Chapter II
Analysis tools

The goal of this chapter is to describe the analysis tools that we use in later
chapters. We have gathered together fundamental concepts required to study
many linear or nonlinear evolution partial differential equations coming from
many areas of physics and biology, for instance.

We start in Section 2 by presenting, without proof, some classic results of
functional analysis such as the open mapping theorem, the Banach—Steinhaus
theorem and the Lax—Milgram theorem, proofs of which can easily be found
in the literature (see, e.g., [27, 104, 105]). We also give definitions of weak
and weak-x convergence, which are frequently used in the analysis of partial
differential equations. We pay particular attention to the expression of these
results into some fundamental spaces, namely the Lebesgue spaces. The sec-
tion is completed by a short introduction to distribution theory and by the
description of some basic properties of Lipschitz continuous functions.

Section 3 aims at describing some tools around the notion of compactness
which is fundamental when one deals with nonlinear terms in partial differ-
ential equations. We recall in particular the Schauder fixed-point theorem.

In the analysis of evolution problems, one of the usual ways for establishing
existence theorems is first to obtain energy estimates. In general, these are
deduced from elementary differential inequalities involving real functions of
a single real variable (the time variable ¢, in the problems which concern
us). In Section 4 of this chapter therefore, we describe the links between the
concepts of weak differentiation and standard differentiation as applied to
numerical functions of one single real variable. Finally, we prove the various
Gronwall type inequalities, which allows us to obtain the desired estimates
in most cases.

Section 5 is dedicated to the introduction and study of the spaces of func-
tions integrable on an interval of R with values in a Banach space. This is
also known as the Bochner integral theory. In particular, we prove the Aubin—
Lions—Simon compactness theorem [14, 84, 109], a fundamental result for the
study of nonlinear problems. The main ingredient of this proof is the Ascoli

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible 49
Navier-Stokes Equations and Related Models, Applied Mathematical Sciences 183,
DOI 10.1007/978-1-4614-5975-0 2, © Springer Science+Business Media New York 2013
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theorem, reviewed at the start of this chapter. We also present the definition
and main properties of the Fourier transform for this class of functions.

We conclude the chapter, in Section 6, with a very short introduction to the
spectral theory of self-adjoint unbounded operators with compact resolvent.

1 Main notation

Throughout this book, the space dimension is denoted by d € N* (typically
d =2 or d = 3 in the case of fluid mechanics applications). The Euclidean
norm on R? is denoted by x + |z| and the associated inner product by
(2,9) >z y.

For all multi-index o = (as,...,aq) € N? we denote its length by |a| =
ai + -+ + agq. For any function f we define 0%f = 071 --- 074 f as soon as
this partial derivative exists (in a classic or in a weak sense).

For any open set  C R? we use the following standard functional spaces.

e The set C*(Q2), k > 0, of functions with continuous partial derivatives up
to order k.

e The subset CF(Q) C C*() of functions such that all partial derivatives up
to order k are bounded.

e The set C%*(Q), a €]0,1] of a-Hélder continuous functions. In the case
a =1, C%(Q) is the set of Lipschitz continuous functions. The Lipschitz
seminorm of such a function is defined by

L,yfﬂ |z —y|

e The set CH%(Q), k > 0, a €]0,1] of functions in C¥(£2) whose partial
derivatives of order k are a-Holder continuous.

e The set C°(£2) of functions in C*°(2) which are compactly supported in
Q. Another usual notation for this space, in particular in the theory of
distributions, is D(2).

e The set C°(f2) of the restrictions to € of functions in C°(R?).

Moreover, for any function u defined on ) we denote as u its extension by 0
on the whole space defined by

u(x), for xz €,
(2) = (z)
0, for x & Q).

For any = € ), we define §(z) to be the signed distance from z to the
boundary, which is defined by
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d Q f Q
5(z) = (x,00) or x € €0, (IL1)
—d(z,0Q) for xz & Q.
By using the triangle inequality, it is obvious to check that ¢ is Lipschitz
continuous on R? and that Lip(d) < 1.

2 Fundamental results from functional analysis

2.1 Banach spaces

In this section we recall essential results of functional analysis. We do not
provide proofs; the reader can find these in the classic monographs on the
subject such as [27], [104], and [105].

For any normed vector space E, we denote its topological dual as E’, that
is, the space of continuous linear functionals on E. For f € E/ and x € E,
we introduce the duality bracket

(f,2)e 5 = f(2).

We reserve the notation (-,-)g for a scalar product in a Hilbert space, H.

Let E and F be two normed vector spaces and S : E +— F be a continuous
linear function. We define the adjoint or transposed function, denoted S :
F'— E', by

<tSf, x)E/,E = <f, S$>F/7F,Vf S F/,VJ? cF.

From the Hahn—Banach theorem, we can express the norm of an element
from a normed vector space E by duality as follows.

Proposition 11.2.1. Let E be a normed vector space. Then for all x € E, we

e (f.a)pr
yX)E'\E
|zl = sup = sup |(f,2)p Bl
remgzo  fle <
Another consequence of the Hahn-Banach theorem is the following useful
density criterion for a subspace of a given normed space.

Proposition 11.2.2. Let E be a normed vector space and F' be a vector subspace
of E. We assume that any continuous linear functional on E which vanishes
on F is identically zero. Then, F is a dense subspace of E.

The following result (due to Banach), gives a characterisation of the iso-
morphisms between Banach spaces.

Theorem 11.2.3 (Open mapping). Let E and F be two Banach spaces. If u
is a surjective, continuous linear function from E into F, then u is an open
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map, which means that the image under u of all open sets of E is an open set
of F. In particular, if u is bijective, its reciprocal function is continuous and,
consequently, spaces E and F' are algebraically and topologically isomorphic.

Finally, the last result that we recall in this section, which is sometimes
called the “uniform boundedness principle” shows that if a family of contin-
uous linear functions defined on a Banach space is pointwise bounded, then
it is uniformly bounded.

Theorem 11.2.4 (Banach—Steinhaus). Let (u;)icr be a family of continuous
linear functions of a Banach space E within a normed vector space F, indexed
by a set I. We assume that for all x € E, the family

(wi(x))ier,

is bounded in F. Then, the family (u;);cr is uniformly bounded in the sense
of the norm of the operators; that is,

sup [luil| (g, F) < +00;
iel

or equivalently,
3C > 0, such that ||u;(z)||r < C||lz||g,Vi € I,Vx € E.

We conclude this section by introducing the Lax—Milgram theorem, which
is an important tool in the study of linear partial differential problems in
variational formulation.

Theorem 11.2.5 (Lax—Milgram). Let V' be a Hilbert space, a: V xV — R a
bilinear form, and L : V — R a linear form.
Assume that a and L are continuous and that a is coercive, that is,

Ja >0, a(v,v) > a|v||%, YveV;
then there exists a unique solution v € V' to the problem
a(v,w) = L(w),Yw € V. (I1.2)
Moreover, this solution satisfies

L ’
ol < v (13

2.2 Weak and weak-x convergences

We do not go into the details here of the general theory of weak and weak-
* topologies (see [27] for a more complete study). Rather, we simply recall
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the sequential properties of these topologies, which are essential later. In
this book, these notions are mainly used in the framework of Lebesgue and
Sobolev spaces (see Section 2.3.4).

Definition 11.2.6. Let E be a Banach space and E’ its dual space.

o We say that a sequence (uy), of elements of E weakly converges towards
u € E, if for any f € E' we have

flun) = (fiun)e B — (f,u)pr g = f(u).

o We say that a sequence (fy)n of elements of E' weakly-x converges towards
f € E' if for any u € E, we have

fu(w) = (fn,w)E B m’ (f,wp g = f(u).

Of course, as soon as the space on which we are working is infinite-
dimensional (functional spaces of type LP(Q)), for example), the closed
bounded subsets of this space are not necessarily compact for the topology
of the norm on E. Nevertheless, the following result establishes the property
of weak compactness of closed bounded sets.

Theorem 11.2.7 (Weak and Weak-+x compactness).

o Let E be a reflexive Banach space (i.e., E is isomorphic with E" via the
natural embedding). Then, from any bounded sequence of elements of E,
we can extract a subsequence which weakly converges in E.

e Let E be a separable Banach space (i.e., one which contains a dense count-
able subset). Then, from any bounded sequence of elements of E’', we can
extract a subsequence which weakly-x converges in E'.

One of the important consequences of the Banach—Steinhaus theorem
(Theorem II1.2.4) is the property of lower semicontinuity of the norm for
weak and weak-+ topologies on a Banach space.

Corollary 11.2.8. Let E be a Banach space, and (u,)n, be a sequence of ele-
ments of E (or E’, respectively) which weakly converges (or weakly-x, respec-
tively) towards w € E (or uw € E’, respectively). Then the sequence (uy)n is
bounded in E (or in E’, respectively) and we have

llullg < liminf ||u, ||z, (resp., ||ullg < liminf ||u,| s ).
n—oo n—oo

The following proposition is often used to prove the weak (resp., weak-%)
convergence of a whole sequence.

Proposition 11.2.9. Let E be a reflexive Banach space (resp., the dual of a
separable Banach space) and (x,)n a bounded sequence in E.
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We assume that there exists x € E such that every weakly convergent
(resp., weakly-* convergent) subsequence of (xn,), has a limit equal to x; then
the whole sequence (), weakly converges (resp., weakly-x converges) to x.

Proof.

We only give the proof in the reflexive case, the other case being similar.
Assume that (z,), does not weakly converge to x. This means that there
exists f € E' such that ((f, z») g’ g)n does not converge to (f, ) g/ 5. Hence,
there exists ¢ > 0 and a subsequence (z,(n))n such that

I(f;2pm) — T)Er,E| > €,Yn > 0. (I1.4)

Since (2, (n))n is bounded in E which is reflexive, Theorem II.2.7 shows that
there exists a new subsequence (Z,(y(n)))n that weakly converges in E. By
assumption its weak limit is necessarily equal to x which implies that

(f:2o@m) =) e —— 0.
This is a contradiction with (I.4) and the claim is proved.
O
A consequence of this result is that a bound in a “small” space and a weak
convergence in a “large” space implies the weak convergence in the “small”
space. The precise statement is the following.

Proposition 11.2.10. Let E, F,G be three Banach spaces such that E C G,
F C G with continuous embeddings. We assume that F is reflexive.
Let (x)n be a sequence in ENF such that there exists x € E satisfying

(zn)n is bounded in F,

(zn)n weakly converges towards x in E.

Then,
(2n)n weakly converges towards x in F.

Proof.

From Proposition I1.2.9, the claim will be proved if we show that x is the
unique possible weak limit in F' of subsequences of ().

Let (2y(n))n a subsequence which weakly converges in F' towards some
limit y € F. The embedding F' C G is continuous, therefore we know that
(T (n))n weakly converges to y in G.

On the other hand, we know by assumption that (2,,))n weakly converges
towards = in E. The embedding E C G is continuous, therefore we deduce
that (2,(p))n weakly converges to x in G. It follows that y = 2 and the claim
is proved.

O

Remark 11.2.1. This result can be easily adapted to the case of the weak-x
convergence.
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We can now give a useful criterion of strong convergence for weakly con-
vergent sequences in a Hilbert space.

Proposition 11.2.11. Let H be a Hilbert space and (u,), be a sequence of
elements of H which weakly converges towards w in H. Let us assume that

limsup [Ju ||z < [Ju|| &,
n—oo

then the sequence (uy )y, strongly converges towards u in H.

Proof.
It is sufficient to write

lw =l = lullf; + 7 — 20w, wn)ar-

Since the weak convergence gives (un,u)y —— ||ul|%, we have
n—oo

timsup s — w3 = [Jull%y + limsup 3 — 20l <0,
n—oo n—oo
by using the assumption.
O
We later show (Proposition I1.2.32) that this result is also valid in some
Banach spaces (e.g. in the spaces LP(Q) with 1 < p < +00).

Unfortunately, the concept of weak convergence, although easier to use,
does not generally allow passing to the limit in nonlinear terms. As an ex-
ample (see Section 2.3 for the main properties of Lebesgue spaces), let the
sequence of functions (uy,), be defined on ]0,1[ by u,(x) = sin(nz). Then
(un)n weakly converges towards 0 in L?(]0,1[) (Riemann—Lebesgue lemma)

1

and / u? dx converges towards 1/2. Hence the sequence (u2), does not
0

weakly converge towards 0 in L?(]0, 1]). However, we note that the sequence
(u2),, does weakly converge in L?(]0, 1]) but its limit is the constant function
equal to 1/2 and not 0.

Nevertheless, we prove in the following result that the product of a strongly
converging sequence with a weakly converging one is a sequence which weakly
converges towards the product of the limits.

Proposition 11.2.12. Let E, F, and G be three Banach spaces and let B be a
continuous bilinear function of EX F in G. If (uy,), is a sequence of elements
of E which strongly converges towards u and (v,)y is a sequence of elements
of F which weakly converges towards v, then the sequence (B(un,vy))n weakly
converges towards B(u,v) in G.

Proof.
Let ¢ € G’'; we need to show that
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<905 B(Un, ’U")>G/7G — <(p7 B(’U,, U)>G',G'

n—oo

By using the bilinearity of B, we have

(s B(un, vn) = B(u,v))ar gl
<llelle 1B(u = un, vn)lla + (@, B(u, vn = v))er,al -

From Corollary I1.2.8, the sequence (v, ), is bounded. Hence, since the func-
tion B is continuous, the first term is estimated by

Iella I Bu—un,va)lla < el Blllu=unlellvnllr < Cllu=unlz —— 0.
The function z € F' — (p, B(u,z))g,¢ is a continuous linear functional on
F because u is fixed in £ and B is continuous. Hence from the definition
of weak convergence, the second term also tends towards 0 when n tends
towards infinity.

O

Remark 11.2.2. If the space G is reflexive and if (uy,), and (v,), converge
only weakly towards u (or, respectively, v), then the sequence (B(un, vy))y is
bounded in G (because B is continuous and (uy), and (v,), are bounded).
Hence, Theorem I1.2.7 shows us that we can extract a subsequence which
weakly converges in G towards a certain g.

The problem is that without the property of strong convergence, we cannot
in general conclude that g is equal to the expected limit, which would be
B(u,v) as shown in the example given above.

As shown in later chapters, we need to establish strong convergence prop-
erties of the sequence studied in larger spaces in order to identify the limit g
to be the product B(u,v).

Therefore, in order to deal with nonlinearities, it is necessary to obtain
strong convergence in one way or another. One way to do this is to use the
compactness properties described in Section 3.

2.3 Lebesgue spaces

2.3.1 Definitions and main properties

Definition 11.2.13 (Conjugate exponent). For all 1 < p < 400, we define
the conjugate exponent p’ of p by

with the obvious conventions for p =1 and p = 4+o0.
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This notation is used systematically throughout this text. We also note
that for all p, we have (p’)’ = p.

e For 1 < p < +o0, the space LP(Q) is the set of Lebesgue-measurable
functions on any open set 2 with real values, for which the pth power
of the absolute value is integrable for the Lebesgue measure. For each
Fe () we st || flle = (J |fP da)'’”.

e The space L™ () is the set of Lebesgue-measurable functions which are es-
sentially bounded on Q. For each f € L>(Q), we set || f||L~ = esssupq|f]|.

In fact, the elements of these spaces have to be considered as the classes of
functions which coincide except over null Lebesgue measure sets.

