Ramanujan—Sato-Like Series

Gert Almkyvist and Jesus Guillera

Abstract Using the theory of Calabi—Yau differential equations we obtain all the
parameters of Ramanujan—Sato-like series for 1/7% as g-functions valid in the
complex plane. Then we use these g-functions together with a conjecture to find
new examples of series of non-hypergeometric type. To motivate our theory we
begin with the simpler case of Ramanujan—Sato series for 1/7.
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1 Introduction

In his famous paper in 1914 S. Ramanujan published 17 formulas for 1 /7 [18], all
of hypergeometric form
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Here (¢), =c(c+1)(c+2)---(c+n—1) is the Pochhammer symbol, s = 1/2, 1/3,
1/4,0r 1/6 and z, b, a are algebraic numbers. The most impressive is
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which gives eight decimal digits of 7 per term. All the 17 series were rigorously
proved in 1987 by the Borwein brothers [9]. Independently, the Borwein [9] and the
Chudnovsky brothers [12] studied and proved Ramanujan series of the form
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The value of z can be found in the following way: Let us take the Chudnovsky
brothers series (of Ramanujan type with s = 1/6)
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The series
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satisfies the differential equation
(93 —247(20+1)(66 + 1)(66+5)) wo =0,
where 6 = zd /dz. A second solution is

wi = wo Inz + 744z + 5629327% + 5704433607 + - - -

Define
q = exp <%> = 7+ 744722 + 7504207 + 872769632z + - --
0

Then
11
J(q) = — = — + 744 + 1968844 + 21493760g° + - - -
q

is the famous modular invariant and
J ( s ) —5280°.

A similar construction, getting a different J := 1/z, can be made starting with any
third order differential equation which is the symmetric square of a second-order
differential equation. This kind of series are called Ramanujan—Sato series for 1/7
because Sato discovered the first example of this type, one involving the Apéry
numbers [10].
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Similarly, the first formulas for 1/ n2, found by the second author, were of
hypergeometric type, using a function

i (1/2)71(51)71(1 _Sl)n(SZ)n(l _52)71 !
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where the 14 possible pairs (s;,s2) are given in [14] or [6] and wy satisfies a fifth-
order differential equation

(95 —z(@—l—%)(@—i—sl)(ﬂ—i- 1—s51)(0+s)(60+1 —s2)> wo = 0.

This differential equation is of a very special type. It is a Calabi—Yau equation with
a fourth-order pullback with solutions yg, y1,¥2,y3, where

wo = yo (0y1) — (8y0)y1.

This was used in [6, 14], where one new hypergeometric formula was found.
Unfortunately, fifth-order Calabi—Yau differential equations are quite rare. The
simplest non-hypergeometric cases are Hadamard products of second- and third-
order equations (labeled A * ¢, etc., in [5]). Seven formulas of this kind have been
found [6], like, for example,

5 (2)' 8 SO (1) () S ot o)~ 22

=0 \"/ 2o l
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which involves the Almkvist—Zudilin numbers. Two of the others were proved by
Zudilin [20]. In this paper we explore more complicated fifth-order equations, most
of them found by the first author (#130 was found by Verrill).

To find gg in the 1/7 case, we solve the equation a(g) = o, where oy is a
rational and

_ In*|q]

a(q) = :

2

The real solutions are gy = +e "V®, As there are many examples in the lit-
erature with go real, in this paper we will show some series corresponding to
go = €™0e "™V where r is a rational such that ¢™0 is complex. If we calculate
Jo =J(qo), then zo = 1/Jy. In the 1/7* case we have two functions,

_ I’ lgl = T(q) —hL(3)

Ln?|q| - (6,T
(X(q)— 77:21n|q| _3in |CI| ( q )(Q)

) T(q) - —(X(q), (14)

2

where & is an invariant and 7' (g) essentially is the Gromov—Witten potential in string
theory. Solving the equation o(g) = o numerically, where ¢y is rational, we get an
approximation of go. Replacing g in the second equation, we get Ty. We conjecture
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that the corresponding series is of Ramanujan type for 1 /72 if, and only if, ‘L'g is also
rational. The success in finding the examples of this paper depends heavily on our
experimental method to get the invariant 4. It uses the critical value z = z., the radius
of convergence for the power series wo. From the conjecture (dz/dq)(g.) =0 we
get an approximation of g, and using the PSLQ algorithm to find an integer relation
among the numbers

In? |g
Wl 1), mlgd,  C0),

6
we obtain simultaneously ¢, and the invariant 4. Replacing o, and g, in the second
equation we get 7.
In the 1/ case, the algebraic but nonrational zo dominate the rational solutions
(see the tables in [4]). In the case 1/ n* the only known series with a nonrational
20 1S

§ 4L, @), (M—zs) .

