl + Cjikl) εkl.

Therefore, the relation (2.24) can be equivalently expressed as

σij =
1
4

(Cijkl + Cijlk + Cjikl + Cjilk) εkl.
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In other words, if necessary, we may redefine the tensor C for the relation
(2.24) such that the symmetry properties (2.25) hold.

Later, when we consider elastic constitutive equations that are derived
from a strain energy or free energy function, it will be seen that the elasticity
tensor possesses the additional symmetry property

Cijkl = Cklij . (2.26)

The elasticity tensor is positive definite if

ε : Cε > 0 for all nonzero symmetric second-order tensors ε. (2.27)

Furthermore, C is said to be strongly elliptic (see [114, 183]) if

(a⊗ b) : C(a⊗ b) > 0 for all nonzero vectors a and b. (2.28)

In component form, (2.28) reads

Cijklaiakbjbl > 0 if aiai > 0 and bibi > 0.

Finally, C is said to be pointwise stable ([114, page 321]) if there exists a
constant α > 0 such that

ε : Cε ≥ α |ε|2 for all symmetric second-order tensors ε. (2.29)

It should be clear from these definitions that pointwise stability implies, but
is not implied by, strong ellipticity. It is also clear that pointwise stability is
equivalent to pointwise positive definiteness, under the assumption that C is
continuous on Ω.

Sometimes it is convenient to work not with stress as a function of strain,
but the other way around. If the relationship (2.23) is invertible (and this will
always be the case for real materials) then we may write

ε = Aσ, (2.30)

where the fourth-order tensor A is known as the compliance tensor ; it is the
inverse of C and therefore has the property that

A(Cε) = ε ∀ ε, εT = ε,

and
C(Aσ) = σ ∀σ, σT = σ.

2.4 Isotropic Elasticity

It is often the case that materials possess preferred directions or symmetries.
For example, timber can be regarded as an orthotropic material, in the sense
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that it possesses particular constitutive properties along the grain and at right
angles to the grain of the wood. The greatest degree of symmetry is possessed
by a material that has no preferred directions; that is, its response to a force
is independent of its orientation. This property is known as isotropy, and a
material with such a property is called isotropic.

Isotropic linearly elastic materials occur in abundance, and so form an
important subclass of materials whose properties we need to model mathe-
matically. The most striking mathematical effect of isotropy is that it reduces
the twenty-one independent components Cijkl of C (taking account of the
symmetry properties (2.25) and (2.26)) to two. Of course, the choice of these
two material coefficients is not unique, and a new pair may be generated by
combining a given pair in different ways. The most appropriate choice of ma-
terial coefficients for isotropic elastic materials will depend on the application
in mind. We will discuss some of the more common variants.

First, for an isotropic linearly elastic material we have the result that the
components of the elasticity tensor are given by

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.31)

where δij is the Kronecker delta. In coordinate-free form the elasticity tensor
is defined to be the fourth-order tensor C that satisfies

(a⊗ b) : C(c⊗ d) = λ (a · b)(c · d) + µ [(a · c)(b · d) + (a · d)(b · c)] (2.32)

for all vectors a, b, c, and d. The scalars λ and µ are called Lamé moduli .
The stress-strain relation (2.23) in this case is easily found to be given by

σ = λ (tr ε)I + 2µ ε. (2.33)

For the purpose of interpreting the moduli, and of defining alternative
pairs of moduli for isotropic elastic materials, it is convenient to carry out
an orthogonal decomposition of both the stress and the strain into what are
known as spherical and deviatoric components; the first is associated solely
with volumetric changes, while the latter is associated with shearing stresses
and deformations. To achieve this decomposition we recall that any second-
order tensor τ may be written in the form

τ = τD + τS , (2.34)

where the deviatoric and spherical parts τD and τS of τ are defined, respec-
tively, by

τD := τ − 1
3 (trτ )I, τS := 1

3 (tr τ )I. (2.35)

The maps τ 7→ τD and τ 7→ τS can be regarded as orthogonal projections on
the space of second-order tensors when this space is equipped with the inner
product τ : σ = τijσij . Indeed, we have (τD)S = (τS)D = 0, and
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τD : τS = (τ − τS) : τS

