Chapter 2

Nonlinear Regression, Experimental Design,
and Phase I Clinical Trials

In typical Phase I studies in the development of relatively benign drugs, the drug is
initiated at low doses and subsequently escalated to show safety at a level where
some positive response occurs, and healthy volunteers are often used as study
subjects. In Sect. 2.2 we describe some basic pharmacologic principles and models
underlying dose determination. These models are typically nonlinear in certain
parameters and therefore nonlinear regression models are used. Section 2.1 gives an
introduction to nonlinear regression and also describes in this connection nonlinear
mixed effects models (NONMEMs), which play a central role in population
pharmacokinetics and pharmacodynamics in Sect.2.2. In connection with Phase I
studies, Sect. 2.3 gives an overview of the theory of optimal experimental design.
The design and analysis of Phase I studies are described in Sect.2.4.

This paradigm in Sect.2.4 does not work for diseases like cancer, for which
a non-negligible probability of severe toxic reaction has to be accepted to give
the patient some chance of a favorable response to the treatment. Moreover, in
many such situations, the benefits of a new therapy may not be known for a
long time after enrollment, but toxicities manifest themselves in a relatively short
time period. Therefore, patients (rather than healthy volunteers) are used as study
subjects, and given the hoped-for (rather than observed) benefit for them, one aims
at an acceptable level of toxic response in determining the dose. The objective of
Phase I cancer trials is to find a maximum tolerated dose (MTD) with the ethical
constraint of protecting the study subjects from toxicities in excess of what they
can tolerate. To address this constraint, 3 43 designs are often used and they are
described in Sect.2.5.1. However, simulation studies by O’Quigley et al. (1990)
showed the performance of these designs to be “dismal,” for which they provided
the following explanation: “Not only do (these designs) not make efficient use of
accumulated data, they make use of no such data at all, beyond say the previous
three, or sometimes six, responses.” They proposed an alternative design, called
the continual reassessment method (CRM), which uses parametric modeling of
the dose-response relationship and a Bayesian approach to estimate the MTD, or
more generally the dose level x such that the probability F(x) of a toxic event is
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p (1/3 in the case of MTD). Section 2.5.2 describes the CRM and other model-
based designs. However, because of the ethical demands for treating patients in the
study at safe doses even though they may not be effective, 343 designs and their
variants are still widely used despite their inadequacy in generating dose-toxicity
information for the posttrial estimate of the MTD, for which the model-based
designs are more efficient. Bartroff and Lai (2010) have provided a mathematical
representation of this dilemma between safe treatment of current patients in the
dose-finding cancer trial and efficient experimentation to gather information about
the MTD for future patients. The next chapter will describe their formulation of a
stochastic optimization problem that addresses this dilemma and summarize their
solution of the problem, leading to a class of hybrid designs.

2.1 Nonlinear Regression Models

2.1.1 Nonlinear Least Squares

As in linear regression models, the method of least squares is commonly used to
estimate the unknown parameter vector 0 in the nonlinear regression model

vi=rfe(xj)+¢g, j=1....n, 2.1
in which fg(-) is a given nonlinear function of @ and &; are unobservable
independent random errors with zero means and

(a) var(gj) = o2 (constant variance error models), or
(b) var(gj) = fg (x;)0? (constant coefficient of variation error models), or
(c) var(g;) = fo(x;)0? (Poisson-type error models).

We can estimate 0 by generalized least squares (GLS), that is, by minimizing
)2
Zw, —fo (), (2.2)

where the weights are inversely proportional to var(g;).
To compute the minimizer 8 of (2.2), we write fg(x;) = f(,x;), initialize with

6" and approximate f(0,x;) after the kth iteration, which yields é(k), by

1(0x)~ (8% ) + (-8 vr (6.
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so that (2.1) can be approximated by the linear regression model
A (k ~AUNT ~(k
vi—f(8Y5) = (6-8") vr(8Y.x) +e; 2.3)

The GLS estimate é(kﬂ) of 0 in (2.3) is given explicitly, and the iterative scheme

is called the Gauss—Newton algorithm.

The Gauss increment 0.1 := é(kﬂ) — ém may produce an increase in S(0)

when it is outside the region where the linear approximation holds. To ensure a

decrease in S(0), use a step factor 0 < A <1 so that S(ém +26W) < S(O(k)). A
commonly used method is to start with A = 1 and halve it until we have S (O(kH)) <
S(O(k)). A commonly used criterion for numerical convergence is the size of the
parameter increment relative to the parameter value. Another criterion is that the
relative change in S(8) be small. A third criterion is that ¥ —1(8*)) be nearly
orthogonal to the tangent space of 1(8) := (£(8,x1),..., f(6,x,))T at 8% The
Gauss—Newton algorithm is aborted at the kth step when one gets a singular (or
nearly singular) coefficient matrix in the linear equation defining GLS. It may also
stop after reaching a prescribed upper bound on the number of iterations without
convergence. When one does not get an answer from the Gauss—Newton algorithm,
one should choose another starting value and repeat the algorithm.

2.1.2 Nonlinear Mixed Effects Models

As will be explained in the next section, two important pharmacologic models are
the poly-exponential model fg (1) = Zszl oe M with @ = (01, O Ay )T
and ¢ denoting time, and the Michaelis-Menten model fg(u) = vu/(o + u), with
0 = (v,a)" and u denoting drug concentration. A Phase I trial collects data from
I subjects, yielding (yij,xij), i=1,...,1, j=1,...,n; In the analysis of these data,
it is more flexible to allow subject-specific parameters 0; in (2.1). This leads to a
NONMEM of the form

vij = fi(tij,0;) +&j, 0i=g(x;,B)+b; (1<j<n, 1<i<I), (24

in which 0; is a 1 x r vector of the ith subject’s parameters whose regression function
on the subject’s observed covariate x; is given by g(x;, B) with 1 X s parameter vector
B, which is the “fixed effect” to be estimated. The “random effects” b; in (2.4) are
assumed to be independent and identically distributed, having common distribution
G with mean 0. The ith subject’s response y;; at #;; has mean f;(#;;, 0;), in which
fi is a known function and 7;; may represent time or some covariate value (such
as drug concentration) at that time. Given 0;, the random errors g;; are assumed
to be normal with mean 0 and standard deviation ow(8;), in which w is a given
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function and o is an unknown parameter. The regression function g relates 0;
to the ith subject’s physiologic characteristics that constitute the covariate vector
x; in (2.4). The first equation of (2.4) is often called the individual measurement
model and the second equation the population structure model. The population
distribution G is usually assumed to be normal with mean 0 and covariance matrix
X so that B, o, X can be estimated by maximum likelihood. However, unlike
linear mixed effects (LME) models in which the normal assumption on G yields
closed-form expressions of the likelihood, the normality of G in NONMEM leads
to computationally intensive likelihoods that involve / integrals. A commonly used
approach, as adopted in the software package NONMEM (Beal and Sheiner 1992)
or the nlme procedure in R, is to develop iterative schemes based on first-order
approximations of f;(t;j,g(x;, B) -+ b;) in (2.4), so that the normal assumption on G
can be used to reduce the problem to that of a linear Gaussian mixed effects model
at each iterative step.

