
Chapter 2
The Postulates of Quantum Mechanics

It is impossible to present quantum mechanics in a few pages. Since the goal of
this book is to describe quantum algorithms, we limit ourselves to the principles of
quantum mechanics and describe them as “game rules.” Suppose you have played
checkers for many years and know several strategies, but you really do not know
chess. Suppose now that someone describes the chess rules. Soon you will be
playing a new game. Certainly, you will not master many chess strategies, but you
will be able to play. This chapter has a similar goal. The postulates of a theory are
its game rules. If you break the rules, you will be out of the game.

At best, we can focus on four postulates. The first describes the arena where
the game goes on. The second describes the dynamics of the process. The third
describes how we adjoin various systems. The fourth describes the process of
physical measurement. All these postulates are described in terms of linear algebra.
It is essential to have a solid understanding of the basic results in this area. Moreover,
the postulate of composite systems uses the concept of tensor product, which is a
method of combining two vector spaces to build a larger vector space. It is also
important to be familiar with this concept.

2.1 State Space

The state of a physical system describes its physical characteristics at a given time.
Usually we describe some of the possible features that the system can have, because
otherwise, the physical problems would be too complex. For example, the spin state
of a billiard ball can be characterized by a vector in R

3. In this example, we disregard
the linear velocity of the billiard ball, its color or any other characteristics that are
not directly related to its rotation. The spin state is completely characterized by
the axis direction, the rotation direction and rotation intensity. The spin state can be
described by three real numbers that are the components of a vector, whose direction
characterizes the rotation axis, whose sign describes to which side of the billiard
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Fig. 2.1 Scheme of an
experimental device to
measure the spin state of an
electron. The electron passes
through a magnetic field
having vertical direction. It
hits A or B depending on the
rotation direction. The
distance of the points A and
B from point O depends on
the rotation speed. The results
of this experiment are quite
different from what we expect
classically

ball is spinning and whose length characterizes the speed of rotation. In classical
physics, the direction of the rotation axis can vary continuously, as well as the
rotation intensity.

Does an electron, which is considered an elementary particle, i.e. not composed
of other smaller particles, rotates like a billiard ball? The best way to answer this
is by experimenting in real settings to check whether the electron in fact rotates
and whether it obeys the laws of classical physics. Since the electron has charge, its
rotation would produce magnetic fields that could be measured. Experiments of this
kind were performed at the beginning of quantum mechanics, with beams of silver
atoms, later on with beams of hydrogen atoms, and today they are performed with
individual particles (instead of beams), such as electrons or photons. The results are
different from what is expected by the laws of the classical physics.

We can send the electron through a magnetic field in the vertical direction
(direction z), according to the scheme of Fig. 2.1. The possible results are shown.
Either the electron hits the screen at the point A or point B . One never finds the
electron at point O , which means no rotation. This experiment shows that the spin
of the electron only admits two values: spin up and spin down both with the same
intensity of “rotation.” This result is quite different from classical, since the direction
of the rotation axis is quantized, admitting only two values. The rotation intensity is
also quantized.

Quantum mechanics describes the electron spin as a unit vector in the Hilbert
space C2. The spin up is described by the vector

j0i D
�
1

0

�

and spin down by the vector

j1i D
�
0

1

�
:



2.1 State Space 5

This seems a paradox, because vectors j0i and j1i are orthogonal. Why use
orthogonal vectors to describe spin up and spin down? In R

3, if we add spin up and
spin down, we obtain a rotationless particle, because the sum of two opposite vectors
of equal length gives the zero vector, which describes the absence of rotation.
In the classical world, you cannot rotate a billiard ball to both sides at the same
time. We have two mutually excluded situations. It is the law of excluded middle.
The notions of spin up and spin down refer to R

3, whereas quantum mechanics
describes the behavior of the electron before the observation, that is, before entering
the magnetic field, which aims to determine its state of rotation.

If the electron has not entered the magnetic field and if it is somehow isolated
from the macroscopic environment, its spin state is described by a linear combina-
tion of vectors j0i and j1i

j i D a0j0i C a1j1i; (2.1)

where the coefficients a0 and a1 are complex numbers that satisfy the constraint

ja0j2 C ja1j2 D 1: (2.2)

Since vectors j0i and j1i are orthogonal, the sum does not result in the zero vector.
Excluded situations in classical physics can coexist in quantum mechanics. This
coexistence is destroyed when we try to observe it using the device shown in
Fig. 2.1. In the classical case, the spin state of an object is independent of the
choice of the measuring apparatus and, in principle, has not changed after the
measurement. In the quantum case, the spin state of the particle is a mathematical
idealization which depends on the choice of the measuring apparatus to have
a physical interpretation and, in principle, suffers irreversible changes after the
measurement. The quantities ja0j2 and ja1j2 are interpreted as the probability of
detection of spin up or down, respectively.