= τ : τS − |τS |2

= τij
1
3τkkδij − |τ

S |2

= 1
3τiiτkk − |τ

S |2

= 0,

since |τS |2 = 1
3 (τii)2. The constitutive equation can thus be written in the

uncoupled form (by applying the operators (·)D and (·)S successively to (2.33))

σD = 2µ εD, (2.36)

σS = λ (tr ε)IS + 2µ εS = 3 (λ+ 2
3µ) εS . (2.37)

The scalar µ is also known as the shear modulus (for reasons that are evident
from (2.36)), while the material coefficient K ≡ λ + 2

3µ is known as the bulk
modulus because it measures the ratio between the spherical stress and volume
change. Thus an alternative pair of elastic coefficients to the Lamé moduli is
{µ,K}. Note that the shear modulus is often denoted by G, especially in the
engineering literature.

Yet another important alternative pair of material coefficients arises from
direct consideration of the behavior of the length of an elastic rod when it is
subjected to a uniaxial stress. Suppose that the Cartesian axes are aligned in
such a way that an isotropic elastic rod lies parallel to the x1-axis (see Figure
2.5) and is subjected to a uniform stress with σ11 6= 0 and all other components
being zero. The effect will be that the rod experiences only direct strains, on
account of its isotropy. We are interested here first in the ratio σ11/ε11 and
second in the ratio ε22/ε11, or, equivalently, ε33/ε11. The associated material
coefficients are known, respectively, as Young’s modulus and Poisson’s ratio:

Young’s modulus E =
σ11

ε11
,

Poisson’s ratio ν = −ε22

ε11
.

Thus Young’s modulus measures the slope of the stress–strain curve and is
analogous to the stiffness of a spring, while Poisson’s ratio measures lateral
contraction. Since we expect a tensile stress to be accompanied by an extension
of the material and since we also know from experience that most common
materials would respond to an extension in one direction with a contraction
in the transverse direction (think of what happens when a rubber band is
extended), it follows that one expects both E and ν to be positive quantities.
We will see later that further restrictions are placed on the ranges of E and
ν by thermodynamic or mathematical considerations.

From (2.31) it is a straightforward task to obtain a relationship between
the pairs {λ, µ} and {E, ν}. Since for the case of pure tension we have
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Fig. 2.5. A rod in a state of uniaxial stress

σ =

σ11 0 0
0 0 0
0 0 0

 and ε =

 ε11 0 0
0 ε22 0
0 0 ε22

 ,

it follows that

E =
µ(2µ+ 3λ)
µ+ λ

(2.38)

and
ν =

λ

2(µ+ λ)
. (2.39)

The constitutive relation (2.33) can be put in an alternative useful form in-
volving E and ν by inverting it and making use of (2.38) and (2.39); this
gives

ε = E−1[(1 + ν)σ − ν(trσ)I]. (2.40)

The conditions of pointwise stability and strong ellipticity introduced earlier
both lead to constraints on admissible ranges for the material constants. In-
deed, it is possible to show ([114, page 241]) that an isotropic linearly elastic
material is

(a) pointwise stable if and only if µ > 0 and 3λ + 2µ > 0 (or, in terms of
Young’s modulus and Poisson’s ratio, if and only if E > 0 and −1 < ν <
1
2 );

(b) strongly elliptic if and only if µ > 0 and λ + 2µ > 0 (or if and only if
E > 0, and ν < 1

2 or ν > 1).

2.5 A Thermodynamic Framework for Elasticity

The developments in the preceding sections were described in a purely me-
chanical framework, without bringing into play any thermodynamic consider-
ations. Since it is our intention in this monograph to deal only with processes
that take place under isothermal conditions, it would appear that there is

σ11

x1

x2

σ11
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indeed no need to take account of thermodynamics. This is, however, not
quite the case. Since the primary goal is to present a theory of elastoplasticity
and since plasticity as a constitutive theory can be conveniently developed
within a thermodynamic framework, it will be necessary to bring thermody-
namics into play, albeit in the context of isothermal processes. Plasticity is
most conveniently described in the framework of thermodynamics with inter-
nal variables. We postpone discussion of internal variable theories to Section
2.7, while in this section we sketch the basic thermodynamic theory within
which linearized elasticity can be described.