It can be shown (see Proposition I1.2.21 and Remark I1.2.3) that ||.||z» is
a norm on LP(Q)). Moreover, these spaces are Banach spaces.

e For 1 < p < 400, the space LP(Q) is separable and reflexive. Moreover its
dual is isomorphic with L? (€2) where p/ is the conjugate exponent of p.

e The space L!(Q) is separable but not reflexive, its dual being isomorphic
with L ().

e By contrast, the space L () is neither separable nor reflexive and its
dual is strictly larger than L'().

We conclude this introduction by recalling the following version of the
change of variable theorem.

Definition 11.2.14. Let Q, Q be two open sets in R, A map T : Q — Q is
said to be a Lipschitz diffeomorphism if and only if

e T is a bijection.
o T and T~ are Lipschitz-continuous.

Notice that such a map is not in general a diffeomorphism in the usual sense
because, in particular, it is not necessarily differentiable everywhere.

Proposition 11.2.15. Let Q, Q be two open sets in RY and T : Q@ — Q a
Lipschitz diffeomorphism.
For any measurable function u: Q — R and 1 < p < 0o, we have

ue LP(Q) <= uoT € LP(Q).
Moreover, we have
CillullLee) < llwo Tl gy < CollullLr (o),

for some C1,Cs > 0 depending only on T.
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2.3.2 Elementary inequalities

We give here rather general versions of Young’s and Hoélder’s inequalities,
without proof. We use these repeatedly in the following sections, without
necessarily explicitly referencing them.

Proposition 11.2.16 (Young’s inequality). Let n > 2, and x4, ..., 2, be non-

negative real numbers. Also, let p1,...,pn be positive real numbers such that
1 1
R + e _— = ]_'
D1 Pn
We then have:
! xbn
xl...mng +.+ 3
P1 Pn

The proof of this inequality is a simple application of the concavity of the log-
arithm function. We can directly deduce an useful version of this inequality.

Corollary 11.2.17. Let py,...,p, be real numbers satisfying the hypothesis

of the preceding proposition. For all positive €1,...,e,_1, there exists a
C(e1,...,en—1) > 0, such that for all positive x1,...,x,, we have
xyxy < et 44 ey 12+ Cle, . En1)Tbn.

In other words, in Young’s inequality, all the coefficients can be fixed except
for one. Of course, the coefficient C'(e1,...,e,—1) blows up when one of the
€; tends towards 0.

From Young’s inequality we can deduce Hélder’s inequality which is stated
in the following way.

Proposition 11.2.18 (Hélder’s inequality). Let Q be an open set of R% and let
P1,---,Pn be positive real numbers (possibly infinite). Let r € [1,4+00] such

that
1 1 1
_ = — ...+ —_
r D1 Pn

For all functions fi,..., fn, with f; € LPi(Q), the product fy - -- f, belongs to
L™(9) and we have

[f1--- Fallr < fullzes - L fnllzen -
We also need the following generalisation of Fubini’s theorem.

Proposition 11.2.19. Let d > 2 and fi,...,f; : R™1 — R be d functions
belonging to LY~ (R4=1). We define the following product

f(@) = fi(zo, ..., xq) fo(T1, 23, 2q) - fa(x1, ..., Tq-1), VT € R,



2. Fundamental results from functional analysis 59

where the term with f; depends on all the variables except x;.
Then, f belongs to L*(RY) and we have

d
£z ey < [T 1ill Lor oy
i=1
Proof.

In the case d = 2, we have f(z1,22) = fi(z1)f2(22) and by assumption
f1, f2 € LY(R). Therefore, Fubini’s theorem implies that f € L'(R?) and that
Il fllzr @2y = If1llzr ®) |l f2l 1 (m)- This proves the result (in this particular case
the claimed inequality is an equality).

Let us only prove the result for d = 3 because the general case follows
by a simple induction using Holder’s inequality (see [27], for instance, for a
complete proof). Let us integrate the definition of |f| with respect to the
variable x3 and apply the Cauchy—Schwarz inequality

/‘f|(331»$2,3?3)dl‘3

R

| fsl(er, ) ( / f1|<x2,x3>|f2<x1,x3>dx3)
R

1/2 1/2
<Iflored) ([ 1P ) ([ 1pP @)

=(g1(z1))1/2 =(g2(w2))'/?

We apply once more the Cauchy—Schwarz inequality to get

1/2 1/2
/ fldx§< / |f3|2<x1,x2>dx1dx2) < / gl<x1>92<x2>dx1dx2> .
R3 R2 R2

The last term is estimated by using the induction assumption (i.e., Fubini’s
theorem) to get the claim
1/2 1/2
11l rey < I f5ll2@2) lgall ) 1921l 22wy = 1 fsll L2 @)1 f1ll 2@y 1 2l 2 ey
O
We also need the following version of Jensen’s inequality.

Proposition 11.2.20 (Jensen’s inequality). Let 2 be an open set of R? and
n € LY(Q) a nonnegative function. For any function f such that |f|Pn €
LY(Q), for some 1 < p < 400, we have fn € L1 (Q) and

e

P
< iy / PP de.

Proof.
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We write fn = (fn'/?)n'/?" and we use the Holder inequality with expo-
nents p and p’ = p/(p —1).
O
Let us now establish a general version of the classic Minkowski inequality
that we need below.

Proposition 11.2.21 (Minkowski’s inequality). Let (X1, 1) and (Xa, p2) be
two o-finite measure spaces. Then for any nonnegative measurable function
f defined on X1 x Xo and any r > 1 we have

r 1/r 1/r
(/ ( f(mth) du2> dﬂl) < / < f($U1,$C2)rd,U1> dits.
X1 Xo X2 X1

Remark 11.2.3. If one takes X5 = {0,1} and ps the counting measure, the
above inequality can be written as

If +gller <\ fller +llgllzr,

for any nonnegative f,g and any r > 1.

Proof.
For all 2; € X; we denote J(z1) = / f(z1,22) dus. Then, by using the
X
Holder inequality and the Fubini theoremz7 we have

~/X1 J(x1)" dpy = / J(x1)" < . f(xl,xg)dMQ) dp

:/ / J(x f(z1,22) dps dpy

X1 JXo

=/ / J(wn)™ " f 1, 02) dpn dso
X, J X,

IN

(r=1)/r 1/r
/ (/ J(x d#l) < f(xlaxQ)rdﬂl> dpo
X2 Xl
(r=1)/r 1/r
< dﬂxl) / < f(l‘hl‘g)rd[tl) d,u2.
Xo X1

From where we deduce the claim.
O
Let us also mention the following reverse Minkowski inequality that we
state in a simple framework sufficient for our purposes.

Proposition 11.2.22. Let 0 < ¢ < 1 and Q an open set of R?. For any non-
negative measurable functions f,qg: Q — R, we have

If +9gllee 2 [ flla + llgllze
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Proof.
For any x € Q we write

J@) +9@) _ Ml S@) gl g(z)
1llze +lgllze Nfllze + lgllee 1Flze  [1fllze + llgllze llgllze’

that is to say,

@) +9(e) _, 1)
[z +lglze ~ 1z

g()
llgllra’

+(1-9)

with 6 € [0,1]. From the assumption on ¢ we know that the map s — s7 is
concave on RT. Therefore we get

q q q
(e V' (JLY gy (80"
1f1lze + llgllze 1f1l e 19 La
By integrating this inequality on €2, we observe that we obtain 1 in the right-
hand side. The claim follows immediately.

O

2.3.3 Mollifying kernels. Density result

Mollifying is a central procedure in functional analysis. It in particular allows
us to prove density results in suitable functional spaces related to mathemat-
ical fluid mechanics. It is also crucial in the renormalized solutions theory for
the transport equation that we describe in detail in Chapter VI.

Definition 11.2.23. A map 1 : R — R is called a mollifying kernel if
o 1€ CP(RY), with Suppn C B, the unit ball of RY.

e >0 and [p,ndr= [ynde=1.
e n(x) only depends on |x|.

Note first that the last condition is not necessary but it sometimes allows
simplifications in some computations. It is also worth noticing that such a
function actually exists.

For any € > 0, we can now define

1e(e) = —n (2) and (Vn)e(a) = () (2).

in such a way that Vi, = (1/¢)(Vn)..

Definition 11.2.24. For any f € LP(R%), 1 < p < o0 and any € > 0 we define
the convolution
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(f *ne)(x /f ne(x —y) dy

= [ te=ndy = [ fa=eone) e

Notice that, inasmuch as 7 is bounded and compactly supported, all the
integrals in the definition above make sense.

(IL5)

Proposition 11.2.25. For any € > 0, we have
fHne € COO(Rd)v

c
If * el < = 1

C
IV *ne)llze < g7 I fllee,
1f*nellee < CllfllLes (I1.6)

for some C > 0 depending only on n and p. Finally, if p < +00 we have
frne —=f, in LP(RY).
£—

Proof.

The regularity of fxn. follows from the regularity of the kernel n and usual
results of differentiation under the integral sign. The L estimates simply
follow from Hélder’s inequality and the fact that ||1:] .0 = ||| . /e/P.

To prove the LP estimate (I1.6) for p < +oo, we first use the Jensen
inequality (Proposition I1.2.20) to get, for any = € RY,

(F ) (@) < /B (@ — e2)Py(z) de

By integrating with respect to z and using Fubini’s theorem, we get

||f*775|Lp_/ /|fa:—sz)|p (2)dzdzx

= [ ([ 11tz as) a:= i,

Let us now show the convergence property. Since p < 400, we can use the
density of CO(R?) in LP(R?) (this property comes from the regularity of the
Lebesgue measure). Therefore, there exists a sequence (f,), of functions in
C%(R?) which converges towards f in LP(R%). Each function f,, is uniformly
continuous and we denote by w,, its modulus of continuity.

Using the properties of the kernel 7, we observe that for each n we have

o % 7e() — ful@)] < /B Ful — £2) — fu(@)n(2) dz < wn(e),
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and therefore, since f;, is compactly supported we have

an *Ne — f?’LHLT’ S ann(€)~

Using the triangle inequality and (I1.6) we get

||f*?75 - fHLP S ”(f - fn) *775||LP + an *Ne — anLP + an - fHLP
<A+ O)|f = fallee + Crwn(e).

Taking the superior limit as ¢ — 0, we obtain for any n that
lim sup 1f*ne = flle <A+ OV f = fullze
E—

Taking now the limit n — oo, we finally get limsup,_,o||f *n: — fllz» =0
and the claim is proved.
O

Theorem 11.2.26. For any open set ) in R?, the set D(Q) is dense in LP(R)
forany 1 <p < +o0.

Proof.

Let f € LP(Q)). For any n > 1 we define the open set Q, = {z €
Q,d(z,09Q) > 1/n}. By the dominated convergence theorem we see that f,, =
flq, converges to f in LP(£2). We consider now the function f,, o = f * 7.
By the previous proposition, we know that f,, . € C* (R%); moreover, for any
¢ < 1/n, we observe that the support of f, . is contained in €, therefore
fr.e € D(Q). The result follows because we have lim._. o (limy,—o0 fne) = f
in LP(Q).

O

2.3.4 Weak and weak-x convergences in Lebesgue spaces

From the recap at the beginning of this section, and in particular from the
characterisation of the dual space of L?()), we can write the LP-version of
Theorem I1.2.7.

Proposition 11.2.27. Let (uy, ), be a bounded sequence of LP(Q2), 1 < p < +00;
then we can extract a weakly converging subsequence from the sequence (un)n;
that is

El(unk)k,EluELp(Q),klim /unkwdx:/ugodx,VgoeLp/(Q).

This result does not hold in L!(Q) because that space is not reflexive.
Nevertheless, we have a similar result in L>°(€Q) provided that we consider
the weak-x topology on this space, because it is the dual of the separable
space L1(Q).
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Proposition 11.2.28. Let (uy,), be a bounded sequence of L>°(Q); then, from
the sequence (up,)n, we can extract a subsequence which is weakly— conver-
gent; that is

3ty g, Fu € L(Q), lim / U, dr = / wp dx, Y € LY(9).

With this characterisation of the weak-x convergence in L°°({2), we can
extend the density result given in Theorem I1.2.26.

Theorem 11.2.29. For any open set Q of R?, the set D() is dense in L*°()
for the weak-x topology.

Proof.

Let f € L>(Q). We set ¥, = lpn so that fi, € L'(Q) N L>(Q).
By using Theorem 11.2.26, we know that for each n there exists a function
fn € D(Q) such that ||fn — fnllLr < 1/n. Observe in the proof of this
theorem that we have the additional property || fnllne < || f¥nllne < ||fllL>-

Let now ¢ € D(€2). We have

‘/angodm—/ﬂftpdx

The first term in the right-hand side tends to 0 by construction of (f,), and
the second one also tends to 0 thanks to the Lebesgue dominated convergence
theorem.

Finally, since (f,,)n is bounded in L*°(Q) and D(1) is dense in L(2), we

deduce that
‘/ fngdx —/ fgdx
Q Q

which proves the theorem.

S/Qlfn—fdinllsa\dﬂ/g o — 11| fll¢] de.

“fn_fwnHLl”‘PHLoo

——0,Vg € L}(Q),

O
By applying Proposition 11.2.12 within the framework of LP-spaces, and
by using Holder’s inequality, we obtain the following useful result.

Proposition 11.2.30. Let p, g, and r be three real numbers in [1,+oo[ such that

If (up)n is a sequence of LP () which strongly converges towards uw in LP(Q)
and if (vn)n is a sequence of L1(Q) which weakly converges towards v in

L1(QY), then the product sequence (unvy,), weakly converges towards uv in
L™(Q).
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We now state the classic inequalities in LP spaces which prove that these
spaces are uniformly convex ([27], [69]) except for p = 1 and p = +00. We can
view these inequalities as generalisations of the parallelogram law in Hilbert
space.

Lemma 11.2.31 (Clarkson’s inequalities). Let 1 < p < 400, and let f,g be
in LP(Q).

o Ifp>2, we have

f+g|” 1 Lo
5 < 1715 + lalt,

Hf g

o Ifp <2, we have
p/

p’ 1 1 1/(p—1)
<\ =I5 + zlglly .
< (g0 + 3l )

We can now prove the strong convergence criterion for a weakly converging
sequence in LP spaces.

Lpr

Proposition 11.2.32. Let 1 < p < 400, and let (uy), be a sequence of func-
tions of LP(Q)) which weakly converges towards u in LP(2). If we assume

limsup |[un||zr < |lullze,
n—oo

then the sequence (uy )y strongly converges towards u.

According to Corollary I1.2.8, this hypothesis is equivalent to saying that the
sequence of norms (||uy||Lr)n converges towards ||ul|s.

For LP spaces, this result generalises Proposition I1.2.11 which dealt with
the Hilbertian case (i.e., p = 2).
Proof.

The Clarkson inequalities given by the previous lemma can be written in

the general form
< (31918 + 3l )
o (2 L 9 L
where a =1if p>2and a=1/(p—1) if p < 2. Let us apply this inequality

to f = u, and g = u. We obtain
< (gl gz

and we denote the left-hand side of this inequality as a,,. If we pass to the
upper limit in this inequality, then by using the hypothesis, we find that:

ap o
+Hf g

f+yg
2

Lr

(0%
Uy + U P

2

Up — U

2

Lp
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. pa
limsupa,, < |lul/75. (IL.7)
n—oo
However, we have:
Up — U op Up + U op
= Qp — )
2 Lo 2 Ip
which gives
. Up — U o . . . un+u op
lim sup < limsup a,, — lim inf (I1.8)
n— o0 p n—00 n—oo Ir

Moreover, the sequence (u,, + u)/2 also weakly converges towards u, so that
the Corollary I1.2.8 shows us that

ap
ul[2% < liminf ’“" rul (IL9)
n—oo 2 e
By combining (11.7), (I1.8), and (II.9), we finally obtain:
_ ap
limsup‘ Un — 4 <0,
n—oo Lp
which concludes the proof.
O

2.3.5 Interpolation between LP spaces

We now establish an interpolation inequality which is nothing but a convexity
property.