2.1.1 State–Space Postulate

An isolated physical system has an associated Hilbert space, called the state space.
The state of the system is fully described by a unit vector, called the state vector in
that Hilbert space.

Notes

1. The postulate does not tell us the Hilbert space we should use for a given
physical system. In general, it is not easy to determine the dimension of the
Hilbert space of the system. In the case of electron spin, we use the Hilbert space
of dimension 2, because there are only two possible results when we perform
an experiment to determine the vertical electron spin. More complex physical
systems admit more possibilities, which can be an infinite number.
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2. A system is isolated or closed if it does not influence and is not influenced by the
outside. In principle, the system need not be small, but it is easier to isolate small
systems with few atoms. In practice, we can only deal with approximate isolated
systems, so the state–space postulate is an idealization.

The state–space postulate is impressive, on the one hand, but deceiving, on the
other hand. The postulate admits that classically incompatible states coexist in
superposition, such as rotating to both sides simultaneously, but this occurs only
in isolated systems, i.e. we cannot see this phenomenon, as we are on the outside of
the insulation (let us assume that we are not Schrödinger’s cat). A second restriction
demanded by the postulate is that quantum states must have unit norm. The postulate
constraints show that the quantum superposition is not absolute, i.e. is not the
way we understand the classical superposition. If quantum systems admit a kind
of superposition that could be followed classically, the quantum computer would
have available an exponential amount of parallel processors with enough computing
power to solve the problems in class NP-complete.1 It is believed that the quantum
computer is exponentially faster than the classical computer only in a restricted class
of problems.

2.2 Unitary Evolution

The goal of physics is not simply to describe the state of a physical system at a given
time, rather the main objective is to determine the state of this system in future.
A theory makes predictions that can be verified or falsified by physical experiments.
This is equivalent to determining the dynamical laws the system obeys. Usually,
these laws are described by differential equations, which govern the time evolution
of the system.

2.2.1 Evolution Postulate

The time evolution of an isolated quantum system is described by a unitary trans-
formation. If the state of the quantum system at time t1 is described by vector j 1i,
the system state j 2i at time t2 is obtained from j 1i by a unitary transformationU ,
which depends only on t1 and t2, as follows:

j 2i D U j 1i: (2.3)

1The class NP-complete consists of the most difficult problems in the class NP (Non-deterministic
Polynomial). The class NP is defined as the class of computational problems that have solutions
whose correctness can be “quickly” verified.
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0%Fig. 2.2 Schematic drawing
of an experimental device,
which consists of a light
source, two half-silvered
mirrors A and B, fully
reflective mirrors, detectors 1
and 2. The interference
produced by the last
half-silvered mirror makes all
light to go to the detector 2

Notes

1. The action of a unitary operator on a vector preserves its norm. Thus, if j i is a
unit vector, U j i is also a unit vector.

2. A quantum algorithm is a prescription of a sequence of unitary operators applied
to an initial state takes the form

j ni D Un � � �U1j 1i:

The qubits in state j ni are measured, returning the result of the algorithm.
Before measurement, we can obtain the initial state from the final state because
unitary operators are invertible.

3. The evolution postulate is to be written in the form of a differential equation,
called Schrödinger equation. This equation provides a method to obtain operator
U once given the physical context. Since the goal of physics is to describe the
dynamics of physical systems, the Schrödinger equation plays a fundamental
role. The goal of computer science is to analyze and implement algorithms, so
the computer scientist wants to know if it is possible to implement some form
of a unitary operator previously chosen. Equation (2.3) is useful for the area of
quantum algorithms.

Let us analyze a second experimental device. It will help to clarify the role of
unitary operators in quantum systems. This device uses half-silvered mirrors with
45ı incident light, which transmit 50% of incident light and reflect 50%. If a single
photon hits the mirror at 45ı, with probability 1/2, it keeps the direction unchanged
and with probability 1/2, it is reflected. These half-silvered mirrors have a layer of
glass that can change the phase of the wave by 1/2 wavelength. The complete device
consists of a source that can emit one photon at a time, two half-silvered mirrors, two
fully reflective mirrors and two photon detectors, as shown in Fig. 2.2. By tuning the
device, the result of the experiment shows that 100% of the light reaches detector 2.

