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Abstract Using the theory of Calabi–Yau differential equations we obtain all the
parameters of Ramanujan–Sato-like series for 1/π2 as q-functions valid in the
complex plane. Then we use these q-functions together with a conjecture to find
new examples of series of non-hypergeometric type. To motivate our theory we
begin with the simpler case of Ramanujan–Sato series for 1/π .
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1 Introduction

In his famous paper in 1914 S. Ramanujan published 17 formulas for 1/π [18], all
of hypergeometric form

∞

∑
n=0

(1/2)n(s)n(1− s)n

n!3 (a+ bn)zn =
1
π
.

Here (c)n = c(c+1)(c+2) · · ·(c+n−1) is the Pochhammer symbol, s = 1/2, 1/3,
1/4, or 1/6 and z, b, a are algebraic numbers. The most impressive is
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e-mail: gert.almkvist@yahoo.se

J. Guillera
Avda. Cesreo Alierta 31, Zaragoza, Spain
e-mail: jguillera@gmail.com

J.M. Borwein et al. (eds.), Number Theory and Related Fields: In Memory of Alf van der
Poorten, Springer Proceedings in Mathematics & Statistics 43,
DOI 10.1007/978-1-4614-6642-0 2, © Springer Science+Business Media New York 2013

55

mailto:gert.almkvist@yahoo.se
mailto:jguillera@gmail.com


56 G. Almkvist and J. Guillera

∞

∑
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n

( 1
4

)
n

( 3
4

)
n

(1)3
n

1
994n (26390n+ 1103)=

9801
√

2
4π

, (1.1)

which gives eight decimal digits of π per term. All the 17 series were rigorously
proved in 1987 by the Borwein brothers [9]. Independently, the Borwein [9] and the
Chudnovsky brothers [12] studied and proved Ramanujan series of the form

∞

∑
n=0

(6n)!
(3n)!n!3 (a+ bn)zn =

1
π
. (1.2)

The value of z can be found in the following way: Let us take the Chudnovsky
brothers series (of Ramanujan type with s = 1/6)

∞

∑
n=0

(6n)!
(3n)!n!3 (10177+ 261702n)

1
(−52803)n =

8802
√

330
π

.

The series

w0 =
∞

∑
n=0

(6n)!
(3n)!n!3 zn =

∞

∑
n=0

123n ·
(

1
2

)
n

(
1
6

)
n

(
5
6

)
n

(1)3
n

zn

satisfies the differential equation
(

θ 3 − 24z(2θ + 1)(6θ + 1)(6θ + 5)
)

w0 = 0,

where θ = zd/dz. A second solution is

w1 = w0 lnz+ 744z+ 562932z2+ 570443360z3+ · · · .
Define

q = exp

(
w1

w0

)
= z+ 744z2+ 750420z3+ 872769632z4+ · · · .

Then

J(q) =
1

z(q)
=

1
q
+ 744+ 196884q+21493760q2+ · · ·

is the famous modular invariant and

J
(
−e−π

√
67
)
=−52803.

A similar construction, getting a different J := 1/z, can be made starting with any
third order differential equation which is the symmetric square of a second-order
differential equation. This kind of series are called Ramanujan–Sato series for 1/π
because Sato discovered the first example of this type, one involving the Apéry
numbers [10].
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Similarly, the first formulas for 1/π2, found by the second author, were of
hypergeometric type, using a function

w0 =
∞

∑
n=0

(1/2)n(s1)n(1− s1)n(s2)n(1− s2)n

n!5 zn,

where the 14 possible pairs (s1,s2) are given in [14] or [6] and w0 satisfies a fifth-
order differential equation

(
θ 5 − z(θ +

1
2
)(θ + s1)(θ + 1− s1)(θ + s2)(θ + 1− s2)

)
w0 = 0.

This differential equation is of a very special type. It is a Calabi–Yau equation with
a fourth-order pullback with solutions y0,y1,y2,y3, where

w0 = y0 (θy1)− (θy0)y1.

This was used in [6, 14], where one new hypergeometric formula was found.
Unfortunately, fifth-order Calabi–Yau differential equations are quite rare. The
simplest non-hypergeometric cases are Hadamard products of second- and third-
order equations (labeled A ∗α , etc., in [5]). Seven formulas of this kind have been
found [6], like, for example,

∞

∑
n=0

(
2n
n

)2 n

∑
i=0

(−1)i3n−3i(3i)!
i!3

(
n
3i

)(
n+ i

i

)
(−1)n

36n (803n2+ 416n+ 68)=
486
π2 ,

(1.3)

which involves the Almkvist–Zudilin numbers. Two of the others were proved by
Zudilin [20]. In this paper we explore more complicated fifth-order equations, most
of them found by the first author (#130 was found by Verrill).

