
Chapter II

Analysis tools

The goal of this chapter is to describe the analysis tools that we use in later
chapters. We have gathered together fundamental concepts required to study
many linear or nonlinear evolution partial differential equations coming from
many areas of physics and biology, for instance.

We start in Section 2 by presenting, without proof, some classic results of
functional analysis such as the open mapping theorem, the Banach–Steinhaus
theorem and the Lax–Milgram theorem, proofs of which can easily be found
in the literature (see, e.g., [27, 104, 105]). We also give definitions of weak
and weak-� convergence, which are frequently used in the analysis of partial
differential equations. We pay particular attention to the expression of these
results into some fundamental spaces, namely the Lebesgue spaces. The sec-
tion is completed by a short introduction to distribution theory and by the
description of some basic properties of Lipschitz continuous functions.

Section 3 aims at describing some tools around the notion of compactness
which is fundamental when one deals with nonlinear terms in partial differ-
ential equations. We recall in particular the Schauder fixed-point theorem.

In the analysis of evolution problems, one of the usual ways for establishing
existence theorems is first to obtain energy estimates. In general, these are
deduced from elementary differential inequalities involving real functions of
a single real variable (the time variable t, in the problems which concern
us). In Section 4 of this chapter therefore, we describe the links between the
concepts of weak differentiation and standard differentiation as applied to
numerical functions of one single real variable. Finally, we prove the various
Gronwall type inequalities, which allows us to obtain the desired estimates
in most cases.

Section 5 is dedicated to the introduction and study of the spaces of func-
tions integrable on an interval of R with values in a Banach space. This is
also known as the Bochner integral theory. In particular, we prove the Aubin–
Lions–Simon compactness theorem [14, 84, 109], a fundamental result for the
study of nonlinear problems. The main ingredient of this proof is the Ascoli
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theorem, reviewed at the start of this chapter. We also present the definition
and main properties of the Fourier transform for this class of functions.

We conclude the chapter, in Section 6, with a very short introduction to the
spectral theory of self-adjoint unbounded operators with compact resolvent.

1 Main notation

Throughout this book, the space dimension is denoted by d ∈ N∗ (typically
d = 2 or d = 3 in the case of fluid mechanics applications). The Euclidean
norm on Rd is denoted by x �→ |x| and the associated inner product by
(x, y) �→ x · y.

For all multi-index α = (α1, . . . , αd) ∈ Nd we denote its length by |α| =
α1 + · · · + αd. For any function f we define ∂αf = ∂α1

x1
· · · ∂αd

xd
f as soon as

this partial derivative exists (in a classic or in a weak sense).
For any open set Ω ⊂ Rd we use the following standard functional spaces.

• The set Ck(Ω), k ≥ 0, of functions with continuous partial derivatives up
to order k.

• The subset Ck
b (Ω) ⊂ Ck(Ω) of functions such that all partial derivatives up

to order k are bounded.
• The set C0,α(Ω), α ∈]0, 1] of α-Hölder continuous functions. In the case

α = 1, C0,1(Ω) is the set of Lipschitz continuous functions. The Lipschitz
seminorm of such a function is defined by

Lip(f) = sup
x,y∈Ω
x
=y

|f(x)− f(y)|
|x− y| < +∞.

• The set Ck,α(Ω), k ≥ 0, α ∈]0, 1] of functions in Ck(Ω) whose partial
derivatives of order k are α-Hölder continuous.

• The set C∞c (Ω) of functions in C∞(Ω) which are compactly supported in
Ω. Another usual notation for this space, in particular in the theory of
distributions, is D(Ω).

• The set C∞c (Ω) of the restrictions to Ω of functions in C∞c (Rd).

Moreover, for any function u defined on Ω we denote as ū its extension by 0
on the whole space defined by

ū(x) =

{
u(x), for x ∈ Ω,

0, for x �∈ Ω.

For any x ∈ Ω, we define δ(x) to be the signed distance from x to the
boundary, which is defined by
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δ(x) =

{
d(x, ∂Ω) for x ∈ Ω,

−d(x, ∂Ω) for x �∈ Ω.
(II.1)

By using the triangle inequality, it is obvious to check that δ is Lipschitz
continuous on Rd and that Lip(δ) ≤ 1.

2 Fundamental results from functional analysis

2.1 Banach spaces

In this section we recall essential results of functional analysis. We do not
provide proofs; the reader can find these in the classic monographs on the
subject such as [27], [104], and [105].

For any normed vector space E, we denote its topological dual as E′, that
is, the space of continuous linear functionals on E. For f ∈ E′ and x ∈ E,
we introduce the duality bracket

〈f, x〉E′,E = f(x).

We reserve the notation (·, ·)H for a scalar product in a Hilbert space, H.
Let E and F be two normed vector spaces and S : E �→ F be a continuous

linear function. We define the adjoint or transposed function, denoted tS :
F ′ �→ E′, by

〈tSf, x〉E′,E = 〈f, Sx〉F ′,F ,∀f ∈ F ′,∀x ∈ E.

From the Hahn–Banach theorem, we can express the norm of an element
from a normed vector space E by duality as follows.

Proposition II.2.1. Let E be a normed vector space. Then for all x ∈ E, we
have

‖x‖E = sup
f∈E′,f 
=0

|〈f, x〉E′,E |
‖f‖E′

= sup
‖f‖E′≤1

|〈f, x〉E′,E |.

Another consequence of the Hahn–Banach theorem is the following useful
density criterion for a subspace of a given normed space.

Proposition II.2.2. Let E be a normed vector space and F be a vector subspace
of E. We assume that any continuous linear functional on E which vanishes
on F is identically zero. Then, F is a dense subspace of E.

The following result (due to Banach), gives a characterisation of the iso-
morphisms between Banach spaces.

Theorem II.2.3 (Open mapping). Let E and F be two Banach spaces. If u
is a surjective, continuous linear function from E into F , then u is an open
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map, which means that the image under u of all open sets of E is an open set
of F . In particular, if u is bijective, its reciprocal function is continuous and,
consequently, spaces E and F are algebraically and topologically isomorphic.

Finally, the last result that we recall in this section, which is sometimes
called the “uniform boundedness principle” shows that if a family of contin-
uous linear functions defined on a Banach space is pointwise bounded, then
it is uniformly bounded.

Theorem II.2.4 (Banach–Steinhaus). Let (ui)i∈I be a family of continuous
linear functions of a Banach space E within a normed vector space F , indexed
by a set I. We assume that for all x ∈ E, the family

(ui(x))i∈I ,

is bounded in F . Then, the family (ui)i∈I is uniformly bounded in the sense
of the norm of the operators; that is,

sup
i∈I
‖ui‖L(E,F ) < +∞;

or equivalently,

∃C > 0, such that ‖ui(x)‖F ≤ C‖x‖E ,∀i ∈ I,∀x ∈ E.

We conclude this section by introducing the Lax–Milgram theorem, which
is an important tool in the study of linear partial differential problems in
variational formulation.

Theorem II.2.5 (Lax–Milgram). Let V be a Hilbert space, a : V × V → R a
bilinear form, and L : V → R a linear form.

Assume that a and L are continuous and that a is coercive, that is,

∃α > 0, a(v, v) ≥ α‖v‖2V , ∀v ∈ V ;

then there exists a unique solution v ∈ V to the problem

a(v, w) = L(w),∀w ∈ V. (II.2)

Moreover, this solution satisfies

‖v‖V ≤
‖L‖V ′

α
. (II.3)

2.2 Weak and weak-� convergences

We do not go into the details here of the general theory of weak and weak-
� topologies (see [27] for a more complete study). Rather, we simply recall
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the sequential properties of these topologies, which are essential later. In
this book, these notions are mainly used in the framework of Lebesgue and
Sobolev spaces (see Section 2.3.4).

Definition II.2.6. Let E be a Banach space and E′ its dual space.

• We say that a sequence (un)n of elements of E weakly converges towards
u ∈ E, if for any f ∈ E′ we have

f(un) = 〈f, un〉E′,E −−−−→
n→∞ 〈f, u〉E′,E = f(u).

• We say that a sequence (fn)n of elements of E′ weakly-� converges towards
f ∈ E′, if for any u ∈ E, we have

fn(u) = 〈fn, u〉E′,E −−−−→
n→∞ 〈f, u〉E′,E = f(u).

Of course, as soon as the space on which we are working is infinite-
dimensional (functional spaces of type Lp(Ω), for example), the closed
bounded subsets of this space are not necessarily compact for the topology
of the norm on E. Nevertheless, the following result establishes the property
of weak compactness of closed bounded sets.

Theorem II.2.7 (Weak and Weak-� compactness).

• Let E be a reflexive Banach space (i.e., E is isomorphic with E′′ via the
natural embedding). Then, from any bounded sequence of elements of E,
we can extract a subsequence which weakly converges in E.

• Let E be a separable Banach space (i.e., one which contains a dense count-
able subset). Then, from any bounded sequence of elements of E′, we can
extract a subsequence which weakly-� converges in E′.

One of the important consequences of the Banach–Steinhaus theorem
(Theorem II.2.4) is the property of lower semicontinuity of the norm for
weak and weak-� topologies on a Banach space.

Corollary II.2.8. Let E be a Banach space, and (un)n be a sequence of ele-
ments of E (or E′, respectively) which weakly converges (or weakly-�, respec-
tively) towards u ∈ E (or u ∈ E′, respectively). Then the sequence (un)n is
bounded in E (or in E′, respectively) and we have

‖u‖E ≤ lim inf
n→∞ ‖un‖E , (resp., ‖u‖E′ ≤ lim inf

n→∞ ‖un‖E′).

The following proposition is often used to prove the weak (resp., weak-�)
convergence of a whole sequence.

Proposition II.2.9. Let E be a reflexive Banach space (resp., the dual of a
separable Banach space) and (xn)n a bounded sequence in E.
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We assume that there exists x ∈ E such that every weakly convergent
(resp., weakly-� convergent) subsequence of (xn)n has a limit equal to x; then
the whole sequence (xn)n weakly converges (resp., weakly-� converges) to x.

Proof.
We only give the proof in the reflexive case, the other case being similar.

Assume that (xn)n does not weakly converge to x. This means that there
exists f ∈ E′ such that (〈f, xn〉E′,E)n does not converge to 〈f, x〉E′,E . Hence,
there exists ε > 0 and a subsequence (xϕ(n))n such that

|〈f, xϕ(n) − x〉E′,E | ≥ ε,∀n ≥ 0. (II.4)

Since (xϕ(n))n is bounded in E which is reflexive, Theorem II.2.7 shows that
there exists a new subsequence (xϕ(ψ(n)))n that weakly converges in E. By
assumption its weak limit is necessarily equal to x which implies that

〈f, xϕ(ψ(n)) − x〉E′,E −−−−→
n→∞ 0.

This is a contradiction with (II.4) and the claim is proved.
�	

A consequence of this result is that a bound in a “small” space and a weak
convergence in a “large” space implies the weak convergence in the “small”
space. The precise statement is the following.

Proposition II.2.10. Let E,F, G be three Banach spaces such that E ⊂ G,
F ⊂ G with continuous embeddings. We assume that F is reflexive.

Let (xn)n be a sequence in E ∩ F such that there exists x ∈ E satisfying

(xn)n is bounded in F ,

(xn)n weakly converges towards x in E.

Then,
(xn)n weakly converges towards x in F .

Proof.
From Proposition II.2.9, the claim will be proved if we show that x is the

unique possible weak limit in F of subsequences of (xn)n.
Let (xϕ(n))n a subsequence which weakly converges in F towards some

limit y ∈ F . The embedding F ⊂ G is continuous, therefore we know that
(xϕ(n))n weakly converges to y in G.

On the other hand, we know by assumption that (xϕ(n))n weakly converges
towards x in E. The embedding E ⊂ G is continuous, therefore we deduce
that (xϕ(n))n weakly converges to x in G. It follows that y = x and the claim
is proved.

�	

Remark II.2.1. This result can be easily adapted to the case of the weak-�
convergence.
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We can now give a useful criterion of strong convergence for weakly con-
vergent sequences in a Hilbert space.

Proposition II.2.11. Let H be a Hilbert space and (un)n be a sequence of
elements of H which weakly converges towards u in H. Let us assume that

lim sup
n→∞

‖un‖H ≤ ‖u‖H ,

then the sequence (un)n strongly converges towards u in H.

Proof.
It is sufficient to write

‖u− un‖2H = ‖u‖2H + ‖un‖2H − 2(u, un)H .

Since the weak convergence gives (un, u)H −−−−→
n→∞ ‖u‖2H , we have

lim sup
n→∞

‖u− un‖2H = ‖u‖2H + lim sup
n→∞

‖un‖2H − 2‖u‖2H ≤ 0,

by using the assumption.
�	

We later show (Proposition II.2.32) that this result is also valid in some
Banach spaces (e.g. in the spaces Lp(Ω) with 1 < p < +∞).

Unfortunately, the concept of weak convergence, although easier to use,
does not generally allow passing to the limit in nonlinear terms. As an ex-
ample (see Section 2.3 for the main properties of Lebesgue spaces), let the
sequence of functions (un)n be defined on ]0, 1[ by un(x) = sin(nx). Then
(un)n weakly converges towards 0 in L2(]0, 1[) (Riemann–Lebesgue lemma)

and
∫ 1

0

u2
n dx converges towards 1/2. Hence the sequence (u2

n)n does not

weakly converge towards 0 in L2(]0, 1[). However, we note that the sequence
(u2

n)n does weakly converge in L2(]0, 1[) but its limit is the constant function
equal to 1/2 and not 0.

Nevertheless, we prove in the following result that the product of a strongly
converging sequence with a weakly converging one is a sequence which weakly
converges towards the product of the limits.

Proposition II.2.12. Let E, F , and G be three Banach spaces and let B be a
continuous bilinear function of E×F in G. If (un)n is a sequence of elements
of E which strongly converges towards u and (vn)n is a sequence of elements
of F which weakly converges towards v, then the sequence (B(un, vn))n weakly
converges towards B(u, v) in G.

Proof.
Let ϕ ∈ G′; we need to show that
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〈ϕ, B(un, vn)〉G′,G −−−−→
n→∞ 〈ϕ, B(u, v)〉G′,G.

By using the bilinearity of B, we have

|〈ϕ, B(un, vn)−B(u, v)〉G′,G|
≤‖ϕ‖G′‖B(u− un, vn)‖G + |〈ϕ, B(u, vn − v)〉G′,G| .

From Corollary II.2.8, the sequence (vn)n is bounded. Hence, since the func-
tion B is continuous, the first term is estimated by

‖ϕ‖G′‖B(u−un, vn)‖G ≤ ‖ϕ‖G′‖B‖‖u−un‖E‖vn‖F ≤ C‖u−un‖E −−−−→
n→∞ 0.

The function x ∈ F �→ 〈ϕ, B(u, x)〉G′,G is a continuous linear functional on
F because u is fixed in E and B is continuous. Hence from the definition
of weak convergence, the second term also tends towards 0 when n tends
towards infinity.

�	

Remark II.2.2. If the space G is reflexive and if (un)n and (vn)n converge
only weakly towards u (or, respectively, v), then the sequence (B(un, vn))n is
bounded in G (because B is continuous and (un)n and (vn)n are bounded).
Hence, Theorem II.2.7 shows us that we can extract a subsequence which
weakly converges in G towards a certain g.

The problem is that without the property of strong convergence, we cannot
in general conclude that g is equal to the expected limit, which would be
B(u, v) as shown in the example given above.

As shown in later chapters, we need to establish strong convergence prop-
erties of the sequence studied in larger spaces in order to identify the limit g
to be the product B(u, v).

Therefore, in order to deal with nonlinearities, it is necessary to obtain
strong convergence in one way or another. One way to do this is to use the
compactness properties described in Section 3.

2.3 Lebesgue spaces

2.3.1 Definitions and main properties

Definition II.2.13 (Conjugate exponent). For all 1 ≤ p ≤ +∞, we define
the conjugate exponent p′ of p by

1
p

+
1
p′

= 1,

with the obvious conventions for p = 1 and p = +∞.
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This notation is used systematically throughout this text. We also note
that for all p, we have (p′)′ = p.

• For 1 ≤ p < +∞, the space Lp(Ω) is the set of Lebesgue-measurable
functions on any open set Ω with real values, for which the pth power
of the absolute value is integrable for the Lebesgue measure. For each
f ∈ Lp(Ω) we set ‖f‖Lp =

(∫
Ω
|f |p dx

)1/p.
• The space L∞(Ω) is the set of Lebesgue-measurable functions which are es-

sentially bounded on Ω. For each f ∈ L∞(Ω), we set ‖f‖L∞ = esssupΩ|f |.

In fact, the elements of these spaces have to be considered as the classes of
functions which coincide except over null Lebesgue measure sets.

It can be shown (see Proposition II.2.21 and Remark II.2.3) that ‖.‖Lp is
a norm on Lp(Ω). Moreover, these spaces are Banach spaces.

• For 1 < p < +∞, the space Lp(Ω) is separable and reflexive. Moreover its
dual is isomorphic with Lp′

(Ω) where p′ is the conjugate exponent of p.
• The space L1(Ω) is separable but not reflexive, its dual being isomorphic

with L∞(Ω).
• By contrast, the space L∞(Ω) is neither separable nor reflexive and its

dual is strictly larger than L1(Ω).

We conclude this introduction by recalling the following version of the
change of variable theorem.

Definition II.2.14. Let Ω, Ω̃ be two open sets in Rd. A map T : Ω̃ → Ω is
said to be a Lipschitz diffeomorphism if and only if

• T is a bijection.
• T and T−1 are Lipschitz-continuous.

Notice that such a map is not in general a diffeomorphism in the usual sense
because, in particular, it is not necessarily differentiable everywhere.

Proposition II.2.15. Let Ω, Ω̃ be two open sets in Rd and T : Ω̃ → Ω a
Lipschitz diffeomorphism.

For any measurable function u : Ω → R and 1 ≤ p ≤ ∞, we have

u ∈ Lp(Ω) ⇐⇒ u ◦ T ∈ Lp(Ω̃).

Moreover, we have

C1‖u‖Lp(Ω) ≤ ‖u ◦ T‖Lp(Ω̃) ≤ C2‖u‖Lp(Ω),

for some C1, C2 > 0 depending only on T .
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2.3.2 Elementary inequalities

We give here rather general versions of Young’s and Hölder’s inequalities,
without proof. We use these repeatedly in the following sections, without
necessarily explicitly referencing them.

