
Chapter 2
Compressive Sensing

Compressive sensing [47], [23] is a new concept in signal processing and
information theory where one measures a small number of non-adaptive linear
combinations of the signal. These measurements are usually much smaller than
the number of samples that define the signal. From these small number of
measurements, the signal is then reconstructed by a non-linear procedure. In what
follows, we present some fundamental premises underlying CS: sparsity, incoherent
sampling and non-linear recovery.

2.1 Sparsity

Let x be a discrete time signal which can be viewed as an N × 1 column vector
in R

N . Given an orthonormal basis matrix B ∈ R
N×N whose columns are the basis

elements {bi}N
i=1, x can be represented in terms of this basis as

x =
N

∑
i=1

αibi (2.1)

or more compactly x = Bα , where α is an N × 1 column vector of coefficients.
These coefficients are given by αi = 〈x,bi〉= bT

i x where .T denotes the transposition
operation. If the basis B provides a K-sparse representation of x, then (2.1) can be
rewritten as

x =
K

∑
i=1

αnibni ,

where {ni} are the indices of the coefficients and the basis elements corresponding
to the K nonzero entries. In this case, α is an N × 1 column vector with only K
nonzero elements. That is, ‖α‖0 = K where ‖.‖p denotes the �p-norm defined as
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‖x‖p =

(
∑

i
| xi |p

) 1
p

and the �0-norm is defined as the limit as p → 0 of the �p-norm

‖x‖0 = lim
p→0

‖x‖p
p = lim

p→0
∑

i

| xi |p .

In general, the �0-norm counts the number of non-zero elements in a vector

‖x‖0 = �{i : xi �= 0}. (2.2)

Typically, real-world signals are not exactly sparse in any orthogonal basis.
Instead, they are compressible. A signal is said to be compressible if the magnitude
of the coefficients, when sorted in a decreasing order, decays according to a power
law [87],[19]. That is, when we rearrange the sequence in decreasing order of
magnitude α(1) ≥ α(2) ≥ ·· · ≥ α(N), then the following holds

| α |(n)≤C.n−s, (2.3)

where | α |(n) is the nth largest entry of α , s ≥ 1 and C is a constant. For a given L,
the L-term linear combination of elements that best approximate x in an L2-sense is
obtained by keeping the L largest terms in the expansion

xL =
L−1

∑
n=0

α(n)b(n).

If α obeys (2.3), then the error between xL and x also obeys a power law as well
[87], [19]

‖xL − x‖2 ≤CL−(s− 1
2 ).

In other words, a small number of vectors from B can provide accurate
approximations to x. This type of approximation is often known as the non-linear
approximation [87].

Fig. 2.1 shows an example of the non-linear approximation of the Boats image
using Daubechies 4 wavelet. The original Boats image is shown in Fig. 2.1(a). Two
level Daubechies 4 wavelet coefficients are shown in Fig. 2.1(b). As can be seen
from this figure, these coefficients are very sparse. The plot of the sorted absolute
values of the coefficients of the image is shown in Fig. 2.1(c). The reconstructed
image after keeping only 10% of the coefficients with the largest magnitude is
shown in Fig. 2.1(d). This reconstruction provides a very good approximation
to the original image. In fact, it is well known that wavelets provide the best
representation for piecewise smooth images. Hence, in practice wavelets are often
used to compressively represent images.
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Fig. 2.1 Compressibility of wavelets. (a) Original Boats image. (b) Wavelet coefficients. (c) The
plot of the sorted absolute values of the coefficients. (d) Reconstructed image after keeping only
10% of the coefficients with the largest magnitude

2.2 Incoherent Sampling

In CS, the K largest αi in (2.1) are not measured directly. Instead, M 
N projections
of the vector x with a collection of vectors {φ j}M

j=1 are measured as in y j = 〈x,φ j〉.
Arranging the measurement vector φT

j as rows in an M ×N matrix Φ and using
(2.1), the measurement process can be written as

y = Φx = ΦBα = Aα, (2.4)
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where y is an M × 1 column vector of the compressive measurements and A = ΦB
is the measurement matrix or the sensing matrix. Given an M ×N sensing matrix
A and the observation vector y, the general problem is to recover the sparse or
compressible vector α . To this end, the first question is to determine whether A is
good for compressive sensing. Candés and Tao introduced a necessary condition on
A that guarantees a stable solution for both K sparse and compressible signals [26],
[24].