To find q0 in the 1/π case, we solve the equation α(q) = α0, where α0 is a
rational and

α(q) =
ln2 |q|

π2 .

The real solutions are q0 = ±e−π√α0 . As there are many examples in the lit-
erature with q0 real, in this paper we will show some series corresponding to
q0 = eiπr0e−π√α0 , where r0 is a rational such that eiπr0 is complex. If we calculate
J0 = J(q0), then z0 = 1/J0. In the 1/π2 case we have two functions,

α(q) =
1
6 ln3 |q|−T(q)− hζ (3)

π2 ln |q| , τ(q) =
1
2 ln2 |q|− (θqT )(q)

π2 −α(q), (1.4)

where h is an invariant and T (q) essentially is the Gromov–Witten potential in string
theory. Solving the equation α(q) = α0 numerically, where α0 is rational, we get an
approximation of q0. Replacing q0 in the second equation, we get τ0. We conjecture
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that the corresponding series is of Ramanujan type for 1/π2 if, and only if, τ2
0 is also

rational. The success in finding the examples of this paper depends heavily on our
experimental method to get the invariant h. It uses the critical value z= zc, the radius
of convergence for the power series w0. From the conjecture (dz/dq)(qc) = 0 we
get an approximation of qc and using the PSLQ algorithm to find an integer relation
among the numbers

ln3 |qc|
6

−T (qc), π2 ln |qc|, ζ (3),

we obtain simultaneously αc and the invariant h. Replacing αc and qc in the second
equation we get τc.

In the 1/π case, the algebraic but nonrational z0 dominate the rational solutions
(see the tables in [4]). In the case 1/π2 the only known series with a nonrational
z0 is

∞

∑
n=0

( 1
2

)3
n

( 1
3

)
n

( 2
3

)
n

(1)5
n

(
15

√
5− 33
2

)3n

×

[
(1220/3− 180

√
5)n2 +(303− 135

√
5)n+(56− 25

√
5)
]
=

1
π2 , (1.5)

which was discovered by the second author [15]. See also the corresponding mosaic
supercongruences in [16].

We obtain the q-functions for all the parameters of general Ramanujan–Sato-like
series for 1/π and 1/π2. Contrary to the series for 1/π in which everything can be
proved rigorously by means of modular equations, in the case 1/π2, we can only
evaluate the functions numerically and then guess the algebraic values when they
exist. A modular-like theory which explains the rational and algebraic quantities
observed is still not available [19]. For an excellent account of these topics, see [22].

2 Ramanujan–Sato-Type Series for 1/π

Certain differential equations of order 3 are the symmetric square of a differential
equation of second order. Suppose

θ 3w = e2(z)θ 2w+ e1(z)θw+ e0(z)w, θ = z
d
dz

, (2.1)

is the symmetric square of the second-order equation

θ 2y = c1(z)θy+ c0(z)y, 3c1(z) = e2(z). (2.2)
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We define the following function

P(z) = exp
∫ −2c1(z)

z
dz,

with P(0) = 1, which plays an important role in the theory. In the examples of this
paper P(z) is a polynomial but we have also found examples for which P(z) is a
rational function.

The fundamental solutions w0, w1, w2 of the third-order differential equation are
connected to the fundamental solutions y0, y1 of the second-order equation by

w0 = y2
0, w1 = y0y1, w2 =

1
2

y2
1 (2.3)

[7, Prop. 9]. We define the wronskians

W (wi,wj) =

∣
∣
∣
∣

wi θwi

wj θwj

∣
∣
∣
∣ , W (y0,y1) =

∣
∣
∣
∣
y0 θy0

y1 θy1

∣
∣
∣
∣ .

Observe that this notation is not the same as in [1], where in the definition of
W (y0,y1) we have y′0 and y′1 instead of θy0 and θy1.

Theorem 2.1. We have

W (w0,w1) =
y2

0√
P
, W (w0,w2) =

y0y1√
P
, W (w1,w2) =

y2
1

2
√

P
. (2.4)

Proof. Using (2.3), we get

W (w0,w1) = y2
0 W (y0,y1), W (w0,w2) = y0y1 W (y0,y1)

and

W (w1,w2) =
1
2

y2
1 W (y0,y1).