[(1220/3—180\/§)n2+(303—135\/§)n+(56—25\/§) =%, (1.5)

which was discovered by the second author [15]. See also the corresponding mosaic
supercongruences in [16].

We obtain the g-functions for all the parameters of general Ramanujan—Sato-like
series for 1/ and 1/m2. Contrary to the series for 1 /7 in which everything can be
proved rigorously by means of modular equations, in the case 1/7, we can only
evaluate the functions numerically and then guess the algebraic values when they
exist. A modular-like theory which explains the rational and algebraic quantities
observed is still not available [19]. For an excellent account of these topics, see [22].

2 Ramanujan-Sato-Type Series for 1/

Certain differential equations of order 3 are the symmetric square of a differential
equation of second order. Suppose

d
0%w = e2(2)0%w + €1 (2) 0w +eo (2)w, 0 =15 2.1

is the symmetric square of the second-order equation

6%y =c1(z)0y+co(2)y,  3ci(z) = exz). (2.2)
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We define the following function
-2
P(z) = exp/%(z)dz,

with P(0) = 1, which plays an important role in the theory. In the examples of this
paper P(z) is a polynomial but we have also found examples for which P(z) is a
rational function.

The fundamental solutions wy, wy, wy of the third-order differential equation are
connected to the fundamental solutions yy, y; of the second-order equation by

1
Wo=Y5, Wi=Yyoyi, W2= zy% (2.3)

[7, Prop. 9]. We define the wronskians

wi GW,'
wij GWJ'

yo 8yo

; W(yo,y1) =
(o, 1) W Oy

W(W,’,Wj) = ‘

Observe that this notation is not the same as in [1], where in the definition of
W (yo,y1) we have y;, and y| instead of Oy, and 6y.

Theorem 2.1. We have
2
Yo
W(wo,w1) = —=,
(wo.wi) = 75

Proof. Using (2.3), we get

y2
Wwi,wy) === (24)

W (wo,w2) = Y 2P

oy
VP’
W (wo,w1) = y5W (30,51), W (wo,w2) = yoy1 W(v0,¥1)

and

1
W(wi,wp) = Ey%W(yOJl)'

If we denote with f the wronskian W(yg,y;), then from (2.2), we see that
0f = c1(z)f. This implies f = 1/+/P. 0

2.1 Series for1/r

Let g = ¢/™ e~ ™" If the function

wo (Z) = z A"
n=0
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satisfies a differential equation of order 3 as above, then we will find two functions
b(q) and a(q) with good arithmetical properties, such that

- o
3. (ala) +blg)n) (@) = 7

T

The interesting cases are those with z, b, a algebraic. They are called Ramanujan—
Sato-type series for 1/7.
The usual g-parametrization is

g=exp|— ) =exp| — |,
Yo wo

and we can invert it to get z as a series of powers of ¢. The function z(g) is the
mirror map, and for this kind of differential equations, it has been proved that it is a
modular function. We also define J(q) := 1/z(q).

Theorem 2.2. The functions o(q), b(q), a(q) such that

1

(wj)a+ (0w;)b| xi = ™ =
| J =

_r ocx2> truncated at x° 2.5)
T 2

2
j=0

are given by
alg) = (q). blg) = 1(a)V/PE, a(q)—i<1+mq%). 2.6)

In addition, if r and T3 are rational, then z(qo), b(qo), a(qo) are algebraic.

Proof. First, we see that g = ¢/ ¢~ "7 implies that

_ Inlq|
—.

7(q) =

We can write (2.5) in the following equivalent form:

(wo)a+ (Bwo)b=

)

ajl—

(wi)a+ (Ow)b=1r, 2.7

(wa)a+ (Bwy)b = —g(a+r2),

In what follows, we will use the wronskians (2.4). As we want this system to be
compatible, we have
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wi Ow; ir =0. (2.8)

Hence

11
;nT—lrlnq—E(OH-r) 0.