Unless otherwise stated, we shall assume throughout the sequel that the random
errors &; in model (2.4) have common variance o2 (so w(0) = 1). The likelihood
function L(B, 0, X) is proportional to

ntr [ 1o 1, o
|Z| I/ZH/R,G lexp{_r‘z2[)’ij_fi(tijag(xiaﬁ)"'bi)]z_Ebiz lbiT}dbiu
g =
2.5)

where || denotes the determinant of X. For the case of more general w(8;),
simply replace ¢ in (2.5) by ow(g(x;, B) + b;). Computing the maximum likelihood
estimate of (B, 0, X) via numerical integration and nonlinear optimization becomes
prohibitively difficult for large I. Letting 1 = (0, %), Lindstrom and Bates (1990)
proposed the following iterative procedure that involves successive linear approxi-
mations to f;(t;;,8(xi, B) + b;). At the mth iteration, the Lindstrom-Bates procedure
consists of a pseudo-data step and a LME step:

(a) The pseudo-data step Som) a < (m)
Given the current estimate ™ of 0, compute B~ = B(7") and b;"’ =
gi(ﬁ(”’)), 1 <i <, that jointly minimize

1

> {(6"”))2&(13,1») +b; ()ﬁ(’"))*1 b?} , (2.6)

i=1

where
nj

Si(B.b) =Y [vij— filtij,&(xi. B) + b))

Jj=1

This can be carried out by modifying a standard nonlinear least squares routine;
see Sect. 6.1 of Lindstrom and Bates (1990). Define the s X n;, r X n;, and 1 X n;
matrices
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my [ 9fi [, , b
Xi = <W (tljvg(xlaﬁ)+bi )}ﬁBML)) ’

1<j<n;

m J i pln
z" = —f_ tijag(xiaﬁ( >)+bi ) ;
abl b.:b(”‘) )
=i 1<j<n;

N

Y ()’ij_fi (tij,g(xi,ﬁ(m>) +i’§m)>) +Bx 4 Bz,
1<j<n;

(b) The LME step () 5 (m)
Linear approximation to f;(t;;,8(xi,B) + b;) around (B ",b; ') leads to the
LME model

Yl(m) = ﬁXl(m) + b,Zl(m) + (8,‘1, e 78in,-)- 2.7

The integrals in (2.5) for the likelihood function of the LME model (2.7)
(instead of (2.4)) have closed-form expressions, yielding maximum likelihood
estimates of the form

-1
1 1

ﬁ=(2¥5’”>vf,,ix,<’"”> (ZXEm)Vf,,iXE’">T> .y
i=1 i=1

where V; ,, = ng)TZAIZEm) + 621,” and ] = (6, 2) is computed via the Newton—
Raphson algorithm to maximize the likelihood.

Wolfinger (1993) derives the above pseudo-data step by using Laplace’s approx-
imation arguments. Vonesh (1996) directly approximates the integrals in (2.5) with
o, B, X fixed, by using Laplace’s asymptotic formula

| / B ap . 2m) 1 {det (—z;-(i;,»)) }71/ 2 gtlb). (2.9)

where Ei is the maximizer of ¢;(b) and /; is the Hessian matrix of second partial
derivatives of ¢; with respect to the components of b. Noting that Laplace’s
approximation to an integral corresponds to adaptive Gaussian quadrature with one
quadrature point, Pinheiro and Bates (1995) use adaptive Gaussian quadrature with
g quadrature points to compute the integrals in (2.5). Lai and Shih (2003b) have
developed a hybrid method that uses (2.9) if the minimum eigenvalue Xmin(—é}(gi))
exceeds a prescribed threshold and uses Monte Carlo simulations otherwise. Lai
et al. (2006b) introduce importance sampling to refine the Monte Carlo component
of the hybrid method. They also point out the importance of approximating the
likelihood function adequately with relative ease for selecting good predictive
models g(x;, B).
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Since the normality assumption on G only provides numerically tractable
maximum likelihood estimates after various approximations, a natural alternative
is to try estimating G nonparametrically by a distribution with finite support, with
the number of support points depending on the sample size. However, even for the
simple case n; = n and f;(t;;, 0;) = 0; with known B and o, it is difficult to estimate
G well since the optimal rate of convergence of the estimate to G is very slow when
G has a smooth density function, as pointed out by Fan (1991). Lai and Shih (2003a)
have developed a nonparametric maximum likelihood estimator (MLE) of G when
there are I’ < I subjects whose 0; can be well estimated by the nonlinear least
squares estimator 8; based on {(ij,tij) : 1 < j < n;}. Because of the low resolution
in estimating G nonparametrically, however, the nonparametric approach does not
yield a better estimate of f(-,-) in the simulation study reported by Lai and Shih
(2003a) who consider the case of f; being all equal (to f).

2.2 Pharmacokinetics and Pharmacodynamics

The nonlinear regression and NONMEM in the preceding section are basic sta-
tistical methods in pharmacology, which is the science dealing with interactions
between living systems and molecules, especially chemicals introduced from
outside the system. This broad definition includes clinical pharmacology (whose
objective is to prevent, diagnose, and treat diseases with drugs) and the pathogenesis
of diseases due to chemicals in the environment; see Katzung (1995). A drug is
defined as a small molecule that, when introduced into the body, alters the body’s
function. The component of a cell or organism that interacts with a drug and initiates
the chain of biochemical events leading to the drug’s therapeutic and toxic effects is
called a receptor. The receptor concept has become the central focus of investigation
of pharmacodynamics (PD), which is the study of drug effects and their mechanisms
of action. The relation between the dose of a drug and its clinically observed effects
can be quite complex. In carefully controlled in vitro systems, however, the relation
between the concentration of a drug at the site(s) of action and its effects can often
be described by relatively simple mathematical models. How a drug dose produces
its effects involves not only pharmacodynamics but also pharmacokinetics (PK).
The latter is concerned with the concentration—time curve that is associated with the
following “history” of a single administration of a drug:

(a) Absorption phase of the drug into the body: Transfer of the drug from its site of
administration (via oral, or inhalational, or intravenous, or other route) into the
bloodstream.

(b) Distribution phase: Distribution of the drug to different compartments of the
body, including receptor-binding sites in the target tissue, and resulting in rapid
decline in plasma concentration.

(c) Elimination phase: Excretion of chemically unchanged drug or elimination
via metabolism that converts the drug into one or more metabolites (e.g., at
the liver).
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Drug administration can be divided into two phases, a PK phase in which
the kinetics of drug absorption, distribution, and elimination translate into drug
concentration—time relationships in the body, and a PD phase in which the drug
concentration at the site(s) of action leads to the response/effects produced. Knowl-
edge of both phases is important for the design of a dosage regimen to achieve the
therapeutic objective. Since both the desired response and toxicity of the drug are
functions of the drug concentration at the site(s) of action, the therapeutic objective
can be achieved only when the drug concentration lies within a “therapeutic
window,” outside which the therapy is either ineffective or has unacceptable toxicity.
Drug concentrations, however, can rarely be measured directly at the sites of
action and are typically measured at the plasma, which is a more accessible site.
An optimal dosage regimen can therefore be defined as one that maintains the
plasma concentration of a drug within the therapeutic window. This can be achieved
for many drugs by giving an initial dose to yield a plasma concentration within the
therapeutic window and then maintaining the concentration within this window by
periodic doses to replace the drug lost over time.