Proposition II.2.16 (Young’s inequality). Let n ≥ 2, and x1, . . . , xn be non-
negative real numbers. Also, let p1, . . . , pn be positive real numbers such that

1
p1

+ · · ·+ 1
pn

= 1.

We then have:

x1 · · ·xn ≤
xp1

1

p1
+ · · ·+ xpn

n

pn
.

The proof of this inequality is a simple application of the concavity of the log-
arithm function. We can directly deduce an useful version of this inequality.

Corollary II.2.17. Let p1, . . . , pn be real numbers satisfying the hypothesis
of the preceding proposition. For all positive ε1, . . . , εn−1, there exists a
C(ε1, . . . , εn−1) > 0, such that for all positive x1, . . . , xn, we have

x1 · · ·xn ≤ ε1x
p1
1 + · · ·+ εn−1x

pn−1
n−1 + C(ε1, . . . , εn−1)xpn

n .

In other words, in Young’s inequality, all the coefficients can be fixed except
for one. Of course, the coefficient C(ε1, . . . , εn−1) blows up when one of the
εi tends towards 0.

From Young’s inequality we can deduce Hölder’s inequality which is stated
in the following way.

Proposition II.2.18 (Hölder’s inequality). Let Ω be an open set of Rd and let
p1, . . . , pn be positive real numbers (possibly infinite). Let r ∈ [1, +∞] such
that

1
r

=
1
p1

+ · · ·+ 1
pn

.

For all functions f1, . . . , fn, with fi ∈ Lpi(Ω), the product f1 · · · fn belongs to
Lr(Ω) and we have

‖f1 · · · fn‖Lr ≤ ‖f1‖Lp1 · · · ‖fn‖Lpn .

We also need the following generalisation of Fubini’s theorem.

Proposition II.2.19. Let d ≥ 2 and f1, . . . , fd : Rd−1 → R be d functions
belonging to Ld−1(Rd−1). We define the following product

f(x) = f1(x2, . . . , xd)f2(x1, x3, . . . , xd) · · · fd(x1, . . . , xd−1),∀x ∈ Rd,
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where the term with fi depends on all the variables except xi.
Then, f belongs to L1(Rd) and we have

‖f‖L1(Rd) ≤
d∏

i=1

‖fi‖Ld−1(Rd−1).

Proof.
In the case d = 2, we have f(x1, x2) = f1(x1)f2(x2) and by assumption

f1, f2 ∈ L1(R). Therefore, Fubini’s theorem implies that f ∈ L1(R2) and that
‖f‖L1(R2) = ‖f1‖L1(R)‖f2‖L1(R). This proves the result (in this particular case
the claimed inequality is an equality).

Let us only prove the result for d = 3 because the general case follows
by a simple induction using Hölder’s inequality (see [27], for instance, for a
complete proof). Let us integrate the definition of |f | with respect to the
variable x3 and apply the Cauchy–Schwarz inequality∫

R

|f |(x1, x2, x3) dx3

=|f3|(x1, x2)
(∫

R

|f1|(x2, x3)|f2|(x1, x3) dx3

)
≤|f3|(x1, x2)

(∫
R

|f1|2(x2, x3) dx3

)1/2

︸ ︷︷ ︸
=(g1(x1))1/2

(∫
R3
|f2|2(x1, x3) dx3

)1/2

︸ ︷︷ ︸
=(g2(x2))1/2

.

We apply once more the Cauchy–Schwarz inequality to get∫
R3
|f | dx ≤

(∫
R2
|f3|2(x1, x2) dx1 dx2

)1/2(∫
R2

g1(x1)g2(x2) dx1 dx2

)1/2

.

The last term is estimated by using the induction assumption (i.e., Fubini’s
theorem) to get the claim

‖f‖L1(R3) ≤ ‖f3‖L2(R2)‖g1‖1/2
L1(R)‖g2‖1/2

L1(R) = ‖f3‖L2(R2)‖f1‖L2(R2)‖f2‖L2(R2).

�	
We also need the following version of Jensen’s inequality.

Proposition II.2.20 (Jensen’s inequality). Let Ω be an open set of Rd and
η ∈ L1(Ω) a nonnegative function. For any function f such that |f |pη ∈
L1(Ω), for some 1 ≤ p < +∞, we have fη ∈ L1(Ω) and∣∣∣∣∫

Ω

fη dx

∣∣∣∣p ≤ ‖η‖p−1
L1

∫
Ω

|f |pη dx.

Proof.
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We write fη = (fη1/p)η1/p′
and we use the Hölder inequality with expo-

nents p and p′ = p/(p− 1).
�	

Let us now establish a general version of the classic Minkowski inequality
that we need below.

Proposition II.2.21 (Minkowski’s inequality). Let (X1, μ1) and (X2, μ2) be
two σ-finite measure spaces. Then for any nonnegative measurable function
f defined on X1 ×X2 and any r ≥ 1 we have(∫

X1

(∫
X2

f(x1, x2) dμ2

)r

dμ1

)1/r

≤
∫

X2

(∫
X1

f(x1, x2)rdμ1

)1/r

dμ2.

Remark II.2.3. If one takes X2 = {0, 1} and μ2 the counting measure, the
above inequality can be written as

‖f + g‖Lr ≤ ‖f‖Lr + ‖g‖Lr ,

for any nonnegative f, g and any r ≥ 1.

Proof.

For all x1 ∈ X1 we denote J(x1) =
∫

X2

f(x1, x2) dμ2. Then, by using the

Hölder inequality and the Fubini theorem, we have∫
X1

J(x1)r dμ1 =
∫

X1

J(x1)r−1

(∫
X2

f(x1, x2) dμ2

)
dμ1

=
∫

X1

∫
X2

J(x1)r−1f(x1, x2) dμ2 dμ1

=
∫

X2

∫
X1

J(x1)r−1f(x1, x2) dμ1 dμ2

≤
∫

X2

(∫
X1

J(x1)r dμ1

)(r−1)/r (∫
X1

f(x1, x2)r dμ1

)1/r

dμ2

=
(∫

X1

J(x1)r dμ1

)(r−1)/r ∫
X2

(∫
X1

f(x1, x2)r dμ1

)1/r

dμ2.

From where we deduce the claim.
�	

Let us also mention the following reverse Minkowski inequality that we
state in a simple framework sufficient for our purposes.

Proposition II.2.22. Let 0 < q < 1 and Ω an open set of Rd. For any non-
negative measurable functions f, g : Ω → R, we have

‖f + g‖Lq ≥ ‖f‖Lq + ‖g‖Lq .
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Proof.
For any x ∈ Ω we write

f(x) + g(x)
‖f‖Lq + ‖g‖Lq

=
‖f‖Lq

‖f‖Lq + ‖g‖Lq

f(x)
‖f‖Lq

+
‖g‖Lq

‖f‖Lq + ‖g‖Lq

g(x)
‖g‖Lq

,

that is to say,

f(x) + g(x)
‖f‖Lq + ‖g‖Lq

= θ
f(x)
‖f‖Lq

+ (1− θ)
g(x)
‖g‖Lq

,

with θ ∈ [0, 1]. From the assumption on q we know that the map s �→ sq is
concave on R+. Therefore we get(

f(x) + g(x)
‖f‖Lq + ‖g‖Lq

)q

≥ θ

(
f(x)
‖f‖Lq

)q

+ (1− θ)
(

g(x)
‖g‖Lq

)q

.

By integrating this inequality on Ω, we observe that we obtain 1 in the right-
hand side. The claim follows immediately.

�	

2.3.3 Mollifying kernels. Density result

Mollifying is a central procedure in functional analysis. It in particular allows
us to prove density results in suitable functional spaces related to mathemat-
ical fluid mechanics. It is also crucial in the renormalized solutions theory for
the transport equation that we describe in detail in Chapter VI.

Definition II.2.23. A map η : Rd → R is called a mollifying kernel if

• η ∈ C∞c (Rd), with Supp η ⊂ B, the unit ball of Rd.
• η ≥ 0 and

∫
Rd η dx =

∫
B

η dx = 1.
• η(x) only depends on |x|.

Note first that the last condition is not necessary but it sometimes allows
simplifications in some computations. It is also worth noticing that such a
function actually exists.

For any ε > 0, we can now define

ηε(x) =
1
εd

η
(x

ε

)
and (∇η)ε(x) =

1
εd

(∇η)
(x

ε

)
,

in such a way that ∇ηε = (1/ε)(∇η)ε.

Definition II.2.24. For any f ∈ Lp(Rd), 1 ≤ p ≤ ∞ and any ε > 0 we define
the convolution
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(f � ηε)(x) =
∫

Rd

f(y)ηε(x− y) dy

=
∫

Rd

f(x− y)ηε(y) dy =
∫

B

f(x− εz)η(z) dz.

(II.5)

Notice that, inasmuch as η is bounded and compactly supported, all the
integrals in the definition above make sense.

Proposition II.2.25. For any ε > 0, we have

f � ηε ∈ C∞(Rd),

‖f � ηε‖L∞ ≤ C

εd/p
‖f‖Lp ,

‖∇(f � ηε)‖L∞ ≤ C

ε1+d/p
‖f‖Lp ,

‖f � ηε‖Lp ≤ C‖f‖Lp , (II.6)

for some C > 0 depending only on η and p. Finally, if p < +∞ we have

f � ηε −−−→
ε→0

f, in Lp(Rd).

Proof.
The regularity of f �ηε follows from the regularity of the kernel η and usual

results of differentiation under the integral sign. The L∞ estimates simply
follow from Hölder’s inequality and the fact that ‖ηε‖Lp′ = ‖η‖Lp′ /εd/p.

To prove the Lp estimate (II.6) for p < +∞, we first use the Jensen
inequality (Proposition II.2.20) to get, for any x ∈ Rd,

|(f � ηε)(x)|p ≤
∫

B

|f(x− εz)|pη(z) dz.

By integrating with respect to x and using Fubini’s theorem, we get

‖f � ηε‖p
Lp ≤

∫
Rd

∫
B

|f(x− εz)|pη(z) dz dx

=
∫

B

η(z)
(∫

Rd

|f(x− εz)|p dx

)
dz = ‖f‖p

Lp .

Let us now show the convergence property. Since p < +∞, we can use the
density of C0

c (Rd) in Lp(Rd) (this property comes from the regularity of the
Lebesgue measure). Therefore, there exists a sequence (fn)n of functions in
C0

c (Rd) which converges towards f in Lp(Rd). Each function fn is uniformly
continuous and we denote by ωn its modulus of continuity.

Using the properties of the kernel η, we observe that for each n we have

|fn � ηε(x)− fn(x)| ≤
∫

B

|fn(x− εz)− fn(x)|η(z) dz ≤ ωn(ε),
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and therefore, since fn is compactly supported we have

‖fn � ηε − fn‖Lp ≤ Cnωn(ε).

Using the triangle inequality and (II.6) we get

‖f � ηε − f‖Lp ≤ ‖(f − fn) � ηε‖Lp + ‖fn � ηε − fn‖Lp + ‖fn − f‖Lp

≤ (1 + C)‖f − fn‖Lp + Cnωn(ε).

Taking the superior limit as ε → 0, we obtain for any n that

lim sup
ε→0

‖f � ηε − f‖Lp ≤ (1 + C)‖f − fn‖Lp .

Taking now the limit n → ∞, we finally get lim supε→0 ‖f � ηε − f‖Lp = 0
and the claim is proved.

�	
Theorem II.2.26. For any open set Ω in Rd, the set D(Ω) is dense in Lp(Ω)
for any 1 ≤ p < +∞.

Proof.
Let f ∈ Lp(Ω). For any n ≥ 1 we define the open set Ωn = {x ∈

Ω, d(x, ∂Ω) > 1/n}. By the dominated convergence theorem we see that fn =
f1Ωn

converges to f in Lp(Ω). We consider now the function fn,ε = fn � ηε.
By the previous proposition, we know that fn,ε ∈ C∞(Rd); moreover, for any
ε < 1/n, we observe that the support of fn,ε is contained in Ω, therefore
fn,ε ∈ D(Ω). The result follows because we have limε→∞ (limn→∞ fn,ε) = f
in Lp(Ω).

�	

2.3.4 Weak and weak-� convergences in Lebesgue spaces

From the recap at the beginning of this section, and in particular from the
characterisation of the dual space of Lp(Ω), we can write the Lp-version of
Theorem II.2.7.

Proposition II.2.27. Let (un)n be a bounded sequence of Lp(Ω), 1 < p < +∞;
then we can extract a weakly converging subsequence from the sequence (un)n;
that is

∃(unk
)k,∃u ∈ Lp(Ω), lim

k→∞

∫
Ω

unk
ϕ dx =

∫
Ω

uϕ dx,∀ϕ ∈ Lp′
(Ω).

This result does not hold in L1(Ω) because that space is not reflexive.
Nevertheless, we have a similar result in L∞(Ω) provided that we consider
the weak-� topology on this space, because it is the dual of the separable
space L1(Ω).



64 Chapter II. Analysis tools

Proposition II.2.28. Let (un)n be a bounded sequence of L∞(Ω); then, from
the sequence (un)n, we can extract a subsequence which is weakly-� conver-
gent; that is

∃(unk
)k,∃u ∈ L∞(Ω), lim

k→∞

∫
Ω

unk
ϕ dx =

∫
Ω

uϕ dx,∀ϕ ∈ L1(Ω).

With this characterisation of the weak-� convergence in L∞(Ω), we can
extend the density result given in Theorem II.2.26.

Theorem II.2.29. For any open set Ω of Rd, the set D(Ω) is dense in L∞(Ω)
for the weak-� topology.

Proof.
Let f ∈ L∞(Ω). We set ψn = 1B(0,n) so that fψn ∈ L1(Ω) ∩ L∞(Ω).

By using Theorem II.2.26, we know that for each n there exists a function
fn ∈ D(Ω) such that ‖fn − fψn‖L1 ≤ 1/n. Observe in the proof of this
theorem that we have the additional property ‖fn‖L∞ ≤ ‖fψn‖L∞ ≤ ‖f‖L∞ .

Let now ϕ ∈ D(Ω). We have∣∣∣∣∫
Ω

fnϕ dx−
∫

Ω

fϕ dx

∣∣∣∣ ≤ ∫
Ω

|fn − fψn||ϕ| dx︸ ︷︷ ︸
‖fn−fψn‖L1‖ϕ‖L∞

+
∫

Ω

|ψn − 1||f ||ϕ| dx.

The first term in the right-hand side tends to 0 by construction of (fn)n and
the second one also tends to 0 thanks to the Lebesgue dominated convergence
theorem.

Finally, since (fn)n is bounded in L∞(Ω) and D(Ω) is dense in L1(Ω), we
deduce that ∣∣∣∣∫

Ω

fng dx−
∫

Ω

fg dx

∣∣∣∣ −−−−→n→∞ 0,∀g ∈ L1(Ω),

which proves the theorem.
�	

By applying Proposition II.2.12 within the framework of Lp-spaces, and
by using Hölder’s inequality, we obtain the following useful result.

Proposition II.2.30. Let p, q, and r be three real numbers in [1, +∞[ such that

1
r

=
1
p

+
1
q
.

If (un)n is a sequence of Lp(Ω) which strongly converges towards u in Lp(Ω)
and if (vn)n is a sequence of Lq(Ω) which weakly converges towards v in
Lq(Ω), then the product sequence (unvn)n weakly converges towards uv in
Lr(Ω).



2. Fundamental results from functional analysis 65

We now state the classic inequalities in Lp spaces which prove that these
spaces are uniformly convex ([27], [69]) except for p = 1 and p = +∞. We can
view these inequalities as generalisations of the parallelogram law in Hilbert
space.

Lemma II.2.31 (Clarkson’s inequalities). Let 1 < p < +∞, and let f, g be
in Lp(Ω).

• If p ≥ 2, we have∥∥∥∥f + g

2

∥∥∥∥p
Lp

+
∥∥∥∥f − g

2

∥∥∥∥p
Lp

≤ 1
2
‖f‖p

Lp +
1
2
‖g‖p

Lp .

• If p < 2, we have∥∥∥∥f + g

2

∥∥∥∥p′

Lp

+
∥∥∥∥f − g

2

∥∥∥∥p′

Lp

≤
(

1
2
‖f‖p

Lp +
1
2
‖g‖p

Lp

)1/(p−1)

.

We can now prove the strong convergence criterion for a weakly converging
sequence in Lp spaces.

Proposition II.2.32. Let 1 < p < +∞, and let (un)n be a sequence of func-
tions of Lp(Ω) which weakly converges towards u in Lp(Ω). If we assume

lim sup
n→∞

‖un‖Lp ≤ ‖u‖Lp ,

then the sequence (un)n strongly converges towards u.

According to Corollary II.2.8, this hypothesis is equivalent to saying that the
sequence of norms (‖un‖Lp)n converges towards ‖u‖Lp .

For Lp spaces, this result generalises Proposition II.2.11 which dealt with
the Hilbertian case (i.e., p = 2).
Proof.

The Clarkson inequalities given by the previous lemma can be written in
the general form∥∥∥∥f + g

2

∥∥∥∥αp

Lp

+
∥∥∥∥f − g

2

∥∥∥∥αp

Lp

≤
(

1
2
‖f‖p

Lp +
1
2
‖g‖p

Lp

)α

,

where α = 1 if p ≥ 2 and α = 1/(p− 1) if p < 2. Let us apply this inequality
to f = un and g = u. We obtain∥∥∥∥un + u

2

∥∥∥∥αp

Lp

+
∥∥∥∥un − u

2

∥∥∥∥αp

Lp

≤
(

1
2
‖un‖p

Lp +
1
2
‖u‖p

Lp

)α

,

and we denote the left-hand side of this inequality as an. If we pass to the
upper limit in this inequality, then by using the hypothesis, we find that:
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lim sup
n→∞

an ≤ ‖u‖pα
Lp . (II.7)

However, we have: ∥∥∥∥un − u

2

∥∥∥∥αp

Lp

= an −
∥∥∥∥un + u

2

∥∥∥∥αp

Lp

,

which gives

lim sup
n→∞

∥∥∥∥un − u

2

∥∥∥∥αp

Lp

≤ lim sup
n→∞

an − lim inf
n→∞

∥∥∥∥un + u

2

∥∥∥∥αp

Lp

. (II.8)

Moreover, the sequence (un + u)/2 also weakly converges towards u, so that
the Corollary II.2.8 shows us that

‖u‖pα
Lp ≤ lim inf

n→∞

∥∥∥∥un + u

2

∥∥∥∥αp

Lp

. (II.9)

By combining (II.7), (II.8), and (II.9), we finally obtain:

lim sup
n→∞

∥∥∥∥un − u

2

∥∥∥∥αp

Lp

≤ 0,

which concludes the proof.
�	

2.3.5 Interpolation between Lp spaces

We now establish an interpolation inequality which is nothing but a convexity
property.