As Ing = 1n|g| + inr, we obtain the function o/(q). To obtain b we apply Cramer’s
method to the system formed by the two first equations of (2.7). We get

T Wo

Then, replacing w; with wglng in the second equation of (2.7) and solving the
system formed by the two first equations, we obtain the identity

¢ i
2)dq

Finally, using the two last formulas and the first equation of (2.7), we derive the
formula for a(q) in (2.6). From b = 74/1 —z we see that b takes algebraic values
when 7 and 72 are rational. By an analogue to the argument given in [14, Sect. 2.4],
we see that the same happens to a(q). O

2.2 Examples of Series for 1/n

There are many examples in the literature (see [8] and the references in it), but until
very recently, all of them were with r = O (series of positive terms) or with » = 1
(alternating series). The first example of a complex series was found and proved,
with a hypergeometric transformation, by the second author and Wadim Zudilin in
[17, Eq. 44]. Other complex series, proved by modular equations or hypergeometric
transformations, are in [11], like, for example,

> (4n)! (10+2y/-3 n 98\/_
go . ( TG ) ((320 55\/_)11—1-(52—12\/_))
(2.9)
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Tito Piezas (Ramanujan-type complex series available at Tito Piezas’s web-site,
personal communication)found numerically and then guessed the series

S (2n)(3n)! 3+(17—in 33-6i 1

>

=0 nls (2(7 + i) (2 + i)4)” - 4 o (2.10)

2mi 4\/57.(

which involves only Gaussian rational numbers. It leads to taking g =e 3 e 3
and of course, it is possible to prove it rigorously using modular equations. For our
following examples, we have chosen the sequence of numbers

n _
w=(EE GG
which is the Hadamard product (zn") * (d) (see [7]). The differential equation is
(93 —82(20+1)(30%+30+ 1)+ 12822(6 + 1) (26 + 1)(20 + 3)) w=0.
The polynomial P(z) is P(z) = (1 — 16z)(1 —32z) and

1
J(g) = — = — + 16+ 52q + 8344 + 4760¢° 4+ 24703q" + - - - .
q

For g = ie’”g, we find

i (—14+6)+(-9+33)n _ 52+91i 50 @.11)
P S (164 2884)" /1B F18)} T '
For g = ie’”@, we get
= (118424 11741i) + 112665(1 +i)n 37 \2 2.5%.293
YA = (2.12)
et (16 — 14112i) -~ \1+882i T
Taking ¢ = et , we find
& 2 " 1425
A |4(=3V3+13i) +3(29V3 — 44i)n < ) = . (213
Zb "[( )3 )} 65— 15v/3i - @

We give a final example with the sequence of Domb’s numbers [10], called ()

in [7] ,
" /n 2k\ (2n—2k
w=2() (%)
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The differential equation is
(93 —22(20+1)(56%+ 560 +2) + 6422(0 + 1)3) w=0.
We have P(z) = (1 —4z)(1 — 16z) and
J(q)=q '+ 6+15¢+32¢>+ 874> +192¢* + - - .

in _2y2
Forg=e3e 5 T, we find

<, (I+)+@+2)n 6
,ZO "o(16+16i)r @ 219

Taking the real and imaginary parts, we get

i 1+4 - 1+2
zAnﬂ(\/i)”cosﬂ + zAnﬂ(\/i)”sinE — é,
oy 32 4 = T

and

- , 14+2n nw <, l+4n . nT
%Anv(\/ﬁ)” oS — = ;An—(\/i)” sin R

The first author is preparing a collection of series for 1/ in [4]. Although we have
guessed our examples from numerical approximations, the exact evaluations can be
proved rigorously by using modular equations [11].

3 Ramanujan-Sato-Like Series for 1/72

A Calabi—Yau differential equation is a fourth-order differential equation

d
0y =c3(2)0°y+ ()07 +er @Oy + 0@y, =z, (D)

where ¢;(z) are quotients of polynomials of z with rational coefficients, which
satisfies several conditions [6]. There are two functions associated to these equations
which play a very important role, namely, the mirror map and the Yukawa coupling.
The mirror map z(g) is defined as the functional inverse of

Y1
= expl—
q p(yo)
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and the Yukawa coupling as

d
K(q) = 62 (i—j}) 0= a5

We define T'(q) as the unique power series of g such that 7(0) = 0 and
0, T(q)=1-K(q).