A basic goal of PD models is to describe and quantify the steady-state
relationship of drug concentration (C) at an effector site to the drug effect (E).
The simplest PD model for one drug is the so-called Emax model defined by
E = emaxC/(C + ¢50), where epmyy is the maximum effect that the drug can produce
and csq is the concentration that yields 50 % of epax. This equation is the same as
the Michaelis—Menten model in enzyme kinetics. A generalization to incorporate
the baseline effect ¢( leads to

E=¢y+ emaxC/ (C—i— C5()). (2.10)

A convenient surrogate for the drug concentration at an effector site, which is
difficult to measure directly, is dose (D). In empirical studies, C and csp in (2.10)
are replaced by D and EDsy,.

There is a large literature on PK models, which can roughly be classified as
“mechanistic” and “empirical”; see Rowland and Tozer (1989). In mechanistic
models, the body is viewed in terms of kinetic compartments between which
the drug distributes and from which elimination occurs. The kinetics is often
described by a linear system of ordinary differential equations, which have explicit
solutions involving exponential functions. On the other hand, the rate constants of
a compartmental model may be functions of the concentration of the drug itself
or another metabolite/interacting drug, leading to a system of nonlinear differential
equations that have to be solved numerically. Empirical PK models are typically
poly-exponential models of the form Y oge %" . One such model that is commonly
used is the one-compartment model

Dk,

A ket pmhatiy Lo 1< i< 2.11
= k) ¢ ve, 1sjse e

in which y; is the concentration at time #; after the administration of a single oral
dose D. Here V, k,, k. are the volume of distribution, absorption rate constant,
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and elimination rate constant, respectively. Note that (2.11) has the form of a
bi-exponential model ocle’xl’ + Ocze’xzt with oy = —o0.

So far we have considered estimation of the PK/PD parameters of a subject
from the data in a study on the subject. In many PK/PD studies, however, data
are collected from a number of subjects, some of whom may have intensive blood
sampling while others only have sparse data. A primary objective of these studies is
to study the PK/PD characteristics of the entire population, such as how they vary
with certain covariates. This requires embedding the individual parametric PK/PD
models in a population model. For example, the y; in (2.11) are now replaced by
vij» where i denotes the subject number. Since the dose, volume of distribution,
absorption, and elimination rate constants may vary from subject to subject, we
also have to replace D,V,ky,ke,n by D;,V; kai,kei, and n; in (2.11). Let 0; be the
vector consisting of the logarithms of the PK parameters V;, k,;,k.;. The unknown
0; may vary with certain covariates, such as the subject’s age and body weight.
How can the individual subjects’ data be used to analyze such relationships for
the target population, of which the subjects can be regarded as a sample? The
NONMEM provides a valuable tool to address this problem. The subject’s data are
often too sparse to provide an adequate estimate 6, of 0, so that h(é,) can be used
to estimate h(0;). If B, 0, and G are known, then a natural estimate of /() in the
mixed effects model is the posterior mean Eg ;> [/(0;)[subject i’s data]. Without

assuming B, 62, and G to be known, the empirical Bayes approach replaces them
by their estimates B, 62, and G from the I studies so that /(8;) is estimated by

l@ = Eﬂaz)é[h(e,-) | subject i’s data].

Returning to the PD model (2.10), the variable C refers to concentration at an
effector site. It is usually impossible to measure C directly, so some surrogate for
C has to be used. On the other hand, if one has a kinetic model for C, then it can
be used to impute the value of C from the blood/urine measurements. Chapter 9
of Davidian and Giltinan (1995) illustrates how population PK/PD models can be

synthesized for such tasks.

2.3 Theory of Optimal Design

The conditions under which an experiment is performed affect the quality of
information arising from the experiment. Optimal design of experiments (or simply
optimal design) concerns how to choose these conditions, or “settings,” in order
to maximize the amount of information coming from an experiment and thus
optimize the quality of statistical inference that is possible. In the context of clinical
trials, these settings may be the treatment dose or dosing regimen, the treatment
type, or the characteristics of the patient who may be randomized into one of
multiple treatment groups. In what follows we give a brief introduction to the theory
emphasizing general concepts over technicalities; for a more complete mathematical
treatment, see Fedorov (1972) or Silvey (1980).
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2.3.1 Optimal Design Theory in Linear Regression Models

Consider a random variable Y ~ p(y|x, 8,c) such that Var(Y|x,0,c) = 6 and

E(Y|x,0,0)=0"x, (2.12)
where x = (x1,...,x)! € 2, the design space, is a vector of control variables which
may be chosen by the experimenter and 8 = (6y,...,6;)" and o are unknown

parameters. The linear regression model ¥ ~ N(0”x,?) will be referred to as
the normal case for which the linearity of (2.12) in 0@ greatly simplifies the
problem of choosing x in order to get the maximal information about @ out of Y.
Before proceeding to the problem, we make two remarks about the assumptions.
First, (2.12) can be extended to E(Y|x,0,0) = 6, fi(x) + --- + O fi(x), where
f=(0f1,...,fk) and the f; are known functions. Replacing x by f and the design
space 2" by f(.2") reduces to the original problem. Second, the variance 6% could
be replaced by c?v(x) for any known function v because this case can again be
reduced to the original one with ¥ =Y /,/v(x) replacing Y.

Suppose we are planning to perform n independent experiments with input
variables xy, ..., x, which will result in the independent observations Y1, ...,Y,. The
least squares estimator 6 of 6, or equivalently the MLE in the normal case, has

covariance matrix
; —1
o | Y xix! (2.13)
i=1

when the x1,...,x, are such that 3, xixl»T is invertible. Two key properties of (2.13)

are that it does not depend on 6, which is a direct result of the linear structure
of (2.12), and that it depends on ¢ but in a special way such that the minimizer of
any function of (2.13) does not depend on ©. If the desire is to make (2.13) “small”
in some sense, then this is equivalent to making the information matrix

M=Mx,...x Zx, (2.14)

“large.” Since M is a matrix, there are various criteria for judging M to be “large”
so that the optimal design problem is to find the x, ..., x, that maximize ¥ (M), for
some real-valued function ¥'. Some popular choices for ¥ include the following:

D-optimality: Under the normality assumption, the volume of the confidence
ellipsoid for 0 is proportional to (detM)’l/ 2, and minimizing this is equivalent
to maximizing ¥ (M) = logdet(M).

c-optimality: For a given k-vector c¢, the least squares estimate (or MLE in
the normal case) of the linear combination c’o is cTé, which has variance
proportional to

"M e, (2.15)

hence, ¥ (M) = —cT M~ c is the function to be maximized for this criterion.
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E-optimality: Closely related to c-optimality is the criterion which seeks to
minimize the maximum of (2.15) over all ¢ in the k-dimensional unit sphere,
that is, to minimize

max ¢'M'c.

clle]|=1
Kiefer (1974) showed that this is equivalent to maximizing the minimum
eigenvalue of M, which ¥ is taken to be for this criterion.