If we denote with f the wronskian W (y0,y1), then from (2.2), we see that
θ f = c1(z) f . This implies f = 1/

√
P. ��

2.1 Series for 1/π

Let q = eiπre−πτ . If the function

w0(z) =
∞

∑
n=0

Anzn
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satisfies a differential equation of order 3 as above, then we will find two functions
b(q) and a(q) with good arithmetical properties, such that

∞

∑
n=0

An

(
a(q)+ b(q)n

)
zn(q) =

1
π
.

The interesting cases are those with z, b, a algebraic. They are called Ramanujan–
Sato-type series for 1/π .

The usual q-parametrization is

q = exp

(
y1

y0

)
= exp

(
w1

w0

)
,

and we can invert it to get z as a series of powers of q. The function z(q) is the
mirror map, and for this kind of differential equations, it has been proved that it is a
modular function. We also define J(q) := 1/z(q).

Theorem 2.2. The functions α(q), b(q), a(q) such that

2

∑
j=0

[
(wj)a+(θwj)b

]
x j = eiπrx

(
1
π
− π

2
αx2

)
truncated at x3 (2.5)

are given by

α(q) = τ2(q), b(q) = τ(q)
√

P(z), a(q) =
1

πw0

(
1+

ln |q|
w0

q
dw0

dq

)
. (2.6)

In addition, if r and τ2
0 are rational, then z(q0), b(q0), a(q0) are algebraic.

Proof. First, we see that q = eiπre−πτ implies that

τ(q) =− ln |q|
π

.

We can write (2.5) in the following equivalent form:

(w0)a+(θw0)b =
1
π
,

(w1)a+(θw1)b = ir, (2.7)

(w2)a+(θw2)b =−π
2
(α + r2).

In what follows, we will use the wronskians (2.4). As we want this system to be
compatible, we have
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∣
∣
∣∣
∣
∣

w0 θw0
1
π

w1 θw1 ir
w2 θw2 − π

2 (α + r2)

∣
∣
∣∣
∣
∣
= 0. (2.8)

Expanding along the last column, we get

1
2π

(
y1

y0

)2

− ir

(
y1

y0

)
− π

2
(α + r2) = 0.

Hence

1
π

ln2 q
2

− ir lnq− π
2
(α + r2) = 0.

As lnq = ln |q|+ iπr, we obtain the function α(q). To obtain b we apply Cramer’s
method to the system formed by the two first equations of (2.7). We get

b =

(
ir− 1

π
w1

w0

)√
P(z) =

(
iπr− lnq

π

)√
P(z) =− ln |q|

π
√

P(z).

Then, replacing w1 with w0 lnq in the second equation of (2.7) and solving the
system formed by the two first equations, we obtain the identity

w0 =
q

z
√

P(z)

dz
dq

.

Finally, using the two last formulas and the first equation of (2.7), we derive the
formula for a(q) in (2.6). From b = τ

√
1− z we see that b takes algebraic values

when r and τ2 are rational. By an analogue to the argument given in [14, Sect. 2.4],
we see that the same happens to a(q). ��

2.2 Examples of Series for 1/π

There are many examples in the literature (see [8] and the references in it), but until
very recently, all of them were with r = 0 (series of positive terms) or with r = 1
(alternating series). The first example of a complex series was found and proved,
with a hypergeometric transformation, by the second author and Wadim Zudilin in
[17, Eq. 44]. Other complex series, proved by modular equations or hypergeometric
transformations, are in [11], like, for example,

∞

∑
n=0

(4n)!
n!4

(
10+ 2

√−3

28
√

3

)4n(
(320− 55

√−3)n+(52− 12
√−3)

)
=

98
√

3
π

.

(2.9)
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Tito Piezas (Ramanujan-type complex series available at Tito Piezas’s web-site,
personal communication)found numerically and then guessed the series

∞

∑
n=0

(2n)!(3n)!
n!5

3+(17− i)n
(2(7+ i)(2+ i)4)n =

33− 6i
4

1
π
, (2.10)

which involves only Gaussian rational numbers. It leads to taking q = e
2πi
3 e−

4
√

2
3 π ,

and of course, it is possible to prove it rigorously using modular equations. For our
following examples, we have chosen the sequence of numbers

An =

(
2n
n

) n

∑
k=0

(
n
k

)(
2k
k

)(
2n− 2k
n− k

)
,

which is the Hadamard product
(2n

n

)∗ (d) (see [7]). The differential equation is

(
θ 3 − 8z(2θ + 1)(3θ 2 + 3θ + 1)+ 128z2(θ + 1)(2θ + 1)(2θ + 3)

)
w = 0.