Suppose that a material body is subjected to a body force b in its interior
and a surface traction s on the boundary. Suppose also, for now, that the
body is subjected to thermal equivalents of these mechanical sources: in its
interior the heat source r per unit volume, and across its boundary the heat
flux q per unit area.

We begin with the first law of thermodynamics, which is essentially a state-
ment of balance of energy. This law states that for any part Ω′ of the body Ω,
the rate of change of total internal energy plus kinetic energy is equal to the
rate of work done on that part of the body by the mechanical forces, plus that
by the heat supply. Mathematically the law may be expressed in the form

d

dt

∫
Ω′

(e+ 1
2 ρ|u̇|

2) dx =
∫
Ω′
b·u̇ dx+

∫
Γ ′
s·u̇ ds+

∫
Ω′
r dx−

∫
Γ ′
q·n ds. (2.41)

Here e represents the internal energy per unit volume, u̇ is the velocity vector,
and Γ ′ = ∂Ω′ is the boundary of Ω′. The minus sign in front of the term
involving the heat flux appears because n is the outward unit normal vector
to the surface, while q is the heat flux per unit area in the direction of n, so
that −

∫
Γ ′
q · n ds is the total flow of heat across Γ ′ into the body. This law

may be simplified by the use of the divergence theorem: indeed, observe that∫
Γ ′
s · u̇ ds =

∫
Γ ′
σn · u̇ ds

=
∫
Ω′
σ : ∇u̇ dx+

∫
Ω′

divσ · u̇ dx

=
∫
Ω′
σ : ε̇ dx+

∫
Ω′

divσ · u̇ dx,

where in the last step we invoked the symmetry of σ. Here and below we use
the notation ε̇ = ε(u̇). Substituting this result in (2.41) and making use of
equation (2.21) of balance of momentum, we obtain the first law in the form

d

dt

∫
Ω′
e dx =

∫
Ω′
σ : ε̇ dx+

∫
Ω′
r dx−

∫
Γ ′
q · n ds.

The local form of this law may be obtained by assuming first that all variables
in the above relation are sufficiently smooth, and then by converting the sur-
face integral involving the heat flux to a volume integral with the use of the
divergence theorem. This gives
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Ω′

(
ė− σ : ε̇− r + div q

)
dx = 0,

which in turn leads to the local form

ė = σ : ε̇+ r − div q. (2.42)

The second essential postulate of thermodynamics is the second law. For
this we require first the notion of the entropy η per unit volume, and the
absolute temperature θ > 0. The entropy flux across the bounding surface Γ ′

into the body Ω′ is given by −
∫
Γ ′
θ−1q · n ds, while the entropy supplied by

the exterior is given by
∫
Ω′
θ−1r dx. The second law states that the rate of

increase in entropy in the body is not less than the total entropy supplied to
the body by the heat sources. That is,

d

dt

∫
Ω′
η dx ≥

∫
Ω′
θ−1r dx−

∫
Γ ′
θ−1q · n ds. (2.43)

By the same process used to obtain the local form (2.42) of the first law from
(2.41) we may obtain the local form of the second law, which reads

η̇ ≥ −div (θ−1q) + θ−1r. (2.44)

The inequalities (2.43) and (2.44) are known as the Clausius–Duhem form of
the second law of thermodynamics.

It is customary in elasticity and elastoplasticity to work with the Helmholtz
free energy ψ, defined by

ψ = e− η θ,

rather than with the internal energy. With this substitution and the use of
(2.42), the local form of the second law becomes

ψ̇ + η θ̇ − σ : ε̇+ θ−1q · ∇θ ≤ 0. (2.45)

The inequality (2.45) is known as the local dissipation inequality .
Now we specialize to the situation in which subsequent developments will

take place, namely, that of isothermal processes. Thus the temperature dis-
tribution in a body is assumed to be uniform and equal to the ambient tem-
perature. Furthermore, it is assumed that there is no flow of heat, and also
that there is no heat supply from the exterior. Under these circumstances the
local dissipation inequality takes the simpler form

ψ̇ − σ : ε̇ ≤ 0. (2.46)

Henceforth we will at all times make the assumptions just described, so that
temperature will not appear as a variable. Furthermore, both the heat flux
vector and heat supply will be assumed zero in what follows.
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Elastic constitutive equations. We are now in a position to obtain the
equations describing elastic material behavior. We define an elastic material
to be one for which the constitutive equations take the form

ψ = ψ(ε), (2.47)
σ = σ(ε). (2.48)

That is, the free energy and stress depend only on the current strain; there is
no dependence on the history of behavior, for example. It should be remarked
that the more general point of departure is to take the free energy and stress
to be functions of the displacement gradient ∇u rather than the strain. That
these variables in fact depend on ∇u through its symmetric part, the strain ε,
is a consequence of the principle of material frame indifference (see [114]). We
circumvent these considerations by assuming from the outset a dependence
on ε rather than on ∇u.