Because of the discreteness of the problem of maximizing ¥ (M) over all choices
for xi,...,x,, standard numerical optimization techniques often have difficulty,
especially when 7 is large. Moreover, the value of n itself may not be well motivated
in the experimenter’s mind prior to the experiment. An elegant solution comes
with the identification of X, ..., X, to a certain probability measure over the design
space 2, that is, the discrete measure placing mass 1/n on each point x1,...,x,,
and enlarging the search to include all such probability measures has led to the
approximate theory of linear optimal design (Kiefer 1974). Letting p denote a
probability measure on 2~ and

M(u) =E, (xx"), (2.16)

where X denotes the random variable with distribution p, the optimization problem
is equivalent to finding the measure u that maximizes ¥(M(u)). Closed-form
analytic solutions are available in some cases, but in general, iterative algorithms
are necessary to find optimal designs; see Fedorov (1972, Sect. 2.10).

2.3.2 Elfving’s Method for c-Optimal Design

In order to give concrete examples we next focus on c-optimal designs because, in
low dimensions, optimal designs can often be found exactly by using an elegant
geometric method of Elfving (1952). Assume that a linear model (2.12) is given and
that the design space 2~ C R* is compact, that is, closed and bounded. For a given
vector ¢ € R, the problem is to find the measure 4 on 2~ maximizing

W(M(u) = —c"M(u) e

(or equivalently, minimizing ¢’ M(u)"'c), where M(u) is given by (2.16). It
follows from the facts that ¥ is a concave function (of matrices), the space of all
matrices M (1) is convex, and Carathéodory’s theorem (see Silvey 1980, p. 72) that a
maximizer of ¥ (M(u)) can be found among the measures ( with at most k support
points, that is, u of the form

k
u= 2Pi5x,-, where Zp,- =1, x,€¢ Z andp; >0foralli=1,....k, (2.17)
i=1 i=1

= =



2.3 Theory of Optimal Design 21

in which &y is the degenerate measure putting mass 1 at x. Therefore, we can restrict
our search for a maximizer of ¥ (M (1)) to probability measures of the form (2.17).

Elfving’s (1952) method for finding this discrete measure is the following. Let
2~ ={—x:x € Z} denote the reflection of 2" through the origin, and let .
denote the convex hull of X UX ™, that is, . is the collection of all points of the
form 2{“:1 pizZi, Where 2{“:1 pi=1,pi>0andz; e XUX ™ foralli=1,..., k. Extend
a ray from the origin through the point ¢ and let s* € . be the point where this ray
pierces the boundary of .. By the definition of ., s* can be written as

st =

VN

tpixi
1

l

for some choice of signs, where the p; and x; satisfy the conditions in (2.17). Then
the design measure 2{;1 piOy, is c-optimal, that is, the design that places weight p;
atpointx;, i = 1,...,k; see Chernoff (1972) for a sketch of the proof.

Example 2.1. Suppose that independent responses ¥; to a drug with dose x; € [0, 4]
(a > 0 the known “maximum dose”) are given by

K:axi+[3xl-2+£i, i=1,...,n,

where the g are i.i.d. N(0,62) random variables. This model fits into the form (2.12)
by taking x = (x,x>)7, 8 = (o, )7, and k = 2. Not worrying for the moment about
what value of n to use, suppose that the ultimate objective of the n measurements
to be taken is to estimate optimally the mean response at some critical dose xo,
0 < xp < a. Thus, it is appropriate to consider the c-optimal design with ¢ = (xg, x(z))T
for optimal estimation of the mean response otxy + ﬁx(z) = ¢’ 0 at dose xo. The design

space
X ={(x,x*) eR*: 0<x<a},

as well as 2", are truncated parabolas. Let y = V2—1=.4142136....

Case 1. 1f 0 < xo < ya, then the ray in direction (xo,x3) pierces .# at the point

( ay(1-7) o @y(1=y) )
a P+ 1) —x(r+ 1) a(P+1) —x(y+ 1))

(2.18)

Setting (2.18) equal to

p(ya,v’a®) + (1 - p)(—a,—a’)

and solving for p gives
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1—xo(y+1)+ay

Y+ Da(y2+1) —xo(y+1)] (2.19)

P

Thus, the c-optimal design is [t = p8y, ,2,2)+ (1 —p)6_(, ,2) Which, in other words,
puts the fraction p of observations at dose x = ya and the remaining fraction 1 — p
at dose x = a. Note that the design may not be implementable in practice, since
np, with p given by (2.19), may not be an integer. This is a consequence of using
the optimal design formulation that uses a probability measure rather than a discrete
collection of n design points to represent a design. In practice, if np is not an integer,
then choose the closest integer.

Case 2. 1f ya < xo < a, then the ray in direction (xo,x3) pierces .7 precisely at
(xo,x%); hence, the c-optimal design is simply 5(xo 2)° that is, the design that puts
all measurements at dose x = xg.

2.3.3 Extension to Nonlinear Models

A key feature of the linear design theory in the previous section is that the
information matrix (2.14) does not depend on 0. In this section we consider the
more general case where

Y ~p(y|x,0) and E(Y|x,0)=n(0,x) (2.20)

for some function 1, where we have absorbed the parameter o of the previous
section into @ for notational simplicity since the distinction between parameters of
interest and nuisance parameters does not matter in the nonlinear case. To generalize
the notion of information matrix used above, we note that (2.13) is the inverse of the
Fisher information matrix of independent observations Y1, ...,Y},, and therefore it is
natural to define M(u) = M(u,0) in the nonlinear case as the Fisher information
of the design

. [_ 9?p(Y|x.0)

M(u.0) :/ 96,00,
i J

v

] dp(x), (2.21)

where the expectation in (2.21) is taken over Y. As the notation suggests, the
information matrix M(u,0) depends on @ in general. The problem of optimal
design now becomes more difficult as the optimal design for inference about 6
now depends on @ itself. Application of linear optimal design theory leads to
locally optimal designs, that is, designs that are optimal for a given value of 6.
A globally optimal design for nonlinear models has to proceed in a sequential
fashion, computing a locally optimal design at the current estimate of 8 to obtain a
new measurement or measurements, and then updating the estimate and repeating
the process until the criterion function or sequence of estimates is judged to
converge; see Fedorov (1972, Sect. 4.4). Here, the role of prior information about
0 is important, particularly for beginning the sequential process. If there is prior
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information about the true value of 0, then the sequential process can begin at that
value. Such information may be present if the current experiment is a continuation
of a previous experiment or if theoretical knowledge about the current or similar
settings is available, and in either of these situations, the prior information may be
encoded in a prior distribution on 0 in the Bayesian sense, from which an estimate
of the true value of @ can be obtained. In the absence of such prior information,
“preliminary” observations should be performed using some nondegenerate design
so that an estimate of @ can be obtained from them, and then the sequential
procedure described above can begin.