The function
L (yiy y3) 1 3
O=-——=-=|==-In"g-T (3.2)
2 <y0 Yo Yo 6 1 (@)

is well known in string theory and is called the Gromov—Witten potential (see [13,
p. 28]).

3.1 Pullback

The solution of some differential equations of fifth order can be recovered from the
solutions of a fourth-order Calabi—Yau differential equation. We say that they admit
a pullback. If (3.1) is the ordinary pullback of the differential equation

0°w = e4(2)0*w + €3(2) %W + €2(2) 07w + €1 () Ow + e (2)w, (3.3)

then we know that wy, wi, wy, wz, wy can be recovered from the four fundamental
solutions yo, y1, y2, ¥3 of (3.1) in the following way:

WO_‘)’O i _‘)’0 2 W3_l‘y1 ¥3 W4_l‘y2 ¥3
Oyo Oy1 |’ Oyo Oy2 |’ 2 {6y Oy3 |’ 2|6y, Oy3 |’
(3.4)
Yo 3 Yoy
wy = = . 3.5)
? ’ Oyo 0y3 ‘le 0y2

We define the following function
-2
P(z) = exp/%(z)dz,

with P(0) = 1, which plays an important role in the theory. In the Yifan Yang’s
pullback the corresponding coefficient is 4¢3(z) instead of ¢3(z). In all the examples
of this paper P(z) is a polynomial.

We denote as W (w;,w;,w;) and W (w;,w;) the following wronskians [1]:

wi 9w,- 92Wi
W(wi,wj,wi) = |w; Ow; 0%w; |, W(wi,w;j) = ’
Wi ka szk

wi GW,'

. 3.6
Wj QWJ' ( )
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Due to different definition and notation, f in [1] is 1/{/P(z) here and the powers
of x (z here) do not appear now. We will need the following wronskians of order 3

(see [1]):

1 _ 2
W(W17W27W3):§)%7 W(W07W27W3):y71P7 W(W07W17W3):)%7
Yo Yoya ¥
W(W()anuWZ):\/_O—Pa W(W07W17W4):W7 W(W17W27w4):ﬁ7
and
Yoy3 +yiy2
W(wo,wo,wy) = —————.
( 0, W2 4) 2\/7)
We will also need the following wronskians of order 2 (see [1]):
Yo Yoy Yoy2
W(W07W1):%7 W(Wo,Wz)— \4/ﬁ7 W(WlaWZ)_ \4/ﬁ
3.2 Series for 1/n*
Suppose that the function
wo(z) = Y And", (3.7)
n=0

is a solution of a fifth-order differential equation which has a pullback to a Calabi—
Yau differential equation. We will determine functions a(q), b(g), ¢(g) in terms of
In|g|, z(¢) and T(g), such that

%Anz(q)”(a(q) +b(g)n+c(g)n?) = %

The interesting cases are those for which z, ¢, b, a are algebraic numbers. We
will call them Ramanujan—Sato-like series for 1/72. In this paper we improve and
generalize to the complex plane the theory developed in [6, 15]. We let ¢ = |q| ¢™"
and consider an expansion of the form

4
;) {(Wj)a + (GWj)b-i- (Ozwj-)c x/

; 1 3 2
=™ (F —o® + h%f + %(12 - az)x4) truncated at x°.  (3.8)
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The number 4 is a rational constant associated to the differential operator D such
that Dwgy = 0. The motivation of this expansion is due to the fact that in the case of
Ramanujan—Sato-like series for 1/ n? (z, ¢, b, a algebraic), we have experimentally
observed that r, o, and 72 are rational while £ is a rational constant (see the remark
at the end of this section). We have the equivalent system

1
(wo)a+ (Bwo) b+ (Ozwo) c= g

(wi)a+ (6wy) b+ (6%wi)c = %r,

(wa)a+ (8wa) b+ (6%wy)c = -5 (3.9)

2
(w3)a+ (6w3) b+ (6%w3)c = inr <_E — oc> +h%,
4 2.2 2

(wa)a+ (Owa) b+ (8%ws)c = 1 (;—4 4 — %a) + %hC(3)r.