Lemma II.2.33. Let Ω be any open set of Rd and let u ∈ Lp(Ω)∩Lq(Ω) with
1 ≤ p, q ≤ +∞. Then for all r such that

1
r

=
θ

p
+

1− θ

q
, 0 ≤ θ ≤ 1,

we have u ∈ Lr(Ω) and

‖u‖Lr ≤ ‖u‖θ
Lp‖u‖1−θ

Lq .

Proof.
We note that

1 =
θr

p
+

(1− θ)r
q

,

and we can therefore apply the Hölder inequality in the following way:
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Ω

|u|rdx =
∫

Ω

|u|rθ|u|r(1−θ)dx

≤
(∫

Ω

|u|pdx

)rθ/p(∫
Ω

|u|qdx

)r(1−θ)/q

≤ ‖u‖rθ
Lp‖u‖r(1−θ)

Lq .

�	
The preceding inequality allows us to obtain convergence properties in the

intermediate spaces from the convergences in suitable Lp spaces.

Corollary II.2.34. Let Ω be any open set of Rd. Let p1, p2 ∈ [1, +∞] and let
(un)n be a sequence of functions which strongly converges towards u in Lp1(Ω)
and which weakly converges (weakly-� if p2 = +∞) in Lp2(Ω). Then, for all
p included strictly between p1 and p2, the sequence (un)n strongly converges
towards u in Lp(Ω).

Proof.
Since p is strictly included between p1 and p2, there exists a θ ∈]0, 1[ such

that
1
p

=
θ

p1
+

1− θ

p2
.

From the interpolation inequality given by the preceding lemma, we have

‖u− un‖Lp ≤ ‖u− un‖θ
Lp1‖u− un‖1−θ

Lp2 .

However, the weak (or weak-�) convergence of (un)n in Lp2(Ω), shows that
the sequence (u−un)n is bounded in this space, as well as that the strong con-
vergence in Lp1(Ω) ensures convergence towards 0 of the first term, because
θ is not zero.

�	

2.3.6 Local Lebesgue spaces

Definition II.2.35. For all open sets Ω of Rd and for all p ∈ [1, +∞[, we
denote as Lp

loc(Ω) the set of measurable functions for which the p-th power
of the absolute value is locally integrable, that is, its integral over all compact
subsets included in Ω is finite. Similarly, we denote as L∞loc(Ω) the set of
measurable functions essentially bounded over all compact sets included in Ω.

We can say that a sequence (un)n converges towards u in Lp
loc(Ω), if (un)n

converges towards u in Lp(ω) for any bounded open set ω such that ω ⊂ Ω.
It is clear that Lp(Ω) ⊂ Lp

loc(Ω), the inverse inclusion being certainly
false. A frequently useful property of sequences of functions in Lp

loc(Ω) is the
following.
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Proposition II.2.36. Let Ω be a bounded open set of Rd, q > 1 and let (un)n

be a sequence of bounded functions in Lq(Ω). We assume that (un)n converges
towards u in Lp

loc(Ω) with 1 ≤ p < q; then we have

u ∈ Lq(Ω),

and
un −−−−→

n→∞ u, in Lp(Ω).

Proof.
The sequence (un)n being bounded in Lq(Ω), we know from Propositions

II.2.27 and II.2.28 that we can extract a subsequence (unk
)k which weakly

converges (weakly-� if q = +∞) towards a function v ∈ Lq(Ω). In particular,
we deduce that for any ω ⊂ ω ⊂ Ω, (unk

)k converges weakly (or weakly-
�) towards v in Lq(ω) ⊂ Lp(ω). The convergence in Lp

loc(Ω) implies strong
convergence in Lp(ω), thus we deduce that u = v ∈ Lq(Ω).

For any k ≥ 1, we set ωk = {x ∈ Ω, d(x, ∂Ω) > 1/k}. We have ωk ⊂ Ω so
that, by assumption,

‖un − u‖Lp(ωk) −−−−→
n→∞ 0.

Moreover, by using the Hölder inequality we get

‖un − u‖Lp(Ω\ωk) ≤ ‖un − u‖Lq(Ω)|Ω\ωk|(q−p)/q) ≤ 2C|Ω\ωk|(q−p)/q,

where C is a bound of the sequence (un)n and of the function u in Lq(Ω). We
then set ε > 0 and choose k to be sufficiently large so that 2C|Ω\ωk|(q−p)/q <
ε. We then choose n0 sufficiently large that

‖un − u‖Lp(Ωk) ≤ ε,∀n ≥ n0,

and, therefore
‖un − u‖Lp(Ω) ≤ 2ε,∀n ≥ n0.

�	

2.4 Partitions of unity

Let us start with a useful lemma when studying the local properties of func-
tions.

Lemma II.2.37. Let Ω be a nonempty open set of Rd and let ω be a bounded
open set of Rd satisfying ω ⊂ Ω. Then there exists a function ϕ ∈ D(Ω), such
that

0 ≤ ϕ ≤ 1,

ϕ(x) = 1,∀x ∈ ω.
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Proof.
By hypothesis ω is compact and disjoint from the closed set Rd\Ω, hence

δ = d(ω, Rd\Ω) > 0.

We then introduce the open set U = {x ∈ Ω, d(x, ω) < δ/2}. It is clear that

ω ⊂ U and U ⊂ Ω.

The reader can easily convince her- or himself that the function

ϕ = 1U � η δ
4
,

obtained by convolution with a mollifying kernel of the characteristic function
of U satisfies the stated result.

�	
We can now show the essential result of this section.

Lemma II.2.38 (Partition of unity). Let A be a nonempty set of Rd. We
suppose given a covering of A by any family of open sets,

A ⊂
⋃
i∈I

ωi.

There exists a family (ψi)i∈I of nonnegative functions of C∞(Rd), indexed
on I such that

Suppψi ⊂ ωi,∀i ∈ I,∑
i∈I

ψi(x) = 1,∀x ∈ A,

this sum being locally finite. Moreover, the ψi are identically zero except for
a countable number of indices i ∈ I.

One such family of functions is called a partition of unity associated with
the covering (ωi)i∈I .
Proof.

• Let us consider the set S of points of A with rational coordinates. We then
consider the family (Bj)j∈J of spheres centred on S, for which the radius
is rational and which are contained in one of the (ωi)i. This family is, of
course, countable and we therefore index it with the integers n ∈ N, and
by the density of Q in R we clearly have

A ⊂
+∞⋃
n=0

Bn.
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• For all n ≥ 0, we let Vn denote the ball with its centre at the same point
as Bn and for which the radius is half that of Bn.
According to Lemma II.2.37, there exists a positive regular function ϕn

with compact support included in Bn and which is identically equal to 1
on Vn.
We then define α0 = ϕ0 and for all n ≥ 1,

αn = (1− ϕ0) · · · (1− ϕn−1)ϕn.

Is is clear that αn is smooth and nonnegative. Furthermore, by definition,
αn has its support contained in Bn which is itself contained in one ωi for
some i ∈ I.
Moreover, a straightforward computation implies that

N∑
n=0

αn(x) = 1− (1− ϕ0) · · · (1− ϕN ).

This shows firstly, since 0 ≤ ϕi ≤ 1, that for all N we have

N∑
n=0

αn(x) ≤ 1.

Furthermore, since ϕi = 1 on Vi, we see that

N∑
n=0

αn(x) = 1, ∀x ∈ V1 ∪ · · · ∪ VN .

Inasmuch as the αi are nonnegative, this implies that for all n ≥ N + 1,
αn is zero on V1 ∪ · · ·VN , which indeed proves that the sum

∑
n≥0 αn is

locally finite and that ∑
n∈N

αn(x) = 1,∀x ∈ A. (II.10)

• For any n, we denote as i(n) ∈ I an index such that Suppαn ⊂ ωi(n). We
then note that

A ⊂
+∞⋃
n=0

ωi(n).

Indeed, Equation (II.10), shows that any point of A belongs to the support
of at least one function αn and therefore lies in ωi(n).
We now set ψi = 0 for any i ∈ I\{i(n), n ∈ N}. It remains to define the
functions ψi(n). To do this, we define
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ψi(0)(x) =
∑

k∈N,s.t.
Supp (αk)⊂ωi(0)

αk(x).

This sum is perfectly defined because the sum of the family (αn)n is locally
finite in A. Furthermore, it is clear that βi(0) is nonnegative and that its
support is contained in ωi(0). We then define for n ≥ 1,

ψi(n)(x) =
∑

k∈N,s.t. Supp (αk)⊂ωi(n)
∀p≤n−1,Supp (αk) 
⊂ωi(p)

αk(x).

It is then obvious to check that those (ψi)i∈I solve the problem.

�	

2.5 A short introduction to distribution theory

Let us first describe the sequential topology of D(Ω). A sequence (ϕn)n ⊂
D(Ω) is said to be convergent towards some ϕ ∈ D(Ω) if there is a compact
K ⊂ Rd which contains the support of ϕ and of all the functions ϕn and if for
any multi-index α ∈ Nd, the sequence (∂αϕn)n uniformly converges towards
∂αϕ.

Definition II.2.39 (Distributions). A linear map T : D(Ω) → R is called a
distribution if it is continuous in the sense that T (ϕn) −−−−→

n→∞ T (ϕ) for any

sequence (ϕn)n converging towards ϕ in D(Ω).
The set of distributions is denoted by D′(Ω).

Even though D(Ω) is not a Banach space, by similarity with the usual
duality theory, we also adopt the notation

〈T, ϕ〉D′,D = T (ϕ).

Definition II.2.40 (Convergence of distributions). A sequence of distribu-
tions (Tn)n ⊂ D′(Ω) is said to converge towards a distribution T ∈ D′(Ω) if
for any ϕ ∈ D(Ω) we have

〈Tn, ϕ〉D′,D −−−−→
n→∞ 〈T, ϕ〉D′,D.

Notice that the limit of a sequence of distributions (Tn)n, if it exists, is
necessarily unique.

Definition II.2.41 (Derivatives of distributions). For any distribution T ∈
D′(Ω) and any multi-index α ∈ Nd, the derivative of T in the distribution
sense is the distribution ∂αT defined by
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〈∂αT, ϕ〉D′,D = (−1)|α|〈T, ∂αϕ〉D′,D,∀ϕ ∈ D(Ω).

We can associate the distribution Tf ∈ D′(Ω) defined by,

〈Tf , ϕ〉D′,D =
∫

Ω

fϕ dx

with any f ∈ L1
loc(Ω). The following property is fundamental.

Proposition II.2.42. The map

T : f ∈ L1
loc(Ω) �→ Tf ∈ D′(Ω)

is injective and sequentially continuous.

Proof.
Let f, g ∈ L1

loc(Ω) such that Tf = Tg. Let us show that f = g almost
everywhere.

Let ω be any bounded open subset of Ω. We set h = sgn(f − g) ∈ L∞(ω).
By using Theorem II.2.29 we can find a sequence ϕn ∈ D(ω) such that (ϕn)n

converges to h in L∞(ω) weak-�. By extending ϕn by zero on Ω, we see that
ϕn ∈ D(Ω) and therefore by assumption we have 〈Tf , ϕn〉D′,D = 〈Tg, ϕn〉D′,D;
that is,

0 =
∫

Ω

(f − g)ϕn dx =
∫

ω

(f − g)ϕn dx.

Since f − g ∈ L1(ω) and (ϕn)n converges in L∞(ω) weak-�, we can pass to
the limit in this formula and finally obtain

0 =
∫

ω

(f − g) sgn(f − g) dx =
∫

ω

|f − g| dx.

It follows that f = g almost everywhere in ω. This is true for any such ω,
thus we have f = g in Ω.

Let (fn)n ⊂ L1
loc(Ω) which converges towards some f ∈ L1

loc(Ω). For any
ϕ ∈ D(Ω), the sequence (ϕfn)n converges to ϕf in L1(Ω) because ϕ is com-
pactly supported. This implies that 〈Tfn , ϕ〉D′,D −−−−→

n→∞ 〈Tf , ϕ〉D′,D, and the
claim is proved.

�	
Thanks to the previous result we see that the map T let us identify L1

loc(Ω)
to a subspace of D′(Ω). By abuse of notation we say that L1

loc(Ω) ⊂ D′(Ω)
and we systematically identify f and the distribution Tf . Reciprocally, if a
distribution T ∈ D′(Ω) is such that T = Tf for some f ∈ L1

loc(Ω) we say that
T ∈ L1

loc(Ω).
Note also that, as soon as f is a smooth enough function, a simple inte-

gration by parts shows that we have

∂α(Tf ) = T∂αf , in D′(Ω),
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so that the derivative in the distribution sense coincides with the derivative
in the usual sense.

It is also fundamental to recall that the convergence of functions in the
distribution sense is weaker than all the weak and weak-� convergences that
we defined above. The precise result, whose proof is straightforward, is the
following.

Proposition II.2.43. • Let 1 ≤ p < +∞, and (fn)n be a sequence in Lp(Ω)
which converges weakly towards f ∈ Lp(Ω). Then we have

fn −−−−→
n→∞ f, in D′(Ω).

• Let (fn)n be a sequence in L∞(Ω) which converges weakly-� towards f ∈
L∞(Ω). Then we have

fn −−−−→
n→∞ f, in D′(Ω).

We conclude the presentation of the distribution theory with the following
useful lemma. Despite its very simple statement, the proof is not so straight-
forward.

Lemma II.2.44. Let Ω be a connected open set of Rd and let T ∈ D′(Ω) be a
distribution such that ∇T = 0 (in other words ∂T/∂xi = 0 in D′(Ω) for all
i). Then, T is constant; that is, there exists some α ∈ R such that

T = α.

Proof.

• Let us start with the case where Ω is the cube ]0, 1[d. We fix a function
θ ∈ D(]0, 1[) to be nonnegative with integral equal to 1. Now let ϕ ∈ D(Ω).
We then denote

mi(ϕ)(xi+1, . . . , xd) =
∫ 1

0

. . .

∫ 1

0

ϕ(u1, . . . , ui, xi+1, . . . , xd) du1 . . . dui.

We set

Φ1(x1, . . . , xd) =
∫ x1

0

ϕ(t, x2, . . . , xd) dt−m1(ϕ)(x2, . . . , xd)
∫ x1

0

θ(t) dt.

It is clear that Φ1 is regular and, by choice of θ, this function has compact
support in Ω. By hypothesis we have

0 =
〈

∂T

∂x1
, Φ1

〉
D′,D

= −
〈

T,
∂Φ1

∂x1

〉
D′,D

= −〈T, ϕ−m1(ϕ)(x2, . . . , xd)θ(x1)〉D′,D.
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We have therefore shown that for any ϕ ∈ D(Ω), we have

〈T, ϕ〉D′,D = 〈T, m1(ϕ)θ(x1)〉D′,D.

We now set

Φ2(x1, . . . , xd) = θ(x1)
∫ x2

0

m1(ϕ)(t, x3, . . . , xd) dt

− θ(x1)m2(ϕ)(x3, . . . , xd)
∫ x2

0

θ(t) dt.

By using the fact that ∂T/∂x2 = 0 for this test function (which belongs
indeed to D(Ω)), we find

〈T, ϕ〉D′,D = 〈T, θ(x1)m1(ϕ)(x2, . . . , xd)〉D′,D
= 〈T, θ(x1)θ(x2)m2(ϕ)(x3, . . . , xd)〉D′,D.

Hence, by induction we obtain that

〈T, ϕ〉D′,D = 〈T, θ(x1) · · · θ(xd)md(ϕ)〉D′,D.

However, md(ϕ) is a constant which is simply the integral of ϕ on Ω. If we
define

α = 〈T, θ(x1) · · · θ(xd)〉D′,D,

then we obtain

〈T, ϕ〉D′,D = αmd(ϕ) =
∫

Ω

αϕdx1 · · · dxn,

which proves the result in the case of the unique cube. It is clear that by
translations and homothety this proves the result for all the cubes.

• The case of any connected open set:
We start by covering Ω with a locally finite family (ωi)i of open cubes. For
all i, the distribution T restricted to ωi has zero gradient in D′(ωi) and is
therefore constant on ωi. In other words, there exists some αi such that
for all ϕ with support in ωi we have

〈T, ϕ〉D′,D =
∫

ωi

αiϕ(x) dx = αi

∫
Ω

ϕ(x) dx.

We now consider a locally finite C∞ partition of unity (ψi)i (see Lemma
II.2.38) associated with the covering of Ω under consideration. Let ϕ ∈
D(Ω), then since the support of ϕ is compact, it is included in a finite
union of the open sets of the family (ωi)i. We therefore obtain the following
equality

ϕ =
∑

i

ϕψi,
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the summation being, in fact, finite. Hence, we have

〈T, ϕ〉D′,D =
∑

i

〈T, ϕψi〉D′,D.

However, the functions ϕψi have support in the cube ωi, such that we
obtain

〈T, ϕ〉D′,D =
∑

i

αi

(∫
Ω

ϕ(x)ψi(x) dx

)
.

The summation on i is in reality finite, therefore we have

〈T, ϕ〉D′,D =
∫

Ω

ϕ(x)

(∑
i

αiψi(x)

)
dx.

The fact that this is valid for all ϕ shows that the distribution T coincides
with the function of class C∞ defined by

T (x) =
∑

i

αiψi(x).

However, by hypothesis, this function has a gradient (in the classic sense)
which is 0 on Ω. Since Ω is connected, this shows that the function T is
indeed constant on Ω.

�	

2.6 Lipschitz continuous functions

This class of function is important in the sequel because we mainly study
the equations of fluid mechanics in a domain whose boundary has a Lipschitz
regularity (including, in particular, polygonal/polyhedral domains). That is
why we need to state here some basic results concerning those functions.

We first give a very simple extension theorem in this class.

Proposition II.2.45 (McShane–Whitney extension). Let A ⊂ Rd be any
nonempty set and f : A → R be a Lipschitz continuous function on A. There
exists a Lipschitz continuous function F : Rd → R such that F|A = f and
Lip(F ) = Lip(f).

Proof.
If we set L = Lip(f), it is a simple exercise to check that

F (x) = inf
y∈A

(f(y) + L|x− y|) ,



76 Chapter II. Analysis tools

satisfies the required property.
�	

In the sequel of this book (in particular in Chapter III), we often use the
fact that Lipschitz continuous functions are almost-differentiable functions.
The precise result, whose proof is given in [68], for instance, is the following.

