
Design and Implementation of Multimedia

Social Services on Elgg

Meng-Yen Hsieh, Yin-Te Tsai, Ching-Hsien Hsu, Chao-Hung Hung,

and Kuan-Ching Li

Abstract This chapter designs and implements multimedia social services over an

open social network engine, denoted as Elgg. Elgg with basic elements such as

blogging, e-portfolios, and file sharing possesses a plug-in architecture, so that

developers can design plug-ins to provide particular social services. The three plug-

ins about video, photo, and blog with a number of Elgg’s APIs based on the Represen-

tational State Transfer architectural style are provided in the study. Therefore, external

applications can easily announce and manage data on Elgg through these APIs. Not

only providing details on the design of the ElggAPIs, but we also describe their request

and response formats in REST styles. The prototype services are validated with a

simple client. The data including text andmultimedia from external applications can be

automatically separated into the blogs and albums on Elgg.

Keywords Elgg • RESTful • Social media

M.-Y. Hsieh (*) • C.-H. Hung • K.-C. Li

Department of Computer Science and Information Engineering, Providence University,

Taichung 43301, Taiwan

e-mail: mengyen@pu.edu.tw

Y.-T. Tsai

Department of Computer Science and Communication Engineering,

Providence University, Taichung 43301, Taiwan

C.-H. Hsu

Department of Computer Science and Information Engineering, Chung Hua University,

Hsinchu 30012, Taiwan

J. Juang and Y.-C. Huang (eds.), Intelligent Technologies and Engineering Systems,
Lecture Notes in Electrical Engineering 234, DOI 10.1007/978-1-4614-6747-2_2,
Springer Science+Business Media New York 2013

11

mailto:mengyen@pu.edu.tw

1 Introduction

Currently, most people surf social media on Internet in order to maintain individual

data, share multimedia data with others, and harness real-time social activities of

their friends. The users who have already authenticated can often maintain and

announce their multimedia data of daily life with sharing permission in social media.

Some textual descriptions or tags for multimedia data must be given in order to

depict user context. Consequently, to provide convenient management services for

multimedia in social media is significant. Due to mobile and wireless technologies,

users operatemultimedia data of social media through not onlyWEB but alsomobile

APP. Therefore, this study designs internal web services for external applications to

deliver user’s multimedia data to social networks. An open social network engine,

denoted as Elgg, is used, where we have developed a number of plug-in functions,

denoted as plug-ins, for multimedia services and open RESTful APIs for external

applications. The plug-ins also support linking mechanisms with external social

media on Internet. The chapter is organized as follows: we describe literatures and

technologies related to our contribution in Sect. 2. Section 3 introduces the design

issues of the plug-ins over Elgg for multimedia social sharing. The RESTful APIs

are also described. The implementation results are presented and discussed in

Sect. 4, and finally, Sect. 5 concludes this chapter.

2 Related Work

The RESTful style based on service-oriented architecture (SOA) uses a uniform

resource locator (URL) address to determine resource in Web servers. External

applications perform HTTP methods through URL addresses to operate Web

resources. In the past, we have developed a Web application and mobile APP

about tourism [1, 2]. The application provides some open Web services, and

therefore, the mobile APP can use the services to exchange data with the applica-

tion. Garrett et al. [3] have presented a design project on Elgg for general

educations. The customized Elgg has blogs and wikis to assist students in collabo-

rative and individual learning. The project allows students and teachers to custom-

ize their profile and to increase interaction, better than traditional course

management systems without user interaction. In the experience result, only 15 %

of the students reported low levels of satisfaction with the Elgg. More than 60 % of

people reported that the Elgg helped them about course experience and social

relationship. Weng et al. [4] have designed a social learning environment on

Elgg. The social learning relations are divided into the four categories,

Object2Object, User2User, Direct relation, and Composed relation, while user

and object are defined as the two main portions in the Elgg.