There is no problem explaining the result using the interference of electro-
magnetic waves in the context of the classical physics, because there is a phase
change in the light beam that goes through one of the paths producing a destructive
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interference with the beam going to the detector 1 and constructive interference
with the beam going to the detector 2. However, if the light intensity emitted by the
source is decreased such that one photon is emitted at a time, this explanation fails.
If we insist on using classical physics in this situation, we predict that 50% of the
photons would be detected by detector 1 and 50% by detector 2, because the photon
either goes through the mirror A or goes through B, and it is not possible to interfere
since it is a single photon.

In quantum mechanics, if the set of mirrors is isolated from the environment,
the two possible paths are represented by two orthonormal vectors j0i and j1i,
which generate the state space that describes the possible paths to reach the photon
detector. Therefore, a photon can be in superposition of “path A,” described by j0i,
together with “path B,” described by j1i. This is the application of the first postulate.
The next step is to describe the dynamics of the process. How is this done and
what are the unitary operators in the process? In this experiment, the dynamics is
produced by the half-silvered mirrors, since they generate the paths. The action of
the half-silvered mirrors on the photon must be described by a unitary operator U .
This operator must be chosen so that the two possible paths are created in a balanced
way, i.e.

U j0i D j0i C ei� j1ip
2

: (2.4)

This is the most general case where paths A and B have the same probability
to be followed, because the coefficients have the same modulus. To complete the
definition of operator U , we need to know its action on state j1i. There are many
possibilities, but the most natural choice that reflects the experimental device is
� D �=2 and

U D 1p
2

�
1 i

i 1

�
: (2.5)

The state of the photon after passing through the second half-silvered mirror is

U.U j0i/ D .j0i C i j1i/C i.i j0i C j1i/
2

D i j1i: (2.6)

The intermediate step of the calculation was displayed on purpose. We can see
that the paths described by j0i algebraically cancel, which can be interpreted as a
destructive interference, while the j1i-paths interfere constructively. The final result
shows that the photon that took path B remains, going directly to the detector 2.
Therefore, quantum mechanics predicts that 100% of the photons will be detected
by detector 2.
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2.3 Composite Systems

The postulate of composite systems states that the state space of a composite system
is the tensor product of the state space of the components. If j 1i; : : :, j ni describe
the states of n isolated quantum systems, the state of the composite system is
j 1i ˝ � � � ˝ j ni.

An example of a composite system is the memory of a n-qubit quantum
computer. Usually, the memory is divided into sets of qubits, called registers.
The state space of the computer memory is the tensor product of the state space
of the registers, which is obtained by repeated tensor product of the Hilbert space
C
2 of each qubit.
The state space of the memory of a 2-qubit quantum computer is C4 D C

2 ˝C
2.

Therefore, any unit vector in C
4 represents the quantum state of two qubits. For

example, the vector

j0; 0i D

2
664
1

0

0

0

3
775; (2.7)

which can be written as j0i ˝ j0i, represents the state of two electrons both with
spin up. Analogous interpretation applies to j0; 1i, j1; 0i, and j1; 1i. Consider now
the unit vector in C

4 given by

j i D j0; 0i C j1; 1ip
2

: (2.8)

What is the spin state of each electron in this case? To answer this question, we have
to factor j i as follows:

j0; 0i C j1; 1ip
2

D �
aj0i C bj1i�˝ �

cj0i C d j1i�: (2.9)

We can expand the right-hand side and match the coefficients setting up a system of
equations to find a, b, c, and d . The state of the first qubit will be aj0i C bj1i and
second will be cj0i C d j1i. But there is a big problem: the system of equations has
no solution, i.e. there are no coefficients a, b, c, and d satisfying (2.9). Every state of
a composite system that cannot be factored is called entangled. The quantum state
is well defined when we look at the composite system as a whole, but we cannot
attribute the states to the parts.

A single qubit can be in a superposed state, but it cannot be entangled, because
its state is not composed of subsystems. The qubit should not be taken as a synonym
of a particle, because it is confusing. The state of a single particle can be entangled
when we are analyzing more than a physical quantity related to it. For example,
we may describe both the position and the rotation state. The position state may be
entangled with the rotation state.
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Exercise 2.1. Consider the states

j 1i D 1

2

�j0; 0i � j0; 1i C j1; 0i � j1; 1i�;

j 2i D 1

2

�j0; 0i C j0; 1i C j1; 0i � j1; 1i�:
Show that j 1i is not entangled and j 2i is entangled.