This system allows us to develop the theory. In the next theorem we obtain ¢ and T
as non-holomorphic functions of g.

Theorem 3.1. We have

Lind1g| = T(q) —hC(3
a(q) = n IQIEZIIE'q;' ¢( )7 (3.10)

and
~ 5In?|q|—(6,T)(q)
- -

7(q)

—a(g). (3.11)

Proof. In the proof we use the wronskians above. As we want the system (3.9) to
be compatible, we have
wo GWO GZW() Po
w1 le szl P1
wo QWZ 62W2 P2
w3 6W3 62W3 P3

=0, (3.12)

where pg, pi, etc., stand for the independent terms. Expanding the determinant
along the last column, we obtain

Y1iy2 —Yoy3
—Ppo (T) +p1(3}) = p2(yoy1) + p3(33) = 0.

Then, dividing by y3, we get

L{yiy: 3
—pos (2 -2 4p)
YoYo Yo

2
R)-n(z)en-e
Yo Yo
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Hence |
—po (61n3q — T(Q)) +piln®g—palng+p3 =0.

Using Ing = In|q| + inr and replacing py, pi, pa2, and p3 with there values in the
system, we arrive at (3.10). Then, from the first, second, third, and fifth equations
and using the the function c¢(g) obtained already, we derive (3.11). O

In the next theorem we obtain ¢, b, a as non-holomorphic functions of g.

Theorem 3.2.

c(q) =t(q)v/P(z), (3.13)
00 = o (i (G370 -l () ) PG G
ala) = (2~ (Own)bla) — (@m0l 615
with
o wolg) 6,2(q) 1 0,2(9) "
M) =@ = VPe @) Pk ( @) ) o G

where Yy is the ordinary pullback.

Proof. Solving for ¢ by Cramer’s rule from the three first equations of (3.9), we get
1 ' 2
b ()-) 3
VP(z) m\y»/ ® \Yo 2

c 1 /1 i r?
—=—|(=In*¢-6,T )| — —rlng— — — c.
V/P(z) ”2(2nq q) e R

Hence

Replacing Ing with In|g|+ izr, we obtain (3.13). Then, solving for b from the two
first equations of (3.9), we obtain

1 0.L
b=— % (inr— ﬂ) —c(2) == (3.17)

where L = wo(0w) —w;(0wy). But, as ¢ = exp(y1/yo), we obtain

0 (Y_z) _ 4y (y_z) _ Y00y2—y26y0 _ w1
“\yo 6.q  \yo Y00y —y10y0  wo

Applying 6, to the two extremes of it, we get

wi wo (Bw1) —wi(Bwp) 642 3
6, <WO> W2 - (9) 0,7 (q).
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which implies

— =Ing—-6T 1
o ng—0,T(q) (3.18)
and s
K
woOwi — w1 0wy = w =L(q). (3.19)
0y2(q)
But s
L = wo(Ow) —wi(Bwo) = — if’( 3 (3.20)
Z

In [1] we have the formula

2 qu(q) : 1
yo_( 2(q) > YP@K(g) (3-21)

From (3.19)-(3.21), we obtain

([ 0.2(0)\° 1
w0—< @ ) RO (3.22)

From the three last identities we arrive at (3.16). From (3.17), (3.18), and (3.22) we
deduce (3.14). The proof of (3.15) is trivial from the first equation of (3.9). a

The relevant fact is that the functions a(q), t(q), ¢(q), b(q), a(q) have good
arithmetical properties. This is stated in the following conjecture which is crucial to
discover Ramanujan—Sato-like series for 1/7>:

Conjecture

Let o = a(qo), To = T(q0), z0 = 2(q0), a0 = a(qo), etc. If two of the quantities o,
Tg, 20, Ao, by, cg are algebraic, so are all the others. Even more, in that case, ¢ and
Tg are rational.

Remark

As one has

— A
z X—Hz"” = W + wix + wax® + waxs + waxt + O(xs),
n=0 X
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we can write (3.8) in the following way:

.
1 2 An(at b(n+x) +e(n+x)%)
X n=0

‘ 2
=™ (% — o —i—h%f + %(Tz - Oﬂz)x4> +0().