12 M.-Y. Hsieh et al.

3 Elgg Plug-ins for Multimedia Service

This study designs RESTful APIs for multimedia Web services over Elgg. Using

the APIs with URLs, external applications can directly communicate with multi-

media services through HTTP protocols with the four methods, POST, GET, PUT,

and DELETE, corresponding to the basic operations, create, read, update, and

delete (CRUD) for remote resources in backend servers. Two multimedia plug-

ins named as Photo Albums and My Videos are proposed for individual multimedia

management. Figure 1 depicts our Elgg platform with the plug-ins and RESTful

APIs for multimedia services.

3.1 Photo Albums and My Videos Plug-ins

After setting up the Photo Albums, users own a photo board on the Elgg. Users can

configure the board, such as the limited number of albums and access permission.

Four alternative types of access permissions are provided, public, friend, authenti-

cation, and private. The Photo Albums plug-in supplies the functions:

Fig. 1 Multimedia plug-ins and APIs on Elgg

Design and Implementation of Multimedia Social Services on Elgg 13

Creating new albums. Users create a new album with initial descriptions including

an album title, description, tags, and some configuration parameters. One of the

configuration parameters is to set up access permissions on content in Photo

Albums. Users can decide to upload images by one-by-one or batch

mechanisms.

Browsing an album. Users easily open self or friend’s album. Everyone who surfs

the Elgg can browse the album, while the permission is set with the public

privilege. Only friends open the album, while the owner configures the album

with the friend privilege. Users that have been authenticated on Elgg are able to

browse the albums with the authentication privilege.

Browsing the latest albums. Users browse the latest photos in the albums through a

particular obvious link.

Maintaining an album. The authenticated users maintain their individual photos in

the albums by the three functions, addition, edition, and deletion.

Like and sharing. Photos in an album are able to be shared to social networks, while

users browse them and press the buttons linking to other social media. Users can

press the “Like” button to show signs of liking some photos.

Downloading and commenting for photos. By this function, users comment on the

photos that they saw in albums. Besides, the photos also can be downloaded

easily.

The other plug-in, My Videos, assists users in announcing video data on Elgg.

If one user steps up the plug-in in the Elgg’s dashboard, his or her profile will

present a window board for video presentation. The board can be set up with various

presentation styles based on user preference. The plug-in includes the functions:

Uploading new videos. Owners upload video files to their video boards. The board

embedded with a multimedia player includes simple functions, where users can

play video. Each uploaded video is attached with one of the access permissions.

Browsing individual videos. The browsing function pattern presents that the users

with different access permissions have different video files on their browsing

pages. By linking functions, owners easily view the videos that they uploaded

before. In addition, the videos with the private privilege are only presented for

their owners.

Browsing all public videos. Another link denoted as “All videos,” drives a browsing
page to present all of the videos with the public privilege on Elgg.

Browsing friend’s videos. Users can browse the videos in their friend boards, while
the videos are set up with the friend privilege by their friends. A link denoted as

“Friend’s videos” drives the page listing with these videos.

Browsing latest videos. A user can browse the most new recent videos that other

users announced with the public privilege recently, while pressing the link

function denoted as “Latest videos.”

Browsing most popular videos. A user can browse the most popular videos

attaching with a high number of reviews. The page presents the popular videos

in order based on how many times they have been seen.

Deleting a video. A valid user can delete his uploaded video when he is browsing it.

14 M.-Y. Hsieh et al.

3.2 RESTful APIs

Our Elgg provides not only the plug-ins but also Web services for multimedia

management. External applications can maintain multimedia data of the plug-ins by

the CRUD methods of HTTP protocol. We address that multimedia data for

external applications consists of one XML-based description and some

corresponding images.

The APIs are released for the Web services as follows:

Authentication service. The API, named as “user.login,” supplies the authentication

service. An external application must propose a login page to receive user’s

account and password in order to deliver a HTTP request to the API. The request

URL follows a format described in Table 1, and the authentication data are

included as some parameters in the request. The request has to be protected by

SSL during delivery. The API will return a token, after checking that the

authentication data is valid. The token is used by the application to contact

with the other APIs.