The polynomial P(z) is P(z) = (1− 16z)(1− 32z) and

J(q) =
1

z(q)
=

1
q
+ 16+ 52q+ 834q3+ 4760q5+ 24703q7+ · · · .

For q = ie−π
√

13
2 , we find

∞

∑
n=0

An
(−1+ 6i)+ (−9+ 33i)n

(16+ 288i)n =
52+ 91i

√
13(1+ 18i)3

· 50
π
. (2.11)

For q = ie−π
√

37
2 , we get

∞

∑
n=0

An
(11842+ 11741i)+112665(1+ i)n

(16− 14112i)n =

(
37

1+ 882i

) 3
2

· 2 ·53 ·293

π
. (2.12)

Taking q = ei π
4 e−π

√
15
4 , we find

∞

∑
n=0

An

[
4(−3

√
3+ 13i)+ 3(29

√
3− 44i)n

]( 2

65− 15
√

3i

)n

=
142

√
5

π
. (2.13)

We give a final example with the sequence of Domb’s numbers [10], called (α)
in [7]

An =
n

∑
k=0

(
n
k

)2(2k
k

)(
2n− 2k
n− k

)
.
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The differential equation is

(
θ 3 − 2z(2θ + 1)(5θ 2 + 5θ + 2)+ 64z2(θ + 1)3

)
w = 0.

We have P(z)=(1− 4z)(1− 16z) and

J(q)=q−1 + 6+ 15q+ 32q2+ 87q3+ 192q4+ · · · .

For q = e
iπ
3 e−

2
√

2
3 π , we find

∞

∑
n=0

An
(1+ i)+ (4+ 2i)n

(16+ 16i)n =
6
π
. (2.14)

Taking the real and imaginary parts, we get

∞

∑
n=0

An
1+ 4n

32n (
√

2)n cos
nπ
4

+
∞

∑
n=0

An
1+ 2n

32n (
√

2)n sin
nπ
4

=
6
π
,

and
∞

∑
n=0

An
1+ 2n

32n (
√

2)n cos
nπ
4

=
∞

∑
n=0

An
1+ 4n

32n (
√

2)n sin
nπ
4
.

The first author is preparing a collection of series for 1/π in [4]. Although we have
guessed our examples from numerical approximations, the exact evaluations can be
proved rigorously by using modular equations [11].

3 Ramanujan–Sato-Like Series for 1/π2

A Calabi–Yau differential equation is a fourth-order differential equation

θ 4y = c3(z)θ 3y+ c2(z)θ 2y+ c1(z)θy+ c0(z)y, θ = z
d
dz

, (3.1)

where ci(z) are quotients of polynomials of z with rational coefficients, which
satisfies several conditions [6]. There are two functions associated to these equations
which play a very important role, namely, the mirror map and the Yukawa coupling.
The mirror map z(q) is defined as the functional inverse of

q = exp(
y1

y0
)
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and the Yukawa coupling as

K(q) = θ 2
q

(
y2

y0

)
, θq = q

d
dq

.

We define T (q) as the unique power series of q such that T (0) = 0 and

θ 3
q T (q) = 1−K(q).

The function

Φ =
1
2

(
y1

y0

y2

y0
− y3

y0

)
=

1
6

ln3 q−T(q) (3.2)

is well known in string theory and is called the Gromov–Witten potential (see [13,
p. 28]).

3.1 Pullback

The solution of some differential equations of fifth order can be recovered from the
solutions of a fourth-order Calabi–Yau differential equation. We say that they admit
a pullback. If (3.1) is the ordinary pullback of the differential equation

θ 5w = e4(z)θ 4w+ e3(z)θ 3w+ e2(z)θ 2w+ e1(z)θw+ e0(z)w, (3.3)

then we know that w0, w1, w2, w3, w4 can be recovered from the four fundamental
solutions y0, y1, y2, y3 of (3.1) in the following way:

w0 =

∣
∣
∣∣

y0 y1

θy0 θy1

∣
∣
∣∣ , w1 =

∣
∣
∣∣

y0 y2

θy0 θy2

∣
∣
∣∣ , w3 =

1
2

∣
∣
∣∣

y1 y3

θy1 θy3

∣
∣
∣∣ , w4 =

1
2

∣
∣
∣∣

y2 y3

θy2 θy3

∣
∣
∣∣ ,

(3.4)

w2 =

∣
∣
∣∣

y0 y3

θy0 θy3

∣
∣
∣∣=

∣
∣
∣∣

y1 y2

θy1 θy2

∣
∣
∣∣ . (3.5)

We define the following function

P(z) = exp
∫ −2c3(z)

z
dz,

with P(0) = 1, which plays an important role in the theory. In the Yifan Yang’s
pullback the corresponding coefficient is 4c3(z) instead of c3(z). In all the examples
of this paper P(z) is a polynomial.