Closely related to this sequential approach is the Bayesian approach which puts
a prior distribution IT on 8 and maximizes

/ W(M(u,0))dI1(6) (2.22)

rather than simply ¥ (M (i, )), where @ is the current estimate of 0. In order to
produce Bayesian designs for clinical trials that control the chance of overdosing,
Haines et al. (2003) propose to modify the Bayesian criterion (2.22) by including
a penalty for high doses. That is, for scalar doses x and an unknown target dose
x* with prior distribution p induced by I1, the problem becomes to find the design
measure [ maximizing (2.22) subject to the constraint

Puplezx) = [ p({ xzxPdut <e,

for some small chosen value of € > 0. For clinical trials in which patients are
assigned doses sequentially, Haines et al. (2003) further extend their method by
adding a sequential aspect by replacing the Bayesian information (2.22) by the
sequential analog at the (k + 1)st stage, given by finding the (k+ 1)st dose x;1
maximizing

/ W({kM (111, 8) + M(,,,,.0)}/(k+1))dIT(8) subject to
Py, (X1 = x7) = pr({x" 1w 247} <,
where L is the empirical measure of the first k doses, 0, is the degenerate measure

at x, and Iy and p; are the posterior distributions based on the first k doses and
responses.

2.4 Phase I Clinical Trials for Relatively Benign Drugs

The primary objective of a Phase I clinical trial is to determine the dose and dosing
regimen of a new drug and to collect information about drug-related side effects.
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The secondary objective is to use the data collected to evaluate the effectiveness of
the treatment. Before the Phase I trial, preclinical in vitro and animal studies are
conducted to evaluate toxicity and the pharmacologic actions of the drug, thereby
coming up with estimates of a good starting dose for Phase I trials with human
subjects. Because of safety considerations for subjects in the trial, the drug is usually
initiated at a low, safe dose and sequentially escalated to show safety at a level where
some therapeutic response occurs. As noted in Sect.2.2, the PK/PD models are
nonlinear, and nonlinear design theory described in Sect. 2.3.3 is particularly suited
for efficient estimation of the model parameters. On the other hand, the ultimate
goal is not just estimation of these parameters per se, but to find a dose within
the therapeutic window. For relatively benign drugs, Phase I trials involve healthy
volunteers from whom intensive blood sampling is conducted over time. The next
section describes a different paradigm for Phase I trials of cytotoxic treatments in
cancer.

Although intersubject variability is seldom considered at the design stage of
Phase I trials, such variability should be examined in the analysis of the data.
Thus, while a nonlinear regression model of the type (2.1) with the same 6 for
all subjects is assumed at the design stage, nonlinear mixed models of the type (2.4)
with subject-specific 8; can be used to analyze the data. An example is given by
Lai et al. (2006b), in which an orally administered cancer drug, temozolomide, was
given to 65 adult patients with advanced cancer in four Phase I trials sponsored
by the Schering—Plough Research Institute. Once such trial for treating patients
who had advanced cancer that was refractory to standard forms of therapy was
reported by Newlands et al. (1992). Each of these 65 patients had 10-15 drug
concentration measurements from 10min to 16h after a single dose, and a total
of 756 concentration measurements were collected. These concentrations were
modeled by the one-compartment open model (2.11) to identify the influence of
patient characteristics on the PK; the patient covariates forming the vector x; in the
analysis were body surface area, gender, age, and creatinine clearance.

2.5 Early Phase Clinical Trials for Cytotoxic Cancer
Treatments

2.5.1 Up-and-Down and Related Designs

Up-and-down designs are sequential (or cohort-by-cohort) designs for a discrete
dose set in which the “next” dose is always equal or adjacent (the next higher or
lower) to the current dose, hence the name “up-and-down.” The original idea is often
credited to Dixon and Mood (1948), but an earlier paper by Wilson and Worcester
(1943) proposed the idea for clinical uses. These designs have a wide range of
applications such as for bioassays, explosives testing, metallurgy, and educational
testing. In the dose-finding setting, they have the intuitive appeal of not making
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large jumps within the dose space. Most up-and-down designs are random walk
rules, sometimes called first-order Markov procedures, which choose the next dose
based only on the most recent dose and observation. Because of this simplicity, the
properties of random walk rules such as the limiting stationary distribution of the
dose allocation and its speed of convergence can be obtained exactly using random
walk theory.

Example 2.2. The biased coin design of Durham and Flournoy (1994) for estimat-
ing the pth quantile, 0 < p < 1/2, of a response curve using available dose set

dy<dy<---<dp (2.23)

utilizes a biased coin that lands heads with probability p/(1 — p) and chooses the
(k+ 1)st dose x; 1 as follows: If the kth dose and observed toxicity are x; = dy and
yr € {0,1}, respectively, then

dy—y1 ifye=1,
X1 = § dyyar  if ye = 0 and the coin lands heads,

dy if y; = 0 and the coin lands tails.

Durham and Flournoy (1994) show that, if F(d) := P(yx = 1|xx = d) is non-
increasing in d, the limiting distribution of the dose allocation of this up-and-down
rule is unimodal with mode essentially equal to the pth quantile of F(x).

To derive the limiting distribution and to understand up-and-down designs more
generally, describe an up-and-down design by its transition probabilities

Pom = P(xip1 = dplxi = dp), Lme{l,...,L},
which is the probability of stepping to the mth dose d,,, given that the current dose

is dy. For random walk rules in which dose levels are never skipped, we will have
Pem =0 whenever [¢ —m| > 1 and hence

Pra—1 > 1} +poo+peea I{f <L} =1.

As a Markov chain, the random walk {x;} has a tri-diagonal transition probability
matrix P = {py,,}%, _,. Given any initial treatment distribution

(P(x1 = dl),P(xl = dz), ce ,P(x1 = dL))
and a P such that any dose level in (2.23) can be eventually reached from any other,

the limiting treatment distribution 7y = limy_,.. P(x; = dy), £ = 1,...,L, can be
found by solving L linear balance equations

mp = w1 pr—1o M0 > 1} +mype+mpipesr o 1{ < L}, (=1,...,L, (2.24)
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or equivalently, PT & = &, where & = (71,...,m)". The unique solution is
L piv1,
meee [T, t=1,... L, (2.25)
j=t Pj.j+1

with the convention HJL.;LI =1, and the proportionality constant in (2.25) is

L1, -1
m={1+> [12) . (2.26)
i=1 j=t Pjj+1

The form (2.25) of the solution can be used to find the mode of the limiting
distribution 7 since it implies that 7, > @,y if and only if py_1¢ > pg¢—1. In
particular, for Durham and Flournoy’s (1994) biased coin design,

pe-1e=[1=F(di1)p/(1—p) and pee1=F(dp),

hence
Fld) _ »p
1—F(dp—y) ~ 1=p’
which shows that this design’s limiting distribution has its mode at the discrete pth
quantile of F(x).