The rational constant / appears (and can be defined) by the coefficient of x> in the
expansion of A, (analytic continuation of A,) [6, Eq. 4]. In the hypergeometric cases
we know how to extend A, to A, because the function I" is the analytic continuation
of the factorial. To determine / in the non-hypergeometric cases, we will not use this
definition because it is not clear how to extend A, to A, in an analytic way. Instead,
we will use the following conjecture:

Conjecture

The radius of convergence z. of wy(z) is the smallest root of P(z) = 0 and

dz
= =0

In addition, o is rational. Hence there is a relation with integer coefficients among
the numbers £ In*|g.| — T(gc), #*In|q.|, and &(3), which we can discover with the
PSLQ algorithm, and it determines the invariant 4. This solution corresponds to the
degenerated series z = z¢, ¢(q.) = b(q.) = a(g.) = 0.

3.3 New Series for 1/n*

To discover Ramanujan-like series for 1/ 72, we first obtain the mirror map, the
Yukawa coupling, and the function T'(g). Solving the equation

dz(q)

dg ’

we get the value g, which corresponds to z.. Let ¢ = ¢’ ¢, where t < 0 is real. If we

choose a value of r, then we can write (3.10) in the form

§°—T(q)—h{(3)
w2t

ot) =
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For r = 0 we get series of positive terms and for » = 1, we get alternating series.
Solving numerically the equation o(f) = o, where o is rational, we find an
approximation of #y and hence also an approximation of gg. Substituting this gg
in (3.11), we get the value of 7y. If Tg is also rational, then with the mirror map,
we get the corresponding approximation of zo. To discover the exact algebraic
number zp, we use the Maple function MinimalPolynomial which finds the minimal
polynomial of a given degree, then we use the functions c¢(q), b(q), a(q) to
get the numerical values cg, by, and ag. To recognize the exact algebraic values
of these parameters, we use minimal polynomial again. It is remarkable that in
the “divergent” cases, we can compute cg, by, ag with high precision by using
formula (3.22) for wy.

Big Table

In [5] there is a collection of many differential equations of Calabi—Yau type.
We select some of those which are pullbacks of differential equations of fifth order.
The ones not mentioned below gave no result. The symbol # stands as a reference
of the equation in the Big Table. In [2] one can learn the art of finding Calabi—
Yau differential equations. In Table 1, we show the invariants corresponding to the
cases #60, #130, #189, #355, and #356. For all the cases cited above we have found
examples of Ramanujan-like series for 1/72. In Table 2 we show those examples,
indicating the algebraic values of o — o, 7 1.z a, b, and ¢ for which we have

oo

S A 2)" atbnrend) = 1
n=0 T

where A, = A2t If |71 z| > 1, then the series diverges, but we avoid the divergence
considering the analytic continuation given by the parametrization with g. In all
cases we have found congruences mod p5 or mod p3 (see [21)).

For #355 an explicit formula for A, is not known but we can easily compute these
numbers from the fifth-order differential equation Dw = 0, where D is the following
operator:

6> —22(20+1)(430* +866° +776% + 346 +6)
+4822(0+1)(26041)(20+3)(60+5)(60 +7).
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Table 1 Table of invariants

oo =30 G000 )

n
1 50
P(z) = (1-162)%(1 —108z)?, z.= EREE] 337 0= 3, 23 h_g
2
n!
#130 A, = Y, (7)
ik kN ! m!s!
+m+s=n | 1 ) ’
P(z) = (1 —42)%(1 —162)>(1-362)%, ze= =z, Oe=—, T2=-=, h==
(z) = (1 —42)*( 2)7( % =g %= BT g 3
2n n\ 2 (n\> j+k 2
#189 A, =
=50 6 ()
Js
1 1 8 30
= — 2 — 2 = —_— = — 2:— = —
P(z) = (1 —4z)*(1 —2562)%, z e %3 L= h 7
#355 Explicit formula for A,, not known
1 1 4 30
=(1- 21— 2 = = 2 _ _© =
P(z) = (1—64z)*(1—108z)*, z g %<3 T3 h T
$56 A—1 Ao ["fj]nfﬂ( n\? (2K\ [2n— 2K\ (3n— 4K
0= 5 A0y, S 3n—4k \k k n—k 2n
1 1 1 14
P(z) = (1-1082)2(1-1282)%, ze=-—, Oe==, To=-—, h=—
(@) =( 2)*( % =g %e=3 L= )