Definition 2.1. A matrix A is said to satisfy the Restricted Isometry Property (RIP)
of order K with constants δK ∈ (0,1) if

(1− δK)‖v‖2
2 ≤ ‖Av‖2

2 ≤ (1+ δK)‖v‖2
2

for any v such that ‖v‖0 ≤ K.

An equivalent description of RIP is to say that all subsets of K columns taken
from A are nearly orthogonal. This in turn implies that K sparse vectors cannot be
in the null space of A. When RIP holds, A approximately preserves the Euclidean
length of K sparse vectors. That is,

(1− δ2K)‖v1 − v2‖2
2 ≤ ‖Av1 −Av2‖2

2 ≤ (1+ δ2K)‖v1 − v2‖2
2

holds for all K sparse vectors v1 and v2. A related condition known as incoherence,
requires that the rows of Φ can not sparsely represent the columns of B and vice
versa.

Definition 2.2. The coherence between Φ and the representation basis B is

μ(Φ ,B) =
√

N max
1≤i, j≤N

| 〈φ i,b j〉 |, (2.5)

where φ i ∈ Φ and b j ∈ B.

The number μ measures how much two vectors in A = ΦB can look alike. The
value of μ is between 1 and

√
N. We say that a matrix A is incoherent when μ is very

small. The incoherence holds for many pairs of bases. For example, it holds for the
delta spikes and the Fourier bases. Surprisingly, with high probability, incoherence
holds between any arbitrary basis and a random matrix such as Gaussian or
Bernoulli [6], [142].

2.3 Recovery

Since, M 
 N, we have an under-determined system of linear equations, which in
general has infinitely many solutions. So our problem is ill-posed. If one desires
to narrow the choice to a well-defined solution, additional constraints are needed.
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One approach is to find the minimum-norm solution by solving the following
optimization problem

α̂ = argmin
α ′ ‖α ′‖2 subject to y = Aα ′.

The solution to the above problem is explicitly given by

α̂ = A†y = A∗(AA∗)−1y,

where A∗ is the adjoint of A and A† = A∗(AA∗)−1 is the pseudo-inverse of A. This
solution, however, yields a non-sparse vector. The approach taken in CS is to instead
find the sparsest solution.

The problem of finding the sparsest solution can be reformulated as finding a
vector α ∈R

N with a minimum possible number of nonzero entries. That is

α̂ = argmin
α ′ ‖α ′‖0 subject to y = Aα ′. (2.6)

This problem can recover a K sparse signal exactly. However, this is an NP-hard
problem. It requires an exhaustive search of all

(N
K

)
possible locations of the nonzero

entries in α .
The main approach taken in CS is to minimize the �1-norm instead

α̂ = argmin
α ′ ‖α ′‖1 subject to y = Aα ′. (2.7)

Surprisingly, the �1 minimization yields the same result as the �0 minimization
in many cases of practical interest. This program also approximates compressible
signals. This convex optimization program is often known as Basis Pursuit (BP)
[38]. The use of �1 minimization for signal restoration was initially observed by
engineers working in seismic exploration as early as 1970s [52]. In the last few
years, a series of papers [47], [142], [21], [25], [19], [22], explained why �1

minimization can recover sparse signals in various practical setups.

2.3.1 Robust CS

In this section we examine the case when there are noisy observations of the
following form

y = Aα +η (2.8)

where η ∈ R
M is the measurement noise or an error term. Note that η can be

stochastic or deterministic. Furthermore, let’s assume that ‖η‖2 ≤ ε. Then, x can
be recovered from y via α by solving the following problem

α̂ = argmin
α ′ ‖α ′‖1 subject to ‖ y−Aα ′‖ ≤ ε. (2.9)
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The problem (2.9) is often known as Basis Pursuit DeNoising (BPDN) [38]. In [22],
Candés at. el. showed that the solution to (2.9) recovers an unknown sparse signal
with an error at most proportional to the noise level.

