Chapter 2
Set-Valued Stochastic Processes

This chapter is devoted to basic notions of the theory of set-valued mappings and
set-valued stochastic processes. We begin with the notions and basic properties
of the space of subsets of a given metric space. Selected properties of set-valued
mappings, Aumann integrals, and set-valued stochastic processes are presented.
The last two parts of this chapter discuss properties of a set-valued conditional
expectation and selection properties of set-valued integrals depending on random
parameters.

1 Spaces of Subsets of a Metric Space

Let (X,p) be a metric space and (4,);2, a sequence of subsets of X. The
sets (oo Ureo Ant+x and |US2, Nie, Antk are denoted by Limsup 4, and
Liminf A,, respectively and said to be a limit superior and a limit inferior,
respectively of a sequence (A4,)52,. Immediately from the above definitions, the
following properties of Lim sup A, and Lim inf 4, follow.

Lemma 1.1. Let (A,)52, and (B,);2, be sequences of subsets of X and let
C C X. Then

(i) LiminfA, = (Limsup A;)~, where D~ =X\ D for D C X,
(ii) Liminf(A4, N B,) = Liminf A, N Liminf B,
(iii) Liminf(4, N C) = (LiminfA4,) N C,

(iv) (o2, A, C LiminfA, C Limsup A, C |72, 4,

Corollary 1.1. For every family {A! :i,n = 1,2,...} of subsets of X , one has
N2, [Liminf A)) = Liminf[(;2, A’]. O

Apart from the limits Limsup A, and LiminfA,, we can also define the
Kuratowski limits Li A, and Ls A,. The set LiA, is defined by the property
x € Li A, if and only if for every neighborhood ¢/ of x, there is an integer N > 1

M. Kisielewicz, Stochastic Differential Inclusions and Applications, 67
Springer Optimization and Its Applications 80, DOI 10.1007/978-1-4614-6756-4_2,
© Springer Science+Business Media New York 2013



68 2 Set-Valued Stochastic Processes

such that 4 N A, # @ for every n > N. It is said to be the Kuratowski limit
inferior of a sequence (4,)52,. Similarly, the Kuratowski limit superior Ls A, of
a sequence (A4,)2, is defined by the property: x € Ls 4, if and only if for every
neighborhood U of x , there are infinitely many n with & N A, # @.

Corollary 1.2. For every sequence (A,)52, of subsets of X, one has

(i) LiA, CLsA,,
(ii) x € Li A, if and only if there exist an integer N > 1 and a sequence (x,)52 ,
of X with x, € A, forn > N such that x = lim, 0 Xy,
(iii) x € Ls A, if and only if there exist an increasing subsequence (ny)72., of
(n)72, and a sequence (x,,)7>, of X such that x,, € Ay, fork = 1,2,...
and x = limy 00 Xy, O

The following properties of the Kuratowski limits follow immediately from the
above definitions.

Lemma 1.2. Let (A,)52, and (B,)52, be sequences of subsets of X. Then

(i) if A, C B, forn>1,then LiA, CLiB, and Ls A, C Ls B,
(ii) Liminf A, C LiA4,,
(iii) Li(A, N B,) C (LiA4,) N (Li B,),

(iv) Ls(A, N B,) C (Ls A,) N (Ls By),

(v) Ls A, = ﬂ:il ]?o=0 Ak-l—nr B

(vi) if A, = A for n>1, then LiA, = A =LsA,.

Let CI(X) denote the family of all nonempty closed subsets of X. For every
A,B € CI(X), we define the Hausdorff distance /(A, B) with respect to the
metric p on X by setting h(A,B) = inf{fe : A C Vi (B)and B C V.(A)},
where V;(C) denotes the e-neighborhood of C € CI(X), i.e., Ve(C) = {x € X :
dist(x, C) < €}.

Lemma 1.3. The function h : CI(X) x CI(X) — [0,00] has the following
properties:

(i) h(A,B) =0 ifandonlyif A= B for A, B € CI(X),
(ii) h(A, B) = h(B, A) forevery A, B € CI(X),
(iii) h(A, B) < h(A,C) + h(C, B) forevery A, B,C € CI(X).

Proof. To prove (i), let us observe that h(A4,B) = max{h(A, B), (B, A)},
where h(C,D) = sup,ccdist(x,D) for C,D € CI(X). Hence it follows
that h(A,B) = 0 implies that A C B and B C A, because A,B €
CI(X). Then A = B. Statement (ii) is evident. To prove (iii), if 4 C V,(C)
and C C Vy(B), then A C V.y,(B). Consequently, we get h(A,B) <
h(A,C) + h(C, B). Thus h(A, B) = max{h(A, B),h(B, A)} < max{h(4,C) +
h(C,B),h(B,C) + h(C,A)} < max{h(A,C) + h(C,B),h(B,C) + h(C, A)}
= h(A,C) + h(C, B). O
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Theorem 1.1. Let (X,p) be a compact metric space. Then (CI(X),h) is a
compact metric space, too. In such a case, a sequence (A,);2>, of CL(X) converges
to A € CI(X) in the h-metric topology if and only if Li A, = A = Ls A,.