Lemma 11.2.33. Let Q be any open set of R? and let u € LP(Q) N LI(Q) with
1 <p,q <+4o0. Then for all v such that

1 1-—
L0, 1205 <,
r p q

we have u € L™ () and
0 -0
Juler < Tl llulls®.

Proof.

We note that
_or Q-0

p q
and we can therefore apply the Holder inequality in the following way:

1

)
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/|u|7'dx:/ |70 || =0
Q Q
r0/p r(1-0)/q
< (/ u|pdac> (/ |u|qd:r)
Q

1— 0
< a5 ] 75

O
The preceding inequality allows us to obtain convergence properties in the
intermediate spaces from the convergences in suitable LP spaces.

Corollary 11.2.34. Let Q be any open set of R:. Let py,ps € [1,+00] and let
(un)n be a sequence of functions which strongly converges towards u in LP* ()
and which weakly converges (weakly-* if po = 4+00) in LP*(Q). Then, for all
p included strictly between p; and pa, the sequence (uy), strongly converges
towards u in LP()).

Proof.
Since p is strictly included between p; and po, there exists a 8 €]0, 1] such
that

P n b2
From the interpolation inequality given by the preceding lemma, we have

1 0 1-46
7_|_ .

llt = wnllze < llu = wnllfon llu = unll 12

However, the weak (or weak-x) convergence of (uy)n, in LP2(Q), shows that
the sequence (u—uy, ), is bounded in this space, as well as that the strong con-
vergence in LP* () ensures convergence towards 0 of the first term, because
0 is not zero.

O

2.3.6 Local Lebesgue spaces

Definition 11.2.35. For all open sets Q of RY and for all p € [1,+00], we
denote as LY (Q) the set of measurable functions for which the p-th power
of the absolute value is locally integrable, that is, its integral over all compact
subsets included in ) is finite. Similarly, we denote as LiS.(Q) the set of

measurable functions essentially bounded over all compact sets included in Q.

We can say that a sequence (uy,), converges towards u in LY (), if (un)n
converges towards u in LP(w) for any bounded open set w such that @ C .

It is clear that LP(Q) C L7 (), the inverse inclusion being certainly
false. A frequently useful property of sequences of functions in Lf () is the
following.
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Proposition 11.2.36. Let Q be a bounded open set of R?, ¢ > 1 and let (uy)n
be a sequence of bounded functions in L1(Q). We assume that (uy,), converges
towards w in LY () with 1 < p < ¢; then we have

loc

u € LYQ),
and
Up —— u, in LP(Q).
Proof.

The sequence (uy, ), being bounded in L4(£2), we know from Propositions
I1.2.27 and I1.2.28 that we can extract a subsequence (uy, )r which weakly
converges (weakly-x if ¢ = +00) towards a function v € L?(Q). In particular,
we deduce that for any w C @ C Q, (uy, )r converges weakly (or weakly-
*) towards v in L9(w) C LP(w). The convergence in L} (£2) implies strong
convergence in L?(w), thus we deduce that u = v € LI(Q).

For any k > 1, we set w, = {x € Q,d(x,00Q) > 1/k}. We have @y, C Q so
that, by assumption,

un — ullLr(w,) —— 0.
n—oo

Moreover, by using the Holder inequality we get
it = wllzs (@) < llin =l ooy R\ TP/ < 21w |47,

where C is a bound of the sequence (uy,), and of the function u in L(2). We
then set € > 0 and choose k to be sufficiently large so that 2C|Q\wy|(9=P)/9 <
€. We then choose ng sufficiently large that

||u71 - u”LP(Qk) < €,Vn > no,

and, therefore
lwn —ullLeo) < 2¢,Yn > ng.

2.4 Partitions of unity

Let us start with a useful lemma when studying the local properties of func-
tions.

Lemma 11.2.37. Let Q be a nonempty open set of R and let w be a bounded
open set of RY satisfying @ C Q. Then there exists a function ¢ € D(SY), such
that
0<ep<l,
p(z) =1,Vx € .
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Proof.
By hypothesis @ is compact and disjoint from the closed set R?\), hence

§ =d(@,RN\Q) > 0.
We then introduce the open set U = {x € Q, d(z,w) < §/2}. It is clear that
WCUandU C Q.

The reader can easily convince her- or himself that the function

Y= 1U*n§a

4

obtained by convolution with a mollifying kernel of the characteristic function
of U satisfies the stated result.
O
We can now show the essential result of this section.

Lemma 11.2.38 (Partition of unity). Let A be a nonempty set of RY. We
suppose given a covering of A by any family of open sets,

AC U Wi
iel
There exists a family (V;)ier of nonnegative functions of C*(R?), indexed
on I such that
Supp ¥; C w;, Vi € 1,
> wi(x) = 1,Vx € 4,
il
this sum being locally finite. Moreover, the 1; are identically zero except for

a countable number of indices i € I.

One such family of functions is called a partition of unity associated with
the covering (w;)ier-
Proof.

e Let us consider the set S of points of A with rational coordinates. We then
consider the family (B;);cs of spheres centred on S, for which the radius
is rational and which are contained in one of the (w;);. This family is, of
course, countable and we therefore index it with the integers n € N, and
by the density of Q in R we clearly have

+oo
AcC U By,.
n=0
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For all n > 0, we let V,, denote the ball with its centre at the same point
as B, and for which the radius is half that of B,,.

According to Lemma I1.2.37, there exists a positive regular function ¢,
with compact support included in B,, and which is identically equal to 1
on V,.

We then define ag = ¢ and for all n > 1,

an = (1=w0) (1= pn-1)pn.

Is is clear that «,, is smooth and nonnegative. Furthermore, by definition,
ay, has its support contained in B,, which is itself contained in one w; for
some ¢ € .

Moreover, a straightforward computation implies that

N
S an(@) =1-(1- o) (1 - pn).
n=0

This shows firstly, since 0 < ¢; < 1, that for all N we have

N
Z an(z) < 1.
n=0

Furthermore, since ¢; = 1 on V;, we see that
N
Zan(x) =1, Vee ViU ---UVy.
n=0

Inasmuch as the «; are nonnegative, this implies that for all n > N + 1,
ay, is zero on Vi U --- Vi, which indeed proves that the sum En>0 «y, 18
locally finite and that B

Z an(z) =1,V € A. (I1.10)
neN

For any n, we denote as i(n) € I an index such that Supp a,, C wj(,). We
then note that

Indeed, Equation (I1.10), shows that any point of A belongs to the support
of at least one function oy, and therefore lies in wj(y).

We now set ¢; = 0 for any ¢ € I\{i(n),n € N}. It remains to define the
functions ;(,). To do this, we define



2. Fundamental results from functional analysis 71

Yi(o)(z) = > k).

kEN,s.t.
Supp (ax)Cw;(o)

This sum is perfectly defined because the sum of the family («,, ), is locally
finite in A. Furthermore, it is clear that 3;() is nonnegative and that its
support is contained in w;(). We then define for n > 1,

keN,s.t. Supp (axr)Cwi(n)
Vp<n—1,Supp (ax)Zwi(p)

It is then obvious to check that those (¢;);cs solve the problem.

2.5 A short introduction to distribution theory

Let us first describe the sequential topology of D(Q2). A sequence (¢n), C
D(9) is said to be convergent towards some ¢ € D(Q) if there is a compact
K C R which contains the support of ¢ and of all the functions ,, and if for
any multi-index o € N¢, the sequence (9%, ),, uniformly converges towards
0%p.

Definition 11.2.39 (Distributions). A linear map T : D(2) — R is called a
distribution if it is continuous in the sense that T(p,) —— T(p) for any
sequence (@ )n converging towards ¢ in D(Q).

The set of distributions is denoted by D'(Q).

Even though D(Q) is not a Banach space, by similarity with the usual
duality theory, we also adopt the notation

(T, o)p p =T(p).

Definition 11.2.40 (Convergence of distributions). A sequence of distribu-
tions (Ty)n C D'(Q) is said to converge towards a distribution T € D'(Q) if
for any ¢ € D(Q) we have

(T, 0)pr,p —— (T, 0)D' D-
n—oo
Notice that the limit of a sequence of distributions (T,),, if it exists, is
necessarily unique.

Definition 11.2.41 (Derivatives of distributions). For any distribution T €
D'(Q) and any multi-inder o € N, the derivative of T in the distribution
sense is the distribution 0T defined by
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(0°T, )pr,p = (—=1)*NT,0°¢)p p, Y € D(Q).

We can associate the distribution Ty € D’(Q) defined by,

<Tf,90>73/,p:/9f¢dx

with any f € L} (). The following property is fundamental.

loc

Proposition 11.2.42. The map
T:f e Ll (Q) — Ty € D(Q)
is injective and sequentially continuous.

Proof.

Let f,g € Li,.(Q) such that Ty = T,. Let us show that f = g almost
everywhere.

Let w be any bounded open subset of 2. We set h = sgn(f — g) € L (w).
By using Theorem 11.2.29 we can find a sequence ¢,, € D(w) such that (¢, )n
converges to h in L>°(w) weak-*. By extending ¢,, by zero on ), we see that
o, € D(Q) and therefore by assumption we have (Ty, on)p D = (Ty, n) D’ D;
that is,

0=/Q(f—g)<pndfc=/w(f—g)<pndw~

Since f — g € L'(w) and (p,), converges in L°°(w) weak-+, we can pass to
the limit in this formula and finally obtain

0=/w(f—g)sgn(f—g)dx=/w|f—g|dx-

It follows that f = g almost everywhere in w. This is true for any such w,
thus we have f = g in Q.
Let (fn)n C L},.(2) which converges towards some f € Lj (). For any

¢ € D(Q), the sequence (¢f,), converges to ¢f in L'(Q) because ¢ is com-
pactly supported. This implies that (T%, ,¢)p 0 —— (T¥, ¢)p’, D, and the

claim is proved.
O

Thanks to the previous result we see that the map 7 let us identify L}, ()
to a subspace of D'(Q2). By abuse of notation we say that L} .(Q) C D'(Q)
and we systematically identify f and the distribution 7. Reciprocally, if a
distribution T € D' () is such that 7' = T} for some f € L}, () we say that
T 6 Lll()C(Q)'

Note also that, as soon as f is a smooth enough function, a simple inte-
gration by parts shows that we have

8“(Tf) = Tg)af, in DI(Q),
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so that the derivative in the distribution sense coincides with the derivative
in the usual sense.

It is also fundamental to recall that the convergence of functions in the
distribution sense is weaker than all the weak and weak-x convergences that
we defined above. The precise result, whose proof is straightforward, is the
following.

Proposition 11.2.43. ¢ Let 1 < p < +o00, and (fn)n be a sequence in LP(Q)
which converges weakly towards f € LP(Q2). Then we have

fn m f, m D/(Q)

o Let (fn)n be a sequence in L*°(Q2) which converges weakly-* towards f €

L>(Q). Then we have
fn—— f, in D'(Q).

We conclude the presentation of the distribution theory with the following
useful lemma. Despite its very simple statement, the proof is not so straight-
forward.

Lemma 11.2.44. Let Q be a connected open set of R? and let T € D'(2) be a
distribution such that VT = 0 (in other words 0T /0x; = 0 in D'(Q) for all
i). Then, T is constant; that is, there exists some o € R such that

T = a.
Proof.

e Let us start with the case where (2 is the cube ]0,1[%. We fix a function
6 € D(]0,1]) to be nonnegative with integral equal to 1. Now let ¢ € D().
We then denote

1 1
mi()(Tiy1, ..., Ta) :/ / O(ut, ..y Uiy Tig, .oy Ta) duy ... du.
0 0
We set
T 1
Ql(zl,...,xd):/ <p(t,x2,...,zd)dtfm1(<p)(:172,...,:cd)/ 0(t) dt.
0 0

It is clear that @, is regular and, by choice of 6, this function has compact
support in 2. By hypothesis we have

(g, (o)
Oy D', D Oy D'\ D

= —<T, ® — m1(<p)(x2, ey xd)G(xl)b/,D.
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We have therefore shown that for any ¢ € D(£2), we have

(T, p)prp = (T, mi(p)0(21))p,D-

We now set

2

Do (z1,...,2q) = 0(x1) m(p)(t,x3,...,2q)dt
0

() ma () (@5, s 7a) /0 o) dt.

By using the fact that 97/0zo = 0 for this test function (which belongs
indeed to D(£?)), we find

(T, p)pr 0 = (T,0(x1)mi(p)(22,...,7a)) DD
= (T, 0(x1)0(z2)ma(p) (23, ..., 2a)) D D-

Hence, by induction we obtain that

(T, p)prp = (T,0(x1) - 0(xa)ma(p)) D D

However, mg(p) is a constant which is simply the integral of ¢ on Q. If we
define

a=(T,0(z1) - 0(za))p D,

then we obtain

(T, 90>D',D = amqg(p) = / apdry - dr,,
Q

which proves the result in the case of the unique cube. It is clear that by
translations and homothety this proves the result for all the cubes.

e The case of any connected open set:
We start by covering  with a locally finite family (w;); of open cubes. For
all ¢, the distribution T restricted to w; has zero gradient in D’(w;) and is
therefore constant on w;. In other words, there exists some «; such that
for all ¢ with support in w; we have

(T, o)p,p = /w

We now consider a locally finite C*° partition of unity (¢;); (see Lemma
I1.2.38) associated with the covering of Q under consideration. Let ¢ €
D(Q), then since the support of ¢ is compact, it is included in a finite
union of the open sets of the family (w;);. We therefore obtain the following

equality
e=> i,

a;p(z)dr = a; /Q p(z) de.

i
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the summation being, in fact, finite. Hence, we have

(T, 0)pr D= (T, 0¢i)p -

i

However, the functions ¢; have support in the cube w;, such that we

e (T, p)pp = Zai (/Q o(x)Yi(x) dﬁ«”) .

%

The summation on i is in reality finite, therefore we have

<T, (P>D’,D = /5;90(3?) (Z azwz($)> dz.

The fact that this is valid for all ¢ shows that the distribution 7" coincides
with the function of class C* defined by

T(x) = Z ().

However, by hypothesis, this function has a gradient (in the classic sense)
which is 0 on €. Since € is connected, this shows that the function 7T is
indeed constant on €.

2.6 Lipschitz continuous functions

This class of function is important in the sequel because we mainly study

the equations of fluid mechanics in a domain whose boundary has a Lipschitz

regularity (including, in particular, polygonal/polyhedral domains). That is

why we need to state here some basic results concerning those functions.
We first give a very simple extension theorem in this class.

Proposition 11.2.45 (McShane-Whitney extension). Let A C R? be any
nonempty set and f : A — R be a Lipschitz continuous function on A. There
exists a Lipschitz continuous function F : R — R such that Fla= [ and

Lip(F) = Lip().

Proof.
If we set L = Lip(f), it is a simple exercise to check that

F(z) = ;gg (f(y) + L]z —y),
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satisfies the required property.
O
In the sequel of this book (in particular in Chapter III), we often use the
fact that Lipschitz continuous functions are almost-differentiable functions.
The precise result, whose proof is given in [68], for instance, is the following.

Theorem 11.2.46 (Rademacher). Any locally Lipschitz continuous function
f defined on an open set of R% is differentiable (in the classic sense) almost
everywhere.

We need to analyse carefully the action of mollifying operators on Lipschitz
continuous maps. We suppose given a mollifying kernel 7 as in Definition
I1.2.23 and we recall that, for any € > 0, f 7). is defined in (IL.5).