We denote as W (wi,wj,wj) and W (wi,wj) the following wronskians [1]:

W (wi,wj ,wk) =

∣
∣
∣
∣∣
∣

wi θwi θ 2wi

wj θwj θ 2wj

wk θwk θ 2wk

∣
∣
∣
∣∣
∣
, W (wi,wj) =

∣
∣
∣∣

wi θwi

wj θwj

∣
∣
∣∣ . (3.6)
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Due to different definition and notation, f in [1] is 1/ 4
√

P(z) here and the powers
of x (z here) do not appear now. We will need the following wronskians of order 3
(see [1]):

W (w1,w2,w3) =
1
2

y1y2 − y0y3√
P

, W (w0,w2,w3) =
y2

1√
P
, W (w0,w1,w3) =

y0y1√
P
,

W (w0,w1,w2) =
y2

0√
P
, W (w0,w1,w4) =

y0y2√
P
, W (w1,w2,w4) =

y2
2

2
√

P
,

and

W (w0,w2,w4) =
y0y3 + y1y2

2
√

P
.

We will also need the following wronskians of order 2 (see [1]):

W (w0,w1) =
y2

0
4
√

P
, W (w0,w2) =

y0y1
4
√

P
, W (w1,w2) =

y0y2
4
√

P
.

3.2 Series for 1/π2

Suppose that the function

w0(z) =
∞

∑
n=0

Anzn, (3.7)

is a solution of a fifth-order differential equation which has a pullback to a Calabi–
Yau differential equation. We will determine functions a(q), b(q), c(q) in terms of
ln |q|, z(q) and T (q), such that

∞

∑
n=0

Anz(q)n(a(q)+ b(q)n+ c(q)n2) =
1

π2 .

The interesting cases are those for which z, c, b, a are algebraic numbers. We
will call them Ramanujan–Sato-like series for 1/π2. In this paper we improve and
generalize to the complex plane the theory developed in [6, 15]. We let q = |q|eiπr

and consider an expansion of the form

4

∑
j=0

[
(wj)a+(θwj)b+(θ 2wj)c

]
x j

= eiπrx
(

1
π2 −αx2 + h

ζ (3)
π2 x3 +

π2

2
(τ2 −α2)x4

)
truncated at x5. (3.8)
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The number h is a rational constant associated to the differential operator D such
that Dw0 = 0. The motivation of this expansion is due to the fact that in the case of
Ramanujan–Sato-like series for 1/π2 (z, c, b, a algebraic), we have experimentally
observed that r, α , and τ2 are rational while h is a rational constant (see the remark
at the end of this section). We have the equivalent system

(w0)a+(θw0)b+(θ 2w0)c =
1

π2 ,

(w1)a+(θw1)b+(θ 2w1)c =
i
π

r,

(w2)a+(θw2)b+(θ 2w2)c =− r2

2
−α, (3.9)

(w3)a+(θw3)b+(θ 2w3)c = iπr

(
− r2

6
−α

)
+ h

ζ (3)
π2 ,

(w4)a+(θw4)b+(θ 2w4)c = π2
(

r4

24
+

τ2 −α2

2
+

r2

2
α
)
+

i
π

hζ (3)r.

This system allows us to develop the theory. In the next theorem we obtain α and τ
as non-holomorphic functions of q.

Theorem 3.1. We have

α(q) =
1
6 ln3 |q|−T(q)− hζ (3)

π2 ln |q| , (3.10)

and

τ(q) =
1
2 ln2 |q|− (θqT )(q)

π2 −α(q). (3.11)

Proof. In the proof we use the wronskians above. As we want the system (3.9) to
be compatible, we have ∣

∣
∣
∣
∣∣
∣
∣

w0 θw0 θ 2w0 p0

w1 θw1 θ 2w1 p1

w2 θw2 θ 2w2 p2

w3 θw3 θ 2w3 p3

∣
∣
∣
∣
∣∣
∣
∣

= 0, (3.12)

where p0, p1, etc., stand for the independent terms. Expanding the determinant
along the last column, we obtain

−p0

(
y1y2 − y0y3

2

)
+ p1(y

2
1)− p2(y0y1)+ p3(y

2
0) = 0.

Then, dividing by y2
0, we get

−p0
1
2

(
y1

y0

y2

y0
− y3

y0

)
+ p1

(
y1

y0

)2

− p2

(
y1

y0

)
+ p3 = 0.
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Hence

−p0

(
1
6

ln3 q−T(q)

)
+ p1 ln2 q− p2 lnq+ p3 = 0.