Theorem II.2.46 (Rademacher). Any locally Lipschitz continuous function
f defined on an open set of Rd is differentiable (in the classic sense) almost
everywhere.

We need to analyse carefully the action of mollifying operators on Lipschitz
continuous maps. We suppose given a mollifying kernel η as in Definition
II.2.23 and we recall that, for any ε > 0, f � ηε is defined in (II.5).

Proposition II.2.47. Assume that f is Lipschitz continuous on Rd, then

1. For any ε > 0, we have Lip(f � ηε) ≤ Lip(f).
2. f � ηε uniformly converges in Rd towards f as ε → 0.
3. For any x ∈ Rd such that f is differentiable at x, we have

∇(f � ηε)(x) −−−→
ε→0

∇f(x).

Proof.

1. The regularity of f � ηε comes from that of kernel η. The estimate of the
Lipschitz seminorm is given by the following simple computation

|f � ηε(x)− f � ηε(y)| ≤
∫

B

|f(x− εz)− f(y − εz)|η(z) dz

≤ Lip(f)|x− y|, ∀x, y ∈ Rd.

2. Since
∫

Rd η(z) dz = 1, we have

|f � ηε(x)− f(x)| =
∣∣∣∣∫

B

(f(x− εz)− f(x))η(z) dz

∣∣∣∣
≤
∫

B

|f(x− εz)− f(x)|η(z) dz ≤ ε Lip(f)
∫

B

|z|η(z) dz,

and the claim is proved.
3. Let x be a point such that f is differentiable at x. Then, there exists

τ : Rd → R such that limh→0 τ(h) = 0 and

|f(x + h)− f(x)−∇f(x) · h| ≤ |h|τ(h),∀h ∈ Rd.

Let i ∈ {1, . . . , d}. From (II.5), we see that

∂xi(f � ηε)(x) =
1
ε

∫
B

f(x− εz)∂ziη(z) dz.
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Moreover, by integration by parts, we observe that∫
B

∂zi
η(z) dz = 0, and

∫
B

z∂zi
η(z) dz = −ei,

so that we can write

∂xi(f � ηε)(x)− ∂xif(x)

=
1
ε

(∫
B

[
f(x− εz)− f(x) +∇f(x).(εz)

]
∂zi

η(z) dz

)
,

and then we can conclude, by using the dominated convergence theorem,
that

|∂xi
(f � ηε)(x)− ∂xi

f(x)| ≤
∫

B

|z|τ(εz)∂zi
η(z) dz −−−→

ε→0
0.

�	

3 Basic compactness results

As we show below, highlighting of the compactness properties of certain sets,
or of certain maps, is often a crucial step in proving the existence of solu-
tions to certain nonlinear partial differential equations. In this section we
summarise essential definitions and results which are used later.

3.1 Compact sets in function spaces

Ascoli’s theorem is one of the fundamental tools of nonlinear analysis. It
allows relatively compact sets in C0(E,F ) to be simply characterised, where
E is a compact space. This result is central because it underpins the majority
of the compactness results used later in this text. A very classic proof of this
theorem can be found, for example, in [99].

Theorem II.3.1 (Ascoli). Let E be a compact metric space, and let F be a
metric space. Let C0(E, F ) be the metric space formed from the continuous
functions of E in F equipped with the uniform distance:

d(f, g) = sup
x∈E

d(f(x), g(x)).

Let K be a subset of C0(E, F ). We assume that:

1. For any x ∈ E, the subset of F , K (x) defined by:
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K (x) = {f(x), f ∈ K }

is relatively compact in F .
2. The set K is equicontinuous; that is for all x ∈ E and all ε > 0, there

exists an η > 0 such that

d(f(x), f(y)) < ε, ∀y ∈ E, such that d(x, y) < η, ∀f ∈ K .

Then, K is relatively compact (i.e., has compact adherence) in C0(E, F ).

Unfortunately, it is very rare in the analysis of partial differential equa-
tions that we work in the set of continuous functions on a compact space.
The following theorem, which follows from Ascoli’s theorem, gives us a com-
pactness criterion similar to that of Ascoli for the bounded subsets in Lp(Ω)
spaces.

Theorem II.3.2 (Kolmogorov). Let Ω be any open set of Rd, and let F be
a bounded subset of Lp(Ω), with 1 ≤ p < +∞. We assume that

1. For all ε > 0, and for all bounded open sets ω such that ω ⊂ Ω, there exists
an α > 0, with α < d(ω, Rd\Ω) such that

‖τhf − f‖Lp(ω) ≤ ε, ∀f ∈ F ,∀h ∈ Rd, |h| ≤ α. (II.11)

2. For all ε > 0, there exists a bounded open set ω, such that ω ⊂ Ω and such
that

‖f‖Lp(Ω\ω) ≤ ε,∀f ∈ F . (II.12)

Then, F is relatively compact in Lp(Ω).

In this theorem τhf denotes the translated function defined by

τhf(x) = f(x + h).

The first condition looks like the equicontinuity condition of Ascoli’s the-
orem; the second tells us that the functions of F must be “uniformly small”
in the Lp norm near the boundary of Ω and near infinity.
Proof.

• We set ε > 0 and choose an open set ω satisfying (II.12). Let α > 0 with
α < d(ω, Rd \ Ω) satisfying (II.11). We observe that, for any f ∈ F and
any x ∈ ω we have

|f̄ � ηα(x)− f(x)| ≤
∫

B

|f̄(x− αz)− f(x)|η(z) dz.

Using the Jensen inequality, integrating on ω and using Fubini’s theorem
leads to

‖f̄ � ηα − f‖Lp(ω) ≤
∫

B

η(z)‖τ−αzf − f‖Lp(ω) dz.
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Note that we have used here the fact that, by assumption on α, x − αz
belongs to Ω as soon as x ∈ ω and z ∈ B so that f̄(x− αz) = f(x− αz).
For any z ∈ B we have |x−αz| ≤ α, therefore we deduce from (II.11) that

‖f̄ � ηα − f‖Lp(ω) ≤ ε, ∀f ∈ F . (II.13)

• Let us define Fα = {f̄ �ηα, f ∈ F} and Fω = {f|ω, f ∈ F}. Each function
in Fα is continuous on the compact ω and satisfies

‖∇(f̄ � ηα)‖L∞ ≤ C

α1+d/p
‖f‖Lp ≤ C ′

α1+d/p
,

because F is a bounded set of Lp(Ω).
The number α > 0 being fixed, we have shown that Fα satisfies the as-
sumptions of the Ascoli theorem. It follows that Fα is relatively compact
in C0(ω) and thus in Lp(ω) by continuity of the embedding C0(ω) ⊂ Lp(ω).

• As a consequence, there exist a finite number of balls in Lp(ω) with radius
ε which cover Fα and with (II.13) we deduce that there exist a finite
number of balls in Lp(ω) with radius 2ε which cover F|ω in Lp(ω). We
denote such a covering as (BLp(ω)(gi, 2ε))1≤i≤N .

• We finally prove that the balls (BLp(Ω)(gi, 3ε))1≤i≤N actually cover F .
Indeed, for any f ∈ F there is a 1 ≤ i ≤ N such that f|ω ∈ BLp(ω)(gi, 2ε)
and thus

‖f − gi‖p
Lp(Ω) = ‖f‖p

Lp(Ω\ω) + ‖f − gi‖p
Lp(ω) ≤ εp + (2ε)p ≤ (3ε)p,

by using (II.12).
The claim is proved because, for any ε > 0, we have built a finite covering
of F in Lp(Ω) made of balls of radius 3ε.

�	

3.2 Compact maps

Definition II.3.3. Let E and F be two Banach spaces. We say that a map S
from E into F is compact if the image of any bounded subset of E by S is a
relatively compact set of F ; that is, it is a set having compact closure in F .

Of course, any compact linear function is continuous because compactness
implies that it is bounded in the neighborhood of 0. We generally use the
compactness properties of maps in the following form.

Let (un)n be a bounded sequence of points in E then, if S is compact,
there exists a subsequence (unk

)k such that (Sunk
)k converges in F .

In particular, we have the following result.
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Proposition II.3.4. Let (un)n be a sequence of points in E which weakly con-
verges towards u in E, and let S : E → F be a compact linear map, then the
sequence (Sun)n strongly converges towards Su in F .

Proof.
We note first that the sequence (Sun)n weakly converges towards Su.

Indeed, for f ∈ F ′,

〈f, Sun〉F ′,F = 〈tSf, un〉E′,E −−−−→
n→∞ 〈tSf, u〉E′,E = 〈f, Su〉F ′,F .

Moreover, since (un)n is weakly convergent, it is a bounded sequence (Corol-
lary II.2.8). Hence (un)n belongs to a bounded subset B of E. Inasmuch as
S is compact, S(B) is compact, and therefore the sequence (Sun)n lies in a
compact space of F .

However, in a compact metric space, a sequence converges if and only if it
has a unique accumulation point. Therefore let v = limk→∞ Sunk

be an accu-
mulation point of (Sun)n in F . As we have seen above, the sequence (Sunk

)k

weakly converges towards Su. From the uniqueness of the weak limit, this
means v = Su. Hence, Su is the unique accumulation point of the sequence
(Sun)n, which is therefore convergent.

�	
In particular, this makes it possible to recover strong convergence from

weak convergence, but in a larger space than the initial space. Indeed, if a
space E is embedded into a space F with a compact embedding (we say that
E is embedded in a compact way into F ), then any sequence of elements of
E which is weakly convergent in E, is strongly convergent in F .

On the other hand, the compactness of linear functions is a stable concept
by composition and by passing to the adjoint. More precisely, we have the
following results.

Lemma II.3.5. Let E,F, G be three Banach spaces, let S be a continuous
linear map from E to F , and let T be a continuous linear map from F to G.
If S is compact or if T is compact, then T ◦ S is compact.

Proof.
This is essentially a consequence of the fact that the image of a bounded

(resp., compact) set by a continuous linear map is another bounded (resp.,
compact) set.

�	

Lemma II.3.6. Let E and F be two Banach spaces and let S be a compact
linear map from E into F . Then the adjoint map tS from F ′ into E′ is
compact.

Proof.
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Let (fn)n be a bounded sequence of F ′. From the definition of the adjoint
of S, we have for all u ∈ BE(0, 1),

〈tSfn, u〉E′,E = 〈fn, Su〉F ′,F .

Since S is compact, the set

K = S (B(0, 1)E),

is a compact subset of F . The sequence (fn)n, being bounded in F ′, is there-
fore also bounded in C0(K, R). Moreover, for all points v1, v2 ∈ K we have

|〈fn, v1 − v2〉F ′,F | ≤ ‖fn‖F ′‖v1 − v2‖F ,

which, since the sequence (fn)n is bounded in F ′, proves that (fn)n is an
equicontinuous family on K.

Hence, from Ascoli’s theorem (Theorem II.3.1), there exists an extracted
sequence (fnk

)k which converges uniformly on K towards a continuous func-
tion f from K to R.

Therefore, by transposition, for all u ∈ BE(0, 1) we have

〈tSfnk
, u〉E′,E = 〈fnk

, Su〉F ′,F −−−−→
k→∞

f(Su),

and, moreover, the convergence is uniform in u on BE(0, 1). By homogeneity
(i.e., because of the linearity of the functions tSfnk

) we deduce that for
all u ∈ E, the sequence (〈tSfnk

, u〉E′,E)k converges and, furthermore, the
convergence is uniform on all the bounded sets of E. The functions tSfnk

are
linear and continuous, therefore the limit obtained is necessarily linear and
continuous. All this demonstrates that convergence does indeed occur in E′

(for which the strong topology is simply the uniform convergence on bounded
sets).

�	
Let us apply this result in the case where there is a continuous embedding

of one Banach space into another.

Proposition II.3.7. Let E and F be two Banach spaces. We assume that E
is continuously embedded into F and that the range of E is dense in F (we
say incorrectly that E is dense in F ); then the map

T : f ∈ F ′ �→ Tf ∈ E′,

defined by
〈Tf , u〉E′,E = 〈f, u〉F ′,F , ∀u ∈ E,

is an embedding (said to be canonical with respect to the considered embedding
from E into F ) from F ′ into E′.
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Moreover, if the embedding of E into F is compact, then T is a compact
embedding. Finally, if E is reflexive then the range of T is dense in E′.

Proof.
Since the embedding of E into F is continuous, there exists a constant

C > 0 such that for any u ∈ E we have ‖u‖F ≤ C‖u‖E . Hence, for all
f ∈ F ′, the function Tf is indeed continuous and linear on E, that is, an
element of E′.

Let us prove the injectivity of the function f �→ Tf . Let f ∈ F ′ such that
Tf = 0. We therefore have 〈f, u〉F ′,F = 0 for all u in E, but, since E is dense
in F , we can deduce that f = 0.

If the embedding from E into F is compact, then the compactness of T
results directly from Lemma II.3.6.

Let us now assume that E is reflexive. We need to show that T (F ′) is dense
in E′. To do this, we use Proposition II.2.2. Any continuous linear functional
on E′ is of the form f �→ 〈f, u〉E′,E for a certain u in E. Let us suppose that
one such functional cancels on T (F ′) and let us show that it cancels on all of
E′. To say that this linear functional cancels on T (F ′) means that

〈f, u〉F ′,F = 0, ∀f ∈ F ′.

Proposition II.2.1 then shows that ‖u‖F = 0 and hence u = 0, which proves
the result.

�	
The Riesz theorem allows this result to be specified in the Hilbertian case.

Corollary II.3.8. Let V and H be two Hilbert spaces such that V embeds
densely into H. According to the Riesz theorem we can identify H and its
dual via its scalar product. We then have a double dense embedding

V ⊂ H ⊂ V ′,

the second embedding being defined by

f ∈ H �→ Tf ∈ V ′, with 〈Tf , v〉V ′,V = (f, v)H , ∀v ∈ V.

If the embedding of V into H is compact, then the embedding of H into V ′

is also compact.

For obvious reasons, in the situation described by the corollary, the space
H is called the pivot space. Furthermore, since T is injective, we systemati-
cally identify f ∈ H with its image Tf ∈ V ′ so that the duality (V ′, V ) can
be expressed, using the scalar product of H, by

〈f, v〉V ′,V = (f, v)H , ∀f ∈ H, ∀v ∈ V.
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3.3 The Schauder fixed-point theorem

For solving nonlinear partial differential equations, one can often use a rather
classic fixed-point technique. In this book, we follow this strategy for studying
the steady Navier–Stokes equations (Section 3 of Chapter V) and for studying
the unsteady Navier–Stokes equations for a nonhomogeneous flow in Chapter
VI.

The key of this technique lies in the following theorem for which the rather
tricky proof can be found, for example, in [114]. It relies on the concept of
topological degree which is beyond the scope and objectives of this book.

Theorem II.3.9 (Schauder fixed-point theorem). Let E be a Banach space
and let C be a convex compact set in E. If T is a continuous (nonlinear)
function from C into C, then it has at least one fixed-point in C.

We note that this theorem says nothing about the uniqueness of the fixed-
point and that in general uniqueness does not hold (consider the identity
function). Moreover, the fact that the function T maps the set C into itself
is, of course, a crucial fact.

In the particular case where E = R, we recover an elementary result which
says that a continuous function from R into R which maps a compact interval
[a, b] onto itself contains a fixed-point in this interval.

This result also exists in a slightly different form which is given below.

Theorem II.3.10. Let E be a Banach space and let C be a convex, closed and
bounded region of E. If T is a compact and continuous (nonlinear) function
from C into C, then it has at least one fixed-point in C.

In the finite-dimensional framework, this theorem is known as the Brouwer
theorem and is equivalent to the following result.

Proposition II.3.11. Let P be a continuous function from RN to RN , such
that there exists a ρ > 0 satisfying

ξ · P (ξ) ≥ 0,∀ξ ∈ RN , |ξ| = ρ.

Then, there exists ξ ∈ RN , |ξ| ≤ ρ such that P (ξ) = 0.

Proof.
Suppose, by contradiction, that for all ξ ∈ B(0, ρ), P (ξ) �= 0; then the con-

tinuous map Q : ξ ∈ RN �→ −(ρ/|P (ξ)|)P (ξ) maps the ball B(0, ρ) which is
compact and convex into itself. Then by application of the Brouwer/Schauder
fixed-point theorem, there exists ξ� ∈ B(0, ρ) such that

ξ� = Q(ξ�). (II.14)

Necessarily, we have |ξ�| = ρ. By taking the scalar product of each term of
(II.14) by ξ�, one obtains:
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ρ2 = − ρ

|P (ξ�)| (ξ
� · P (ξ�)).

Therefore ξ� · P (ξ�) < 0, which is in contradiction with the hypothesis.
�	

4 Functions of one real variable

In this section, we primarily review the links that exist between the concepts
of weak derivatives and derivatives in the usual sense. We do this in a limited
but sufficient way, for the case that concerns us, for functions of one real
variable.

We conclude the section by reviewing Gronwall-type inequalities which are
a useful tool for obtaining a priori estimates for solutions of evolution partial
differential equations.

4.1 Differentiation and antiderivatives

Let [a, b] be a compact interval of R. We recall that W 1,1(]a, b[) is the set of
functions of L1(]a, b[) for which the derivative in the sense of distributions is
a function of L1(]a, b[) (see Chapter III for a more complete study of Sobolev
spaces). A fundamental question that we can ask for such a function is if it
can be differentiated in the usual sense and if we can write the fundamental
theorem of calculus

f(y) = f(x) +
∫ y

x

f ′(t) dt, ∀x, y ∈ [a, b].

Here, we recall some results that concern this question. This material is useful
in the sequel of the book in order to justify the validity of the time evolution
of the kinetic energy for weak solutions of the Navier–Stokes equations (see
in particular Section 1.4 of Chapter V).

Lemma II.4.1. Let g ∈ L1(]a, b[) and C ∈ R. We consider the function f
defined by

f(t) = C +
∫ t

a

g(s) ds.

Then, f is continuous on [a, b]. Moreover, f ∈W 1,1(]a, b[) and its derivative
in the sense of distributions is g.

Proof.
For all t0 ∈ [a, b[ and h > 0 but sufficiently small, we have
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f(t0 + h)− f(t0) =
∫ t0+h

t0

g(s) ds =
∫ b

a

g(s)1[t0,t0+h](s) ds −−−→
h→0

0,

from Lebesgue’s dominated convergence theorem. A similar argument with
h < 0 shows the continuity of f .