Theorem 2.1. [22] Let A satisfy RIP of order 4K with δ3K + 3δ4K < 2. Then, for
any K sparse signal α and any perturbation η with ‖η‖2 ≤ ε , the solution α̂ to
(2.9) obeys

‖α̂ −α‖2 ≤ εCK

with a well behaved constant CK.

Note that for K obeying the condition of the theorem, the reconstruction from
noiseless data is exact. A similar result also holds for stable recovery from imperfect
measurements for approximately sparse signals (i.e compressible signals).

Theorem 2.2. [22] Let A satisfy RIP of order 4K. Suppose that α is an arbitrary
vector in R

N and let αK be the truncated vector corresponding to the K largest
values of θ in magnitude. Under the hypothesis of Theorem 2.1, the solution α̂ to
(2.9) obeys

‖α̂ −α‖2 ≤ εC1,K +C2,K
‖α −αK‖1√

K

with well behaved constants C1,K and C2,K.

If α obeys (2.3), then
‖α̂ −αK‖1√

K
≤C′K−(s− 1

2 ).

So in this case
‖α̂ −αK‖2 ≤C′′K−(s− 1

2 ),

and for signal obeying (2.3), there are fundamentally no better estimates available.
This, in turn, means that with only M measurements, one can achieve an approxima-
tion error which is almost as good as that one obtains by knowing everything about
the signal α and selecting its K-largest elements [22].

2.3.1.1 The Dantzig selector

In (2.8), if the noise is assumed to be Gaussian with mean zero and variance σ2,
η ∼ N (0,σ2), then the stable recovery of the signal is also possible by solving a
modified optimization problem

α̂ = argmin
α ′ ‖α ′‖1 s. t. ‖AT (y−Aα ′)‖∞ ≤ ε ′ (2.10)

where ε ′ = λNσ for some λN > 0 and ‖.‖∞ denotes the �∞ norm. For an N
dimensional vector x, it is defined as ‖x‖∞ = max(|x1|, · · · , |xN |). The above
program is known as the Dantzig Selector [28].
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Theorem 2.3. [28] Suppose α ∈R
N is any K-sparse vector obeying δ2K +ϑK,2K <

1. Choose λN =
√

2log(N) in (2.10). Then, with large probability, the solution to
(2.10), α̂ obeys

‖α̂ −α‖2
2 ≤C2

1 .(2log(N)).K.σ2, (2.11)

with

C1 =
4

1− δK −ϑK,2K
,

where ϑK,2K is the K,2K-restricted orthogonal constant defined as follows

Definition 2.3. The K,K′-restricted orthogonality constant ϑK,K′ for K+K′ ≤ N is
defined to be the smallest quantity such that

|〈AT v,AT ′v′〉| ≤ ϑK,K′ ‖v‖2‖v′‖2 (2.12)

holds for all disjoint sets T,T ′ ⊆ {1, ...,N} of cardinality |T | ≤ K and |T ′| ≤ K′.

A similar result also exists for compressible signals (see [28] for more details).

2.3.2 CS Recovery Algorithms

The �1 minimization problem (2.10) is a linear program [28] while (2.9) is a second-
order cone program (SOCP) [38]. SOCPs can be solved using interior point methods
[74]. Log-barrier and primal dual methods can also be used [15], [3] to solve
SOCPs. Note, the optimization problems (2.7), (2.9), and (2.10) minimize convex
functionals, hence a global minimum is guaranteed.

In what follows, we describe other CS related reconstruction algorithms.

2.3.2.1 Iterative Thresholding Algorithms

A Lagrangian formulation of the problem (2.9) is the following

α̂ = argmin
α ′ ‖y−Aα′‖2

2 +λ‖α ′‖1. (2.13)

There exists a mapping between λ from (2.13) and ε from (2.9) so that both
problems (2.9) and (2.13) are equivalent. Several authors have proposed to solve
(2.13) iteratively [12], [45], [11], [9]. This algorithm iteratively performs a soft-
thresholding to decrease the �1 norm of the coefficients α and a gradient descent to
decrease the value of ‖y−Aα‖2

2. The following iteration is usually used

yn+1 = Tλ (y
n +A∗(α −Ayn)), (2.14)

where Tλ is the element wise soft-thresholding operator
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Tλ (a) =

⎧⎪⎪⎨
⎪⎪⎩

a+ λ
2 , if a ≤ −λ

2

0, if |a|< λ
2

a− λ
2 , if a ≥ λ

2 .