The functions appearing in (2.47) and (2.48) are assumed to be sufficiently
smooth with respect of their arguments that as many derivatives as required
may be taken.

It is an immediate consequence of the local dissipation inequality that the
stress is determined by ψ through the relation

σ =
∂ψ

∂ε
. (2.49)

To see this, we substitute (2.47) in the local dissipation inequality (2.46) to
obtain (

∂ψ

∂ε
− σ

)
: ε̇ ≤ 0. (2.50)

Then (2.49) follows from the fact that (2.50) holds for all ε̇. The linearly
elastic material is recovered from (2.49) by assuming that the free energy is
a quadratic function of the strain; that is,

ψ(ε) = 1
2ε : Cε, (2.51)

or
ψ(ε) = 1

2Cijklεijεkl.

Then the constitutive equation (2.23) is immediately recovered from (2.49) by
substitution of (2.51). The thermodynamic framework is not entirely equiv-
alent to the mechanical framework adopted earlier, though. One distinction
lies in the symmetries of C. From (2.49) and (2.51) we find that

σ = 1
2 (C +CT ) ε.

Here 1
2 (C + CT ) is the symmetric part of C. Replacing C by 1

2 (C + CT )
in (2.51) does not change the value of ψ(ε). Hence in the definition (2.51) we
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will replace C by its symmetric part, though for convenience we continue to
denote this symmetrized tensor by C. We then have

C =
∂2ψ

∂ε∂ε
, (2.52)

and in addition to the symmetries given in (2.25) (these still hold, in view of
the symmetry of the stress and strain), we must have the additional symmetry

Cijkl = Cklij . (2.53)

We will henceforth take as a basis for the description of linearly elastic
material behavior the thermodynamic framework, so that in particular, the
symmetry (2.53) will be assumed valid. Note that this symmetry is satisfied
with the coefficients (2.31) for isotropic elastic materials.

2.6 Initial–Boundary and Boundary Value Problems for
Linearized Elasticity

It is now possible to give a complete formulation of the problems to be solved
in order to obtain a description of the deformation of, and stresses in, a linearly
elastic body. Suppose that such a body initially occupies a domain Ω ⊂ R3

and that the body has boundary Γ , which comprises nonoverlapping parts Γu
and Γt with Γ = Γu∪Γt. Suppose that the body force b(x, t) is given in Ω, the
displacement ū(x, t) is given on the part Γu of the boundary, and the surface
traction s̄(x, t) is given on the remainder Γt of the boundary, for t ∈ [0, T ]. The
initial values of the displacement and velocity are given by u(x, 0) = u0(x)
and u̇(x, 0) = v0(x). Then the initial–boundary value problem of linearized
elasticity is the following: find the displacement field u(x, t) that satisfies, for
x ∈ Ω and for t ∈ [0, T ],

the equation of motion
divσ + b = ρü, (2.54)

the strain–displacement relation

ε(u) = 1
2

(
∇u+ (∇u)T

)
, (2.55)

the elastic constitutive relation

σ = Cε, (2.56)

the boundary conditions

u = ū on Γu and σn = s̄ on Γt, (2.57)

and the initial conditions
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u(x, 0) = u0(x) and u̇(x, 0) = v0(x), x ∈ Ω. (2.58)

We may take the displacement vector field as the primary unknown, and
eliminate the stress and strain from the governing equations by substitution;
this gives the equation of motion in the form

div (Cε(u)) + b = ρü. (2.59)

Similarly, the second boundary condition in (2.57) becomes

(Cε(u))n = s̄ on Γt. (2.60)

When the data are independent of the time, or when the data can be rea-
sonably approximated as being time-independent, the initial–boundary value
problem reduces to a boundary value problem. In this case the body force b(x)
is given in Ω, the displacement ū(x) is given on Γu and the surface traction
s̄ is given on Γt. The problem is now to find the displacement field u(x) that
satisfies the equation of equilibrium

divσ + b = 0 in Ω (2.61)

together with (2.55)–(2.57). As before, the stress can be eliminated from this
problem to give (2.59) with the right-hand side equal to zero.