Proposition 11.2.47. Assume that f is Lipschitz continuous on R%, then
1. For any € > 0, we have Lip(f xn.) < Lip(f).
2. f % ne uniformly converges in R? towards f as e — 0.
3. For any x € R% such that f is differentiable at x, we have
V(f xne)(@) — Vf(z).
Proof.

1. The regularity of f xn. comes from that of kernel 5. The estimate of the
Lipschitz seminorm is given by the following simple computation

F*e() — fxne(w)] < /B @ —e2) — fly —e2)ln(z) dz
< Llp(f)|$ - y|a vxay € Rd'

2. Since [, 7(2)dz = 1, we have

|f Hme(a) — f(a)] =

/ (f(z—e2) — f())n(z) dz
B

< /B f(@ — e2) — f(@)[n(z) d= < e Lip(f) /B l2ln(=) dz,

and the claim is proved.
3. Let x be a point such that f is differentiable at x. Then, there exists
7 :R? — R such that lim;, o 7(h) = 0 and

|[f(z +h) = fz) = Vf(z)-h| < |hl7(h),Yh € R".

Let ¢ € {1,...,d}. From (IL.5), we see that

0u,(f %)) = = /B f(& — e2)0.n(2) d=.
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Moreover, by integration by parts, we observe that

/ 0.,m(z)dz =0, and / 20,,m(2)dz = —e;,
B B
so that we can write

O, (f *me) () — O, f ()
1

e (/B [f (- e2) = f(x) + Vf<x>.<az>} B.1(2) dz) 7

and then we can conclude, by using the dominated convergence theorem,
that

0.7 %)) = 0. @)| < [ [elre)0m(e) a0,

3 Basic compactness results

As we show below, highlighting of the compactness properties of certain sets,
or of certain maps, is often a crucial step in proving the existence of solu-
tions to certain nonlinear partial differential equations. In this section we
summarise essential definitions and results which are used later.

3.1 Compact sets in function spaces

Ascoli’s theorem is one of the fundamental tools of nonlinear analysis. It
allows relatively compact sets in CY(E, F) to be simply characterised, where
F is a compact space. This result is central because it underpins the majority
of the compactness results used later in this text. A very classic proof of this
theorem can be found, for example, in [99].

Theorem 11.3.1 (Ascoli). Let E be a compact metric space, and let F be a
metric space. Let C°(E, F) be the metric space formed from the continuous
functions of E in F equipped with the uniform distance:

d(f,g) = sup d(f(z),g(x)).

zEE

Let ¢ be a subset of CO(E, F). We assume that:
1. For any x € E, the subset of F, 2 (x) defined by:
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H(x) ={f(x),f €A}

is relatively compact in F'.
2. The set & is equicontinuous; that is for all x € E and all € > 0, there
exists an n > 0 such that

d(f(z), f(y)) <e, Yy € E, such that d(z,y) <n, Vf € A .

Then, ¢ is relatively compact (i.e., has compact adherence) in C°(E, F).

Unfortunately, it is very rare in the analysis of partial differential equa-
tions that we work in the set of continuous functions on a compact space.
The following theorem, which follows from Ascoli’s theorem, gives us a com-
pactness criterion similar to that of Ascoli for the bounded subsets in LP(2)
spaces.

Theorem 11.3.2 (Kolmogorov). Let 2 be any open set of R, and let F be
a bounded subset of LP(Q), with 1 < p < +o00. We assume that

1. For alle > 0, and for all bounded open sets w such that w C 2, there exists
an o > 0, with o < d(w, RN\Q) such that
7o f = fllzr) < e, Vf € F,Yh e R |h| < o (IL.11)

2. For all € > 0, there exists a bounded open set w, such thatw C  and such
that
Ifllr@\w) <& Vf €F. (I11.12)

Then, F is relatively compact in LP ().

In this theorem 73, f denotes the translated function defined by

Thf(x) = f(x +h).

The first condition looks like the equicontinuity condition of Ascoli’s the-
orem; the second tells us that the functions of F must be “uniformly small”
in the L? norm near the boundary of 2 and near infinity.

Proof.

e We set € > 0 and choose an open set w satisfying (II.12). Let a > 0 with
a < d(w,R?\ Q) satisfying (I1.11). We observe that, for any f € F and
any x € w we have

|Fx ) — f(2)] < /B @ - az) - f(@)ln(z) d.

Using the Jensen inequality, integrating on w and using Fubini’s theorem
leads to

17 %70 — Flline) < /B D asf — i d=.
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Note that we have used here the fact that, by assumption on o, z — az
belongs to  as soon as x € w and z € B so that f(x — az) = f(z — az).
For any z € B we have |z — az| < «, therefore we deduce from (II.11) that

1f %10 = fllrw) <&, Vf €F. (I1.13)

e Let us define F, = {f*na, f € F} and F, = {fj,,, f € F}. Each function
in F, is continuous on the compact & and satisfies

- C c’
IV(f *na)llLe < W”JCHLP < peEyS

because F is a bounded set of LP(£2).
The number a > 0 being fixed, we have shown that F, satisfies the as-
sumptions of the Ascoli theorem. It follows that F, is relatively compact
in C°(@) and thus in LP(w) by continuity of the embedding C° (@) C LP(w).
e As a consequence, there exist a finite number of balls in L? (w) with radius
¢ which cover F, and with (IL.13) we deduce that there exist a finite
number of balls in LP(w) with radius 2 which cover F, in LP(w). We
denote such a covering as (Br»(.)(9:, 2€))1<i<N-
e We finally prove that the balls (Br»)(gi, 3¢))1<i<n actually cover F.
Indeed, for any f € F there is a 1 <4 < N such that f|,, € Bre(w)(gi, 2¢)
and thus

Ilf _EHZ)(Q) = Hf”ip(g\w) +|1f = giHip(w) < eP 4+ (26)P < (3¢)?,

by using (II.12).
The claim is proved because, for any € > 0, we have built a finite covering
of F in LP(2) made of balls of radius 3e.

3.2 Compact maps

Definition 11.3.3. Let E and F' be two Banach spaces. We say that a map S
from E into F is compact if the image of any bounded subset of E by S is a
relatively compact set of F'; that is, it is a set having compact closure in F.

Of course, any compact linear function is continuous because compactness
implies that it is bounded in the neighborhood of 0. We generally use the
compactness properties of maps in the following form.

Let (un)n be a bounded sequence of points in F then, if S is compact,
there exists a subsequence (up, )i such that (Suy, ) converges in F.

In particular, we have the following result.
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Proposition 11.3.4. Let (uy,), be a sequence of points in E which weakly con-
verges towards u in E, and let S : E — F be a compact linear map, then the
sequence (Suy)n strongly converges towards Su in F.

Proof.
We note first that the sequence (Suy), weakly converges towards Su.
Indeed, for f € F’,

(f, Sunyprp = ("Sf,un) g — (*"Sfu)yp g = (f Su)p p.

Moreover, since (uy,)n is weakly convergent, it is a bounded sequence (Corol-
lary 11.2.8). Hence (uy), belongs to a bounded subset B of E. Inasmuch as
S is compact, S(B) is compact, and therefore the sequence (Su,,), lies in a
compact space of F'.

However, in a compact metric space, a sequence converges if and only if it
has a unique accumulation point. Therefore let v = limy_, Sun, be an accu-
mulation point of (Suy), in F. As we have seen above, the sequence (Sun, )
weakly converges towards Su. From the uniqueness of the weak limit, this
means v = Su. Hence, Su is the unique accumulation point of the sequence
(Stp)n, which is therefore convergent.

O

In particular, this makes it possible to recover strong convergence from

weak convergence, but in a larger space than the initial space. Indeed, if a

space E is embedded into a space F' with a compact embedding (we say that

E is embedded in a compact way into F'), then any sequence of elements of
E which is weakly convergent in FE, is strongly convergent in F'.

On the other hand, the compactness of linear functions is a stable concept
by composition and by passing to the adjoint. More precisely, we have the
following results.

Lemma 11.3.5. Let E, F,G be three Banach spaces, let S be a continuous
linear map from E to F, and let T be a continuous linear map from F to G.
If S is compact or if T is compact, then T o S is compact.

Proof.

This is essentially a consequence of the fact that the image of a bounded
(resp., compact) set by a continuous linear map is another bounded (resp.,
compact) set.

O

Lemma 11.3.6. Let E and F be two Banach spaces and let S be a compact
linear map from E into F. Then the adjoint map 'S from F' into E' is
compact.

Proof.
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Let (fn)n be a bounded sequence of F’. From the definition of the adjoint
of S, we have for all v € Bg(0,1),

(*Sfnuypr g = (fn, Su)pr p.
Since S is compact, the set
K=5(B(0,1)g),

is a compact subset of F'. The sequence (fy,)n, being bounded in F”, is there-
fore also bounded in C°(/C, R). Moreover, for all points vy, v € K we have

[(frnsv1 —v2)pr | < [ fullFellvr — v2|Fs

which, since the sequence (f,), is bounded in F’, proves that (f,), is an
equicontinuous family on K.

Hence, from Ascoli’s theorem (Theorem II.3.1), there exists an extracted
sequence (fp, )i which converges uniformly on K towards a continuous func-
tion f from K to R.

Therefore, by transposition, for all uw € Bg(0,1) we have

<tSfmmu>E’,E = <anSU>F/,F ;:;o_) f(SU),

and, moreover, the convergence is uniform in v on Bg(0,1). By homogeneity
(i.e., because of the linearity of the functions *Sf,,) we deduce that for
all w € E, the sequence ((*Sf,,,u)r g)r converges and, furthermore, the
convergence is uniform on all the bounded sets of E. The functions *Sf,,, are
linear and continuous, therefore the limit obtained is necessarily linear and
continuous. All this demonstrates that convergence does indeed occur in B’
(for which the strong topology is simply the uniform convergence on bounded
sets).
O
Let us apply this result in the case where there is a continuous embedding
of one Banach space into another.

Proposition 11.3.7. Let F and F be two Banach spaces. We assume that E
is continuously embedded into F and that the range of E is dense in F (we
say incorrectly that E is dense in F); then the map

T:feF —TyeF,

defined by
(Tr,w)pr g = (f,u)pr.F, Yu € E,

is an embedding (said to be canonical with respect to the considered embedding
from E into F) from F' into E’.
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Moreover, if the embedding of E into F' is compact, then T is a compact
embedding. Finally, if E is reflexive then the range of T is dense in E'.

Proof.

Since the embedding of E into F' is continuous, there exists a constant
C > 0 such that for any v € E we have |ju|lp < C|lu|]|g. Hence, for all
f € F’, the function Ty is indeed continuous and linear on E, that is, an
element of E’.

Let us prove the injectivity of the function f — Ty. Let f € F’ such that
Ty = 0. We therefore have (f,u)p p = 0 for all v in E, but, since E is dense
in F', we can deduce that f = 0.

If the embedding from FE into F' is compact, then the compactness of T
results directly from Lemma I1.3.6.

Let us now assume that F is reflexive. We need to show that T'(F’) is dense
in E’. To do this, we use Proposition I1.2.2. Any continuous linear functional
on E’ is of the form f — (f,u)g g for a certain u in E. Let us suppose that
one such functional cancels on T(F”’) and let us show that it cancels on all of
E’. To say that this linear functional cancels on T'(F’) means that

<f7u>F’,F:07 VfGF/'

Proposition II.2.1 then shows that ||u||r = 0 and hence u = 0, which proves
the result.

O

The Riesz theorem allows this result to be specified in the Hilbertian case.

Corollary 11.3.8. Let V' and H be two Hilbert spaces such that V' embeds
densely into H. According to the Riesz theorem we can identify H and its
dual via its scalar product. We then have a double dense embedding

VcHCV,
the second embedding being defined by
feH—Tr eV, with (Tf,v)vv = (f,v)u, Yv V.

If the embedding of V into H is compact, then the embedding of H into V'
is also compact.

For obvious reasons, in the situation described by the corollary, the space
H is called the pivot space. Furthermore, since T is injective, we systemati-
cally identify f € H with its image Ty € V' so that the duality (V',V) can
be expressed, using the scalar product of H, by

(f,vyvey =(f,v)u, Vf € H, Yoe V.
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3.3 The Schauder fized-point theorem

For solving nonlinear partial differential equations, one can often use a rather
classic fixed-point technique. In this book, we follow this strategy for studying
the steady Navier—Stokes equations (Section 3 of Chapter V) and for studying
the unsteady Navier—Stokes equations for a nonhomogeneous flow in Chapter
VI.

The key of this technique lies in the following theorem for which the rather
tricky proof can be found, for example, in [114]. It relies on the concept of
topological degree which is beyond the scope and objectives of this book.

Theorem 11.3.9 (Schauder fixed-point theorem). Let E be a Banach space
and let C be a conver compact set in E. If T is a continuous (nonlinear)
function from C into C, then it has at least one fixed-point in C.

We note that this theorem says nothing about the uniqueness of the fixed-
point and that in general uniqueness does not hold (consider the identity
function). Moreover, the fact that the function 7' maps the set C into itself
is, of course, a crucial fact.

In the particular case where F = R, we recover an elementary result which
says that a continuous function from R into R which maps a compact interval
[a, b] onto itself contains a fixed-point in this interval.

This result also exists in a slightly different form which is given below.

Theorem 11.3.10. Let E be a Banach space and let C' be a convex, closed and
bounded region of E. If T is a compact and continuous (nonlinear) function
from C into C, then it has at least one fixed-point in C.

In the finite-dimensional framework, this theorem is known as the Brouwer
theorem and is equivalent to the following result.

Proposition 11.3.11. Let P be a continuous function from RN to RY, such
that there exists a p > 0 satisfying

£-P(€) 20,96 e RY, [¢] = p.
Then, there exists £ € RN |€| < p such that P(§) = 0.

Proof.

Suppose, by contradiction, that for all £ € B(0, p), P(£) # 0; then the con-
tinuous map @ : & € RN s —(p/|P(¢)|)P(¢) maps the ball B(0, p) which is
compact and convex into itself. Then by application of the Brouwer/Schauder
fixed-point theorem, there exists £* € B(0, p) such that

& = Q&) (IL.14)

Necessarily, we have |£*| = p. By taking the scalar product of each term of
(I1.14) by £*, one obtains:




84 Chapter II. Analysis tools

2_ P * "

Therefore £* - P(£*) < 0, which is in contradiction with the hypothesis.

4 Functions of one real variable

In this section, we primarily review the links that exist between the concepts
of weak derivatives and derivatives in the usual sense. We do this in a limited
but sufficient way, for the case that concerns us, for functions of one real
variable.

We conclude the section by reviewing Gronwall-type inequalities which are
a useful tool for obtaining a priori estimates for solutions of evolution partial
differential equations.

4.1 Differentiation and antiderivatives

Let [a, b] be a compact interval of R. We recall that W11 (]a, b[) is the set of
functions of L'(]a, b]) for which the derivative in the sense of distributions is
a function of L (]a, b[) (see Chapter III for a more complete study of Sobolev
spaces). A fundamental question that we can ask for such a function is if it
can be differentiated in the usual sense and if we can write the fundamental
theorem of calculus

f) = 1)+ [ "ty dt, Y,y € [a,b).

Here, we recall some results that concern this question. This material is useful
in the sequel of the book in order to justify the validity of the time evolution
of the kinetic energy for weak solutions of the Navier—Stokes equations (see
in particular Section 1.4 of Chapter V).

Lemma 11.4.1. Let g € L*(Ja,b]) and C € R. We consider the function f
defined by

f@) = C+/ g(s) ds.