The iterates yn+1 converge to the solution of (2.9), α̂ if ‖A‖2 < 1 [45]. Similar
results can also be obtained using the hard-thresholding instead of the soft-
thresholding in (2.14) [11].

Other methods for solving (2.13) have also been proposed. See for instance
GPSR [61], SPGL1 [8], Bregman iterations [159], split Bregman iterations [65],
SpaRSA [157], and references therein.

2.3.2.2 Greedy Pursuits

In certain conditions, greedy algorithms such as matching pursuit [88], orthogonal
matching pursuit [109], [138], gradient pursuits [13], regularized orthogonal match-
ing pursuit [94] and Stagewise Orthogonal Matching Pursuit [49] can also be used to
recover sparse (or in some cases compressible) α from (2.8). In particular, a greedy
algorithm known as, CoSaMP, is well supported by theoretical analysis and provides
the same guarantees as some of the optimization based approaches [93].

Let T be a subset of {1,2, · · · ,N} and define the restriction of the signal x to the
set T as

x|T =

{
xi, i ∈ T
0, otherwise

Let AT be the column submatrix of A whose columns are listed in the set T
and define the pseudoinverse of a tall, full-rank matrix C by the formula C‡ =
(C∗C)−1C∗. Let supp(x) = {x j : j �= 0}. Using this notation, the pseudo-code for
CoSaMP is given in Algorithm 1 which can be used to solve the under-determined
system of linear equations (2.4).

2.3.2.3 Other Algorithms

Recently, there has been a great interest in using �p minimization with p < 1 for
compressive sensing [37]. It has been observed that the minimization of such a
nonconvex problem leads to recovery of signals that are much less sparse than
required by the traditional methods [37].

Other related algorithms such as FOCUSS and reweighted �1 have also been
proposed in [68] and [29], respectively.
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Algorithm 1: Compressive Sampling Matching Pursuit (CoSaMP)
Input: A, y, sparsity level K.
Initialize: α0 = 0 and the current residual r = y.
While not converged do

1. Compute the current error:
v = A∗r.
2. Compute the best 2K support set of the error:
Ω = v2K .
3. Merge the the strongest support sets:
T = Ω ∪ supp(α J−1).
4. Perform a least-squares signal estimation:
b|T = A‡

|T y, bT c = 0.
5. Prune αJ−1 and compute r for the next round:
αJ = bk, r = y−AαJ.

2.4 Sensing Matrices

Most of the sensing matrices in CS are produced by taking i.i.d. random variables
with some given probability distribution and then normalizing their columns. These
matrices are guaranteed to perform well with high probability. In what follows, we
present some commonly used sensing matrices in CS [22], [142], [26].

• Random matrices with i.i.d. entries: Consider a matrix A with entries drawn
independently from the Gaussian probability distribution with mean zero and
variance 1/M. Then the conditions for Theorem 2.1 hold with overwhelming
probability when

K ≤CM/ log(N/M).

• Fourier ensemble: Let A be an M ×N matrix obtained by selecting M rows, at
random, from the N ×N discrete Fourier transform matrix and renormalizing the
columns. Then with overwhelming probability, the conditions for Theorem 2.1
holds provided that

K ≤C
M

(log(N))6 .