Ty 2> My <~

3+3 Designs

The widely used 343 design (see Korn et al. 1994) can be viewed as a truncated
mixture of two up-and-down designs. There are many variations on the 3+3 design,
but in its simplest form, the design begins at the lowest dose d; and, treating patients
in cohorts of 3, escalates to the next highest dose level if 0 of 3 experiences toxicity,
stays at the same level if 1 of 3 experiences toxicity, and de-escalates or stops the
trial if at least 2 of 3 experience toxicity. As pointed out earlier by Storer (1989),
these designs are difficult to analyze since even a strict quantitative definition of
MTPD is lacking, “although it should be taken to mean some percentile of a tolerance
distribution with respect to some objective definition of clinical toxicity,” and the
“implicitly intended” percentile seems to be the 33rd percentile (related to 2/6). In
particular, the 3+3 design tends to not have the reliable convergence properties of
random walk designs and has been widely criticized in dose-finding clinical trials,
such as Reiner et al. (1999) who conclude that its “risk of choosing the incorrect
level is large.”
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Stochastic Approximation

Another class of designs related to up-and-down designs consists of stochastic
approximation procedures (Lai and Robbins 1979; Robbins and Monro 1951), one
distinguishing feature being that dose selection under a stochastic approximation
procedure will typically converge to a point, whereas random walk up-and-down
design points converge to a distribution, as mentioned above. If F(x) = E(y|x)
is the mean of the outcome y = y(x) at level (e.g., dose) x, then the goal of
stochastic approximation is to produce a sequence {x,} of estimates converging
to the unique root x* of the equation F(x) = y*, for given y*. Robbins and Monro
(1951) introduced stochastic approximation procedures of the form

(n—>")

Xp4+1 = Xn — b

for some constant » > 0 and established that x, — x* in probability under the as-
sumption sup, E[y(x)?] < co. Moreover, if b < 2F’(x*), then y/n(x, — x*) converges
to the N(0,02/[b(2F'(x*) — b)]) distribution, where ¢ = lim,_,+ Var[y(x)], and
the choice of b is thus crucial to the performance of this stochastic approximation
procedure (Sacks 1958). Since the optimal choice of b depends on the unknown
slope F'(x*), Lai and Robbins (1979) proposed an adaptive stochastic approxima-
tion scheme in which b is replaced by an adaptively chosen sequence b, that is
strongly consistent for F’(x*). They also study the global cost

(x, — x%)? (2.27)

M=

n=1

of the stochastic approximation sequence {x;, }IIV and show that it is of order
o2logN as long as b < 2F'(x*). Although this suggests that adaptive stochastic
approximation may be a good choice to use in Phase I dose finding, its “out of the
box” application to finite dose spaces and logistic regression models has been less
than successful than model-based methods, since it is essentially nonparametric and
the sample sizes of Phase I studies are typically small. For example, Bartroff and Lai
(2010, 2011) have shown that myopic model-based methods perform considerably
better than stochastic approximation in terms of “global” cost functions like (2.27)
for N patients and that the performance can be further improved by utilizing
approximate dynamic programming techniques, as will be discussed further in
Sect. 3.8.
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2.5.2 Model-Based Designs

Even though 3+3 designs and their variants are widely used in Phase I cancer
trials, it has also been widely recognized as unsatisfactory on both ethical and
efficiency grounds because it results in mostly subtherapeutic doses and inadequate
information to estimate the MTD for a subsequent Phase II trial. To address this
difficulty, Eisenhauer et al. (2000) suggest to use (a) methods to determine more
informative starting doses, (b) pharmacokinetics-guided dose-escalation methods,
and (c) model-based methods for dose determination, which are discussed next.

In model-based methods, a patient’s response y to treatment at dose level x is
usually modeled by a binary random variable taking values O or 1, such that y = 1
indicates a DLT and whose distribution depends on x and an unknown vector 8 of
parameters through the function

Fg(x) = P(y = 1]|dose = x).

We assume that Fg(x) is an increasing function of x, approaching 0 as x — —oo
and 1 as x — oo. In a sequential trial with n patients, we assume that yy,...,y, are
independent, except possibly through the choice of the dose levels xi,...,x,, since
xr+1 will typically be chosen as a function of the previous doses and responses
(x1,¥1),-- -5 (xk, k). As defined above, the MTD is then the pth quantile of Fjp, that
is, MTD = F, ! (p). Because of its prevalence in the literature and for simplicity,
here we take as our working model the two-parameter logistic regression model

Fo(x) =1 / (1 +e*<°‘+ﬁx)) (2.28)

where @ = (o, ). For the two-parameter logistic model, MTD = [log(p/(1 —p)) —
o]/B. The methods that follow are not restricted to the model (2.28) and can be
applied to other models such as the probit, gamma, and hyperbolic tangent models
(see e.g., O’Quigley et al. 1990).

Noting that the nonparametric approach in stochastic approximation seems too
ambitious for moderate sample sizes, Wu (1985) proposed to use a parametric
modification of the stochastic approximation scheme in Sect. 2.5.1, taking xz | to be
the pth quantile of F, 6, where 6y, is the MLE of @ based on the doses and responses
of the first k patients. O’Quigley et al. (1990) proposed a similar design but from a
Bayesian point of view, called the CRM, that estimates the MTD at each stage by the
posterior mean of @ with respect to a chosen prior distribution. O’Quigley (2002)
extends CRM to allow early stopping through the use of a sequential stopping rule.

Babb et al. (1998) pointed out that the CRM dose, being the mean of the MTD’s
posterior distribution, can be viewed as the Bayesian design with respect to squared
error loss. That s, letting .7 denote the information set generated by the first k doses
and responses, that is, by (x1,y1),..., (X, yx), CRM chooses the (k+ 1)st dose x; |
to be that minimizing E [h(xg 1 )|-Z], for

h(x) = (x— MTD)?. (2.29)
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Babb et al. (1998) suggested that the symmetric nature of the squared error loss or its
close relative, the absolute error loss, may not be appropriate for modeling the toxic
response to a cancer treatment and proposed the “escalation with overdose control”
(EWOC) method, which is a Bayesian design with respect to the asymmetric loss
function
h) = { ©(MTD — x) if x < MTD 230
(I —w)(x—MTD) ifx>MTD

where the chosen constant 0 < @ < 1/2 is the so-called feasibility bound. Note
that this loss function penalizes an overdose x = MTD + § more than an underdose
x =MTD — § of the same magnitude & > 0. EWOC can be shown to be equivalent
to estimating the MTD at each stage by the wth quantile of the posterior distribution
of the MTD. In the examples in Babb et al. (1998), @ is chosen to be slightly less
than p.

Whereas the step-up/down design in traditional Phase I cancer trials focuses
on the safety of patients in the study at the expense of being inefficient for the
posttrial estimate of the MTD, there has also been much work on ¢- and D-optimal
experimental designs for such estimation from binary responses. Haines et al. (2003)
proposed sequential Bayesian ¢- and D-optimal designs, subject to a prescribed
upper-bound € on the probability of doses exceeding the MTD, as described in the
last paragraph of Sect. 2.3.3.