Exercise 2.2. Show that if j i is an entangled state of two qubits, then the
application of a unitary operator of the form U1 ˝ U2 necessarily generates an
entangled state.

2.4 Measurement Process

In general, measuring a quantum system that is in the state j i seeks to obtain
classical information about this state. In practice, measurements are performed
in laboratories using devices such as lasers, magnets, scales, and chronometers.
In theory, we describe the process mathematically in a way that is consistent with
what occurs in practice. Measuring a physical system that is in an unknown state,
in general, disturbs this state irreversibly. In those cases, there is no way to know
or recover the state before the measurement. If the state was not disturbed, no new
information about it is obtained. Mathematically, the disturbance is described by a
orthogonal projector. If the projector is over an one-dimensional space, it is said
that the quantum state collapsed and is now described by the unit vector belonging
to the one-dimensional space. In the general case, the projection is over a vector
space of dimension greater than 1, and it is said that the collapse is partial or, in
extreme cases, there is no change at all in the quantum state of the system.

The measurement requires the interaction between the quantum system with a
macroscopic device, which violates the state–space postulate, because the quantum
system is not isolated at this moment. We do not expect the evolution of the quantum
state during the measurement process to be described by a unitary operator.

2.4.1 Measurement Postulate

A projective measurement is described by a Hermitian operator O , called observ-
able in the state space of the system being measured. The observable O has a
diagonal representation

O D
X
�

�P�; (2.10)

where P� is the projector on the eigenspace of O associated with the eigenvalue
�. The possible results of measurement of the observable O are the eigenvalues �.
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If the system state at the time of measurement is j i, the probability of obtaining
the result � will be kP�j ik2 or, equivalently,

p� D h jP�j i: (2.11)

If the result of the measurement is �, the state of the quantum system immediately
after the measurement will be

1p
p�
P�j i: (2.12)

Notes

1. There is a correspondence between the physical layout of the devices in a physics
lab and the observable O . When an experimental physicist measures a quantum
system, she or he gets real numbers as result. Those numbers correspond to the
eigenvalues � of the Hermitean operatorO .

2. The states j i and ei� j i have the same probability distribution p� when one
measures the same observable O . The states after measurement differ by
the same factor ei� . The term ei� multiplying a quantum state is called global
phase factor whereas a term ei� multiplying a vector of a sum of vectors, such as
j0i C ei� j1i, is called relative phase factor. The real number � is called phase.

Since the possible outcomes of a measurement of observableO obey a probabil-
ity distribution, we can define the expected value of a measurement as

hOi D
X
�

p� �; (2.13)

and the standard deviation as

�O D
p

hO2i � hOi2: (2.14)

It is important to remember that the mean and standard deviation of an observable
depends on the state that the physical system was in just before the measurement.

Exercise 2.3. Show that hOi D h jOj i:
Exercise 2.4. Show that if the physical system is in a state j i that is an eigenvector
of O , then �O D 0, that is, there is no uncertainty about the result of the
measurement of the observableO . What is the result of the measurement?

Exercise 2.5. Show that
P

� p� D 1 for any observableO and any state j i.

Exercise 2.6. Suppose that the physical system is in generic state j i. Show thatP
� p

2
� D 1 to an observableO , if and only if �O D 0.
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2.4.2 Measurement in Computational Basis

The computational basis of space C
2 is the set

˚j0i; j1i�. For one qubit, the
observable of the measurement in the computational basis is Pauli matrix Z, whose
spectral decomposition is

Z D .C1/PC1 C .�1/P�1; (2.15)

where PC1 D j0ih0j and P�1 D j1ih1j. The possible results of the measurement
are ˙1. If the state of the qubit is given by (2.1), the probabilities associated with
possible outcomes are

pC1 D ja0j2; (2.16)

p�1 D ja1j2; (2.17)

whereas the states immediately after the measurement are j0i and j1i, respectively.
In fact, each of these states has a global phase that can be discarded. Note that

pC1 C p�1 D 1;

because state j i have unit norm.
Before generalizing to n qubits, it is interesting to reexamine the process of

measurement of a qubit with another observable given by

O D
1X

kD0
kjkihkj: (2.18)

Since the eigenvalues of O are 0 and 1, the above analysis holds if we replace C1
by 0 and �1 by 1. With this new observable, there is a one-to-one correspondence in
the nomenclature of the measurement result and the final state. If the result is 0, the
state after the measurement is j0i. If the result is 1, the state after the measurement
is j1i.