Complex Series for 1/n*

Another method to obtain series for 1/ is by applying suitable transformations
to the already known series for 1/ 72 see [3, 6, 20]. Although we can use this
technique to obtain other real Ramanujan-like series for 1/72, our interest here is to
find examples of Ramanujan-like complex series for 1/72. For that purpose we will
use the following very general transformation:

i 1 i Z man i k n
i
n=0 -z, I—z = \mk

where u = 1 or u = —1 and m is a positive integer (check that both sides
satisfy the same Calabi—Yau differential equation). For example, translating the
hypergeometric series

= (3n)! (4n) 1\*" 48
————(252 63n+5 — =— 3.23
p) (2520° +63n+5)(=1)" 57 ) =5 (3.23)
taking u = —1 and m = 4, we find four series, one of them is the complex series

)

& 1 \" 27504+ 3454i
S 4, ( 9072n2 + (9072 — 756i)n + (2875 — 5161‘)) ( — 24i) - 7;; !

(3.24)
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Table 2 Table of examples

# 0 — Ot 'z ap by co
6 4 1 3 20 40
23 2 3.23 3.23 3.23
8 33 40 282 616
23 53 52.23 52.23 52.23
43 1 706 5895 16380
46 48 25.32.23 25.32.23 25.32.23
3 o 178 719 860
46 25.23 25.23 25.23
s L 2 21 7 85
6 42 9 9 9
0 » 38 94 65
54 54 54
P 8 48 328 680
21 92 35.7 35.7 35.7
4 1 87 710 1840
7 32 24.32.7 24.32.7 24.32.7
19 24 843 5750 12610
42 B 22.35.7 22.35.7 22.35.7
139 24 1655799 24749870 122761930
42 214 22.35.75 22.35.75 22.35.75
1 42 51 254 370
14 K 252 252 252
1 3 1 12 30
335 11 4 22.3.11 22.3.11 22.3.11
32 9 42 60
22 2 22.11 22.11 22.11
5 27 21 164 390
11 196 22.7-11 22.7-11 22.7-11
13 1 3119 29860 93090
11 108 22.36.11 22.36.11 22.36.11
: 5 16 60 60
22 311 311 311
1 1 2 27 74
363 2 60 60 160
| 1 7 679 2002
50 800 800 800
1 158 1113 2618

10 e 1280 1280 1280
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where
(3k)!(4k)!

An = é(_l)k <:k> k7

Transformations preserve the value of the invariants h, o, and 7., and the
series (3.24)has 2(oo— o) =3 and 7= 3v/3 because it is a transformation of (3.23);
see [6]. Looking at the transformation with u = —1 and m = 4, we see that the mirror
maps z and 7’ corresponding to A, and a,, are related in the following way:

4
Z/

= .
1+V7

Write z = z(g) and 7 = 7/(¢’). Then, the first terms of J(g) are

1
J(q) = Pl 145824 +277263¢" + 167004122¢" + - - - ,

with ¢ = /¢/. Writing, as usual, ¢ = ¢"*"|q|, we deduce that as the series (3.23) has
r = 1, then the series (3.24) has r = 1 /4.

4 Addendum

The method used in this paper, to find &, o, = at(g.) and 7. = 7(g.), is valid for
those Calabi—Yau differential equations such that K(g.) = 0, where g, is a solution
of dz/dgq = 0. In these cases, we conjecture that z(g.) is the smallest root of P(z)
and that a(g.) = b(q.;) = c¢(g.) = 0. But from Theorem 3.2, we see that b(g.) =0
implies that 7, = f(g.), where

L(q)
6,L(q)’

fla)= % (627(q)~1nlq)

which allows us to obtain the critical value of 7. Then, replacing g = g, in (3.11),
we can obtain ¢. Finally, replacing g = g, in (3.10), we obtain the value of /. As
gc > 0, the formula for & can be written in the form & = h(q.), where

2157 (2@ -1 ,060) ~m(a) g1 620(0) ).

and @(gq) is the Gromov-Witten potential (3.2). The advantage of this way of getting
the invariants 7., 0, and & is that we use explicit formulas instead of the PSLQ
algorithm.
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