We now need to verify that the derivative of f in the sense of distributions
is the function g. Let ϕ ∈ D(]a, b[); we have

−
∫ b

a

f(t)ϕ′(t) dt = −C

∫ b

a

ϕ′(t) dt−
∫ b

a

(∫ t

a

g(s)ϕ′(t) ds

)
dt.

The first term is zero because ϕ(a) = ϕ(b) = 0 and we apply Fubini’s theorem
to the second term (the function (t, s) �→ ϕ′(t)g(s) is integrable with respect
to the two variables). It follows that

−
∫ b

a

f(t)ϕ′(t) dt = −
∫ b

a

(∫ b

a

1[a≤s≤t]g(s)ϕ′(t) ds

)
dt

= −
∫ b

a

(∫ b

a

1[a≤s≤t]g(s)ϕ′(t) dt

)
ds

= −
∫ b

a

(
g(s)
∫ b

s

ϕ′(t) dt

)
ds = −

∫ b

a

(g(s)(ϕ(b)−ϕ(s))) ds

=
∫ b

a

g(s)ϕ(s) ds.

This indeed proves that g = f ′ in the sense of distributions and therefore
f ∈W 1,1(]a, b[).

�	

Corollary II.4.2. Any function f of W 1,1(]a, b[) is equal almost everywhere to
a continuous function f̃ on [a, b] and we have for all x, y ∈ [a, b],

f̃(y) = f̃(x) +
∫ y

x

f ′(s) ds;

in other words, we have for almost every x, y ∈ [a, b],

f(y) = f(x) +
∫ y

x

f ′(s) ds.

Proof.
Let f ∈W 1,1(]a, b[). We introduce

g(t) =
∫ t

a

f ′(s) ds.
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• According to Lemma II.4.1, the function g is continuous in W 1,1(]a, b[)
and its derivative in the sense of distributions is f ′. Hence, f − g is a
function for which the distribution derivative is zero. We then know that
there exists a real number C such that f − g = C almost everywhere
(see Lemma II.2.44 for a more general case of this result). If we define
f̃ = C + g, we have shown that f coincides with the continuous function
f̃ , almost everywhere.

• From the definition of f̃ , it is clear that for all x, y ∈ [a, b], we have

f̃(y)− f̃(x) =
(

C +
∫ y

a

f ′(s) ds

)
−
(

C +
∫ x

a

f ′(s) ds

)
=
∫ y

x

f ′(s) ds.

�	
For any point t0 ∈ [a, b], we denote as Vη(t0) the set of open neighborhoods

ω of t0 in [a, b] whose Lebesgue measure |ω| is less than η.

Definition II.4.3 (Lebesgue points). Let f be a function of L1(]a, b[) and
t0 ∈]a, b[. We say that t0 is a Lebesgue point of f if

sup
ω∈Vη(t0)

1
|ω|

∫
ω

|f(t)− f(t0)| dt −→
η→0

0.

With this definition at hand, we have the following result.

Proposition II.4.4. Let f be a function of L1(]a, b[) and t0 ∈]a, b[. If t0 is a
Lebesgue point of f , then any antiderivative of f defined by

F (t) = C +
∫ t

a

f(s) ds,

can be differentiated in the classic sense at t0 and moreover we have

F ′(t0) = f(t0).

Proof.
It is sufficient to write∣∣∣∣F (t0 + h)− F (t0)

h
− f(x0)

∣∣∣∣ =
∣∣∣∣∣ 1h
∫ t0+h

t0

(f(s)− f(t0)) ds

∣∣∣∣∣
≤ 1

h

∣∣∣∣∣
∫ t0+h

t0

|f(s)− f(t0)| ds

∣∣∣∣∣ ;
this last quantity tends towards 0 when h tends towards 0, by definition of a
Lebesgue point.

�	
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The fundamental theorem in this section is a rather difficult result from
measure theory, which we do not prove. However, a proof can be found, for
example, in [69] or in [100].

Theorem II.4.5. If f ∈ L1(]a, b[), then almost every point of ]a, b[ is a
Lebesgue point of f .

The immediate consequence of the preceding two results is that the an-
tiderivative F of any function f in L1(]a, b[) is differentiable almost every-
where and satisfies F ′ = f and the fundamental theorem of calculus

F (y) = F (x) +
∫ y

x

F ′(t) dt = F (x) +
∫ y

x

f(t) dt, ∀x, y ∈ [a, b].

Finally, the following elementary result is useful.

Proposition II.4.6. Let f ∈ L1(]a, b[). Any point of continuity of f is a
Lebesgue point of f and, in particular, any antiderivative of f is differen-
tiable at any point t0 where f is continuous and its derivative is f(t0).

Remark II.4.1. We can prove [69] that the functions of W 1,1(]a, b[) are none
other than the absolutely continuous functions on ]a, b[.

We conclude this section by the following result and its corollary.

Lemma II.4.7 (Hardy’s inequality). For any 1 < p < +∞ and any nonneg-
ative f ∈ Lp(]0, +∞[) we have∫ M

0

(
1
x

∫ x

0

f(s) ds

)p

dx ≤
(

p

p− 1

)p ∫ M

0

fp(s) ds, ∀M ∈ [0, +∞].

Note that a similar inequality does not hold for p = 1.
Proof.

We prove the inequality for M = +∞. The general case follows by taking
fM (s) = 1[0,M ](s)f(s).

By density, it is enough to prove this result for functions f ∈ C∞c (]0, +∞[).
For such an f , we set F (x) = (1/x)

∫ x

0
f(s) ds and we note that F = 0 in the

neighborhood of 0 and that F (x) = C/x for some C ∈ R and x large enough.
In particular, we have F ∈ Lp(]0, +∞[). We remark that d(xF (x))/dx = f(x)
so that we can integrate by parts as follows∫ +∞

0

F (x)p dx =
∫ +∞

0

(xF (x))p 1
xp

dx

=
p

p− 1

∫ +∞

0

(xF (x))p−1f(x).
1

xp−1
dx

=
p

p− 1

∫ +∞

0

F (x)p−1f(x) dx.
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We conclude the proof by using the Hölder inequality∫ +∞

0

F (x)p dx ≤ p

p− 1
‖F‖p−1

Lp ‖f‖Lp .

�	
We immediately deduce from this inequality the following result which is

important in the sequel (see in particular the multidimensional version in
Proposition III.2.40).

Corollary II.4.8. Let f ∈ W 1,p(]a, b[) ⊂ W 1,1(]a, b[) with 1 < p < +∞ and
such that f(a) = 0. Then, the function g : x �→ f(x)/(x − a) belongs to
Lp(]a, b[) and satisfies

‖g‖Lp ≤ C‖f ′‖Lp .

4.2 Differential inequalities and Gronwall’s lemma

The following lemmas, concerning ordinary differential equations and inequal-
ities, are very useful ingredients for studying time-dependent partial differ-
ential equations, in particular for proving energy estimates.

Lemma II.4.9. Let there be two real numbers α > 0 and β ≥ 0 and let y be a
function in C1([0, +∞[, R) satisfying the differential inequality:

y′(t) + αy(t) ≤ β, ∀t ≥ 0.

Then we have
y(t) ≤ y(0)e−αt +

β

α
, ∀t ≥ 0.

Proof.
We multiply the two sides of the differential inequality by eαt and then

integrate.
�	

The following lemma, known as Gronwall’s inequality (even though its
proof in the present form is due to Bellman [15]), is central in proving a
priori estimates on solutions of (partial) differential equations.

Lemma II.4.10. Let us consider a function y ∈ L∞(]0, T [), a nonnegative
function g ∈ L1(]0, T [) and y0 ∈ R, such that

y(t) ≤ y0 +
∫ t

0

g(s)y(s) ds, for almost all t ∈]0, T [,

we then have

y(t) ≤ y0 exp
(∫ t

0

g(s) ds

)
, for almost all t ∈]0, T [.
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Proof.
We set

h(t) = y0 +
∫ t

0

g(s)y(s) ds,

that is, the second term of the inequality from the hypothesis. Since y belongs
to L∞(]0, T [) and g to L1(]0, T [), the function h lies in W 1,1(]0, T [) and is
therefore differentiable almost everywhere and its derivative is gy (see Section
4.1). Furthermore, for almost all t, we have

h′(t) = g(t)y(t) ≤ g(t)h(t),

from the hypothesis and because g is nonnegative. Then, if we set z(t) =
h(t)e−

R t
0 g, we immediately see that z belongs to W 1,1(]0, T [) and that

z′(t) =
(
h′(t)− g(t)h(t)

)
exp
(
−
∫ t

0

g(s) ds

)
.

Therefore, for almost all t, we have z′(t) ≤ 0. From Corollary II.4.2, this
implies that the function z is nonincreasing and therefore we have

z(t) ≤ z(0) = h(0) = y0,∀t ∈ [0, T ],

which can be written as

h(t) ≤ y0 exp
(∫ t

0

g(s) ds

)
, ∀t ∈ [0, T ].

This proves the claim since, by hypothesis, we have y ≤ h almost everywhere.
�	

Lemma II.4.11 (Uniform Gronwall lemma [121]). Let g1 and g2 be two
nonnegative functions of L1

loc(R
+) satisfying:

∃k1,

∫ t+1

t

g1(s) ds ≤ k1,∀t ∈ R+,

∃k2,

∫ t+1

t

g2(s) ds ≤ k2,∀t ∈ R+.

Let y be a function of C1([0, +∞[, R+) satisfying

y′(t) ≤ g1(t) + g2(t)y(t), for almost all t ≥ 0, (II.15)

y(0) ≤ k3 and
∫ t+1

t

y(s) ds ≤ k3, ∀t ≥ 0. (II.16)

Then y is bounded on R+ and we have the following upper bound,



90 Chapter II. Analysis tools

y(t) ≤ (k1 + k3)ek2 ,∀t ≥ 0.

Proof.
We integrate (II.15) between s and t (with 0 ≤ s ≤ t) and we get

y(t) ≤ y(s) +
∫ t

s

g1(τ) dτ +
∫ t

s

g2(τ)y(τ) dτ.

From Lemma II.4.10, we deduce

y(t) ≤
(

y(s) +
∫ t

s

g1(τ) dτ

)
exp
(∫ t

s

g2(τ) dτ

)
.

• For t ≤ 1, we take s = 0 and we directly obtain the result.
• For t ≥ 1, we take s ∈ [t− 1, t], and we apply (II.16) to obtain

y(t) ≤ (y(s) + k1)ek2 .

We integrate this last inequality with respect to s between t − 1 and t
(with t fixed), which gives

y(t) ≤ (k3 + k1)ek2 .

�	
We conclude this section by giving a result of the same type which is

useful in the study of some nonlinear equations. This result is similar to the
usual comparison theorems between differential inequalities, except that the
hypothesis is formulated in an integral form, which is weaker. This explains
the necessity of some monotonicity assumption for the nonlinear term.

Lemma II.4.12 (Bihari’s inequality [16]). Let f : [0, +∞[�→ [0, +∞[ be
a nondecreasing continuous function such that f > 0 on ]0, +∞[ and∫ +∞
1

1/f(x) dx < +∞. We denote the antiderivative of −1/f which cancels
at +∞ as F .

Let y be a continuous function which is nonnegative on [0, +∞[ and let
g be a nonnegative function in L1

loc([0, +∞[). We assume that there exists a
y0 > 0 such that for all t ≥ 0 we have the inequality

y(t) ≤ y0 +
∫ t

0

g(s) ds +
∫ t

0

f(y(s)) ds.

Then, there exists a unique T ∗ which satisfies the equation

T ∗ = F

(
y0 +
∫ T∗

0

g(s) ds

)
, (II.17)

and, for any T < T ∗ we have
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sup
t≤T

y(t) ≤ F−1

(
F

(
y0 +
∫ T

0

g(s) ds

)
− T

)
.

Proof.
The existence and uniqueness of T ∗ satisfying (II.17) arises from the fact

that the function F is nonincreasing and tends towards 0 at +∞, and that g
is nonnegative. Let us set T such that 0 < T < T ∗. For all t ≤ T , since g is
nonnegative, we have

y(t) ≤ y0 +
∫ T

0

g(s) ds +
∫ t

0

f(y(s)) ds. (II.18)

Let us denote the right-hand side of this inequality as zT (t). Since f and y are
continuous, the function zT is of class C1 and we have zT (0) = y0 +

∫ T

0
g(s) ds

and for all t < T
z′T (t) = f(y(t)) ≤ f(zT (t)),

because f is nondecreasing. We note that zT is an nondecreasing function
and since y0 > 0, the function zT does not cancel. Hence, we have

z′T (t)
f(zT (t))

≤ 1,∀t < T,

which, after integration between times 0 and T , gives

F (zT (T ))− F (z(0)) ≥ −T.

F is nonincreasing, thus it follows that

zT (T ) ≤ F−1(F (zT (0))− T ) = F−1

(
F

(
y0 +
∫ T

0

g(s) ds

)
− T

)
. (II.19)

We note that this makes sense because the definition of T ∗ and the condition
T < T ∗ imply that F (zT (0)) − T belongs to the range of F . From (II.18),
and since zT is nondecreasing, we have

y(t) ≤ zT (t) ≤ zT (T ),∀t < T.

Inequality (II.19) therefore provides the claim.
�	
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5 Spaces of Banach-valued functions

5.1 Definitions and main properties

Definition II.5.1. Let X be a Banach space and let I be an interval of R; we
say that a function f from I in X is Lebesgue measurable, if

• The inverse image under f of all open sets of X is a Borel set of I.
• We can change f on a subset of zero Lebesgue measure of I, so that f

takes its values into a separable subspace of X.

In the case where X is separable, this definition is identical to the tra-
ditional definition of measurability. In the case where X is not separable,
this definition ensures that one such function is indeed the limit almost ev-
erywhere of a sequence of simple functions with values in X, which makes
it possible to define clearly the integral of f when it exists. This theory is
known as the Bochner integral.

Proposition II.5.2. Let X be a Banach space and let I be an interval of R.
For all p ∈ [1, +∞[, we denote as Lp(]0, T [, X), the set of Lebesgue measur-
able functions defined on I and with values in X, such that t �→ ‖f(t)‖p

X is
integrable on I. This is a Banach space for the norm

‖f‖Lp(I,X) =
(∫

I

‖f(t)‖p
X dt

)1/p

.

In the same way, we define, for p = +∞, a Banach space L∞(I, X) pro-
vided by the norm

‖f‖L∞(I,X) = esssupt∈I‖f(t)‖X .

Proposition II.5.3. If p < +∞, the set of continuous functions on I with
values in X is dense in Lp(I, X).

For all f ∈ Lp(I, X), we denote as f̃ the extension by 0 of f to the whole
time interval R; then, for all h ∈ R, we denote as τhf the translated function
of f̃ defined by

τhf(·) = f̃(·+ h). (II.20)

The restriction of τhf to the interval I is of course in Lp(I, X) and we have
the following result (the proof being identical to the classic case where X = R;
see [69] for example).

Corollary II.5.4 (Continuity of the translation operator). If p < +∞, then
for all f ∈ Lp(I, X) we have

τhf −−−→
h→0

f, in Lp(I, X).
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These results are of course false if p = +∞. In the case of p < +∞, the
proposition above shows that we can also define Lp(I, X) as the completion
of C0(I, X) for the norm ‖ · ‖Lp(I,X).

For any function f ∈ L1(I, X) (and hence also if f ∈ Lp(I, X) and if I is
bounded), we can define the integral∫

I

f(t) dt ∈ X,

in a similar way to the Lebesgue integrals of real-valued functions, that is,
by constructing the integral over simple measurable functions (i.e., taking a
finite number of values) and by passing to the simple limit. We assume this
result, as well as all the usual properties of the integral: Chasles’ linearity
theorem, and so on. Moreover, for all linear forms ϕ ∈ X ′, we have∫

I

〈ϕ, f(t)〉X′,X dt =
〈

ϕ,

∫
I

f(t) dt

〉
X′,X

.

The first examples for such spaces that are very useful in the sequel are
given for p, q ∈ [1, +∞], by Lp(I, Lq(Ω)).

The properties of Lp spaces, which we gave at the start of this section,
naturally transpose into these spaces and we use these later without giving
more details. In particular, if p < +∞ and q < +∞, then we have

(Lp(I, Lq(Ω)))′ ≡ Lp′
(I, Lq′

(Ω)),

the identification of the two spaces being achieved via the natural inner
product of the Hilbert space L2(I, L2(Ω)) ≈ L2(I × Ω). Hence, Propositions
II.2.27, II.2.28, II.2.30, and II.2.32, can be immediately transposed to these
spaces.

Among the particularly useful results to keep in mind, we give the follow-
ing interpolation result as well as its corollary which gives the convergence
properties in some intermediate spaces.

Theorem II.5.5. Let I be an interval of R, let Ω be an open set of Rd, and
let p1,q1,p2,q2 be four real numbers in [1, +∞]. If f ∈ Lp1(I, Lq1(Ω)) ∩
Lp2(I, Lq2(Ω)) then for all θ ∈]0, 1[, the function f belongs to Lp(I, Lq(Ω))
for p and q defined by

1
p

=
θ

p1
+

1− θ

p2
, and

1
q

=
θ

q1
+

1− θ

q2
, (II.21)

and we have

‖f‖Lp(I,Lq(Ω)) ≤ ‖f‖θ
Lp1 (I,Lq1 (Ω))‖f‖1−θ

Lp2 (I,Lq2 (Ω)).

Proof.
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From Lemma II.2.33, for almost all t ∈ I we have:

‖f(t)‖p
Lq ≤ ‖f(t)‖pθ

Lq1‖f(t)‖p(1−θ)
Lq2 .

If we assume that p1 and p2 are finite, then the Hölder inequality applied
with the conjugate exponents p1/(pθ) and p2/(p(1− θ)) shows that∫

I

‖f(t)‖p
Lq dt ≤

(∫
I

‖f(t)‖p1
Lq1 dt

)pθ/p1
(∫

I

‖f(t)‖q1
Lq2 dt

)p(1−θ)/p2

,

which gives the desired result. The case where p1 and/or p2 are infinite is
straightforward.

�	

Corollary II.5.6. We consider the same notation as in the previous theorem
and we assume further that p1 and q1 are finite and that p2 and q2 are strictly
larger than 1.