The computational basis of the Hilbert space of n qubits in decimal notation
is the set

˚j0i; : : : ; j2n � 1i�. The measurement in the computational basis is
associated with observable

O D
2n�1X
kD0

k Pk; (2.19)

where Pk D jkihkj. A generic state of n qubits is given by

j i D
2n�1X
kD0

ak jki; (2.20)
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where amplitudes ak satisfying the constraint

X
k

jakj2 D 1: (2.21)

The measurement result is an integer value k in the range 0 � k � 2n � 1 with a
probability distribution given by

pk D ˝
 
ˇ̌
Pk
ˇ̌
 
˛

D ˇ̌ ˝
k
ˇ̌
 
˛ ˇ̌2

D jakj2: (2.22)

Equation (2.21) ensures that the sum of the probabilities is 1. The n-qubit state
immediately after the measurement is

Pkj ip
pk

' jki: (2.23)

For example, suppose that the state of two qubits is given by

j i D 1p
3
.j0; 0i � i j0; 1i C j1; 1i/ : (2.24)

The probability that the result is 00, 01 or 11 in binary notation is 1=3. Result
10 is never obtained, because the associated probability is 0. If the measurement
result is 00, the system state immediately after will be j0; 0i. Similarly for 01 and
11. For the measurement in the computational basis, it makes sense that the result
is state j0; 0i, because there is a correspondence between eigenvalue 00 and state
j0; 0i.

The result of the measurement specifies to which vector of the computational
basis state j i is projected. The result does not provide the value of coefficient ak ,
that is, none of the 2n amplitudes ak describing state j i are revealed. Suppose we
want to find number k as a result of an algorithm. This result should be encoded as
one of the vectors of the computational basis, which spans the vector space to which
state j i belongs. It is undesirable, in principle, that the result itself is associated
with one of the amplitudes. If the desired result is a non-integer real number, then
the k most significant digits should be coded as a vector of the computational basis.
After a measurement, we have a chance to get closer to k. A technique used in
quantum algorithms is to amplify the value of ak making it as close to 1 as possible.
A measurement at this point will return the value k with high probability. Therefore,
the number that specifies a ket, for example number k of jki is a possible outcome
of the algorithm, while the amplitudes of the quantum state are associated with
the probability of obtaining a result.
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The description of the measurement process of observable (2.19) is equivalent to
simultaneous measurements or in a cascade of observables Z, i.e. one observable
Z for each qubit. The possible results of measuring Z are ˙1. Simultaneous
measurements, or in a cascade of n qubits, result in a sequence of values ˙1.
The relationship between a result of this kind and the one described before is
obtained by replacing C1 by 0 and �1 by 1. We will have a binary number that
can be converted into a decimal number which is one of the values k of (2.19).

For example, for 3 qubits the result may be .�1;C1;C1/, which is equivalent to
.1; 0; 0/. Converting to base ten, we get number 4. The state after the measurement
will be obtained using the projector

P�1;C1;C1 D j1ih1j ˝ j0ih0j ˝ j0ih0j
D j1; 0; 0ih1; 0; 0j (2.25)

over the state system of the three qubits followed by renormalization. The renormal-
ization in this case replaces the coefficient by 1. The state after measurement will be
j1; 0; 0i. So far using the computational basis, for both observables (2.19) and Z’s,
we can simply say that the result is j1; 0; 0i, because we automatically know that the
eigenvalues of Z in question are .�1;C1;C1/ and the number k is 4.

A simultaneous measurement of n observables Z is not equivalent to measure
observableZ˝� � �˝Z. The latter observable returns a single value, which can be C1
or �1, whereas with n observablesZ, simultaneously or not, we obtain n values ˙1.
Measurements on a cascade are performed with observable Z ˝ I ˝ � � � ˝ I , I ˝
Z˝� � �˝I , and so on. They can also be performed simultaneously. Usually, we use
a more compact notation, Z1, Z2, successively, where Z1 means that observable
Z was used for the first qubit and the identity operator for the remaining qubits.
Since these observables commute, the order is irrelevant and the limits imposed by
the uncertainty principle do not apply. Measurement of observables of this kind is
called partial measurement in the computational basis.