Despite their shortcomings and the development of alternative Bayesian ap-
proaches since 1990, conventional dose-escalation designs are still widely used
in Phase I cancer trials because of the ethical issue of safe treatment of patients
currently in the trial. However, a Phase I design also has the goal of determining the
MTD for a future Phase I cancer trial, and needs an informative experimental design
to meet this goal. Von Hoff and Turner (1991) have documented that the overall
response rates in Phase I trials are low and that substantial numbers of patients
are treated at doses that are retrospectively found to be nontherapeutic. Eisenhauer
et al. (2000, p. 685) have pointed out that “with a plethora of molecularly defined
antitumor targets and an increasingly clear description of tumor biology, there are
now more antitumor candidate therapies requiring Phase I study than ever” and
that “unless more efficient approaches are undertaken, Phase I trials may be a rate-
limiting step in the process of evaluation of novel anticancer agents.” The hybrid
designs of Bartroff and Lai (2010) that will be described in Sect. 3.8 were motivated
by developing one such “more efficient” approach.

2.6 Supplements and Problems

1. Asymptotic theory of nonlinear least squares and Levenberg—Marquardt
shrinkage.
Let 0 be the least squares estimate of @ in the nonlinear regression model (2.1).
Let 8 denote the true value of 8. Assuming w; = 1 in (2.2), we have
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[£(8.x) — f(80,x)]* +no?, (2.31)

M:,

E[S(6)] =

t=1

recalling that E (&) = 0 and Var(g;) = 6. Therefore,

=0 if@=20p
E[S(8)] —no? 2.32
5(0) no{% oo 232
under the assumption
Z[ﬁ( ) = f(80)]* = oo for 8 # B, (2.33)

where f;(8) = f(0,x;). In the linear case f;(6) = 0" x;, (2.33) is equivalent to
the convergence of (3", xxT)~" t0 0. Since 8 is the minimizer of S(@), (2.32)
suggests that 0 is consistent. A rigorous proof involves considering S(0) as a
random function of 0 and requires additional assumptions.

Consistency of 0 leads easily to its asymptotic normality since we can
approximate f; (8) by f; (60) + (8 — 80)TVf,(8¢) when 8 is near 8, assuming
that V,£(0) is uniformly continuous in # and @ belonging to some neighbor-
hood of 6¢. The asymptotic properties of 0 are therefore the same as those of
ordinary least squares (OLS):

-1
n
0~N| 60> <2x,xf> , (2.34)
t=1
where %, = Vf;(8). Moreover, 62 can be consistently estimated by

2 < - A\ 2
oZ_E(y, £(8)) /n. (2.35)

For smooth real-valued functions g(8y), we apply the Taylor expansion g(0)—

2(00) = (Vg(00))T(6—00) to approximate 2(8) —g(80) by a linear function,
providing the asymptotic normality of g(@) with mean (@) and covariance
matrix

M=

-1
Gz(Vg(eo))T< Tf) (Vg(60))- (2.36)

t=1
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A

The square root of (2.36) also gives the estimated standard error for g(0)
if we replace the unknown ¢ and 6 in (2.36) by & and 8. The adequacy
of this normal approximation to construct confidence intervals for g(0y) is
questionable for highly nonlinear g, as the one-term Taylor expansion can be
quite poor. An alternative to the asymptotic approximations is the bootstrap
method, which uses Monte Carlo simulations to obtain standard errors and
confidence intervals.

The nonlinear least squares procedure is implemented by many numerical
software packages. The following are functions in R: nls.1m, nls. Since the

. oK) ()T .
Gauss—Newton scheme is aborted whenever ", x,( ) x,( T s singular or nearly

singular, where k,(k) =V, (é(k)) and é(k) is defined in Sect. 2.1.1. It is desirable
to avoid such difficulties in matrix inversion. This has led to the modification
that replaces Y, ; ﬁﬁk)fc,(k)T by >, ﬁﬁk)fc,(k)T + xD for the OLS estimate in the
kth iteration of the Gauss—Newton algorithm, corresponding to using shrinkage
as in ridge regression. Here D is a diagonal matrix whose diagonal elements are
the same as those of X' ; k,(k)ﬁ,(kW, proposed by Marquardt as a refinement of
an earlier proposal D = I by Levenberg.
2. Generalized linear mixed models.

The NONMEM in Sect.2.1.2 have their counterparts for generalized linear
models. These are called generalized linear mixed models (GLMM) and
were introduced by Breslow and Clayton (1993) for longitudinal data Y
to enhance generalized linear models by allowing subject-specific regression
parameters b;, called “random effects,” thereby extending mixed effects models
in linear regression to GLMM. The GLMM assumes the y; to be conditionally
independent given the observed covariates x;; and z; and such that y; has a
conditional density of the form

fO|bizir, xit) = exp{[y6i — w(6;)]/0 +c(y,0)}, (2.37)

in which o is a dispersion parameter and [ = dy/d6|g—g, satisfies

Wir = 871 (BTxiz + b,TZiz) ) (2.38)
where g~! is the inverse of a monotone link function g, as in the standard
generalized linear models for which w; = g~ ! (B Txit). The case g = dy/d6
is called the “canonical link,” The random effects b; can contain an intercept
term a; by augmenting the covariate vector to (1,z;) in case g; is not included
in b;; B is a vector of fixed effects and can likewise contain an intercept
term. The density function (2.37) with o = 1 is that of an exponential family,
which includes the Bernoulli and normal distributions as special cases. Brelow
and Clayton assume the b; in (2.38) to have a common normal distribution
with mean 0 and covariance matrix X that depends on an unknown parameter
vector .
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The likelihood function of the GLMM defined by (2.37) and (2.38) is of the
form [T, Li(o, e, B), where

T
Li(o,a,B) Z/{l_llf()’it;eit,(f)}¢a(b)db, (2.39)

in which ¢ denotes the normal density function with mean 0 and covariance
matrix depending on an unknown parameter . Analogous to NONMEM
described in Sect.2.1.2, there are three methods to compute the likelihood
function, the maximizer of which gives the MLE of o, ¢, and f8:

(a)

(b)

Laplace’s approximation. Letting ¢li(blo.2.B) pe the integrand in the right-

hand side of (2.39), Laplace’s asymptotic formula for integrals yields the
approximation

/’eli(b‘o-!avﬁ)db ~

(2n)q/2{det {—l; (l;i|6,a,[3)}}71/2exp{l,~ (13,~|o,a,[3)}, (2.40)

where g is the dimension of b;, b = &(G,O(,ﬁ) is the maximizer of
li(b|o, e, B) and I; denotes the Hessian matrix consisting of second partial
derivatives of /; with respect to the components of b. The R package
1me4 computes the MLE by using the Laplace approximation (2.40) or the
restricted pseudo-likelihood approach proposed by Wolfinger and O’ Connell
(1993), as the user-specified option.