If (un)n is a sequence of functions which strongly converges towards u
in Lp1(I, Lq1(Ω)) and weakly (or weakly-� if p2 and/or q2 are infinite) in
Lp2(I, Lq2(Ω)), then for all θ such that 0 < θ ≤ 1 the sequence (un)n strongly
converges towards u in Lp(I, Lq(Ω)), where p and q are given by (II.21).

Proof.
From the preceding theorem we have for all n,

‖u− un‖Lp(I,Lq(Ω)) ≤ ‖u− un‖θ
Lp1 (I,Lq1 (Ω))‖u− un‖1−θ

Lp2 (I,Lq2 (Ω)).

The weak convergence in Lp2(I, Lq2(Ω)) shows that the sequence (u − un)n

is bounded in this space and the strong convergence in Lp1(I, Lq1(Ω)) allows
us to reach our conclusion, given that θ > 0.

�	
All of these results are used systematically in this book, without necessarily

referencing them.

5.2 Regularity in time

5.2.1 Weak time derivative

In the study of parabolic partial differential equations, one independent vari-
able (usually time) plays a particular role with respect to the other variables
(typically space variables). This is why we work in Lp(]0, T [, X) spaces where
X is the functional space in the space variables.

In this section, we therefore generalise the concept of weak derivatives for
functions defined on an interval of R and with values in a Banach space. In a
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general way, it is possible to define and study distribution spaces with values
in X, but this theory is not required here and we refer the reader to [113] for
more details.

For reasons which become clear later, it is useful to construct a theory
in which the weak derivative of the function being considered can exist in a
space that is larger than the initial space.

Definition II.5.7. Let I be an interval of R, and X ⊂ Y be two Banach spaces,
1 ≤ p, q ≤ +∞. We say that a function u ∈ Lp(I, X) has a weak derivative
in Lq(I, Y ) if there exists a function g ∈ Lq(I, Y ) such that∫

I

ϕ′(t)u(t) dt = −
∫

I

ϕ(t)g(t) dt, ∀ϕ ∈ D(I). (II.22)

If such a function g exists, it is unique and we denote

du

dt
= g(t).

We should note that in (II.22), the left-hand term is an element of X and
the right-hand term is an element of Y . However, since X ⊂ Y this equality
makes sense.

Remark II.5.1. A priori this definition depends on the space Lq(I, Y ) in
which we seek the weak derivative. We can show that if Y ⊂ Z in a dense
way, if Z ′ is separable and if g and h are the weak derivatives of u in Lq(I, Y )
and Lr(I, Z), respectively, then g = h almost everywhere. This, therefore,
justifies the notation du/dt.

5.2.2 Weak continuity

Definition II.5.8. Let Y be a Banach space; we say that a function u : [0, T ] →
Y is weakly continuous if for all ψ ∈ Y ′, the function defined by t ∈ [0, T ] �→
〈ψ, u(t)〉Y ′,Y ∈ R is continuous. We denote by C0([0, T ], Yweak), the set of
functions defined on [0, T ] with values in Y which are weakly continuous.

We will now show the following important result (see, e.g., [85]).

Lemma II.5.9. Let X be a separable and reflexive Banach space, and let Y
be a Banach space, such that X ⊂ Y with continuous embedding. Then

L∞(]0, T [, X) ∩ C0([0, T ], Yweak) = C0([0, T ], Xweak).

Proof.
The space X is embedded into Y in a continuous way, therefore the re-

strictions to X of elements of Y ′ are in X ′.
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• Let us show that C0([0, T ], Xweak) ⊂ L∞(]0, T [, X) ∩ C0([0, T ], Yweak).
Let u ∈ C0([0, T ], Xweak) and let ψ ∈ Y ′. Since ψ|X ∈ X ′, the function t �→
〈ψ, u(t)〉 is continuous by definition, which shows that u ∈ C0([0, T ], Yweak).
Let us show that u ∈ L∞(]0, T [, X). First, we note that u is measurable.
Indeed, any sphere B of X which is closed for the strong topology is
also closed for the weak topology of X, because it is convex (see [27]).
Therefore, u−1(B) is a closed set and hence a Borel set of ]0, T [, because u
is continuous on ]0, T [ with values in X for the weak topology. However, X
being separable, any open set of X is a countable union of closed spheres.
Indeed, if (xn)n is a dense sequence in X, it is obvious that any open set
U is the union of all closed spheres centred on a point of the sequence
(xn)n, with a rational radius and contained in U . Hence, for any open set
U , u−1(U) is a Borel set of ]0, T [. This proves the measurability.
Let us now introduce the family of elements of X ′′ indexed by t ∈ [0, T ],
defined by

Φt : ψ ∈ X ′ �→ 〈ψ, u(t)〉.

By hypothesis, for all ψ ∈ X ′, the function t �→ Φt(ψ) is continuous on
[0, T ] and therefore bounded. From the Banach–Steinhaus theorem (The-
orem II.2.4), we know that the family of operators (Φt)t∈]0,T [ is bounded
in the sense of the norm of X ′′. Alternatively, we can say that there exists
C > 0 such that

|〈ψ, u(t)〉X′,X | = |Φt(ψ)| ≤ C‖ψ‖X′ , ∀t ∈]0, T [,∀ψ ∈ X ′.

If we apply Proposition II.2.1, this gives

‖u(t)‖X = sup
ψ∈X′,ψ 
=0

|〈ψ, u(t)〉X′,X |
‖ψ‖X′

≤ C, ∀t ∈]0, T [.

This demonstrates that u ∈ L∞(]0, T [, X).
• Let us show that L∞(]0, T [, X) ∩ C0([0, T ], Yweak) ⊂ C0([0, T ], Xweak).

Let u ∈ L∞(]0, T [, X) ∩ C0([0, T ], Yweak). Let us first verify that for all
t ∈ [0, T ], u(t) ∈ X. A priori, we know only that u(t) ∈ Y for all t, and
that u(t) ∈ X for almost all t.
First, let us extend u to all of R (e.g., by successive reflections performed
by setting u(t) = u(−t) for t ∈ [−T, 0], etc.). It is then obvious that
u ∈ L∞(R, X) ∩ C0(R, Yweak). Let η : R → R be a mollifying kernel (see
Definition II.2.23). We set un = u�η1/n which is defined for all t and takes
its values in X.
Let t0 ∈ R be fixed. For all n ≥ 1, we have

‖un(t0)‖X = ‖(u � η1/n)(t0)‖X ≤ ‖u‖L∞(R,X).
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The sequence (un(t0))n is bounded in X, which is reflexive, therefore we
can extract a subsequence (unk

(t0))k which weakly converges in X towards
a certain ũ(t0) (Theorem II.2.7).
However, for all ψ ∈ Y ′, we have

〈ψ, (u � η1/n)(t0)− u(t0)〉Y ′,Y =
(
(〈ψ, u〉Y ′,Y � η1/n)(t0)− 〈ψ, u〉Y ′,Y (t0)

)
−−−−→
n→∞ 0,

because, by hypothesis, t �→ 〈ψ, u(t)〉Y ′,Y is a continuous function on R
(the extension by reflection preserves this property). We have hence shown
that (un(t0))n weakly converges in Y towards u(t0). Through the unique-
ness of the weak limit in Y , we obtain

u(t0) = ũ(t0) ∈ X,

which indeed proves that the function u takes its values in X for all t and
that there exists C > 0 such that

‖u(t)‖X ≤ C, ∀t ∈ R. (II.23)

We can now define the function t �→ 〈ψ, u(t)〉X′,X for all ψ ∈ X ′. Let
us show that it is continuous. Let (tn)n be a sequence of real numbers
which converges towards t ∈ R. From (II.23) the sequence (u(tn))n is
bounded in X, and we can therefore extract a subsequence which weakly
converges towards a certain x in X. Furthermore (u(tn))n weakly converges
towards u(t) in Y , and through the uniqueness of the weak limit in Y , we
obtain x = u(t). This proves that the sequence (u(tn))n is relatively weakly
compact in X and has only one accumulation point. We therefore know
that all of the sequence weakly converges towards its unique accumulation
point u(t).

�	

Remark II.5.2. If X and Y are two separable Banach spaces such that Y is
embedded in a dense way into X, then we have

L∞(]0, T [, X ′) ∩ C0([0, T ], Y ′weak−�) ⊂ C0([0, T ], X ′
weak−�).

This result is proven in an equivalent way to the preceding one. The converse
embedding is of course true from that which has gone before, if we add the
reflexivity hypothesis.



98 Chapter II. Analysis tools

5.2.3 Strong continuity

Let X and Y be two Banach spaces such that X is embedded in a continuous
and dense way into Y , and let T > 0 and p, q satisfy 1 ≤ p, q ≤ +∞. We
denote:

Ep,q =
{

u ∈ Lp(]0, T [, X),
du

dt
∈ Lq(]0, T [, Y )

}
.

Lemma II.5.10. The space Ep,q endowed with the norm

‖u‖Ep,q
= ‖u‖Lp(]0,T [, X) +

∥∥∥∥du

dt

∥∥∥∥
Lq(]0,T [, Y )

,

is a Banach space. Moreover, if p and q are finite then C∞([0, T ], X) is dense
in Ep,q.

Proof.
Let θ1, θ2 be two nonnegative functions of C∞([0, T ], R), having sum 1

with

supp(θ1) ⊂
[
0,

2
3
T

]
, and supp(θ2) ⊂

[
1
3
T, T

]
.

Then let u ∈ E. To approximate u by regular functions, it is sufficient to
separately approximate θ1u and θ2u, because u = θ1u + θ2u.

The function v = θ1u is an element of{
f ∈ Lp(]0, +∞[, X),

df

dt
∈ Lq(]0, +∞[, Y )

}
.

Let us set vh(t) = v(t+h); then vh,ε = vh�ηε with ε < h where η : R → R is a
mollifying kernel. The claim follows from Corollary II.5.4. A similar argument
holds for the function θ2u.

�	

Remark II.5.3. Let us assume that p = +∞, q < +∞, and that X is the
dual of a Banach space E. Then we can easily see that the family of regular
functions constructed in the preceding proof satisfies

vh,ε −−−−−⇀
(h,ε)→0

v, weakly-� in L∞(]0, +∞[, E′),

d

dt
vh,ε −−−−−→

(h,ε)→0

d

dt
v, in Lq(]0, T [, Y ).

In other words, the density property of the regular functions still occurs by
taking the weak-star topology on L∞(]0, T [, E′). We can deal, in the same
way, with the case where p is finite, q = +∞, and Y is the dual of F as well
as the case where p = q = +∞ and X = E′, Y = F ′.
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Proposition II.5.11. Any element u of Ep,q (defined almost everywhere) pos-
sesses a continuous representation on [0, T ] with values in Y , and the embed-
ding of Ep,q into C0([0, T ], Y ) is continuous.

Moreover, for all t1, t2 ∈ [0, T ], we have

u(t2)− u(t1) =
∫ t2

t1

du

dt
dt,

where it is understood that we have identified u and its continuous represen-
tation.

Proof.
This result is proven in an entirely similar way to those established in

Section 4.
�	

In the Hilbertian case we can improve the preceding result in the following
way.

Theorem II.5.12 (Lions–Magenes [85]). Let V and H be two Hilbert spaces
such that V is embedded in a continuous and dense way into H. We then
identify H with its dual such that we have V ⊂ H ⊂ V ′, the duality bracket
between V and V ′ being given by the scalar product of H. Let 1 ≤ p, q ≤ +∞
and let u, v be two functions such that

u ∈ Ep,q′ =
{

f ∈ Lp(]0, T [, V ),
df

dt
∈ Lq′

(]0, T [, V ′)
}

,

v ∈ Eq,p′ =
{

f ∈ Lq(]0, T [, V ),
df

dt
∈ Lp′

(]0, T [, V ′)
}

.

Then the function t �→ (u(t), v(t))H has a continuous representation on [0, T ]
and we have for all t1, t2 ∈ [0, T ],

(u(t2), v(t2))H − (u(t1), v(t1))H

=
∫ t2

t1

〈
du

dt
(t), v(t)

〉
V ′,V

+
〈

dv

dt
(t), u(t)

〉
V ′,V

dt.

Proof.
Here, we give the proof of this result when 1 < p, q < +∞. The argument

can be adapted to other cases by applying Remark II.5.3 and Proposition
II.2.12.

Let us consider the following bilinear forms defined on Ep,q′ × Eq,p′ with
values in L1(]0, T [) by

Ψ1(f, g) =
(
t �→ (f(t), g(t))H

)
,

Ψ2(f, g) =
(

t �→
〈

df

dt
(t), g(t)

〉
V ′,V

+
〈

dg

dt
(t), f(t)

〉
V ′,V

)
.
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These two maps are well-defined because the exponents p, q and p′, q′ are
conjugate, respectively. Moreover, we have for all (f, g) ∈ Ep,q′ × Eq,p′ :

‖Ψ1(f, g)‖L1(]0,T [) ≤ ‖f‖Lp(]0,T [,V )‖g‖Lp′ (]0,T [,V ′)

≤ T 1/p′‖f‖Lp(]0,T [,V )‖g‖C0(]0,T [,V ′)

≤ C‖f‖Ep,q′‖g‖Eq,p′ ,

and

‖Ψ2(f, g)‖L1(]0,T [) ≤
∥∥∥∥dfdt

∥∥∥∥
Lq′ (]0,T [,V ′)

‖g‖Lq(]0,T [,V )

+
∥∥∥∥dg

dt

∥∥∥∥
Lp′ (]0,T [,V ′)

‖f‖Lp(]0,T [,V )

≤C‖f‖Ep,q′‖g‖Eq,p′ .

This proves that Ψ1 and Ψ2 are continuous bilinear forms. Using Lemma
II.5.10, let us consider (un)n and (vn)n, two sequences of C∞([0, T ], V ) which
converge towards u and v, respectively, in Ep,q′ and Eq,p′ . The functions un

and vn being regular, we can differentiate the scalar product (un(t), vn(t))H

in the classic sense which implies, in particular, that for all functions ϕ ∈
D(]0, T [), we have

−
∫ T

0

ϕ′(t)(un(t), vn(t))H dt

=
∫ T

0

(〈
dun

dt
(t), vn(t)

〉
V ′,V

+
〈

dvn

dt
(t), un(t)

〉
V ′,V

)
ϕ(t) dt.

In other words, we have

−
∫ T

0

ϕ′(t)Ψ1(un, vn) dt =
∫ T

0

ϕ(t)Ψ2(un, vn) dt.

By continuity of Ψ1 and Ψ2, we can pass to the limit in this expression and
obtain

−
∫ T

0

ϕ′(t)(u(t), v(t))H dt

=
∫ T

0

(〈
du

dt
(t), v(t)

〉
V ′,V

+
〈

dv

dt
(t), u(t)

〉
V ′,V

)
ϕ(t) dt.

The function Ψ1(u, v) : t �→ (u(t), v(t))H belongs to L1(]0, T [), therefore
this last expression, valid for all regular functions with compact support ϕ,
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shows us that Ψ1(u, v) belongs to W 1,1(]0, T [) and that its weak derivative
is Ψ2(u, v).

Corollary II.4.2 then allows us to conclude the proof.
�	

Theorem II.5.13. Let V and H be two Hilbert spaces satisfying the hypotheses
of the preceding theorem; then the space

E2,2 =
{

u ∈ L2(]0, T [, V ),
du

dt
∈ L2(]0, T [, V ′)

}
is continuously embedded into C0([0, T ], H).

Proof.
We apply the preceding theorem, with p = q = 2 and u = v, and we

immediately obtain that the function t �→ 1
2‖u(t)‖2H is continuous on [0, T ]

and that for all t, s ∈ [0, T ], we have

1
2
‖u(t)‖2H =

1
2
‖u(s)‖2H +

∫ t

s

〈
du

dt
, u

〉
V ′,V

dτ

≤ 1
2
‖u(s)‖2H + C‖u‖2E2,2

.

By integrating this with respect to s, we find

1
2
‖u(t)‖2H ≤ 1

2
‖u‖2L2(]0,T [,H) + C‖u‖2E2,2

≤ C‖u‖2L2(]0,T [,V ) + C‖u‖2E2,2
≤ C‖u‖2E2,2

.
(II.24)

This proves that the function u lies in L∞(]0, T [, H). Furthermore, Proposi-
tion II.5.11 shows that u is continuous with values in V ′. We can then apply
Lemma II.5.9, to obtain that u is weakly continuous with values in H (we
should not forget that all Hilbert spaces are reflexive).

The strong continuity of u with values in H is now a consequence of the
weak continuity in H, of the continuity of the function t �→ ‖u(t)‖2H , and
Proposition II.2.11. Moreover, the estimate (II.24) leads to

‖u‖C0([0,T ],H) ≤ C‖u‖E2,2 .

�	
This situation is a special case of a more general result (see [85]) which is

the following.

Theorem II.5.14. Let V and W be two Hilbert spaces; then

E2,2 =
{

v ∈ L2(]0, T [, V ),
dv

dt
∈ L2(]0, T [, W )

}
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is continuously embedded in C0([0, T ], [V,W ] 1
2
) where [V,W ] 1

2
is the interpo-

lated space of order 1
2 of V and W .

We refer the reader to [85] for a precise definition of interpolated space
[V,W ] 1

2
. In Chapter IV, we present the proof of a special case of this state-

ment (see Theorem IV.5.11).

5.3 Compactness theorems

Let us start by proving a now classic lemma (due to J.-L. Lions [84]), which
is the basis of a large part of all the following compactness results.

Lemma II.5.15. Let B0 ⊂ B1and ⊂ B2 be three Banach spaces. We assume
that the embedding of B1 in B2 is continuous and the embedding of B0 in B1

is compact. Then, for all ε > 0, there exists a constant C(ε), such that for
all u ∈ B0, we have

‖u‖B1 ≤ ε‖u‖B0 + C(ε)‖u‖B2 .

Proof.
Let us assume that the claim is false; then there exists ε0 > 0 and a

sequence (un)n ⊂ B0, such that

‖un‖B1 ≥ ε0‖un‖B0 + n‖un‖B2 , ∀n ≥ 1.

By homogeneity we can take ‖un‖B1 = 1 in the above inequality. Hence, the
sequence (un)n is bounded in B0 and satisfies ‖un‖B2 ≤ 1/n. The embedding
of B0 into B1 is compact, thus we can extract a subsequence (unk

)k which
converges in B1 towards an element denoted u∞. Of course ‖u∞‖B1 = 1, and
furthermore ‖u∞‖B2 = 0. This is the contradiction.

�	
We can now prove one of the fundamental results of compactness in the

study of nonlinear evolution problems.