Exercise 2.7. Suppose that the state of a qubit is j1i.
1. What is the mean value and standard deviation of the measurement of observ-

able X?
2. What is the mean value and standard deviation of the measurement of observable
Z? Compare with Exercise 2.4.

2.4.3 Partial Measurement in Computational Basis

The term measurement in the computational basis of n qubits implies a
measurement of all n qubits. However, it is possible to perform a partial measure-
ment, i.e. to measure some qubits. The result in this case is not necessarily a state
of the computational basis. For example, we can measure the first qubit of system
described by the state j i of (2.24). It is convenient to rewrite that state as follows:
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j i D
r
2

3
j0i ˝ j0i � i j1ip

2
C 1p

3
j1i ˝ j1i: (2.26)

We can see that the measurement result is either 0 or 1. The probability of obtaining
1 is 1=3, because the only way to get 1 for a measurement of the first qubit is to
obtain 1 as well, for the second qubit. Therefore, the probability of obtaining 0 is
2=3, and the state immediately after the measurement in this case is

j0i ˝ j0i � i j1ip
2

:

Only the qubits involved in the measurement are projected on the computational
basis. The states that have 0 in the first qubit survive and the final state must be
renormalized. The remaining qubits may be in superposition. In this example, when
the result is 0, the state of the second qubit is a superposition, when the result is 1,
the state of the second qubit is j1i.

If we have a system composed of subsystems A and B , a partial measurement is
a measurement of an observable of the typeOA ˝ IB , whereOA is an observable of
system A and IB is the identity operator of systemB . Physically, this means that the
measuring apparatus interacted only with the subsystem A. Equivalently, a partial
measurement interacting only with subsystem B is a measurement of an observable
of the type IA ˝OB .

If we have a register of m qubits together with a register of n qubits, we can
represent the computational basis in a compact form

˚ji; j i W 0 � i � 2m � 1,
0 � j � 2n � 1

�
, where i and j are both represented in base ten. A generic state

will be represented by

j i D
2m�1X
iD0

2n�1X
jD0

aij ji; j i: (2.27)

Suppose we measure all qubits of the first register in the computational basis, i.e.
we measure observableOA ˝ IB , where

OA D
2m�1X
kD0

kPk: (2.28)

The probability of obtaining value 0 � k � 2m � 1 is

pk D h j .Pk ˝ I / j i

D
2n�1X
jD0

ˇ̌
akj
ˇ̌2
: (2.29)
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The set
˚
p0; : : : ; p2m�1

�
is a probability distribution and therefore satisfies

2m�1X
kD0

pk D 1: (2.30)

If the measurement result is k, the state immediately after the measurement will be

1p
pk
.Pk ˝ I / j i D 1p

pk
jki

0
@2

n�1X
jD0

akj jj i
1
A : (2.31)

Note that the state after the measurement is a superposition of the second reg-
ister. A measurement of observable (2.28) is equivalent to measure observables
Z1, : : :, Zm.

Exercise 2.8. Suppose that the state of two qubits is given by

j i D 3

5
p
2

j0; 0i � 3 i

5
p
2

j0; 1i C 2
p
2

5
j1; 0i � 2

p
2 i

5
j1; 1i: (2.32)

1. Describe completely the measurement process of observable Z1, that is, obtain
the probability of each outcome and the corresponding states after the measure-
ment. Suppose that, after measuring Z1, we measure Z2. Describe all resulting
cases.

2. Now invert the order of the observable and describe the whole process.
3. If the intermediate quantum states are disregarded, is there a difference when

we invert the order of the observable? Note that the measurement of Z1 and Z2
may be performed simultaneously. One can move the qubits without changing
the quantum state, which may be entangled or not, and put each of them into a
measuring device, both adjusted to measure observableZ, as in Fig. 2.1.

4. For two qubits, the state after the measurement of the first qubit in the
computational basis can be either j0ij˛i or j1ijˇi, where j˛i and jˇi are states
of the second qubit. In general, we have j˛i ¤ jˇi. Why is this not the case in
previous items?

Further Reading

The amount of good books about quantum mechanics is very large. For the first
contact, we suggest [31, 66, 69]. For a more complete approach, we suggest [23].
For a more conceptual approach, we suggest [25, 65]. For those who are only
interested in the application of quantum mechanics to quantum computing, we
suggest [41, 57, 64, 67, 68].
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