• General orthogonal ensembles: Suppose A is obtained by selecting M rows from
an N ×N orthonormal matrix Θ and renormalizing the columns. If the rows are
selected at random, then the conditions for Theorem 2.1 hold with overwhelming
probability when

K ≤C
1

μ2

M
(log(N))6 ,

where μ is defined in (2.5).
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2.5 Phase Transition Diagrams

The performance of a CS system can be evaluated by generating phase transition
diagrams [86], [48], [10], [51]. Given a particular CS system, governed by the
sensing matrix A = ΦB, let δ = M

N be a normalized measure of undersampling
factor and ρ = K

M be a normalized measure of sparsity. A plot of the pairing of the

variables δ and ρ describes a 2-D phase space (δ ,ρ)∈ [0,1]2. It has been shown that
for many practical CS matrices, there exist sharp boundaries in this phase space that
clearly divide the solvable from unsolvable problems in the noiseless case. In other
words, a phase transition diagram provides a way of checking �0/�1 equivalence,
indicating how sparsity and indeterminacy affect the success of �1 minimization
[86], [48], [51]. Fig. 2.2 shows an example of a phase transition diagram which is
obtained when a random Gaussian matrix is used as A. Below the boundary, �0/�1

equivalence holds and above the boundary, the system lacks sparsity and/or too few
measurements are obtained to solve the problem correctly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.4
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0.6
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0.8

0.9

1

δ=M/N

ρ=
K

/M

Phase Transition

Fig. 2.2 Phase transition diagram corresponding to a CS system where A is the random Gaussian
matrix. The boundary separates regions in the problem space where (2.7) can and cannot be solved.
Below the curve solutions can be obtained and above the curve solutions can not be obtained
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Fig. 2.3 1D sparse signal recovery example from random Gaussian measurements. (a) Com-
pressive measurement matrix. (b) Original sparse signal. (c) Compressive measurements. (d) �1
recovery. (e) �2 recovery. (f) �1 reconstruction error. (g) �2 reconstruction error
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Fig. 2.4 2D sparse image recovery example from random Fourier measurements. (a) Original
image. (b) Original image contaminated by additive white Gaussian noise with signal-to-noise
ratio of 20 dB. (c) Sampling mask in the Fourier domain. (d) �2 recovery. (e) �1 recovery
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2.6 Numerical Examples

We end this section by considering the following two examples. In the first example,
a 1D signal x of length 200 with only 10 nonzero elements is undersampled using
a random Gaussian matrix Φ of size 50× 200 as shown in Fig. 2.3(a). Here, the
sparsifying transform B is simply the identity matrix and the observation vector y is
of length 50. Having observed y and knowing A = Φ the signal x is then recovered
by solving the following optimization problem

x̂ = arg min
x′∈RN

‖x′‖1 subject to y = Ax′. (2.15)

As can be seen from Fig. 2.3(d), indeed the solution to the above optimization
problem recovers the sparse signal exactly from highly undersampled observations.
Whereas, the minimum norm solution (i.e. by minimizing the �2 norm), as shown in
Fig. 2.3(e), fails to recover the sparse signal. The errors corresponding the �1 and �2

recovery are shown in Fig. 2.3(f) and Fig. 2.3(g), respectively.
In the second example, we reconstructed an undersampled Shepp-Logan phan-

tom image of size 128 × 128 in the presence of additive white Gaussian noise
with signal-to-noise ratio of 30 dB. For this example, we used only 15% of the
random Fourier measurements and Haar wavelets as a sparsifying transform. So
the observations can be written as y = MFBα +η, where y,M,F,B,α and η are
the noisy compressive measurements, the restriction operator, Fourier transform
operator, the Haar transform operator, the sparse coefficient vector and the noise
vector with ‖η‖2 ≤ ε , respectively. The image was reconstructed via α estimated
by solving the following optimization problem

α̂ = argmin
α ′ ‖α ′‖1 subject to ‖y−MFBα ′‖ ≤ ε.

The reconstruction from �2 and �1 minimization is shown in Fig. 2.4(d) and
Fig. 2.3(e), respectively. This example shows that, it is possible to obtain a stable
reconstruction from the compressive measurements in the presence of noise. For
both of the above examples we used SPGL1 [8] algorithm for solving the �1

minimization problems.
In [23], [47], a theoretical bound on the number of samples that need to be

measured for a good reconstruction has been derived. However, it has been observed
by many researchers [79], [22], [142], [19], [26] that in practice samples in the
order of two to five times the number of sparse coefficients suffice for a good
reconstruction. Our experiments also support this claim.
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