Using lnq = ln |q|+ iπr and replacing p0, p1, p2, and p3 with there values in the
system, we arrive at (3.10). Then, from the first, second, third, and fifth equations
and using the the function α(q) obtained already, we derive (3.11). ��
In the next theorem we obtain c, b, a as non-holomorphic functions of q.

Theorem 3.2.

c(q) = τ(q) 4
√

P(z), (3.13)

b(q) =
z(q)

θqz(q)

(
1

π2

(
θ 2

q T (q)− ln |q|
)
− τ(q)

θqL(q)

L(q)

)
4
√

P(z), (3.14)

a(q) =
1

w0(q)

(
1

π2 − (θw0)b(q)− (θ 2w0)c(q)

)
, (3.15)

with

L(q) =
y2

0
4
√

P(z)
=

w0(q)
4
√

P(z)

θqz(q)
z(q)

=
1

√
P(q)K(q)

(
θqz(q)
z(q)

)3

, (3.16)

where y0 is the ordinary pullback.

Proof. Solving for c by Cramer’s rule from the three first equations of (3.9), we get

c
4
√

P(z)
=

1
π2

(
y2

y0

)
− i

π
r

(
y1

y0

)
− r2

2
−α.

Hence
c

4
√

P(z)
=

1
π2

(
1
2

ln2 q−θqT

)
− i

π
r lnq− r2

2
−α.

Replacing lnq with ln |q|+ iπr, we obtain (3.13). Then, solving for b from the two
first equations of (3.9), we obtain

b =
1

π2

w0

L

(
iπr− w1

w0

)
− c(z)

θzL
L

, (3.17)

where L = w0(θw1)−w1(θw0). But, as q = exp(y1/y0), we obtain

θq

(
y2

y0

)
=

q
θzq

θz

(
y2

y0

)
=

y0 θy2 − y2 θy0

y0 θy1 − y1 θy0
=

w1

w0
.

Applying θq to the two extremes of it, we get

θq

(
w1

w0

)
=

w0(θw1)−w1(θw0)

w2
0

θqz
z

= K(q) = 1−θ 3
q T (q),
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which implies
w1

w0
= lnq−θ 2

q T (q) (3.18)

and

w0θw1 −w1θw0 =
w2

0K(q)z(q)
θqz(q)

= L(q). (3.19)

But

L = w0(θw1)−w1(θw0) =
y2

0
4
√

P(z)
. (3.20)

In [1] we have the formula

y2
0 =

(
θqz(q)

z(q)

)3 1
4
√

P(q)K(q)
. (3.21)

From (3.19)–(3.21), we obtain

w0 =

(
θqz(q)

z(q)

)2 1
4
√

P(q)K(q)
. (3.22)

From the three last identities we arrive at (3.16). From (3.17), (3.18), and (3.22) we
deduce (3.14). The proof of (3.15) is trivial from the first equation of (3.9). ��

The relevant fact is that the functions α(q), τ(q), c(q), b(q), a(q) have good
arithmetical properties. This is stated in the following conjecture which is crucial to
discover Ramanujan–Sato-like series for 1/π2:

Conjecture

Let α0 = α(q0), τ0 = τ(q0), z0 = z(q0), a0 = a(q0), etc. If two of the quantities α0,
τ2

0 , z0, a0, b0, c0 are algebraic, so are all the others. Even more, in that case, α0 and
τ2

0 are rational.

Remark

As one has

∞

∑
n=0

An+x

Ax
zn+x = w0 +w1x+w2x2 +w3x3 +w4x4 +O(x5),
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we can write (3.8) in the following way:

1
Ax

∞

∑
n=0

zn+xAn+x(a+ b(n+ x)+ c(n+ x)2)

= eiπrx
(

1
π2 −αx2 + h

ζ (3)
π2 x3 +

π2

2
(τ2 −α2)x4

)
+O(x5).

The rational constant h appears (and can be defined) by the coefficient of x3 in the
expansion of Ax (analytic continuation of An) [6, Eq. 4]. In the hypergeometric cases
we know how to extend An to Ax because the function Γ is the analytic continuation
of the factorial. To determine h in the non-hypergeometric cases, we will not use this
definition because it is not clear how to extend An to Ax in an analytic way. Instead,
we will use the following conjecture:

Conjecture

The radius of convergence zc of w0(z) is the smallest root of P(z) = 0 and

dz
dq

(qc) = 0.