Then, f is continuous on [a,b]. Moreover, f € Wh1(Ja,b]) and its derivative
in the sense of distributions is g.

Proof.
For all ¢y € [a,b] and h > 0 but sufficiently small, we have
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to+h b
Flto + ) — f(to) = / o(s) ds = / 9(5) 1ty om0 (5) ds —— 0,

to a h—0

from Lebesgue’s dominated convergence theorem. A similar argument with
h < 0 shows the continuity of f.

We now need to verify that the derivative of f in the sense of distributions
is the function g. Let ¢ € D(]a, b]); we have

-/ fo 0 de = —c / e - / b (/ g5 0) is) .

The first term is zero because ¢(a) = ¢(b) = 0 and we apply Fubini’s theorem
to the second term (the function (¢,s) — ¢'(t)g(s) is integrable with respect
to the two variables). It follows that

/abf(t)so’(t) dt = /ab (/jl[agsgﬂg(s)@/@ ds) gt
- /ab (/abl[agsst]g(sw’(t) dt) ds

This indeed proves that ¢ = f’ in the sense of distributions and therefore
fewhti(a,b)).
O

Corollary 11.4.2. Any function f of W' (]a,b[) is equal almost everywhere to
a continuous function f on [a,b] and we have for all z,y € [a,b],

- . Yy
fo)=Fw+ [ £
in other words, we have for almost every x,y € [a,b],
Yy
) =@+ [ f(ds

Proof.
Let f € Whi(]a,b]). We introduce

o) = [ ' f(s)ds.
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e According to Lemma I1.4.1, the function g is continuous in Wh(Ja,b)
and its derivative in the sense of distributions is f’. Hence, f — g is a
function for which the distribution derivative is zero. We then know that
there exists a real number C' such that f — g = C almost everywhere
(see Lemma I1.2.44 for a more general case of this result). If we define
f = C + g, we have shown that f coincides with the continuous function
f , almost everywhere.

e From the definition of f, it is clear that for all z,y € [a, ], we have

foy - =(c+ ["rwas) - (c+ [ o) = [Trea

O
For any point ¢y € [a, b], we denote as V, (to) the set of open neighborhoods
w of tg in [a, b] whose Lebesgue measure |w| is less than 7.

Definition 11.4.3 (Lebesgue points). Let f be a function of L(]a,b]) and
to €la,b]. We say that ty is a Lebesgue point of f if

sup |w|/|f t0|dt—>0

weVy(to)
With this definition at hand, we have the following result.

Proposition 11.4.4. Let f be a function of L'(]a,b]) and to €la,b|. If to is a
Lebesgue point of f, then any antiderivative of f defined by

Ft)=C+/tf(s)ds

can be differentiated in the classic sense at ty and moreover we have

F'(to) = f(to).

Proof.
It is sufficient to write
h . to+h
HEBZE0) o) = |5 [ ) - st as
to+h
= / 1F(s) — F(to)] ds|;

this last quantity tends towards 0 when h tends towards 0, by definition of a
Lebesgue point.
O
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The fundamental theorem in this section is a rather difficult result from
measure theory, which we do not prove. However, a proof can be found, for
example, in [69] or in [100].

Theorem 11.4.5. If f € L'(Ja,b]), then almost every point of la,b| is a
Lebesgue point of f.

The immediate consequence of the preceding two results is that the an-
tiderivative F' of any function f in L!(]a,b[) is differentiable almost every-
where and satisfies F/ = f and the fundamental theorem of calculus

F(y) = Fz) + / F(t)d / F(t)dt, Ve.y e [ab].

Finally, the following elementary result is useful.

Proposition 11.4.6. Let f € L'(Ja,b]). Any point of continuity of f is a
Lebesgue point of f and, in particular, any antiderivative of f is differen-
tiable at any point ty where f is continuous and its derivative is f(to).

Remark 11.4.1. We can prove [69] that the functions of W11 (]a, b[) are none
other than the absolutely continuous functions on ]a, b|.

We conclude this section by the following result and its corollary.

Lemma 11.4.7 (Hardy's inequality). For any 1 < p < 400 and any nonneg-
ative f € LP(]0,4o00]) we have

[ rwa) ws (G25) [ s e o)

Note that a similar inequality does not hold for p = 1.
Proof.

We prove the inequality for M = 4o00. The general case follows by taking
fri(s) = Lio,an(8) f(s).

By density, it is enough to prove this result for functions f € C2°(]0, +o0l).
For such an f, we set F'(x) l/x Jy f(s)ds and we note that F = 0 in the
neighborhood of 0 and that F (x)=CJx for some C € R and z large enough.
In particular, we have F' € LP(]0, +o00[). We remark that d(zF(z))/dx = f(x)
so that we can integrate by parts as follows

/ " Pl di = / +m(agz:’(gc))pip do

0 0 €
p e 1
=I5 [ @@ )
“+o0
=L | Py () de
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We conclude the proof by using the Hélder inequality

e p -1
| Fapds < PRI
0 b=

O

We immediately deduce from this inequality the following result which is

important in the sequel (see in particular the multidimensional version in
Proposition I11.2.40).

Corollary 11.4.8. Let f € WP (Ja,b]) € Whi(]a,b]) with 1 < p < +oo and
such that f(a) = 0. Then, the function g : © — f(z)/(x — a) belongs to
L?(Ja,b]) and satisfies

lgllze < ClLf Ml ze-

4.2 Differential inequalities and Gronwall’s lemma

The following lemmas, concerning ordinary differential equations and inequal-
ities, are very useful ingredients for studying time-dependent partial differ-
ential equations, in particular for proving energy estimates.

Lemma 11.4.9. Let there be two real numbers a > 0 and B > 0 and let y be a
function in C1([0, +oo[,R) satisfying the differential inequality:

y'(t) +ay(t) < 3, vt > 0.

Then we have

y(t) < y(0)e ** + g vt > 0.

Proof.

We multiply the two sides of the differential inequality by e** and then
integrate.

O

The following lemma, known as Gronwall’s inequality (even though its
proof in the present form is due to Bellman [15]), is central in proving a
priori estimates on solutions of (partial) differential equations.

Lemma 11.4.10. Let us consider a function y € L*°(]0,T[), a nonnegative
function g € L*(]0,T|) and yo € R, such that

t
y(t) < yo —|—/ 9(8)y(s)ds, for almost allt €]0, T,
0

we then have

t
y(t) < yogexp (/ g(s) ds) , for almost all t €]0,T7.
0



4. Functions of one real variable 89

Proof.
We set

h(t) = yo + / a(s)y(s) ds,

0

that is, the second term of the inequality from the hypothesis. Since y belongs
to L>°(]0,T]) and g to L'(]0,T), the function h lies in W1(]0,T[) and is
therefore differentiable almost everywhere and its derivative is gy (see Section
4.1). Furthermore, for almost all ¢, we have

from the hypothesis and because ¢ is nonnegative. Then, if we set z(t) =
h(t)e=Jo 9, we immediately see that z belongs to W1(]0,T[) and that

() = (1) - g(t)h(t))exp< / () ds> .

Therefore, for almost all ¢, we have 2/(t) < 0. From Corollary 11.4.2; this
implies that the function z is nonincreasing and therefore we have

z(t) < z(0) = h(0) = yo, Vt € [0,T],

which can be written as

h(t) < o exp < /0 "o(s) ds) vt e [0,7].

This proves the claim since, by hypothesis, we have y < h almost everywhere.
O

Lemma 11.4.11 (Uniform Gronwall lemma [121]). Let g1 and g2 be two
nonnegative functions of L} (RT) satisfying:

loc
t+1
Hkl,/ o1(3)ds < ki, ¥t € RY,
t
t+1
sz,/ go(5)ds < ko, ¥t € R*.
t

Let y be a function of C1([0, +oo[, RT) satisfying

y'(t) < g1(t) + g2(t)y(t), for almost all t > 0, (I.15)

t+1
y(0) < ks and/ y(s)ds < ks, Vt > 0. (11.16)
t

Then y is bounded on RY and we have the following upper bound,
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y(t) < (k1 + k3)ef2, vt > 0.

Proof.
We integrate (I1.15) between s and ¢ (with 0 < s < ¢) and we get

y(t) < y(s) + / o (7)dr + / ga(r)y(r) dr.

From Lemma I1.4.10, we deduce

v < (v + [ e i )exo | g ).

e For t <1, we take s = 0 and we directly obtain the result.
e For ¢t > 1, we take s € [t — 1,¢], and we apply (II.16) to obtain

y(t) < (y(s) + kr)et.

We integrate this last inequality with respect to s between ¢ — 1 and ¢
(with ¢ fixed), which gives

y(t) S (kg —+ kl)ekQ.

O

We conclude this section by giving a result of the same type which is

useful in the study of some nonlinear equations. This result is similar to the

usual comparison theorems between differential inequalities, except that the

hypothesis is formulated in an integral form, which is weaker. This explains
the necessity of some monotonicity assumption for the nonlinear term.

Lemma 11.4.12 (Bihari's inequality [16]). Let f : [0,+oo[— [0,+oo[ be
a nondecreasing continuous function such that f > 0 on ]0,4o00] and

1+OO 1/f(z)dx < +o00. We denote the antiderivative of —1/f which cancels
at +o0o as F.

Let y be a continuous function which is nonnegative on [0, +oo| and let

g be a nonnegative function in L}, ([0, +00[). We assume that there exists a

yo > 0 such that for all t > 0 we have the inequality

y(1) Syo+/0 g(s)ds—i—/o f(y(s)) ds.

Then, there exists a unique T which satisfies the equation

T
T"=F (yo +/O g(s) ds) , (I1.17)

and, for any T < T* we have
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T
supy(t) < F~! (F (yo +/ g(s) ds) —T) .
t<T 0
Proof.

The existence and uniqueness of T* satisfying (I1.17) arises from the fact
that the function F' is nonincreasing and tends towards 0 at +o0o, and that g
is nonnegative. Let us set T" such that 0 < T < T™. For all t < T, since g is
nonnegative, we have

y(t) < yo + / o(s) ds + / F(y(s)) ds. (IL18)

Let us denote the right-hand side of this inequality as zr(t). Since f and y are

continuous, the function 27 is of class C* and we have z1(0) = yo +f0T g(s)ds
and for all t < T

2r(t) = fy(1) < f(zr (1)),

because f is nondecreasing. We note that zp is an nondecreasing function
and since yg > 0, the function zp does not cancel. Hence, we have

zp(t)
fer(t))

which, after integration between times 0 and T, gives

<L Vt<T,

F(zp(T)) — F(2(0)) > —-T.

F is nonincreasing, thus it follows that

2 (T) < F~H(F(20(0) = T) = F~1 (F <y0 +/Tg(s) ds> _T> . (I1.19)

We note that this makes sense because the definition of 7" and the condition
T < T* imply that F(zr(0)) — T belongs to the range of F. From (IL.18),
and since zp is nondecreasing, we have

y(t) < zp(t) < zp(T),Vt < T.

Inequality (I1.19) therefore provides the claim.
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5 Spaces of Banach-valued functions

5.1 Definitions and main properties

Definition 11.5.1. Let X be a Banach space and let I be an interval of R; we
say that a function f from I in X is Lebesque measurable, if

o The inverse image under f of all open sets of X is a Borel set of I.
e We can change f on a subset of zero Lebesgue measure of I, so that f
takes its values into a separable subspace of X.

In the case where X is separable, this definition is identical to the tra-
ditional definition of measurability. In the case where X is not separable,
this definition ensures that one such function is indeed the limit almost ev-
erywhere of a sequence of simple functions with values in X, which makes
it possible to define clearly the integral of f when it exists. This theory is
known as the Bochner integral.

Proposition 11.5.2. Let X be a Banach space and let I be an interval of R.
For all p € [1,+00[, we denote as LP(]0, T, X), the set of Lebesgue measur-
able functions defined on I and with values in X, such that t — || f(¢)|% is
integrable on I. This is a Banach space for the norm

1/p
1l = ( [ror dt) .

In the same way, we define, for p = 400, a Banach space L*°(I, X) pro-
vided by the norm

[ fll oo (1,x) = esssup,e |l f() || x-

Proposition 11.5.3. If p < +oo, the set of continuous functions on I with
values in X is dense in LP(I,X).

For all f € LP(I, X), we denote as f the extension by 0 of f to the whole
time interval R; then, for all h € R, we denote as 75, f the translated function
of f defined by

mf(:) = f(- +h). (I1.20)

The restriction of 7, f to the interval I is of course in LP(I, X) and we have
the following result (the proof being identical to the classic case where X = R;
see [69] for example).

Corollary 11.5.4 (Continuity of the translation operator). If p < 400, then
for all f € LP(I,X) we have

Thfﬁf’ in LP(I,X)
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These results are of course false if p = +o00. In the case of p < 400, the
proposition above shows that we can also define LP(I, X) as the completion
of C°(1, X) for the norm || - || 1o (1, x)-

For any function f € L'(I, X) (and hence also if f € LP(I, X) and if I is
bounded), we can define the integral

/f(t)dt € X,
I

in a similar way to the Lebesgue integrals of real-valued functions, that is,
by constructing the integral over simple measurable functions (i.e., taking a
finite number of values) and by passing to the simple limit. We assume this
result, as well as all the usual properties of the integral: Chasles’ linearity
theorem, and so on. Moreover, for all linear forms ¢ € X’, we have

/I<<Pvf(t)>X’,X dt = <<p,/lf(t) dt>X/’X.

The first examples for such spaces that are very useful in the sequel are
given for p,q € [1,+o0], by LP(I,L(2)).

The properties of LP spaces, which we gave at the start of this section,
naturally transpose into these spaces and we use these later without giving
more details. In particular, if p < +o00 and ¢ < +o00, then we have

(LP(I,L9())) = LP (I, L7 (%)),

the identification of the two spaces being achieved via the natural inner
product of the Hilbert space L?(I, L*(Q)) ~ L*(I x §2). Hence, Propositions
11.2.27, 11.2.28, 11.2.30, and 11.2.32, can be immediately transposed to these
spaces.

Among the particularly useful results to keep in mind, we give the follow-
ing interpolation result as well as its corollary which gives the convergence
properties in some intermediate spaces.

Theorem 11.5.5. Let I be an interval of R, let Q be an open set of R?, and
let p1,q1,p2,92 be four real numbers in [1,4o00]. If f € LP(I,L™(Q)) N
LP2(I,L%2(QY)) then for all 6 €]0,1[, the function f belongs to LP(I,LI(Q))
for p and q defined by

1 0 1-46 1 0 1-6

p b1 D2 q q1 q2

and we have

£l Loz acy) < NFITos (1 pan (Q))||f||1L;f(1,Lq2(Q))~

Proof.
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From Lemma I1.2.33, for almost all ¢ € I we have:

LF @10 < IF@ I @175

If we assume that p; and py are finite, then the Holder inequality applied
with the conjugate exponents p1/(pf) and p2/(p(1 — 0)) shows that

p8/p1 p(1—=0)/p2
P pP1 q1
/I L2, dt < ( / oL dt) ( / 1£(0)]2, dt) ,

which gives the desired result. The case where p; and/or ps are infinite is
straightforward.
O

Corollary 11.5.6. We consider the same notation as in the previous theorem
and we assume further that p1 and q are finite and that po and qo are strictly
larger than 1.

If (un)n is a sequence of functions which strongly converges towards u
in LPY(I,L9(Q)) and weakly (or weakly-x if ps and/or q2 are infinite) in
LP2(1,L%2(QY)), then for all 0 such that 0 < 0 <1 the sequence (uy )y strongly
converges towards u in LP(I, L9(QY)), where p and q are given by (IL.21).