Multimedia posting service. The three APIs for this service, denoted as XML parser

API, Post blog API, and Add album API, are used to deliver multimedia data to

Elgg. The service has three steps for posting, while receiving the multimedia

files. First, the service interprets the description data through the XML Parser

API to form a blog data. Second, the Post blog API announces the data to the

blog of Elgg and forwards the ID and title of the blog article to the Add album

API. Finally, the API creates a novel album related to the blog’s ID and title and

arranges the uploaded images into the album. The method for posting, named as

“travel.post,” is applied into the service.

Multimedia getting service. The API, denoted as “travel.get,” assists external

applications in searching and getting a blog article according to the article ID

in the Elgg’s blog. The service also provides all of the IDs and titles of blog

articles, while the external application requests the service and sets the ID

parameter to the particular value, “all.” Generally, the external application

shall get all of the IDs and titles for users, and they select an interesting article

title to browse.

Table 1 Request and response data of the RESTful APIs

Services Request format for service paths (URL)

Resp.

(JSON)

Authentication /json/?method¼user.login&username¼{name}&password¼
{passwd}&api_key¼{key}

Token

Posting /json/?method¼travel.post&username¼{name}&title¼{title}

&body¼{body}&api_key¼{key}&auth_token¼{token}

Success or

fail

Getting /json/?method¼travel.get&guid¼{id}&api_key¼{key}

&auth_token¼{token}

ID and title

or blog

article

Updating json/?method¼blog.delete&guid¼{id}&api_key¼{key}

&auth_token¼{token}

Success or

fail

Design and Implementation of Multimedia Social Services on Elgg 15

http:///json/?method=user.login&username={name}&password={passwd}&api_key={key}
http:///json/?method=user.login&username={name}&password={passwd}&api_key={key}
http:///json/?method=user.login&username={name}&password={passwd}&api_key={key}
http:///json/?method=user.login&username={name}&password={passwd}&api_key={key}
http:///json/?method=user.login&username={name}&password={passwd}&api_key={key}
http:///json/?method=travel.post&username={name}&title={title}&body={body}&api_key={key}&auth_token={token}
http:///json/?method=travel.post&username={name}&title={title}&body={body}&api_key={key}&auth_token={token}
http:///json/?method=travel.post&username={name}&title={title}&body={body}&api_key={key}&auth_token={token}
http:///json/?method=travel.post&username={name}&title={title}&body={body}&api_key={key}&auth_token={token}
http:///json/?method=travel.post&username={name}&title={title}&body={body}&api_key={key}&auth_token={token}
http:///json/?method=travel.post&username={name}&title={title}&body={body}&api_key={key}&auth_token={token}
http:///json/?method=travel.post&username={name}&title={title}&body={body}&api_key={key}&auth_token={token}
http:///json/?method=travel.post&username={name}&title={title}&body={body}&api_key={key}&auth_token={token}
http:///json/?method=travel.get&guid={id}&api_key={key}&auth_token={token}
http:///json/?method=travel.get&guid={id}&api_key={key}&auth_token={token}
http:///json/?method=travel.get&guid={id}&api_key={key}&auth_token={token}
http:///json/?method=travel.get&guid={id}&api_key={key}&auth_token={token}
http:///json/?method=travel.get&guid={id}&api_key={key}&auth_token={token}
http:///json/?method=travel.get&guid={id}&api_key={key}&auth_token={token}
http://json/?method=blog.delete&guid=%7Bid%7D&api_key=%7Bkey%7D&auth_token=%7Btoken%7D
http://json/?method=blog.delete&guid=%7Bid%7D&api_key=%7Bkey%7D&auth_token=%7Btoken%7D
http://json/?method=blog.delete&guid=%7Bid%7D&api_key=%7Bkey%7D&auth_token=%7Btoken%7D
http://json/?method=blog.delete&guid=%7Bid%7D&api_key=%7Bkey%7D&auth_token=%7Btoken%7D
http://json/?method=blog.delete&guid=%7Bid%7D&api_key=%7Bkey%7D&auth_token=%7Btoken%7D
http://json/?method=blog.delete&guid=%7Bid%7D&api_key=%7Bkey%7D&auth_token=%7Btoken%7D

Multimedia updating service. The Elgg engine only supports HTTP get and post

methods. We adopt the creation and deletion operations for the updating service.