In addition, αc is rational. Hence there is a relation with integer coefficients among
the numbers 1

6 ln3 |qc|−T (qc), π2 ln |qc|, and ζ (3), which we can discover with the
PSLQ algorithm, and it determines the invariant h. This solution corresponds to the
degenerated series z = zc, c(qc) = b(qc) = a(qc) = 0.

3.3 New Series for 1/π2

To discover Ramanujan-like series for 1/π2, we first obtain the mirror map, the
Yukawa coupling, and the function T (q). Solving the equation

dz(q)
dq

= 0,

we get the value qc which corresponds to zc. Let q= et eiπr, where t < 0 is real. If we
choose a value of r, then we can write (3.10) in the form

α(t) =
1
6 t3 −T (q)− hζ (3)

π2t
.
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For r = 0 we get series of positive terms and for r = 1, we get alternating series.
Solving numerically the equation α(t) = α0, where α0 is rational, we find an
approximation of t0 and hence also an approximation of q0. Substituting this q0

in (3.11), we get the value of τ0. If τ2
0 is also rational, then with the mirror map,

we get the corresponding approximation of z0. To discover the exact algebraic
number z0, we use the Maple function MinimalPolynomial which finds the minimal
polynomial of a given degree, then we use the functions c(q), b(q), a(q) to
get the numerical values c0, b0, and a0. To recognize the exact algebraic values
of these parameters, we use minimal polynomial again. It is remarkable that in
the “divergent” cases, we can compute c0, b0, a0 with high precision by using
formula (3.22) for w0.

Big Table

In [5] there is a collection of many differential equations of Calabi–Yau type.
We select some of those which are pullbacks of differential equations of fifth order.
The ones not mentioned below gave no result. The symbol # stands as a reference
of the equation in the Big Table. In [2] one can learn the art of finding Calabi–
Yau differential equations. In Table 1, we show the invariants corresponding to the
cases #60, #130, #189, #355, and #356. For all the cases cited above we have found
examples of Ramanujan-like series for 1/π2. In Table 2 we show those examples,
indicating the algebraic values of α −αc, z−1

c · z, a, b, and c for which we have

∞

∑
n=0

Ãn
(
z−1

c · z)n
(a+ bn+ cn2) =

1
π
,

where Ãn =Anzn
c . If |z−1

c ·z|> 1, then the series diverges, but we avoid the divergence
considering the analytic continuation given by the parametrization with q. In all
cases we have found congruences mod p5 or mod p3 (see [21]).

For #355 an explicit formula for An is not known but we can easily compute these
numbers from the fifth-order differential equation Dw = 0, where D is the following
operator:

θ 5 − 2z(2θ + 1)(43θ 4+ 86θ 3+ 77θ 2 + 34θ + 6)

+ 48z2(θ + 1)(2θ + 1)(2θ + 3)(6θ + 5)(6θ + 7).
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Table 1 Table of invariants

#60 An =
n

∑
k=0

(
n
k

)2(2k
k

)(
2n−2k

n− k

)(
n+ k

n

)(
2n− k

n

)

P(z) = (1−16z)2(1−108z)2, zc =
1

22 ·33 , αc =
1
3
, τ2

c =
2

23
, h =

50
23

#130 An = ∑
i+ j+k+l
+m+s=n

(
n!

i! j!k! l!m!s!

)2

P(z) = (1−4z)2(1−16z)2(1−36z)2, zc =
1
36

, αc =
1
6
, τ2

c =
2
45

, h =
2
3

#189 An =

(
2n
n

)

∑
j,k

(
n
j

)2(n
k

)2( j+ k
n

)2

P(z) = (1−4z)2(1−256z)2, zc =
1

256
, αc =

1
2
, τ2

c =
8

21
, h =

30
7

#355 Explicit formula for An not known

P(z) = (1−64z)2(1−108z)2, zc =
1

108
, αc =

1
3
, τ2

c =
4
33

, h =
30
11

#356 A0 = 1, An>0 = 2

(
2n
n

) [n/4]

∑
k=0

n−2k
3n−4k

(
n
k

)2(2k
k

)(
2n−2k
n− k

)(
3n−4k

2n

)

P(z) = (1−108z)2(1−128z)2, zc =
1

128
, αc =

1
3
, τ2

c =
1

10
, h =

14
5

Complex Series for 1/π2

Another method to obtain series for 1/π2 is by applying suitable transformations
to the already known series for 1/π2; see [3, 6, 20]. Although we can use this
technique to obtain other real Ramanujan-like series for 1/π2, our interest here is to
find examples of Ramanujan-like complex series for 1/π2. For that purpose we will
use the following very general transformation:

∞

∑
n=0

Anzn =
1

1− z

∞

∑
n=0

an

[
u

(
z

1− z

)m]n

, An =
n

∑
k=0

uk
(

n
mk

)
ak,

where u = 1 or u = −1 and m is a positive integer (check that both sides
satisfy the same Calabi–Yau differential equation). For example, translating the
hypergeometric series

∞

∑
n=0

(3n)!(4n)!
n!7 (252n2 + 63n+ 5)(−1)n

(
1

24

)4n

=
48
π2 , (3.23)

taking u =−1 and m = 4, we find four series, one of them is the complex series

∞

∑
n=0

An

(
9072n2+(9072− 756i)n+(2875−516i)

)( 1
1− 24i

)n

=
27504+ 3454i

π2 ,

(3.24)
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Table 2 Table of examples

# α0 −αc z−1
c · z0 a0 b0 c0

60
4

23
1
2

3
3 ·23

20
3 ·23

40
3 ·23

8
23

33

53

40
52 ·23

282
52 ·23

616
52 ·23

43
46

− 1
48

706
25 ·32 ·23

5895
25 ·32 ·23

16380
25 ·32 ·23

3
46

−2
178

25 ·23
719

25 ·23
860

25 ·23

130
1
6

−32

42

21
96

74
96

85
96

0 −4
38
54

94
54

65
54

189
2

21
82

92

48
35 ·7

328
35 ·7

680
35 ·7

4
7

1
32

87
24 ·32 ·7

710
24 ·32 ·7

1840
24 ·32 ·7

19
42

−24

34

843
22 ·35 ·7

5750
22 ·35 ·7

12610
22 ·35 ·7

139
42

− 24

214

1655799
22 ·35 ·75

24749870
22 ·35 ·75

122761930
22 ·35 ·75

1
14

−42

32

51
252

254
252

370
252

355
1

11
3
4

1
22 ·3 ·11

12
22 ·3 ·11

30
22 ·3 ·11

5
22

−32

42

9
22 ·11

42
22 ·11

60
22 ·11

5
11

27
196

21
22 ·7 ·11

164
22 ·7 ·11

390
22 ·7 ·11

13
11

1
108

3119
22 ·36 ·11

29860
22 ·36 ·11

93090
22 ·36 ·11

1
22

−3
16

3 ·11
60

3 ·11
60

3 ·11

356
1
5

1
2

2
160

27
160

74
160

1
1

50
74

800
679
800

2002
800

7
10

− 1
24

158
1280

1113
1280

2618
1280
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where

An =
n

∑
k=0

(−1)k
(

n
4k

)
(3k)!(4k)!

k!7 .

Transformations preserve the value of the invariants h, αc, and τc, and the
series (3.24) has 2(α−αc) = 3 and τ = 3

√
3 because it is a transformation of (3.23);

see [6]. Looking at the transformation with u=−1 and m= 4, we see that the mirror
maps z and z′ corresponding to An and an, are related in the following way:

z =
4
√

z′

1+ 4
√

z′
.

Write z = z(q) and z′ = z′(q′). Then, the first terms of J(q) are

J(q) =
1
q
+ 1+ 582q3+ 277263q7+ 167004122q11+ · · · ,

with q = 4
√

q′. Writing, as usual, q = eiπr|q|, we deduce that as the series (3.23) has
r = 1, then the series (3.24) has r = 1/4.

4 Addendum

The method used in this paper, to find h, αc = α(qc) and τc = τ(qc), is valid for
those Calabi–Yau differential equations such that K(qc) = 0, where qc is a solution
of dz/dq = 0. In these cases, we conjecture that z(qc) is the smallest root of P(z)
and that a(qc) = b(qc) = c(qc) = 0. But from Theorem 3.2, we see that b(qc) = 0
implies that τc = f (qc), where

f (q) =
1

π2

(
θ 2

q T (q)− ln |q|
) L(q)

θqL(q)
,

which allows us to obtain the critical value of τ . Then, replacing q = qc in (3.11),
we can obtain αc. Finally, replacing q = qc in (3.10), we obtain the value of h. As
qc > 0, the formula for h can be written in the form h = h(qc), where

h(q) =
1

ζ (3)

(
Φ(q)− ln(q)θqΦ(q)− ln(q)

L(q)
θqL(q)

θ 2
q Φ(q)

)
,

and Φ(q) is the Gromov–Witten potential (3.2). The advantage of this way of getting
the invariants τc, αc, and h is that we use explicit formulas instead of the PSLQ
algorithm.
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