Gauss—Hermite quadrature. Laplace’s asymptotic formula (2.40) is de-
rived from the asymptotic approximation of /; by a quadratic function
of b in a small neighborhood of b; as )l'min(—z;‘(ih‘kf,a,ﬁ ) — oo, where
Amin(+) denotes the minimum eigenvalue of a symmetric matrix. Therefore,
such formula may produce significant approximation error for L; if the
corresponding Amin(—Ii(bi|o, e, B)) is not sufficiently large. One way to
reduce the possible approximation error is to compute L; by using an
adaptive Gauss—Hermite quadrature rule, as in Liu and Pierce (1994). The
software package SAS uses adaptive Gauss—Hermite quadrature in the
NLMIXED procedure to compute (2.39); the R package 1mexr () also uses
Gaussian quadrature to compute (2.39) but only for certain special cases of
the exponential family (2.37). The numerical integration procedures demand
a much higher computational effort and become computationally infeasible
when n or g is large. To circumvent the issue of high-dimensional numerical
integration, some authors propose putting prior distributions on the unknown
parameters and estimate them by the Markov chain Monte Carlo (MCMC)
method in a Bayesian way; see Berry et al. (2011) for logistic mixed models.
The performance of the MCMC method, however, depends on how the prior
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parameters are set as well as the convergence rate of the Markov chain to its
stationary distribution, which may not even exist. Yafune et al. (1998) use
direct Monte Carlo integration but point out that the computational time may
be too long to be of practical interest.

(c) Hybrid method. This is basically the same as the hybrid method for
NONMEM, as pointed out by Lai and Shih (2003b, Sect. 5).

3. Dose individualization and population PK/PD.

Several physiologic (e.g., maturation of organs in infants) and pathologic
(e.g., kidney failure, heart failure) processes require dosage adjustments in
individual patients to modify specific PK parameters. Two basic parameters in
this connection are clearance (a measure of the ability of the body to eliminate
the drug) and volume of distribution (a measure of the apparent space in the
body available to contain the drug). Drug clearance principles are similar to
clearance concepts in renal physiology, in which creatinine or urea clearance is
defined as the rate of elimination of the compound in the urine relative to the
plasma concentration. Thus, clearance CL of a drug is the rate of elimination
by all routes relative to the concentration C of the drug in a biologic fluid; it is
perhaps the most important PK parameter to be considered in defining a rational
drug dosage regimen. In most cases, the clinician would like to maintain steady-
state drug concentrations Cs; within a known therapeutic window. Steady state
will be achieved when the dosing rate (rate of active drug entering the systemic
circulation) equals the rate of drug elimination. Therefore,

Dosing rate = CL X Cg;.

The two major sites of drug elimination are the kidneys and the liver. Clearance
of unchanged drug in the urine represents renal clearance. Within the liver,
drug elimination occurs via biotransformation of the drug to one or more
metabolites, or excretion of unchanged drug into the bile, or both. When no
other organs are involved in elimination of the drug, CL = CL¢pa1 + CLjiver
since the liver and kidneys work in parallel. The volume of distribution (V) is
defined as
V = Amount of drug in body/C,

where C is the concentration of the drug in blood or plasma, depending on
the fluid measured. It reflects the apparent space available in both the general
circulation and the tissue of distribution. It does not represent a real volume
but should be regarded as the size of the pool of blood fluids that would be
required if the drug were distributed equally throughout all parts of the body.
From mass balance and steady-state considerations, V is related to clearance via
CL = k.V, where k. is the elimination rate constant. Note that both V and the
elimination rate k, appear in the one-compartment open model (2.11). Allowing
these parameters and the absorption rate k, in (2.11) to be subject-specific leads
to a NONMEM that is used in the second paragraph of Sect. 2.4.
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Dose individualization is a major practical goal of population PK. Since the
efficacy and toxicity of a drug are directly related to drug concentrations at a
target site, which are generally not available but for which blood concentrations
are often good surrogates, criteria for determining the dose and dosing regimen
for a specific subject often involve functions of the subject’s concentrations
or functions of the subject’s parameter vector 8 = g(x,B) + b in (2.4). The
subject’s blood samples are often too sparse to provide an adequate estimate
of 0. The empirical Bayes approach considered by Lai et al. (2006b) borrows
information from healthy volunteers in Phase I studies who have undergone in-
tensive blood sampling and also from clinical patients for whom intensive blood
sampling is not feasible. Combining an individual patient’s characteristics (as
measured by x) and sparse concentration data with a large database from other
subjects is one of the main motivations for building population PK models.
Making use of the hybrid method, the last two paragraphs of Sect. 2.2 discuss
how empirical Bayes estimates of 4(0) can be computed from (a) the patient’s
data and (b) the population model fitted from other subjects’ data.

An emerging trend in cancer therapeutics is to use biomarkers to personalize
the treatment and treatment strategy for cancer patients; see Lai et al. (2012b).
Personalization (or individualization) of treatments again falls in the domain of
nonlinear/generalized LME models. Biomarker-guided personalized therapies
for cancer require innovations in design and analysis of early phase and Phase
IIT confirmatory clinical trials and may eventually lead to major breakthroughs
in the methodology.

. In the model ¥ = ot + Bx+ €, where € ~ N(O,Gz) and —1 < x < 1, sketch

the convex hull .# and use Elfving’s method to find the optimal design for
estimating (a) the slope B and (b) the mean response o + Bxg at x = xg, for
arbitrary —1 <xp < 1.

. In the setting of the example in Sect. 2.3.2, fix a value of a > 0 and compute the

value of
c'M(fi) 'c
c"M(u*)le

where [l is the design putting weight 1/3 at each of the points x = 0,a/2, and
a, and u* is the c-optimal design found in the example.

Verify (2.18) and (2.19), and show that p given by (2.19) is in [0, 1] for arbitrary
a>0andall 0 <xp < vya.

In the example in Sect. 2.3.2, find the c-optimal design if x is allowed to exceed
a.

forxo=1i-a/5,i=1,...,5,

. Find the Fisher information matrix

o[ Pp(]x.0)
26,06,

for the logistic regression model
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10.

PY=1]x,0)=1/(1+e**PY) Py =0/x,0)=1—P(Y =1|x,0),

where x = (1,x)” and 6 = («, B)".

Making use of the asymptotic theory of nonlinear least squares described
in (2.34) and (2.36), explain how optimal linear design theory can be used to
construct locally optimal designs in nonlinear regression models.

Discrete dose levels in Phase I cancer trials.

As pointed out in Sect. 2.5, because of the traditional practice of using up-and-
down designs in Phase I cancer trials, the dose levels in dose-finding studies of
cancer drugs are usually chosen before the trial as a finite set A = {A1,...,A4}
of possible doses, where A; < A; < --- < Ay, unlike the continuous doses we
have assumed in Sect. 2.5.2. In this case the MTD has to be redefined as

(2.41)
M otherwise.

{max{/’L €A :Fg(A)<p} if Fg(A;) < p for some i,
In many dose-finding trials, the number of discrete dose levels is relatively
small, so one can use more robust order-restricted models of toxicity versus
dose than the logistic regression model (2.28). Yin and Yuan (2009) have
proposed a Bayesian model averaging design based on the monotone dose—
toxicity relationship.
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