External applications update the same multimedia data according to the same

identity of the multimedia description. While accepting the multimedia data with

the same XML filename, the service deletes the old data by a method denoted as

“blog.delete” and uses the Post blog API to create a novel announcement on the

Elgg’s blog.

Other services. The proposed architecture provides other services such as Message

Post API and Post FB API to assist external applications in announcing message

data to the wall pages of Elgg and Facebook.

4 Implementation

This section introduces the implemented services on Elgg. Figure 2 describes a

sample of external applications as a client. The client must obey the request formats

of the RESTful APIs in order to assist users in managing multimedia data to our

Elgg. The three alternative methods, travel_post, travel_get, and travel_delete, are

presented corresponding to the multimedia services of the Elgg, after users have

been authenticated. Users will be able to announce a XML file with three image

files to the Elgg, if performing the travel_post method. Figure 3a gave the interfaces

of the four plug-ins on Elgg, and Fig. 3b presented a blog article with the title,

Taichung 1D, from the XML file that the client had uploaded before. We give a

description for the interface as follows:

Photo Albums (no. 1). The plug-in lists all of the albums with the photos public on

Elgg. User can create an album though the admin. interfaces of the plug-in or the

external applications supporting with the RESTful APIs, described in Sect. 3.

Users announce photos with some alternative privileges in the albums.

Fig. 2 Example of a simple client supporting the RESTful APIs

16 M.-Y. Hsieh et al.

My Videos (no. 2). All videos without classification are involved in the plug-in.

Users only manage videos through the admin. interfaces, after they have been

authenticated on Elgg. Users announce videos with some alternative privileges.

Blogs (no. 3). The plug-in as one of the basic functions on original Elgg lists all of

the blog articles. The client in Fig. 2 can deliver a XML description with few

photos to Elgg in order to create a blog article from the XML and an album with

the photos.

Message board (no. 4). The plug-in as one of the basic functions on original Elgg

allows users to announce a short message on the board.

5 Conclusion

In this chapter, we develop two multimedia plug-ins and RESTful APIs on Elgg.

The plug-ins service people to announce multimedia data in social networks. The

RESTful APIs are proposed for that external applications can communicate multi-

media data to the blogs and albums. The communication protocols are designed and

acted based on the determined URL formats. In order to enhance social presence,

the multimedia data on Elgg can also be linked with other social media.

Acknowledgments This investigation was supported by National Science Council, Taiwan,

under grants NSC 100-2221-E-126-001-, NSC 101-2221-E-126-006-, and NSC 101-2221-E-

126-002-.

Fig. 3 Elgg for multimedia service: (a) the four plug-ins, blogs, message board, photo albums,

and my videos; (b) a blog article for the multimedia description from external applications

Design and Implementation of Multimedia Social Services on Elgg 17

References

1. Hsieh M-Y, Lin H-Y, Li K-C (2011) A web-based travel system using Mashup in the RESTful.

Int J Comput Sci Eng 6(3):185–191

2. Hsieh M-Y, Lin H-Y, Yeh C-H, Li K-C, Wu BS (2012) A mobile application framework for

rapid integration of ubiquitous web services. In: The 9th IEEE international conference on

ubiquitous intelligence and computing, Fukuoka, 2012

3. Garrett N, Thoms B, Soffer M, Ryan T (2007) Extending the Elgg social networking system to

enhance the campus conversation. In: Second annual design research in information systems

(DESRIST), Pasadena, 2007, pp 14–15

4. Weng M, Chen Y-H, Yen N, Chang H-P, Shih T, Lin F (2012) A prototype of learning

environment for social learning on Elgg social platform. In: IET international conference on

frontier computing, Xining, 2012

18 M.-Y. Hsieh et al.

http://www.springer.com/978-1-4614-6746-5

	Design and Implementation of Multimedia Social Services on Elgg
	1 Introduction
	2 Related Work
	3 Elgg Plug-ins for Multimedia Service
	3.1 Photo Albums and My Videos Plug-ins
	3.2 RESTful APIs

	4 Implementation
	5 Conclusion
	References