Proof.
From the preceding theorem we have for all n,

-
[|u — unHLT’(I,Lq(Q)) < lu— uHHGLPl(I,L‘H () flu — Un||ip2(1,qu Q)"

The weak convergence in LP2(I, L%(2)) shows that the sequence (u — uy,)n
is bounded in this space and the strong convergence in LP* (I, L9 (Q)) allows
us to reach our conclusion, given that 6 > 0.
O
All of these results are used systematically in this book, without necessarily
referencing them.

5.2 Regularity in time

5.2.1 Weak time derivative

In the study of parabolic partial differential equations, one independent vari-
able (usually time) plays a particular role with respect to the other variables
(typically space variables). This is why we work in LP(]0, T[, X') spaces where
X is the functional space in the space variables.

In this section, we therefore generalise the concept of weak derivatives for
functions defined on an interval of R and with values in a Banach space. In a
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general way, it is possible to define and study distribution spaces with values
in X, but this theory is not required here and we refer the reader to [113] for
more details.

For reasons which become clear later, it is useful to construct a theory
in which the weak derivative of the function being considered can exist in a
space that is larger than the initial space.

Definition 11.5.7. Let I be an interval of R, and X C Y be two Banach spaces,
1 <p,qg < 4o00. We say that a function uw € LP(I,X) has a weak derivative
in LI(1,Y) if there exists a function g € LY(1,Y) such that

/ o (Du(t) dt = — / o(£)g(t) dt, Y € D(I). (11.22)

I I

If such a function g exists, it is unique and we denote

du
— =g(1).
7 = 9

We should note that in (I1.22), the left-hand term is an element of X and
the right-hand term is an element of Y. However, since X C Y this equality
makes sense.

Remark 11.5.1. A priori this definition depends on the space L?(I,Y) in
which we seek the weak derivative. We can show that if Y C Z in a dense
way, if Z' is separable and if g and h are the weak derivatives of u in LY(I,Y)
and L"(I,Z), respectively, then g = h almost everywhere. This, therefore,
justifies the notation du/dt.

5.2.2 Weak continuity

Definition 11.5.8. Let Y be a Banach space; we say that a functionu : [0,T] —
Y is weakly continuous if for all € Y', the function defined by t € [0,T] —
(Y, u(t))yry € R is continuous. We denote by C°([0,T1], Yyeax), the set of
functions defined on [0, T] with values in' Y which are weakly continuous.

We will now show the following important result (see, e.g., [85]).

Lemma 11.5.9. Let X be a separable and reflexive Banach space, and let' Y
be a Banach space, such that X C'Y with continuous embedding. Then

L>(0,T[, X) N C°([0, T, Yyeak) = C°([0, T, Xweak)-

Proof.
The space X is embedded into Y in a continuous way, therefore the re-
strictions to X of elements of Y’ are in X".
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Let us show that CY([0, T, Xweax) € L=(]0, T[, X) N C°([0, T, Yiveak)-

Let u € C°([0,T], Xweak) and let ¥ € Y. Since )| x € X, the function ¢ —
(1, u(t)) is continuous by definition, which shows that u € C°([0, T, Yieak)-
Let us show that u € L*°(]0, T, X). First, we note that u is measurable.
Indeed, any sphere B of X which is closed for the strong topology is
also closed for the weak topology of X, because it is convex (see [27]).
Therefore, u~1(B) is a closed set and hence a Borel set of ]0, T, because u
is continuous on 0, T'[ with values in X for the weak topology. However, X
being separable, any open set of X is a countable union of closed spheres.
Indeed, if (z,,), is a dense sequence in X, it is obvious that any open set
U is the union of all closed spheres centred on a point of the sequence
(5 )n, with a rational radius and contained in U. Hence, for any open set
U, uv=1(U) is a Borel set of ]0, T'[. This proves the measurability.

Let us now introduce the family of elements of X" indexed by ¢ € [0,T],
defined by

Dy p e X' (b, ult)).

By hypothesis, for all 1) € X', the function ¢ — ®;(¢)) is continuous on
[0,7] and therefore bounded. From the Banach—Steinhaus theorem (The-
orem I1.2.4), we know that the family of operators (®;);cjo,7 is bounded
in the sense of the norm of X”'. Alternatively, we can say that there exists
C > 0 such that

(¥, u(t)x/ x| = |2e(¥)] < Cllpllx, VE €]0, T,V € X
If we apply Proposition I1.2.1, this gives

hu@llx = sup [Oxxl gy g 7

vexwro  [¥lx

This demonstrates that u € L>(]0,T[, X).
Let us show that L°°(]0, T[, X) N C°([0, T, Yyeax) C C°([0, T], Xweak)-

Let u € L*(]0,T[, X) N CY([0,T], Yieax)- Let us first verify that for all
t € [0,7], u(t) € X. A priori, we know only that u(t) € Y for all ¢, and
that u(t) € X for almost all .

First, let us extend u to all of R (e.g., by successive reflections performed
by setting u(t) = wu(—t) for t € [-T,0], etc.). It is then obvious that
u € LR, X) NCR, Yyeax)- Let n : R — R be a mollifying kernel (see
Definition 11.2.23). We set u,, = ux,, which is defined for all ¢ and takes
its values in X.

Let tg € R be fixed. For all n > 1, we have

[un(to)llx = [1(wxm1/m)(to)llx < llullp@x)-
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The sequence (uy,(to))n is bounded in X, which is reflexive, therefore we
can extract a subsequence (un, (t9))r which weakly converges in X towards
a certain u(tg) (Theorem I1.2.7).
However, for all 1) € Y’, we have

(b, (wrn1/m)(to) — u(to))y .y = (¥, u)yry *11m)(to) — (¥, u)yr vy (to))

— 0,
n—oo

because, by hypothesis, t — (¢, u(t))yy is a continuous function on R

(the extension by reflection preserves this property). We have hence shown

that (un(to))n weakly converges in Y towards u (o). Through the unique-

ness of the weak limit in Y, we obtain

ulte) = ito) € X,

which indeed proves that the function u takes its values in X for all ¢t and
that there exists C' > 0 such that

[u(®)llx < C, Vt€R. (11.23)

We can now define the function ¢ — (¢, u(t))x/ x for all ¢ € X'. Let
us show that it is continuous. Let (t,), be a sequence of real numbers
which converges towards ¢ € R. From (I1.23) the sequence (u(t,))n is
bounded in X, and we can therefore extract a subsequence which weakly
converges towards a certain « in X . Furthermore (u(ty,)),, weakly converges
towards u(t) in Y, and through the uniqueness of the weak limit in Y, we
obtain 2 = u(¢). This proves that the sequence (u(t,)), is relatively weakly
compact in X and has only one accumulation point. We therefore know
that all of the sequence weakly converges towards its unique accumulation
point u(t).

O

Remark 11.5.2. If X and Y are two separable Banach spaces such that Y is
embedded in a dense way into X, then we have

LOO(]Ov T[v X/) n CO([Ov T]v v{/eak—*) C CO([Oa T]a éveak—*)'
This result is proven in an equivalent way to the preceding one. The converse

embedding is of course true from that which has gone before, if we add the
reflexivity hypothesis.



98 Chapter II. Analysis tools

5.2.3 Strong continuity

Let X and Y be two Banach spaces such that X is embedded in a continuous
and dense way into Y, and let T > 0 and p, ¢ satisfy 1 < p,q < +00. We
denote:

Epq= {u e L7()0, T, X), CC%‘ e L9(0,T], Y)} .

Lemma 11.5.10. The space E, , endowed with the norm

du

dt

b

lullg,,, = llullLrgo.rr, x) + ‘
L9(J0,TL,Y)

is a Banach space. Moreover, if p and q are finite then C*°([0,T], X) is dense
mn Ey .

Proof.
Let 61, 6 be two nonnegative functions of C°°([0,7],R), having sum 1
with

2 1
supp(6;) C {O, ST] , and supp(fy) C {ST’ T] )

Then let u € E. To approximate u by regular functions, it is sufficient to
separately approximate #1u and fyu, because u = 61u + Gau.
The function v = f;u is an element of
df

{f € Lp(]o’ +OO[7X)a a € Lq(}07+oo[v Y)} .

Let us set vy (t) = v(t+h); then vy, o = v *n, withe < h wheren: R — Risa
mollifying kernel. The claim follows from Corollary I1.5.4. A similar argument
holds for the function 6;u.

O

Remark 11.5.3. Let us assume that p = 400, ¢ < 400, and that X is the
dual of a Banach space E. Then we can easily see that the family of regular
functions constructed in the preceding proof satisfies

Upe —— 0, weakly-x in L*°(]0, +o0[, E'),
(h,e)—0

d

Spe ——— Zo, in L9(0,T[Y).

dtvh’ (h,e)—0 dtv in L] LY)

In other words, the density property of the regular functions still occurs by
taking the weak-star topology on L% (]0,T[, E'). We can deal, in the same
way, with the case where p is finite, ¢ = 400, and Y is the dual of F' as well
as the case where p=¢g=+occand X = E', Y = F".
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Proposition 11.5.11. Any element u of E, ; (defined almost everywhere) pos-
sesses a continuous representation on [0, T] with values in'Y', and the embed-
ding of Ep. 4 into C°([0,T),Y) is continuous.

Moreover, for all t1,ts € [0,T], we have

2 du
u(te) —u(ty) = — dt,
) - = [

where it is understood that we have identified uw and its continuous represen-
tation.

Proof.

This result is proven in an entirely similar way to those established in
Section 4.

O

In the Hilbertian case we can improve the preceding result in the following
way.
Theorem 11.5.12 (Lions—Magenes [85]). Let V and H be two Hilbert spaces
such that V is embedded in a continuous and dense way into H. We then
identify H with its dual such that we have V.C H C V', the duality bracket
between V' and V' being given by the scalar product of H. Let 1 < p,q < +o0
and let u,v be two functions such that

af
dt

af
dt

we Bpy = {f e rqo.71v), L e 70,1, V'>} ,

ve By = {1 e L00TLV), B e 2/ (0.7

Then the function t — (u(t),v(t))m has a continuous representation on [0,T)]
and we have for all t1,t € [0,T],

(ulta), v(t2)) i — (u(tr), v(t1)) i

Proof.

Here, we give the proof of this result when 1 < p, ¢ < +00. The argument
can be adapted to other cases by applying Remark I1.5.3 and Proposition
11.2.12.

Let us consider the following bilinear forms defined on E, , x E, ,» with
values in L'(]0,T) by

Ui(f,g9) = (t— (f(t),9(t)u),
w(ro = (1 (Fos0) +(Gosw) )



100 Chapter II. Analysis tools

These two maps are well-defined because the exponents p,q and p’,q" are
conjugate, respectively. Moreover, we have for all (f,g) € E, ¢ X Eq

191 (fs Dllergorp < flzeqgoriv)llgll Lo go.r v

< TV fllwgo,rv) lglleo o, vy
< C”fHEp,q’ HgHEq,p”

and

lgll
L Q0. V) L2(10,T[,V)

df
1W2(f; 9)llrqo,rp < Hdt

£z go,rrv
oy PAOTLY)
<C|\flls,, l9lle,, -

This proves that ¥; and Wy are continuous bilinear forms. Using Lemma
I1.5.10, let us consider (uy,), and (vy)n, two sequences of C*°([0,T], V) which
converge towards u and v, respectively, in £, ,» and E, ;. The functions u,
and v,, being regular, we can differentiate the scalar product (u,(t),v,(t)) g
in the classic sense which implies, in particular, that for all functions ¢ €
D(]0,T), we have

T
- / ! (1)t (1), v (1)) 1

/OT <<ddl;"(t),un(t)>v/,v + <(Z);(t),un(t)>wv> ©(t) dt.

In other words, we have

T T
- / (pl(t)\l’l(un, Un) dt = / @(t)\llg (Un, ’Un) dt.
0 0

By continuity of W1 and Ws, we can pass to the limit in this expression and
obtain

T
- / & () (ult), o(t)) dt

:/OT <<C§;(t),v(t)>wy + <§t}(t),u(t)>wv> o(t) dt.

The function Wy (u,v) : t — (u(t),v(t))g belongs to L(]0,T[), therefore
this last expression, valid for all regular functions with compact support ¢,
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shows us that Uy (u,v) belongs to W11(]0,T[) and that its weak derivative
is Uy (u,v).
Corollary 11.4.2 then allows us to conclude the proof.
O

Theorem 11.5.13. Let V and H be two Hilbert spaces satisfying the hypotheses
of the preceding theorem; then the space

Foy = {u e L*(J0,T[, V), % e L*(J0,TT, V’)}

is continuously embedded into C°([0,T], H).

Proof.

We apply the preceding theorem, with p = ¢ = 2 and v = v, and we
immediately obtain that the function ¢ — 2|lu(t)||% is continuous on [0, 7]
and that for all ¢, s € [0,T], we have

1 1 S
1ol = gl + [ (Gon)

)

1
< Sl + Cllull,

By integrating this with respect to s, we find

1 1
5”“@)”?{ < §||u||2L2(]O,T[,H) + Cllullg,,

< Cllull2gorv) + Cllullg, , < Cllull, ,-

(I1.24)

This proves that the function w lies in L>°(]0, T'[, H). Furthermore, Proposi-
tion I1.5.11 shows that u is continuous with values in V’. We can then apply
Lemma I1.5.9, to obtain that u is weakly continuous with values in H (we
should not forget that all Hilbert spaces are reflexive).

The strong continuity of u with values in H is now a consequence of the
weak continuity in H, of the continuity of the function t — [ju(t)||%, and
Proposition I1.2.11. Moreover, the estimate (11.24) leads to

llullcoo,m, 1) < CllullE,..-

O
This situation is a special case of a more general result (see [85]) which is
the following.

Theorem 11.5.14. Let V' and W be two Hilbert spaces; then

Eyp = {v € L*(]0,T[, V), 2—: e L*(]0, T, W)}
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is continuously embedded in C°([0,T], [V, W]
lated space of order % of V. and W.

) where [V, W]

is the interpo-

1 1
2 2

We refer the reader to [85] for a precise definition of interpolated space
[V, W]%. In Chapter IV, we present the proof of a special case of this state-

ment (see Theorem IV.5.11).

5.3 Compactness theorems

Let us start by proving a now classic lemma (due to J.-L. Lions [84]), which
is the basis of a large part of all the following compactness results.

Lemma 11.5.15. Let By C Byand C By be three Banach spaces. We assume
that the embedding of By in By is continuous and the embedding of By in By
is compact. Then, for all € > 0, there exists a constant C(g), such that for
all uw € By, we have

lullB, < ellulls, + C(e)]ullB,-

Proof.
Let us assume that the claim is false; then there exists eg > 0 and a
sequence (uy,), C Bp, such that

lunllB, > eollunllz, + nllunlls,, ¥n > 1.

By homogeneity we can take ||u,||p, = 1 in the above inequality. Hence, the

sequence (uy, ), is bounded in By and satisfies ||u,||p, < 1/n. The embedding

of By into B; is compact, thus we can extract a subsequence (u,, ) which

converges in B; towards an element denoted us. Of course ||uso|lp, =1, and
furthermore ||uoo|| g, = 0. This is the contradiction.

O

We can now prove one of the fundamental results of compactness in the

study of nonlinear evolution problems.

Theorem 11.5.16 (Aubin—-Lions=Simon). Let By C By C By be three Banach
spaces. We assume that the embedding of By in By is continuous and that
the embedding of By in By is compact. Let p,r such that 1 < p,r < +o0o. For
T > 0, we define

E,, = {v € L?(]0,T], Bo), % e L"(]o,T1, Bz)} .

i) If p < 400, the embedding of E,, in LP(]0,T[, B1) is compact.
ii) If p = 400 and if r > 1, the embedding of E,, .. in C°(|0,T], By) is compact.
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The proof which follows comes from [109] and does not assume that the
spaces considered are reflexive, in contrast to the proof in [14]. It thus applies
to the spaces L' and L, for example.