Theorem II.5.16 (Aubin–Lions–Simon). Let B0 ⊂ B1 ⊂ B2 be three Banach
spaces. We assume that the embedding of B1 in B2 is continuous and that
the embedding of B0 in B1 is compact. Let p, r such that 1 ≤ p, r ≤ +∞. For
T > 0, we define

Ep,r =
{

v ∈ Lp(]0, T [, B0),
dv

dt
∈ Lr(]0, T [, B2)

}
.

i) If p < +∞, the embedding of Ep,r in Lp(]0, T [, B1) is compact.
ii) If p = +∞ and if r > 1, the embedding of Ep,r in C0([0, T ], B1) is compact.
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The proof which follows comes from [109] and does not assume that the
spaces considered are reflexive, in contrast to the proof in [14]. It thus applies
to the spaces L1 and L∞, for example.
Proof.

We only demonstrate point i) of the theorem the second point being treated
in an entirely similar fashion. Furthermore, it is clear that we do not lose any
generality by assuming that r = 1.

To demonstrate the theorem, we establish that if a sequence (un)n satisfies:

(un)n is bounded in Lp(]0, T [, B0),(
dun

dt

)
n

is bounded in L1(]0, T [, B2),

then we can extract a Cauchy subsequence in Lp(]0, T [, B1).
• Step 1:

From Lemma II.5.15, it suffices to find a Cauchy sequence in Lp(]0, T [, B2).
Indeed, if a sequence (vn)n satisfies the Cauchy criterion in Lp(]0, T [, B2) and
is bounded in Lp(]0, T [, B0), then for all ε > 0 we have

‖vn − vm‖Lp(]0,T [, B1) ≤ ε‖vn − vm‖Lp(]0,T [, B0) + C(ε)‖vn − vm‖Lp(]0,T [, B2)

≤ 2Kε + C(ε)‖vn − vm‖Lp(]0,T [, B2),

where K is some bound of (vn)n in Lp(]0, T [, B0). Hence, if (vn)n is a Cauchy
sequence in Lp(]0, T [, B2), it follows

lim sup
n,m→∞

‖vn − vm‖Lp(]0,T [, B1) ≤ 2Kε,

which proves the claim, ε being arbitrary.
• Step 2:

Let θ ∈ C∞([0, T ], R), θ(T ) = 0, such that we have

un = θun + (1− θ)un ≡ vn + wn.

We show that we are able to extract from (vn)n a Cauchy sequence in
Lp(]0, T [, B2). We would proceed in a similar way for the sequence (wn)n.

We extend vn by continuity to R+ by setting vn(t) = 0, ∀t ≥ T , and for
all h > 0 we break down vn into

vn(t) =

(
1
h

∫ t+h

t

vn(s)ds

)
+

(
1
h

∫ t+h

t

(vn(t)− vn(s))ds

)
≡ an,h(t)+bn,h(t).

Let h be positive; then we show that the sequence (an,h(t))n is uniformly
bounded and equicontinuous with values in a compact set of B2 (we know
that an,h is continuous from Proposition II.5.11). For this, we have
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sup
t∈R+

‖an,h(t)‖B0 ≤
1
h

h1/p′‖vn‖Lp(]0,T [, B0),

which proves that t �→ an,h(t) takes its values, independently from n, in a
bounded set of B0 (i.e., in a compact of B2, because the embedding of B0 in
B2 is compact). Moreover, we have

dan,h

dt
=

1
h

(vn(t + h)− vn(t)) =
1
h

∫ t+h

t

dvn

dt
(τ)dτ,

from which, for all t > 0,∥∥∥∥ d

dt
an,h(t)

∥∥∥∥
B2

≤ 1
h

∫ t+h

t

∥∥∥∥dvn

dt
(τ)
∥∥∥∥

B2

dτ,

≤ 1
h

∥∥∥∥dvn

dt
(τ)
∥∥∥∥

L1(]0,T [,B2)

.

Hence, h being fixed, the sequence (an,h)n is equicontinuous with values in
a compact set of B2. Ascoli’s theorem (Theorem II.3.1) then shows that we
can extract from the sequence (an,h)n a subsequence which is convergent in
C0([0, T ], B2) and thus in Lp(]0, T [, B2). Furthermore, we have

‖bn,h(t)‖B2
≤ 1

h

∫ t+h

t

‖vn(t)− vn(s)‖B2 ds

≤ 1
h

∫ t+h

t

(∫ s

t

∥∥∥∥dvn

dt
(τ)
∥∥∥∥

B2

dτ

)
ds.

Hence, by using Jensen’s inequality (Proposition II.2.20) and Fubini’s theo-
rem we obtain∫ T

0

‖bn,h(t)‖p
B2

dt ≤
∫ T

0

1
h

∫ t+h

t

(∫ s

t

∥∥∥∥dvn

dt
(τ)
∥∥∥∥

B2

dτ

)p

ds dt

≤
∥∥∥∥dvn

dt

∥∥∥∥p−1

L1(]0,T [,B2)

∫ T

0

1
h

∫ t+h

t

∫ s

t

∥∥∥∥dvn

dt
(τ)
∥∥∥∥

B2

dτ ds dt

≤
∥∥∥∥dvn

dt

∥∥∥∥p−1

L1(]0,T [,B2)

∫ T

0

1
h

∫ t+h

t

∥∥∥∥dvn

dt
(τ)
∥∥∥∥

B2

(t + h− τ) dτ dt

≤ h

∥∥∥∥dvn

dt

∥∥∥∥p
L1(]0,T [,B2)

,

and hence
‖bn,h‖Lp(]0,T [,B2)

≤ CT h1/p. (II.25)

• Step 3:
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We now use a diagonal process to construct a convergent subsequence of
(vn)n. For this, for k ≥ 1, we set hk = 1/k.

For k = 1 we have seen that we can extract a convergent subsequence
(aϕ1(n),h1)n from (an,h1)n. For k = 2 we can again extract a subsequence
of the sequence (aϕ1(n),h2)n, denoted (aϕ1◦ϕ2(n),h2)n, which converges. We
hence proceed with successive extractions of subsequences such that for all
k ≥ 1, the sequence (aϕ1◦···◦ϕk(n),hk

)n converges.

We now define ψ(k) = ϕ1 ◦ϕ2 ◦ · · · ◦ϕk(k). Let us verify that the sequence
(vψ(k))k is indeed a Cauchy sequence. Let ε > 0; according to (II.25) there
exists k0 ≥ 1 such that for all n and for all k ≥ k0, we have

‖bn,hk
‖Lp(]0,T [,B2) ≤ ε.

Let us now write
vψ(k) = aψ(k),hk0

+ bψ(k),hk0
.

From the diagonal extraction process employed, the sequence (aψ(k),hk0
)k≥k0

is a sequence extracted from the sequence (aϕ1◦···◦ϕk0 (n),hk0
)n which, by def-

inition, is a convergent sequence and thus it satisfies the Cauchy criterion.
Hence, there exists k1 ≥ k0 such that for all k, k′ ≥ k1, we have

‖aψ(k),hk0
− aψ(k′),hk0

‖Lp(]0,T [,B2) ≤ ε.

Thus, finally, we have for all k, k′ ≥ k1,

‖vψ(k) − vψ(k′)‖Lp(]0,T [,B2) ≤ ‖aψ(k),hk0
− aψ(k′),hk0

‖Lp(]0,T [,B2)

+ ‖bψ(k),hk0
‖Lp(]0,T [,B2) + ‖bψ(k′),hk0

‖Lp(]0,T [,B2)

≤ 3ε.

This, indeed, proves that the sequence (vψ(k))k is a Cauchy sequence in
Lp(]0, T [, B2).

�	
In certain cases, the preceding theorem does not apply and we need to use

sharper results.
Let E be a Banach space. For f ∈ L1(]0, T [, E) we denote the translated

function of f defined by (II.20) as τhf . For 1 ≤ q < +∞ and 0 < σ < 1, we
define the Nikolskii spaces Nσ

q (]0, T [, E) by:

Nσ
q (]0, T [, E) =

{
f ∈ Lq(]0, T [, E), sup

0<h<T

‖τhf − f‖Lq(]0,T−h[,E)

hσ
< +∞

}
,

(II.26)
and for f ∈ Nσ

q (]0, T [, E) we introduce the norm

‖f‖Nσ
q (]0,T [,E) =

(
‖f‖q

Lq(]0,T [,E) + sup
0<h<T

(
1
hσ
‖τhf − f‖Lq(]0,T−h[,E)

)q)1/q

.
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Intuitively, this leads to replacing a condition on the derivative with respect
to time of f by a condition of the Hölder type, which is weaker but proves
to be sufficient. We give, for example, the following theorem for which the
reader will find a proof in [109].

Theorem II.5.17 (Simon). Let B0, B1, B2 be three Banach spaces with B0 ⊂
B1 ⊂ B2. We assume that the embedding of B1 into B2 is continuous and
that the embedding of B0 into B1 is compact.

Then, for all 1 ≤ q ≤ +∞ and 0 < σ < 1, the embedding

Lq(]0, T [, B0) ∩Nσ
q (]0, T [, B2) ↪→ Lq(]0, T [, B1),

is compact.

5.4 Banach-valued Fourier transform

To obtain compactness, we have seen that it is necessary to establish estimates
of the derivatives with respect to time or of the translated functions with
respect to time from the sequences of functions involved. As we show in
the following, several methods are available to obtain these estimates. One
of these consists in using the Fourier transform with respect to the time
variable. We demonstrate, in this sense, the Proposition II.5.23 which gives
a characterisation of the sequences of bounded functions in the Nikolskii
spaces using the Fourier transform. We illustrate this technique in Section
1 of Chapter VII for the investigation of the Navier–Stokes equations with
nonstandard boundary conditions.

Before this, we need to recall the definition of the essential properties of the
Fourier transform of functions of the time variable with values in a Banach
space.

Definition II.5.18. Let X be a complex Banach space and let f ∈ L1(R, X).
We call the Fourier transform of f the function F(f) ∈ L∞(R, X) defined by

F(f)(τ) ≡ 1√
2π

∫
R

f(t)e−itτ dt.

In the case where X is a finite-dimensional space, we have the following
classic and fundamental theorem, for which the reader will find a proof, for
example, in [100].

Theorem II.5.19 (Hausdorff–Young). We assume that X = Cn.

• For all f in L1(R, Cn) ∩ L2(R, Cn) we have

F(f) ∈ L2(R, Cn) and ‖F(f)‖L2 = ‖f‖L2 ,
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and hence F extends in a unique way as an isometry of L2(R, Cn) on
itself.

• For any p ∈ [1, 2], there exists a C > 0 such that for all f in L1(R, Cn) ∩
Lp(R, Cn) we have

F(f) ∈ Lp′
(R, Cn) and ‖F(f)‖Lp′ ≤ C‖f‖Lp .

In our context, we shall need to use the Fourier transform in the case
where X is a Banach space. In this case, we pay attention to the fact that
the preceding theorem is not in general true! Nevertheless, in the particular
case where X is a space containing integrable functions, we can find a suitable
framework in which the Hausdorff–Young inequality holds. We refer to [8, 64,
96] for more complete and more precise results on this subject.

Theorem II.5.20 (Hausdorff–Young for Lebesgue spaces). Let (E,μ) be a
compact, locally-separated topological space equipped with a regular measure
μ on its Borel sets. Let q ∈ [1, +∞] and we set X = Lq(E,μ).

For all p ∈ [1, 2] such that p ≤ q ≤ p′ there exists a C > 0 such that for
all f in L1(R, Lq(E,μ)) ∩ Lp(R, Lq(E,μ)) we have

F(f) ∈ Lp′
(R, Lq(E,μ)) and ‖F(f)‖Lp′ (R,Lq(E,μ)) ≤ C‖f‖Lp(R,Lq(E,μ)).

We note that the condition p ≤ q ≤ p′ is optimal (see [96] for a counter
example).
Proof.

By density, it is sufficient to prove the result for smooth functions f . We
then successively use the Minkowski inequality with r = p′/q ≥ 1, followed
by the Hausdorff inequality given by Theorem II.5.19 for the scalar function
t �→ f(t, x) with x fixed and finally use the Minkowski inequality again, with
r = q/p ≥ 1. This gives

‖F(f)‖p′

Lp′ (R,Lq(E,μ))
=
∫

R

(∫
E

|F(f)(τ, x)|q dμ

)p′/q

dτ

≤
(∫

E

(∫
R

|F(f)(τ, x)|p′
dτ

)q/p′

dμ

)p′/q

≤ C

(∫
E

(∫
R

|f(t, x)|p dt

)q/p

dμ

)p′/q

≤ C

(∫
R

(∫
E

|f(t, x)|q dμ

)p/q

dt

)p′/p

= C‖f‖p′

Lp(R,Lq(E,μ)),
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which gives the claim.
�	

Corollary II.5.21. If X = H is a Hilbert space then the Fourier transform F
extends as an isometry on L2(R, H). Moreover F is invertible on L2(R, H)
and its inverse is given by

F−1(g)(t) ≡ 1√
2π

∫
R

g(τ)eiτt dτ, ∀g ∈ L1(R, H) ∩ L2(R, H).

Proof.
This result is deduced from the preceding theorem because any Hilbert

space is isomorphic with an L2(E,μ) space for well-chosen (E,μ).
We note that this property characterises Hilbert spaces: if X is a Banach

space such that F maps L2(R, X) into itself then X is isomorphic to a Hilbert
space.

�	
Finally, we use the following result whose proof is a straightforward inte-

gration by parts.

Proposition II.5.22. Let X be a Banach space and f ∈ L1(R, X) such that
df
dt ∈ L1(R, X) (we say that f ∈W 1,1(R, X)); then we have

F
(

df

dt

)
(τ) = iτF(f)(τ).

The first difficulty that we encounter is the fact that the functions with
which we deal with are only defined on a bounded interval of time ]0, T [ and
not on the whole real axis. As a consequence, we proceed in the following
manner.

Let f̃ be the extension of a function f of W 1,1(]0, T [, X) by zero outside
]0, T [. This function is not in W 1,1(R, X) but nevertheless we can derive it
in the sense of distributions and obtain

∂f̃

∂t
=

∂̃f

∂t
+ f(0)δ0 − f(T )δT .

Let us recall that f(0) and f(T ) are perfectly defined because the functions
of W 1,1(]0, T [, X) are continuous on [0, T ] with values in X (see Corollary
II.4.2).

Furthermore, we can generalise the Fourier transform to the tempered
distributions (in particular Dirac mass; see, e.g., [101]) and we show that we
have

iτF
(
f̃
)

= F
(

∂̃f

∂t

)
+

1√
2π

f(0)− e−iτT

√
2π

f(T ). (II.27)

In view of the functions which interest us for analysis of nonlinear partial
differential equations, the essential result is the following.
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Proposition II.5.23. Let H be a Hilbert space and let f ∈ L2(]0, T [, H) be a
function such that for a certain 0 < σ ≤ 1 we have∫

R

|τ |2σ‖F(f̃)(τ)‖2Hdτ ≤ C2. (II.28)

Then f belongs to the Nikolskii space Nσ
2 (]0, T [, H) defined by (II.26) and we

have
‖f‖Nσ

2 (]0,T [,H) ≤Mσ(1 + C),

where Mσ depends only on σ and T .

Proof.
Let f be a function satisfying (II.28), and let h ∈]0, T [. We set gh(t) =

f̃(t + h)− f̃(t) such that

F(gh)(τ) = (eiτh − 1)F(f̃)(τ).

We then write for τ �= 0

F(gh)(τ) =
eiτh − 1
τσhσ

hστσF(f̃)(τ).

However, the function x �→ (eix − 1)/xσ is bounded on R as soon as σ ≤ 1.
If Kσ is the bound of this function, we have

‖F(gh)(τ)‖H ≤ Kσhσ|τ |σ‖F(f̃)(τ)‖H ,

such that∫
R

‖F(gh)(τ)‖2Hdτ ≤ K2
σh2σ

∫
R

|τ |2σ‖F(f̃)(τ)‖2Hdτ ≤ K2
σC2h2σ.

From Corollary II.5.21 the Fourier transform is an isometry of L2(R, H),
therefore we obtain by the definition of gh∫

R

‖f̃(t + h)− f̃(t)‖2Hdt ≤ K2
σC2h2σ,

which implies that∫ T−h

0

‖f(t + h)− f(t)‖2Hdt ≤ K2
σC2h2σ,

and proves that f belongs in the Nikolskii space Nσ
2 (]0, T [, H) as well as the

stated estimate.
�	

Hence, to obtain compactness for a family of approximate solutions to an
evolution problem, we can attempt to obtain uniform bounds on the Fourier
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transform with respect to time for these solutions of type (II.28). This ensures
a bound in a Nikolskii space and hence the compactness property through
Theorem II.5.17.

6 Some results in spectral analysis of unbounded
operators

To generalise the well-known spectral theory in finite dimension to linear op-
erators in infinite dimension, it is convenient to work with operators which
map a Hilbert space H into itself (of course one could also work with Ba-
nach spaces; see [27, 101]). Indeed, to give meaning to the definition of an
eigenvector

Au = λu

it is clear that u and Au must coexist in the same space. Unfortunately, the
common operators which appear in problems from physics are, in general, dif-
ferential operators and these do not map the common Sobolev spaces Hs(Ω)
onto themselves, because of the loss of derivatives (see Chapter III for the
definition of Sobolev spaces).

In the sequel of this book, we particularly apply this theory to the Stokes
operator (see Section 5.2 of Chapter IV).

6.1 Definitions

We need to look at these so-called unbounded operators A, as operators in H
which are only defined on a subset of H, known as the domain of the operator
and denoted by D(A). For example, we can define the Laplace operator as
an unbounded operator on L2(Ω) with domain H2(Ω) ∩H1

0 (Ω).
Hence, to be given an unbounded operator is to be given:

• A Hilbert space, H.
• A linear subspace, D(A) ⊂ H.
• A linear mapping A : D(A) → H.

In our context, we assume that all the unbounded operators have a dense
domain in H and are closed, which means that the graph of A, defined by
G(A) = {(u, Au), u ∈ D(A)} is a closed subset of H ×H.

Remark II.6.1. The term “unbounded operator”, comes from the fact that
if A is closed with a dense domain D(A), which is not equal to H, then A
cannot be bounded; that is, there does not exist some C > 0 such that

‖Au‖H ≤ C‖u‖H , ∀u ∈ D(A).
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Indeed, let us suppose that this inequality is true for some C > 0. Any
u ∈ H is the limit of a sequence (un)n of elements of D(A). This sequence
being a Cauchy sequence, from the inequality above, (Aun)n is also a Cauchy
sequence in H and therefore is convergent. Hence (un, Aun)n is a sequence of
elements in the graph of A which converges, and, therefore, this graph being
assumed to be closed, we obtain that u ∈ D(A). We have therefore shown
that H = D(A), which is not the case.