The variational formulation of the boundary value problem for linearized
elasticity, (2.61) and (2.55)–(2.57), will be discussed in Chapter 6, as well as
the question of well-posedness of this problem.

2.7 Thermodynamics with Internal Variables

The thermodynamic theory presented in Section 2.5 is not entirely adequate
for modeling the behavior of a wide range of phenomena. There are situations
involving chemically reacting continuous media, for example, in which it is
necessary to account for the individual reactions taking place. This may be
accomplished by adding to the conventional variables (temperature, strain,
and so on) a number of internal variables that represent the degree of ad-
vancement of the various reactions.

A similar situation holds in the case of elastoplastic media, the focus of
attention of this monograph. Whereas the theory of continuum thermody-
namics in its standard form, as presented in Section 2.5, is quite adequate as
a framework for the discussion of elasticity, and even of thermoelasticity, it
is essential that hidden or internal variables be introduced in order that the
theory may serve as a basis for the mathematical description of elastoplastic
material behavior. The characteristic features of plasticity will be discussed
at length in Chapter 3 and subsequent chapters. In this concluding section of
Chapter 2 we extend the thermodynamic theory of Section 2.5 by presenting
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the theory of thermodynamics with internal variables in a form that will suf-
fice as a basis for the theory of plasticity later. The fundamental references
here are those of Coleman and Gurtin [34] and Halphen and Nguyen [71]; in
addition, the survey article of Gurtin [64] is a good source for further details,
as is the text by Lemaitre and Chaboche [106].

The first and second laws of thermodynamics remain valid in their earlier
forms (2.42) and (2.45); here we are concerned with a constitutive theory that
will be an extension of that for elastic materials presented earlier. As in that
situation we specialize from the outset to isothermal processes in which the
temperature is constant and there is no heat flux.

Then we consider materials for which the Helmholtz free energy and stress
are given as functions of the strain and a set of m internal variables ξ1, ξ2,
. . ., ξm. Some of these may be scalars and some tensors, depending on the
application.

The constitutive equations are thus of the form

ψ = ψ(ε, ξ1, . . . , ξm), (2.62)
σ = σ(ε, ξ1, . . . , ξm). (2.63)

Unlike the case of elasticity, in which historical effects are irrelevant, the
above representations do not suffice for the case in which internal variables
are present, and it is necessary to add to this pair of equations an evolution
equation in which the rate of change of each of the ξi is given by an equation
of the form

ξ̇i = βi(ε, ξ1, . . . , ξm), 1 ≤ i ≤ m. (2.64)

Later we will adopt a specialized form of (2.64), but for now it is important
merely to note that such an equation is necessary to complete the description
of constitutive behavior.

As in Section 2.5 we assume that all functions appearing in (2.62)–(2.64)
are sufficiently smooth with respect to their arguments that as many deriva-
tives as required may be taken.

By introducing (2.62) and (2.64) in the reduced dissipation inequality
(2.45) we find that (

∂ψ

∂ε
− σ

)
: ε̇+

∂ψ

∂ξi
: ξ̇i ≤ 0. (2.65)

In view of the arbitrariness of the rate of change ε̇ appearing in (2.65) we
conclude that

σ =
∂ψ

∂ε
. (2.66)

We now introduce the thermodynamic forces χi conjugate to ξi; these are
defined by

χi = − ∂ψ
∂ξi

, 1 ≤ i ≤ m. (2.67)

Then, taking account of (2.66) we see that
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χi : ξ̇i ≥ 0. (2.68)

The inequality (2.68) will play a major role later in the construction of a
constitutive theory for plastic materials. The left-hand side may be interpreted
as a rate of dissipation due to those internal agencies modeled by the internal
variables; indeed, we have here a quantity that is a scalar product of force-
like variables (χi) with the rate of change of strain-like variables (ξi). Under
these circumstances (2.68) declares that the dissipation rate due to internal
agencies is nonnegative.
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