Proof.

We only demonstrate point i) of the theorem the second point being treated
in an entirely similar fashion. Furthermore, it is clear that we do not lose any
generality by assuming that r = 1.

To demonstrate the theorem, we establish that if a sequence (uy, ), satisfies:

(tn)r is bounded in LP(]0, T, By),

<du"> is bounded in L'(]0, T, Ba),
at ),

then we can extract a Cauchy subsequence in LP(]0, T, By).
e Step 1:

From Lemma I1.5.15, it suffices to find a Cauchy sequence in L?(]0, T'[, Ba).
Indeed, if a sequence (vy,),, satisfies the Cauchy criterion in L?(]0, T'[, Bz2) and
is bounded in L?(]0, T[, By), then for all ¢ > 0 we have

v — vmllzrqo,71, By) < €llvn — Vmll e qo,71, Bo) + C(E)1Vn — VmllLr o, 7, B2)
<2Ke + C(e)llvn — vm|lLrqo,rL, Ba)s

where K is some bound of (v, ), in LP(]0,T[, By). Hence, if (v, ), is a Cauchy
sequence in LP(]0,T[, Bz), it follows

limsup |[vn — vl ze o7, B) < 2K,
n,m— o0

which proves the claim, € being arbitrary.
e Step 2:
Let 6 € C*([0,T],R), 6(T) = 0, such that we have

Up = Ou, + (1 — 0)uy, = vy + wy,.

We show that we are able to extract from (v,), a Cauchy sequence in
LP(]0,T[, B2). We would proceed in a similar way for the sequence (wy, ).

We extend v, by continuity to Ry by setting v,(t) = 0, V¢ > T, and for
all h > 0 we break down v,, into

t+h t+h
v (t) = (/11/,5 vn(s)ds> + <}1l/t (v (t) — vn(s))ds> = Qb ()b 1 (2).

Let h be positive; then we show that the sequence (an p(t)), is uniformly
bounded and equicontinuous with values in a compact set of By (we know
that ay,j is continuous from Proposition I1.5.11). For this, we have
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1 /
sup [|an,u(t)| B, < Ehl/p lonllLe 0,71, Bo)s
teRT

which proves that ¢ — a, ,(t) takes its values, independently from n, in a
bounded set of By (i.e., in a compact of Bs, because the embedding of By in
Bs is compact). Moreover, we have

dan.n 1 t+h dvn
) — h
Bl = (i B) v h/ -

from which, for all £ > 0,

d 1 Y dv,
t < — d
Hdtan h() 5, >~ h/t dt ( ) 5, T,
1 ’ don
T hldt " pgorsy)

Hence, h being fixed, the sequence (an, p)n is equicontinuous with values in
a compact set of Bg. Ascoli’s theorem (Theorem II.3.1) then shows that we
can extract from the sequence (ay, p), a subsequence which is convergent in
C°([0,T], Bz) and thus in LP(]0, T, B2). Furthermore, we have

1 t+h
lbnnO, < 5 [ lon(®) = ons)la, ds
t

1 t+h
< E/ / dr | ds.
t t B

Hence, by using Jensen’s inequality (Proposition I11.2.20) and Fubini’s theo-
rem we obtain

dvu,
dt

—(7)

T p
/ 1B n (DI, dt</ / d”"( W ar) dsat
t B>
dv, ||P T ptth dvn
< ‘ — (r)|| drdsdt
dt || 110,77, B) h ¢ Bo
p—1 t+h
1
S‘dvn / 7/ dvn (1) (t—l—h—T)det
dt || 110,78y Jo P
< h‘ don | ,
At i o,71,52)
and hence
|1y, sy < CrhtP. (11.25)

e Step 3:
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We now use a diagonal process to construct a convergent subsequence of
(vn)n. For this, for k > 1, we set hy, = 1/k.

For £ = 1 we have seen that we can extract a convergent subsequence
(@, (n),hy ) from (@, p,)n. For k = 2 we can again extract a subsequence
of the sequence (ay,(n)hy)n, denoted (ay,op,(n),hs)n, Which converges. We
hence proceed with successive extractions of subsequences such that for all
k > 1, the sequence (ay,o...o(n),hy )n CONVErges.

We now define ¥ (k) = p10pa0--- 0@ (k). Let us verify that the sequence
(Vg (k) )x is indeed a Cauchy sequence. Let & > 0; according to (I1.25) there
exists kg > 1 such that for all n and for all £ > kg, we have

165, | e 0,77, B) < €-

Let us now write

Vyp() = Qp(k) g T D)y -
From the diagonal extraction process employed, the sequence (a¢(k)7hk0 k> ko
is a sequence extracted from the sequence (awo‘..wko(nmko ), which, by def-

inition, is a convergent sequence and thus it satisfies the Cauchy criterion.
Hence, there exists ki1 > kg such that for all k, &’ > k1, we have

@y (i) iy — Qp(kr) hig 220,71 B2) < €

Thus, finally, we have for all k, &’ > ki,

vy k) = v e o,r1,B2) < l@pk),hey = Q) hag 1P 0,71, B2)
A+ 106k, 122 10,71, B2) + 1bw(kr) 1y |22 0,71, B2)
< 3e.

This, indeed, proves that the sequence (vy))r is a Cauchy sequence in
Lp(]07 T[7 BQ)'
O

In certain cases, the preceding theorem does not apply and we need to use
sharper results.

Let E be a Banach space. For f € L*(]0,T[, E) we denote the translated
function of f defined by (I1.20) as 7, f. For 1 < ¢ < 400 and 0 < 0 < 1, we
define the Nikolskii spaces N7 (|0, T, E) by:

ITnf = fllLaqo,r—nl E)
0<h<T he

NZ(0,T[, E) = {f e L9(0, T, E), < +oo},

(11.26)
and for f € NJ(]0,T[, ) we introduce the norm

1 q l/q
||f|Ngao,T[,E>=(|f||iq(]o,T[,E)+ sup (Mmf—fnmo,T_h[,E))) |
0<h<T
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Intuitively, this leads to replacing a condition on the derivative with respect
to time of f by a condition of the Holder type, which is weaker but proves
to be sufficient. We give, for example, the following theorem for which the
reader will find a proof in [109].

Theorem 11.5.17 (Simon). Let By, By, B be three Banach spaces with By C
By C By. We assume that the embedding of By into Bs is continuous and
that the embedding of By into By is compact.

Then, for all1 < g < 400 and 0 < o < 1, the embedding

L(J0,T[, Bo) N NJ(]0,T[, Bz2) — L]0, T[, By),

1s compact.

5.4 Banach-valued Fourier transform

To obtain compactness, we have seen that it is necessary to establish estimates
of the derivatives with respect to time or of the translated functions with
respect to time from the sequences of functions involved. As we show in
the following, several methods are available to obtain these estimates. One
of these consists in using the Fourier transform with respect to the time
variable. We demonstrate, in this sense, the Proposition I1.5.23 which gives
a characterisation of the sequences of bounded functions in the Nikolskii
spaces using the Fourier transform. We illustrate this technique in Section
1 of Chapter VII for the investigation of the Navier—Stokes equations with
nonstandard boundary conditions.

Before this, we need to recall the definition of the essential properties of the
Fourier transform of functions of the time variable with values in a Banach
space.

Definition 11.5.18. Let X be a complex Banach space and let f € L*(R, X).
We call the Fourier transform of f the function F(f) € L>® (R, X) defined by

FNn = 7= / FH)e™ ™ dt.

In the case where X is a finite-dimensional space, we have the following
classic and fundamental theorem, for which the reader will find a proof, for
example, in [100].

Theorem 11.5.19 (Hausdorff-Young). We assume that X = C".
o Forall f in L*(R,C") N L?*(R,C") we have

F(f) € L*(R,C") and | F(f)l| 12 = || f 22,
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and hence F extends in a unique way as an isometry of L*(R,C") on
itself.

e For any p € [1,2], there exists a C > 0 such that for all f in L*(R,C") N
LP(R,C™) we have

F(f) € LP (R,.C") and | F(f)l| pw < Cf |l 1r-

In our context, we shall need to use the Fourier transform in the case
where X is a Banach space. In this case, we pay attention to the fact that
the preceding theorem is not in general true! Nevertheless, in the particular
case where X is a space containing integrable functions, we can find a suitable
framework in which the Hausdorff-Young inequality holds. We refer to [8, 64,
96] for more complete and more precise results on this subject.

Theorem 11.5.20 (Hausdorff-Young for Lebesgue spaces). Let (E,u) be a
compact, locally-separated topological space equipped with a reqular measure
i on its Borel sets. Let g € [1,400] and we set X = LI(E, ).

For all p € [1,2] such that p < q < p’ there exists a C > 0 such that for
all f in LY (R, LY(E, u)) N LP(R, LY(E, i) we have

F(f) € LY (R, LUE, 1)) and | F ()| por @, o5y < ClF o @008,

We note that the condition p < ¢ < p’ is optimal (see [96] for a counter
example).
Proof.

By density, it is sufficient to prove the result for smooth functions f. We
then successively use the Minkowski inequality with r = p’/q > 1, followed
by the Hausdorff inequality given by Theorem II1.5.19 for the scalar function
t — f(t,x) with z fixed and finally use the Minkowski inequality again, with
r = q/p > 1. This gives

ooy = [, ([ If(f)(r,w)l“duy//q dr

< ( [ ([1Fneara)” du>p//q
0( L(/ f(t,x>|pdt)q/pdu>p//q
<o ( L[ f<t,x>|qczu>p/th>p//p

= OIS o, Lo ()

IN
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which gives the claim.
O

Corollary 11.5.21. If X = H is a Hilbert space then the Fourier transform F
extends as an isometry on L2(R, H). Moreover F is invertible on L*(R, H)
and its inverse is given by

Fg)(t) g(1)e ™ dr, Yg € LY (R, H) N L*(R, H).

1
C V2 e
Proof.

This result is deduced from the preceding theorem because any Hilbert
space is isomorphic with an L?(E, 1) space for well-chosen (E, p).

We note that this property characterises Hilbert spaces: if X is a Banach
space such that F maps L?(R, X) into itself then X is isomorphic to a Hilbert
space.

O

Finally, we use the following result whose proof is a straightforward inte-
gration by parts.

Proposition 11.5.22. Let X be a Banach space and f € L'(R, X) such that
% € LY(R, X) (we say that f € WHY(R, X)); then we have

F (;IJ;) (1) =it F(f)(7).

The first difficulty that we encounter is the fact that the functions with
which we deal with are only defined on a bounded interval of time ]0,7[ and
not on the whole real axis. As a consequence, we proceed in the following
manner.

Let f be the extension of a function f of W1(]0, T, X) by zero outside
]0, T[. This function is not in WH!(R, X) but nevertheless we can derive it
in the sense of distributions and obtain

of _of

% o + £(0)d0 — f(T)dr.
Let us recall that f(0) and f(T) are perfectly defined because the functions
of WH1(]0,T[, X) are continuous on [0, 7] with values in X (see Corollary
11.4.2).

Furthermore, we can generalise the Fourier transform to the tempered
distributions (in particular Dirac mass; see, e.g., [101]) and we show that we
have

. PY. o—iTT
irF (f)=F (‘Z) v \/%f(()) ), (IL.27)

In view of the functions which interest us for analysis of nonlinear partial
differential equations, the essential result is the following.
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Proposition 11.5.23. Let H be a Hilbert space and let f € L*(J0,T[,H) be a
function such that for a certain 0 < o <1 we have

/R 727 | () () 13y < C2. (I1.28)

Then f belongs to the Nikolskii space N§(]0,T[,H) defined by (11.26) and we
have

I fllng qo,riey < Mo(1+C),
where M, depends only on o and T.

Proof.
_ Let f be a function satisfying (I1.28), and let h €]0,T[. We set gn(t) =
f(t+h) — f(t) such that

Flgn)(r) = (™" = DF(f)(7).
We then write for 7 = 0
eiTh -1

Taha

Flgn)(7) = h?T? F(F)(7).

However, the function x + (e'* —1)/x% is bounded on R as soon as o < 1.
If K, is the bound of this function, we have

I1F (gn)()llzr < Ko |7|7 | F(F) (),

such that
[ 1F @ dr < K202 [ eI F G0l < K2CH
R R

From Corollary 11.5.21 the Fourier transform is an isometry of L?(R, H),
therefore we obtain by the definition of gy

/ 1F(t+h) — Ft)|3dt < K202,
R

which implies that
T—h
[ M n = sl < 2o,
0

and proves that f belongs in the Nikolskii space NJ(]0,T[, H) as well as the
stated estimate.

O

Hence, to obtain compactness for a family of approximate solutions to an

evolution problem, we can attempt to obtain uniform bounds on the Fourier
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transform with respect to time for these solutions of type (I1.28). This ensures
a bound in a Nikolskii space and hence the compactness property through
Theorem I1.5.17.

6 Some results in spectral analysis of unbounded
operators

To generalise the well-known spectral theory in finite dimension to linear op-
erators in infinite dimension, it is convenient to work with operators which
map a Hilbert space H into itself (of course one could also work with Ba-
nach spaces; see [27, 101]). Indeed, to give meaning to the definition of an
eigenvector

Au = du

it is clear that v and Au must coexist in the same space. Unfortunately, the
common operators which appear in problems from physics are, in general, dif-
ferential operators and these do not map the common Sobolev spaces H® ()
onto themselves, because of the loss of derivatives (see Chapter III for the
definition of Sobolev spaces).

In the sequel of this book, we particularly apply this theory to the Stokes
operator (see Section 5.2 of Chapter IV).

6.1 Definitions

We need to look at these so-called unbounded operators A, as operators in H
which are only defined on a subset of H, known as the domain of the operator
and denoted by D(A). For example, we can define the Laplace operator as
an unbounded operator on L?() with domain H?(Q) N HE ().

Hence, to be given an unbounded operator is to be given:

e A Hilbert space, H.
e A linear subspace, D(A) C H.
e A linear mapping A: D(A) — H.

In our context, we assume that all the unbounded operators have a dense
domain in H and are closed, which means that the graph of A, defined by
G(A) = {(u, Au), u € D(A)} is a closed subset of H x H.

Remark 11.6.1. The term “unbounded operator”, comes from the fact that
if A is closed with a dense domain D(A), which is not equal to H, then A
cannot be bounded; that is, there does not exist some C' > 0 such that

| Aullr < Cllulls, Yu € D(A).
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Indeed, let us suppose that this inequality is true for some C > 0. Any
u € H is the limit of a sequence (uy,), of elements of D(A). This sequence
being a Cauchy sequence, from the inequality above, (Auy,), is also a Cauchy
sequence in H and therefore is convergent. Hence (u,, Au, ), is a sequence of
elements in the graph of A which converges, and, therefore, this graph being
assumed to be closed, we obtain that u € D(A). We have therefore shown
that H = D(A), which is not the case.

We now define the fundamental concept of self-adjoint operator, which
again generalises the usual concept in finite-dimensional spaces.

Definition 11.6.1. Let A: D(A) C H — H, be an unbounded operator with a
dense domain. We then introduce

D(A*)={ue H, ve D(A) — (Av,u)y 1is continuous for the norm of H} .

For uw € D(A*), the mapping v — (Av,u)py can therefore be extended by a
continuous linear functional on H which may be represented by an element
denoted as A*u € H:

(Av,u)g = (v, A"u) g, Yu € D(A"),Yv € D(A).