We now define the fundamental concept of self-adjoint operator, which
again generalises the usual concept in finite-dimensional spaces.

Definition II.6.1. Let A : D(A) ⊂ H → H, be an unbounded operator with a
dense domain. We then introduce

D(A∗) = {u ∈ H, v ∈ D(A) �→ (Av, u)H is continuous for the norm of H} .

For u ∈ D(A∗), the mapping v �→ (Av, u)H can therefore be extended by a
continuous linear functional on H which may be represented by an element
denoted as A∗u ∈ H:

(Av, u)H = (v, A∗u)H , ∀u ∈ D(A∗),∀v ∈ D(A).

The operator A∗, whose domain is D(A∗), is called the adjoint operator of
A.

This definition is consistent because the density of D(A) into H ensures the
uniqueness of the extension which is used in the definition. We can now define
a fundamental class of operators.

Definition II.6.2. An unbounded operator A is said to be self-adjoint if it
satisfies

D(A∗) = D(A) and Au = A∗u, ∀u ∈ D(A).

Proposition II.6.3. Let A be an unbounded self-adjoint operator. We assume
that A is a bijection from D(A) onto H and that A−1 is continuous from H
into H. Then, the (bounded) operator A−1 is self-adjoint.

Proof.
The domain of A−1 is H. We therefore first need to show that D((A−1)∗)

is also equal to H. Let u ∈ H; then, since A−1 is continuous, it is clear
that v �→ (A−1v, u)H is continuous on all of H and therefore by definition
u ∈ D((A−1)∗).

Let u, v ∈ H, then A−1u and A−1v are in D(A), and since A is self-adjoint
we have (

A(A−1u), A−1v
)
H

=
(
A−1u, A(A−1v)

)
H

;

in other words
(u, A−1v)H = (A−1u, v)H ,
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which shows that A−1 is indeed self-adjoint.
�	

In general, unbounded operators are not continuous from D(A) equipped
with the norm of H into H. This means that the norm of H is not the
correct norm for us to set on D(A). The following proposition, whose proof is
straightforward, is the consequence of the fact that the graph of A is closed.

Proposition II.6.4. Let A be a closed unbounded operator in a Hilbert space
H of domain D(A). We provide D(A) with the following scalar product,

(u, v)D(A) = (u, v)H + (Au, Av)H , ∀u, v ∈ D(A), (II.29)

and the associated norm. Then, D(A) is a Hilbert space, the embedding from
D(A) into H is continuous and A is continuous from D(A) into H.

Remark II.6.2. It is clear that the norm introduced above is equivalent to
the norm known as the “graph norm” defined by

‖u‖graph = ‖u‖H + ‖Au‖H , ∀u ∈ D(A).

6.2 Elementary results of spectral theory

The fundamental application of the concepts above, to the subject of interest
to us, resides in the following result.

Theorem II.6.5 (Compact self-adjoint operators). Let H be a separable
(infinite-dimensional) Hilbert space and let T be a (bounded, i.e., defined and
continuous on all H) compact self-adjoint operator from H to H. Then H
has an orthonormal basis formed from eigenvectors of T . Moreover, the set of
its eigenvalues (which are real numbers) can be ordered in a sequence tending
towards 0.

We do not give the proof here and we refer for instance to [27].
When A is an unbounded operator which is a bijection from D(A) onto H,

then the open mapping theorem tells us that A is an isomorphism of D(A)
(equipped with the graph norm) onto H. In this case A−1 is a continuous op-
erator from H to D(A). The embedding from D(A) into H being continuous,
we can also consider A−1 as a continuous operator from H into H.

If, moreover, the embedding from D(A) into H is compact, which is often
the case in the applications, then A−1, seen as an operator from H to H, is
compact (see Lemma II.3.5). We can therefore apply the preceding theorem
and obtain the following result.

Theorem II.6.6 (Operators with compact inverse). Let H be a separable,
infinite-dimensional Hilbert space. Let A : D(A) ⊂ H → H be an unbounded
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operator. We assume that A is self-adjoint, bijective from D(A) onto H and
that the canonical embedding from D(A) into H is compact.

Then there exists an orthonormal basis (wk)k≥1 of H formed by eigenvec-
tors of A, that is, such that for all k ≥ 1,

wk ∈ D(A), and Awk = λkwk,

where the eigenvalues (λk)k≥1 of A are real numbers that we can order in
such a way that (|λk|)k is increasing and tends towards +∞ when k tends
towards infinity.

Finally, the eigenvectors (wk)k≥1 form a complete orthogonal family of
D(A).

Proof.
As we have remarked above, under the hypotheses of the theorem, the

operator A−1 can be viewed as a bounded, compact self-adjoint operator.
From Theorem II.6.5, there exists an orthonormal basis (wk)k≥1 of H formed
from eigenvectors of A−1 for the eigenvalues μk with, moreover, μk → 0.

Let us now note that, since A−1 is injective (Beware! It is not surjective
on H), 0 cannot be an eigenvalue of A−1. Hence, for all k ≥ 0, μk �= 0.
Moreover, since A−1wk = μkwk, we can clearly see that wk belongs to the
image of A−1, that is to in D(A).

If we now set λk = 1/μk, we immediately obtain

wk ∈ D(A) and Awk = λkwk.

The fact that |λk| → +∞ is a clear consequence of the fact that μk → 0.
This demonstrates the first part of the theorem.

For k, l ≥ 0, we have

(wk, wl)D(A) = (wk, wl)H + (Awk, Awl)H = (1 + λkλl)(wk, wl)H ,

which shows, (wk)k≥1 being a Hilbertian basis of H, that when k �= l,
(wk, wl)D(A) = 0 and that ‖wk‖D(A) =

√
1 + λ2

k. The family (wk)k is there-
fore an orthogonal family of D(A).

To establish that this is also a complete family, it is necessary to show that
the only vector of D(A) orthogonal to all the wk is the null vector. Therefore,
let u ∈ D(A) such that (u, wk)D(A) = 0 for all k. By using the self-adjoint
characteristic of A, this gives

0 = (u, wk)D(A) = (u, wk)H + (Au, Awk)H

= (u, wk)H + λk(Au, wk)H

= (u, wk)H + λk(u, Awk)H

= (1 + λ2
k)(u, wk)H ,
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which demonstrates that (u, wk)H = 0 for all k. Since (wk)k is an orthonormal
basis of H, we have indeed shown that u = 0.

�	
We know that all u ∈ H can be expressed uniquely in the form

u =
∑
k≥1

ukwk,

with the convergence being taken in the sense of H and moreover, uk =
(u, wk)H . Using this expression we can recognise which of the elements of H
are in D(A).

Proposition II.6.7. Let us take an operator A which satisfies the hypotheses
of the preceding theorem. We then have

D(A) =
{

u ∈ H, such that
∑
k≥1

λ2
k(u, wk)2H < +∞

}
.

Proof.

• Let u ∈ D(A); (wk)k is a complete orthogonal family of D(A), thus we
can see that (

wk

‖wk‖D(A)

)
k

is an orthonormal basis of D(A). Hence, we know that

∑
k≥1

(u, wk)2D(A)

‖wk‖2D(A)

< +∞.

However, for all k, we have

(u, wk)D(A) = (u, wk)H + (Au, Awk)H = (u, wk)H + (u, A2wk)H

= (1 + λ2
k)(u, wk)H ,

and in particular

‖wk‖2D(A) = (1 + λ2
k)‖wk‖2H = (1 + λ2

k).

Hence, we have obtained∑
k≥1

(1 + λ2
k)(u, wk)2H < +∞,

which proves the desired assertion.
• Now, let u ∈ H, we assume that
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k≥1

λ2
k(u, wk)2H < +∞.

The hypothesis implies that∑
k≥1

‖(u, wk)Hwk‖2D(A) < +∞,

and since the vectors
(
(u, wk)Hwk

)
k

are pairwise orthogonal in D(A), this
shows that the series ∑

k≥1

(u, wk)Hwk

converges towards a certain ũ ∈ D(A), in the sense of the norm of D(A).
However, since the embedding from D(A) to H is continuous, the conver-
gence also takes place in H and hence we obtain

(ũ, wk)H = (u, wk)H ,

which proves that u − ũ is orthogonal to all wk. Inasmuch as (wk)k is
complete in H, this shows that u = ũ and therefore that u ∈ D(A).

�	
We have shown in passing that for u ∈ D(A), we have

‖u‖2H =
∑
k≥1

(u, wk)2H and ‖u‖2D(A) =
∑
k≥1

(1 + λ2
k)(u, wk)2H ,

and moreover, since the absolute values of the eigenvalues (|λk|)k are bounded
below by a positive real number, the norm in D(A) is equivalent to the norm
defined by

u ∈ D(A) �→

⎛⎝∑
k≥1

λ2
k(u, wk)2H

⎞⎠1/2

.

We now wish to define the powers of the operator A. We could, for example,
define the operator A2 in the following natural way

D(A2) = {u ∈ D(A), such thatAu ∈ D(A)}, and A2u = A(Au),∀u ∈ D(A2).

However, we choose another definition which allows us to define the fractional
powers of an operator. To this end, we have to assume that the operator is
nonnegative (i.e., such that (Au, u)H ≥ 0 for all u ∈ D(A)). This is equivalent
to assuming that the eigenvalues of A are nonnegative. From now on, we make
this assumption and for all nonnegative real numbers s, we introduce



116 Chapter II. Analysis tools

D(As) =

⎧⎨⎩u ∈ H, such that
∑
k≥1

λ2s
k (u, wk)2H < +∞

⎫⎬⎭ ,

and for all u ∈ D(As), we set

Asu =
∑
k≥1

λs
k(u, wk)Hwk ∈ H.

Finally, we equip D(As) with the natural scalar product defined by

(u, v)D(As) =
∑
k≥1

(1 + λ2s
k )(u, wk)H(v, wk)H .

We can easily verify the following properties.

Proposition II.6.8. 1. The operator A1 is simply the operator A. Moreover,
D(A0) = H and A0 is the identity operator. The norms on D(A1) and
D(A0) are equivalent to the usual norms on these spaces.

2. For all s > 0, D(As) is a Hilbert space and As is a nonnegative self-adjoint
operator which is an isomorphism from D(As) onto H. Moreover, (wk)k

is a complete family in D(As).
3. For all 0 ≤ s < s′, we have D(As′

) ⊂ D(As), the inclusion being strict
and the embedding being compact.

Proof.
The first two points are trivial, as is the strict inclusion D(As′

) ⊂ D(As).
We only prove the compactness of the embedding of D(As′

) in D(As).
Let (uk)k be a bounded sequence in D(As′

), then there exists a C > 0
such that ∑

n

λ2s′
n |uk

n|2 ≤ C, ∀k ∈ N,

where we have denoted the coordinates of uk in the basis (wn)n as uk
n =

(uk, wn)H .
We show that for all ε > 0, we can cover the sequence (uk)k by a finite

number of spheres with radius ε in D(As). For any ε > 0, the sequence (λn)n

tends towards +∞, thus there exists a n0 ≥ 0 such that

λn ≥
(

2C

ε2

)1/(2(s′−s))

, ∀n ≥ n0.

Hence, for all k, we have∑
n≥n0

λ2s
n |uk

n|2 =
∑

n≥n0

λ2(s−s′)
n λ2s′

n |uk
n|2 ≤

ε2

2C

∑
n≥n0

λ2s′
n |uk

n|2 ≤
ε2

2
. (II.30)

Since n0 is fixed, we see that for all n < n0, we have
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|uk
n|2 ≤

C

λ2s′
n

, ∀k.

Thus, the sequences of real numbers (uk
n)k for 0 ≤ n ≤ n0 − 1 are bounded.

The closed spheres of Rn0 are compact sets, thus there exists a finite family
of elements of Rn0 , denoted (vi)i∈I , with vi = (vi

n)0≤n≤n0−1 such that

∀k ∈ N,∃i ∈ I, such that |uk
n − vi

n|2 ≤
ε2

2
∑n0−1

n=0 λ2s
n

, ∀n ≤ n0 − 1. (II.31)

For all i ∈ I, we consider the element ṽi of D(As) defined by

ṽi =
n0−1∑
n=0

vi
nwn.

Let us now show that the sequence considered, (uk)k, is covered by the spheres
of D(As) with centres at ṽi and having radius ε. Indeed, if k ∈ N is fixed, we
consider the index i ∈ I given by (II.31), such that we have

‖uk − ṽi‖2D(As) =
∑

n≤n0−1

λ2s
n |uk

n − vi
n|2 +

∑
n≥n0

λ2s
n |uk

n|2s ≤ ε2

2
+

ε2

2
= ε2,

the first term being bounded above by (II.31) and the second by (II.30).
�	

We now wish to define similar concepts for s < 0. Unfortunately, in this
case the preceding definitions do not apply (because the spaces D(As) would
all be equal to H and none would be complete). The spaces D(As) with s < 0
must be larger than H. Hence, for all u ∈ H, we define

‖u‖2D(As) =
∑
k≥1

λ2s
k (u, wk)2H .

This is a norm on H and if we define D(As) as the completion of H for this
norm, then the operator As is naturally defined. Indeed, D(As) is a Hilbert
space for the scalar product obtained by completion, and the preceding prop-
erties of positive real powers of A adapt without a problem. We then accept
the following result.

Proposition II.6.9. For all s ≥ 0, if we identify H with its dual, we have

D(As)′ ≈ D(A−s),

and the duality can be written using the scalar product of H in the following
way,
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〈u, v〉D(A−s),D(As) =
∑
k≥1

(u, wk)H(v, wk)H , ∀u ∈ H,∀v ∈ D(As).

6.3 Applications to the semigroup theory

Let (A, D(A)) be an unbounded operator in H which is self-adjoint, bijective
from D(A) onto H, nonnegative, and such that the canonical embedding of
D(A) into H is compact.

Our goal is to show, with the elements given above, how to solve the
infinite-dimensional linear differential equation⎧⎨⎩

du

dt
+ Au = 0,

u(0) = u0.
(II.32)

Let (wk)k≥1 be the spectral basis associated with A and (λk)k≥1 the (pos-
itive) eigenvalues of A. We assume that the sequence (λk)k≥1 is sorted in a
nondecreasing way.

Definition and Proposition II.6.10. Let u0 ∈ H so that we write u0 =∑
k≥1 u0,kwk. For any t ≥ 0 we can define

e−tAu0 =
∑
k≥1

u0,ke−tλkwk ∈ H.

Moreover, for any s ≥ 0 and t > 0, we have e−tAu0 ∈ D(As).

Remark II.6.3. We obviously have the property

e−(t+s)A = e−tAe−sA = e−sAe−tA, ∀s, t ≥ 0.

That’s the reason why the family of continuous operator in H defined by
(e−tA)t≥0 is called the semigroup associated with −A.

Proof.
Since λk ≥ 0 and t ≥ 0, it is clear that this sum is well-defined in H.

Moreover, for a fixed t > 0 and any s > 0, we have

λs
ke−tλk = (tλk)se−tλkt−s ≤ Cst

−s,

where Cs = sup[0,+∞[ y
se−y < +∞.

It follows that∑
k≥1

(
λs

ku0,ke−tλk
)2 ≤ C2

s t−2s
∑
k≥1

|u0,k|2 < +∞,
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and thus that e−tAu0 ∈ D(As) for any t > 0 and any s ≥ 0.
�	

Theorem II.6.11. For any u0 ∈ H, there exists a unique u ∈ C0([0, +∞[, H)∩
C1(]0, +∞[, D(A)) which solves (II.32). It is defined by the formula

u(t) = e−tAu0, ∀t ≥ 0. (II.33)

Proof.

• Let us first show the uniqueness property. The problem is linear, therefore
it is enough to show that any solution u for the initial data u0 = 0 is
necessarily equal to 0.
Let 0 < ε < T be given. We apply Theorem II.5.12 (and Corollary II.3.8)
to obtain

‖u(T )‖2H − ‖u(ε)‖2H = 2
∫ T

ε

(
du

dt
(t), u(t)

)
H

dt

= −2
∫ T

ε

(Au(t), u(t))H dt ≤ 0,

inasmuch as A is a nonnegative operator. It follows that

‖u(T )‖H ≤ ‖u(ε)‖H ,

but since u is continuous with values in H and satifies u(0) = 0, we can
let ε go to 0 in the inequality above and obtain that ‖u(T )‖H = 0, which
gives u(T ) = 0. This being true for any T > 0, the claim is proved.

• We easily check that the function t ∈ [0, +∞[�→ u(t) defined by (II.33)
satisfies the claimed regularity property (notice that u is not necessarily
differentiable at t = 0 with values in H) and u(0) = u0.
For any t > 0, we can differentiate the series to obtain

du

dt
(t) =

∑
k≥1

(−λk)u0,ke−tλkwk

= −
∑
k≥1

u0,ke−tλkAwk = −A

⎛⎝∑
k≥1

u0,ke−tλkwk

⎞⎠ = −Au(t),

the last equality being true because the series converges in D(A) and A is
continuous from D(A) in H.

�	
When we add a source term f to the problem (II.32), the semigroup as-

sociated with −A still allows us to solve the problem. More precisely, one
can prove, for instance, the following result (see [48] or [95]) which is an
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infinite-dimensional version of a very standard result for ordinary differential
equations.

Theorem II.6.12. Let u0 ∈ H and f ∈ C1([0, +∞[, H). There exists a unique
solution u ∈ C0([0, +∞[, H) ∩ C1(]0, +∞[, H) ∩ C0(]0, +∞[, D(A)) to⎧⎨⎩

du

dt
+ Au = f,

u(0) = u0.
(II.34)

This solution is given by the Duhamel formula

u(t) = e−tAu0 +
∫ t

0

e−(t−s)Af(s) ds, ∀t ≥ 0. (II.35)

Proof.
Using the change of variable s→ t− s in the integral in (II.35) we get

u(t) = e−tAu0 +
∫ t

0

e−sAf(t− s) ds.

Inasmuch as f is assumed to be of class C1 with values in H, we can justify
the derivation in all the terms and then conclude by integration by parts.

�	

Remark II.6.4. The above result, in particular Formula (II.35), still holds for
less regular source terms but this needs to weaken the notion of solution we
consider.
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