The operator A*, whose domain is D(A*), is called the adjoint operator of
A.

This definition is consistent because the density of D(A) into H ensures the
uniqueness of the extension which is used in the definition. We can now define
a fundamental class of operators.

Definition 11.6.2. An unbounded operator A is said to be self-adjoint if it
satisfies
D(A*) = D(A) and Au = A*u, Yu € D(A).

Proposition 11.6.3. Let A be an unbounded self-adjoint operator. We assume
that A is a bijection from D(A) onto H and that A~ is continuous from H
into H. Then, the (bounded) operator A=1 is self-adjoint.

Proof.

The domain of A~! is H. We therefore first need to show that D((A~1)*)
is also equal to H. Let u € H; then, since A™! is continuous, it is clear
that v — (A~ 'v,u)y is continuous on all of H and therefore by definition
u € D((A71)*).

Let u,v € H, then A~'u and A~'v are in D(A), and since A is self-adjoint
we have

(A(A™ ), A_lv)H = (A", A(A_lv))H;
in other words
(u, A ) g = (A", ),
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which shows that A~! is indeed self-adjoint.
O

In general, unbounded operators are not continuous from D(A) equipped
with the norm of H into H. This means that the norm of H is not the
correct norm for us to set on D(A). The following proposition, whose proof is
straightforward, is the consequence of the fact that the graph of A is closed.

Proposition 11.6.4. Let A be a closed unbounded operator in a Hilbert space
H of domain D(A). We provide D(A) with the following scalar product,

(u,v)pay = (u,v)m + (Au, Av) g, Vu,v € D(A), (I1.29)

and the associated norm. Then, D(A) is a Hilbert space, the embedding from
D(A) into H is continuous and A is continuous from D(A) into H.

Remark 11.6.2. It is clear that the norm introduced above is equivalent to
the norm known as the “graph norm” defined by

[ullgraph = [lullzr + [ Aullz, Yu € D(A).

6.2 Elementary results of spectral theory

The fundamental application of the concepts above, to the subject of interest
to us, resides in the following result.

Theorem 11.6.5 (Compact self-adjoint operators). Let H be a separable
(infinite-dimensional) Hilbert space and let T be a (bounded, i.e., defined and
continuous on all H) compact self-adjoint operator from H to H. Then H
has an orthonormal basis formed from eigenvectors of T. Moreover, the set of
its eigenvalues (which are real numbers) can be ordered in a sequence tending
towards 0.

We do not give the proof here and we refer for instance to [27].

When A is an unbounded operator which is a bijection from D(A) onto H,
then the open mapping theorem tells us that A is an isomorphism of D(A)
(equipped with the graph norm) onto H. In this case A~ is a continuous op-
erator from H to D(A). The embedding from D(A) into H being continuous,
we can also consider A~! as a continuous operator from H into H.

If, moreover, the embedding from D(A) into H is compact, which is often
the case in the applications, then A™!, seen as an operator from H to H, is
compact (see Lemma I1.3.5). We can therefore apply the preceding theorem
and obtain the following result.

Theorem 11.6.6 (Operators with compact inverse). Let H be a separable,
infinite-dimensional Hilbert space. Let A : D(A) C H — H be an unbounded
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operator. We assume that A is self-adjoint, bijective from D(A) onto H and
that the canonical embedding from D(A) into H is compact.

Then there exists an orthonormal basis (wi)g>1 of H formed by eigenvec-
tors of A, that is, such that for all k > 1,

wy € D(A), and Awy, = A\pwy,

where the eigenvalues (A\g)k>1 of A are real numbers that we can order in
such a way that (|A\k|)k is increasing and tends towards +oo when k tends
towards infinity.

Finally, the eigenvectors (wi)k>1 form a complete orthogonal family of
D(A).

Proof.

As we have remarked above, under the hypotheses of the theorem, the
operator A~ can be viewed as a bounded, compact self-adjoint operator.
From Theorem II.6.5, there exists an orthonormal basis (wy)g>1 of H formed
from eigenvectors of A~! for the eigenvalues p; with, moreover, pz — 0.

Let us now note that, since A~! is injective (Beware! It is not surjective
on H), 0 cannot be an eigenvalue of A~!. Hence, for all k > 0, up # O.
Moreover, since A~ 'wy, = prwy, we can clearly see that wy belongs to the
image of A~!, that is to in D(A).

If we now set A\, = 1/, we immediately obtain

wg € D(A) and Awk = \pWg-

The fact that |[A\z| — +oo is a clear consequence of the fact that pup — 0.
This demonstrates the first part of the theorem.
For k,1 > 0, we have

(W, wi) peay = (e, wi) g + (Awg, Aw)g = (1 + M) (Wi, wi) 1,

which shows, (wg)r>1 being a Hilbertian basis of H, that when k # [,

(wi, wi) p(ay = 0 and that [|wg | pcay = /14 A7. The family (wy) is there-
fore an orthogonal family of D(A).

To establish that this is also a complete family, it is necessary to show that
the only vector of D(A) orthogonal to all the wy, is the null vector. Therefore,
let u € D(A) such that (u,wy)pcay = 0 for all k. By using the self-adjoint
characteristic of A, this gives

= (u,wr)pay = (v, wp) g + (Au, Awy) g
= (w,wi)m + Me(Au, wp) g

(u,wk)H =+ /\k(u,Awk)H

(
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which demonstrates that (u,wy) g = 0 for all k. Since (wy,)y, is an orthonormal
basis of H, we have indeed shown that u = 0.
O
We know that all ©w € H can be expressed uniquely in the form

u= § U Wy,

k>1

with the convergence being taken in the sense of H and moreover, uy =
(u, wy) g Using this expression we can recognise which of the elements of H
are in D(A).

Proposition 11.6.7. Let us take an operator A which satisfies the hypotheses
of the preceding theorem. We then have

D(A) = {u € H, such that ZAi(u’wk)%{ < +OO}.
E>1
Proof.

o Let u € D(A); (wy)r is a complete orthogonal family of D(A), thus we

can see that
(atos)
HwkHD(A) k

is an orthonormal basis of D(A). Hence, we know that

Z (u,wk)%(A)

3 <+
k>1 1wkl D a)

However, for all k£, we have

(u, wr) pay = (w, wr) g + (Au, Awg)g = (u, wr) g + (u, A2wk)H
= (14 A} (u, w)

and in particular
lwrllBay = (L 4+ XD llwklFr = (1 +AF).

Hence, we have obtained

D (4 A7) (u, wi) < +oo,
k>1

which proves the desired assertion.
e Now, let u € H, we assume that
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D A wi)i < oo
k>1

The hypothesis implies that

2
Z [ (w, wi) HWk |4y < 400,
k>1

and since the vectors ((u, wk)Hwk)
shows that the series

., are pairwise orthogonal in D(A), this

Z (U, wk)Hwk

E>1
converges towards a certain @ € D(A), in the sense of the norm of D(A).
However, since the embedding from D(A) to H is continuous, the conver-
gence also takes place in H and hence we obtain

(ﬂ, wk)H = (uv wk)Ha

which proves that u — @ is orthogonal to all wy. Inasmuch as (wg)y is
complete in H, this shows that u = 4 and therefore that u € D(A).

We have shown in passing that for u € D(A), we have

lullFr = (u,wi)f and [ulfa) = > (1 + M) (w3,
k>1 k>1

and moreover, since the absolute values of the eigenvalues (|A\g|)x are bounded

below by a positive real number, the norm in D(A) is equivalent to the norm

defined by
1/2

we D(A) = | 3 M, wy)y
k>1

‘We now wish to define the powers of the operator A. We could, for example,
define the operator A? in the following natural way

D(A?) = {u € D(A), such that Au € D(A)}, and A%u = A(Au),Vu € D(A?).

However, we choose another definition which allows us to define the fractional
powers of an operator. To this end, we have to assume that the operator is
nonnegative (i.e., such that (Au,u)y > 0 for all w € D(A)). This is equivalent
to assuming that the eigenvalues of A are nonnegative. From now on, we make
this assumption and for all nonnegative real numbers s, we introduce
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D(A®) =S u € H, such that Z)\is(%wk)%l <400,
k>1

and for all uw € D(A?), we set

A’y = Z M (u, w)gwy, € H.
E>1

Finally, we equip D(A®) with the natural scalar product defined by

(u,v)p(as)y = Z(l + )\is)(u, wi) g (v, W) g
E>1

We can easily verify the following properties.

Proposition 11.6.8. 1. The operator A' is simply the operator A. Moreover,
D(A%) = H and A° is the identity operator. The norms on D(A') and
D(A®) are equivalent to the usual norms on these spaces.

2. For all s > 0, D(A®) is a Hilbert space and A® is a nonnegative self-adjoint
operator which is an isomorphism from D(A®) onto H. Moreover, (wy)
is a complete family in D(A®).

3. For all 0 < s < s', we have D(A®") C D(A®), the inclusion being strict
and the embedding being compact.

Proof.
The first two points are trivial, as is the strict inclusion D(A%") € D(A®).
We only prove the compactness of the embedding of D(A®") in D(A*®).
Let (u¥), be a bounded sequence in D(A®), then there exists a C' > 0
such that
SO kP < C, Yk EN,

where we have denoted the coordinates of u* in the basis (wy), as uf =

(uk7 wn)H

We show that for all ¢ > 0, we can cover the sequence (u*); by a finite
number of spheres with radius € in D(A®). For any ¢ > 0, the sequence (A,)n
tends towards 400, thus there exists a ng > 0 such that

90\ 1/ (2(s'=9))
)\n > </€2> 5 Vn > no.

Hence, for all k, we have
A28 (k12 = A2(s—s") \28" |, k(2 < e A28k (2 < e I
n>ng n>ng n>ng

Since ng is fixed, we see that for all n < ng, we have
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VEk.

k2
U, = < 2
n
Thus, the sequences of real numbers (u¥);, for 0 < n < ng — 1 are bounded.
The closed spheres of R™ are compact sets, thus there exists a finite family
of elements of R™, denoted (v');es, with v* = (v})o<n<ny—1 such that

52

Vk € N,3i € I, such that [u* — v |? < —
2y 0 A2

,¥n<mny—1. (IL31)

For all i € I, we consider the element 9 of D(A®) defined by

nofl

n=0

Let us now show that the sequence considered, (u*)y, is covered by the spheres
of D(A®) with centres at 9 and having radius €. Indeed, if k € N is fixed, we
consider the index i € I given by (I.31), such that we have

(V]

2
k2 2s), k 02 2s), k|25 o~ € € 2
— sy = — < — _— =
||U v ||D(A) Z /\n ‘un Un| + Z )‘n ‘un| =9 =+ ) €,
n<ng—1 n>no
the first term being bounded above by (I1.31) and the second by (I1.30).
O
We now wish to define similar concepts for s < 0. Unfortunately, in this
case the preceding definitions do not apply (because the spaces D(A®) would
all be equal to H and none would be complete). The spaces D(A*®) with s < 0
must be larger than H. Hence, for all u € H, we define

HUH%(AS) = Z )‘is(ua wk)%.

k>1

This is a norm on H and if we define D(A?) as the completion of H for this
norm, then the operator A® is naturally defined. Indeed, D(A?) is a Hilbert
space for the scalar product obtained by completion, and the preceding prop-
erties of positive real powers of A adapt without a problem. We then accept
the following result.

Proposition 11.6.9. For all s > 0, if we identify H with its dual, we have
D(A%) ~ D(A™?),

and the duality can be written using the scalar product of H in the following
way,
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(u,v) p(a-+),D(A%) = Z(uawk)H(ank)Ha Vu € H,Vv € D(A®).
E>1

6.3 Applications to the semigroup theory

Let (A, D(A)) be an unbounded operator in H which is self-adjoint, bijective
from D(A) onto H, nonnegative, and such that the canonical embedding of
D(A) into H is compact.

Our goal is to show, with the elements given above, how to solve the
infinite-dimensional linear differential equation

du
A=
a TA=0 (11.32)

Let (wy)k>1 be the spectral basis associated with A and (Ax)x>1 the (pos-
itive) eigenvalues of A. We assume that the sequence (Ag)k>1 is sorted in a
nondecreasing way.

Definition and Proposition 11.6.10. Let ug € H so that we write ug =
21@1 ug,kWg. For any t > 0 we can define

e_tAuo = Zuake_t’\’“wk € H.
k>1
Moreover, for any s >0 and t > 0, we have e~"4ug € D(A®).
Remark 11.6.3. We obviously have the property

ef(tJrs)A _ eftAefsA _ efsAeftAv Vs,t > 0.

That’s the reason why the family of continuous operator in H defined by
(e7t);>0 is called the semigroup associated with —A.

Proof.
Since A\ > 0 and t > 0, it is clear that this sum is well-defined in H.
Moreover, for a fixed ¢t > 0 and any s > 0, we have

eI = (t\g) eI < Ot

where Cs = supyg 4o y’e™ ¥ < 400.
It follows that

Z ()\zuo’ke_t)"“)Q <O Z luo |? < +oo,

k>1 k>1
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and thus that e *4uy € D(A®) for any ¢ > 0 and any s > 0.
O

Theorem 11.6.11. For any ug € H, there exists a unique u € C°([0, +oo[, H)N
CY(]0, +oc[, D(A)) which solves (11.32). It is defined by the formula

u(t) = e Hug, vt > 0. (I1.33)
Proof.

e Let us first show the uniqueness property. The problem is linear, therefore
it is enough to show that any solution u for the initial data ug = 0 is
necessarily equal to 0.

Let 0 < ¢ < T be given. We apply Theorem I1.5.12 (and Corollary I1.3.8)
to obtain

Il ~ el =2 [ (o)

T
= —2/ (Au(t),u(t)) dt <0,
€
inasmuch as A is a nonnegative operator. It follows that

[(T)[e < lJu(e) |,

but since u is continuous with values in H and satifies u(0) = 0, we can
let € go to 0 in the inequality above and obtain that ||u(T")||z = 0, which
gives u(T) = 0. This being true for any T' > 0, the claim is proved.

e We easily check that the function ¢ € [0, +oo[— wu(t) defined by (I1.33)
satisfies the claimed regularity property (notice that w is not necessarily
differentiable at ¢ = 0 with values in H) and u(0) = ug.

For any t > 0, we can differentiate the series to obtain

d
di;(t) =3 (A uo e M wy
k>1
= — Zu07k6_t>"“Awk =-A Zuake_t’\’“wk = —Au(t),
E>1 E>1

the last equality being true because the series converges in D(A) and A is
continuous from D(A) in H.

O

When we add a source term f to the problem (II.32), the semigroup as-
sociated with —A still allows us to solve the problem. More precisely, one
can prove, for instance, the following result (see [48] or [95]) which is an
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infinite-dimensional version of a very standard result for ordinary differential
equations.

Theorem 11.6.12. Let ug € H and f € C1([0, +oo[, H). There exists a unique
solution u € C°([0, +oo[, H) N C1(]0, +oo], H) N C°(]0, +oo[, D(A)) to
du
Ay =
g Tt (IL.34)
u(0) = up.

This solution is given by the Duhamel formula
t
u(t) = e g —|—/ e~ =94 (s)ds, Vt > 0. (I1.35)
0

Proof.
Using the change of variable s — ¢ — s in the integral in (I1.35) we get

¢
u(t) = e Hug + / e A f(t — s)ds.
0

Inasmuch as f is assumed to be of class C! with values in H, we can justify
the derivation in all the terms and then conclude by integration by parts.
O

Remark 11.6.4. The above result, in particular Formula (II.35), still holds for
less regular source terms but this needs to weaken the notion of solution we
consider.
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