Proof. By virtue of Lemma 1.3, the mapping / is a metric on CI(X). The proof of
compactness of (C1(X), /) can be found in [49]. If a sequence (A4,)52, of Cl(X)
converges to A € CI(X) in the h-metric topology, then by the definitions of the
metric & and the Kuratowski limits Li A, and Ls A, , we get A C LiA, and
LsA, C A. Then Lid, = A = LsA,. Conversely, let A C X be such that
LiA, = A = LsA,. By the compactness of the metric space (X, p), we have
A # . Then A € CI(X). We have to show that for every ¢ > 0 and sufficiently
large n > 1, one has A, C V,(A) and A C V.(A,). If the first inclusion were
false, we would obtain a contradictionto A = Ls A4,,. If the second inclusion were
false, we would obtain a contradiction to Li A4, = A. O

Remark 1.1. The above results can be extended to the case of a locally compact
separable metric space (X, p), because it possesses a one-point compactification,
denoted by X U {oo}. |

We can extend the definition of Hausdorff distance on the family P, (X) of all
nonempty bounded subsets of a metric space (X, p). Similarly as above, for every
A, B € Pp(X), we define h(A, B) = inf{e > 0: A C V;}, and then the Hausdorff
pseudometric i on P,(X) is defined by h(A, B) = max{h(A, B), h(B, A)} for
every A, B € Py(X). It can be verified that (4, B) = 0 if and only if 4 = B.

Corollary 1.3. Forevery A, B € Py(X), one has h(A, B) = sup{dist(a, B) : a €
A}, where dist(a, B) = inf{p(a,b) : b € B}.

Proof. For every A, B € Pp(X), we have A C V.(B) if forevery a € A, we
have dist(a, B) < ¢. Then A C V,(B) implies h(A, B) < . Similarly, we can
verify that (A, B) < ¢ implies A C V.(B). Hence it follows that inf{e > 0: 4 C
Ve(B)} =inf{e > 0:e > h(A,B)} = h(A, B). |

Lemma 1.4. For every A, B € Py(X), one has h(A, B) < h(A, B).

Proof. For every a € A and & > 0, there is a, € A such that p(a, a;) < e
Therefore, dist(a, B) < p(a, a;) + dist(a;, B) <e+ inf{p(a.,b) : b € B} <e+
inf{p(as,b) : b € B} < &+ h(A, B). Thus sup{dist(a, B) ae A} <e+h(A, B),
ie., h(A B) <&+ h(A, B) forevery & > 0. Then h(A, B) < h(A, B). Similarly,
we get (B, A) < h(B, A). |

Remark 1.2. It can be verified that for every A, B € P (X), one has h(4, B)
h(A, B).

If X is a linear normed space and A, B € P,(X), then we define A + B =
{xeX:x=a+b,aec A, be B}. Similarly, for A € P,(X) and p € R, we
define u-A ={x € X : x = na, a € A}. Immediately from the last definition, it
follows that we can define a set A 4+ (—1) B, which is often called the Minkowski
difference of sets A, B € P,(X). In the general case, we have A + (—1)A # {0}.

ol
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For some nonempty compact convex sets A, B C X , a difference A — B, known
as a Hukuhara difference, can be defined such that A — A = {0}. It is easy to verify
that for all compact convex sets A, B € P, and A, u € R*,onehas (i) A+{0} =
{0}+A=A4, (i) (A+B)+C =A4A+(B+C) (ili) A+ B =B+ A, (iv)
A+C = B+C implies A=B,(v)1-A=A, (vi) A-(A+B)=A-A+A-B,
and (vi) A+ p) - A=A2-A+p- A

Lemma 1.5. Let (X,||-||) be a linear normed space. For every A,B,C,D €
Py(X) and p € R, one has (i) h(wA, wB) = uh(A, B) and (ii) h(A+ B,C +
D) < h(A,C) + h(B, D).

Proof. (i)If A C Vi(B),then uA C V,.(uB). Hence it follows that inf{n > 0 :
A C Vy(uB)y = pinf{n > 0: A C V,(B)} = uwh(A, B). (i) If A C V.(C)
and B C Vy(D), then A+ B C Viyy(C + D). Therefore, inf{e +n : A +
B C Vigy(C 4+ D)} < infle : A C Vi(C)} +inf{n : B C V,(D)} = h(4,C)
+h(B, D). O

Corollary 1.4. For every u € [0,1] and A, B,C, D € Py(X), one has h(nA +
(1—=wB.uC + (1 —p)D) < ph(A,C) + (1 — p)h(B, D). O
Corollary 1.5. For every A,B,C,D € Py(X), one has l_z(A +B,C+ D) <
h(A,C) + h(B, D). |

Corollary 1.6. For every A,B,C,D € Py(X), one has h(A+ B,C + D)
h(A,C) + h(B, D).

OIA

2 Set-Valued Mappings

Let X and Y be nonempty sets and let P(Y) denote the family of all nonempty
subsets of Y. By a set-valued mapping defined on X with values in P(Y) we
mean a mapping F : X — P(Y). It is clear that a set-valued mapping F can be
defined as a relation contained in X x Y with the domain Dom(F) = X. It is
defined by its graph: Graph(F) = {(x,y) € X xY : y € F(x)}. In applications,
we need set-valued mappings having some special regularities, such as continuity
and measurability. To define such set-valued mappings, we have to consider X and
P(Y) as topological or measurable spaces. It can be verified that if (¥,7) is a
topological space, then we can define on P(Y) the upper topology 7, generated
by the base U = {[-,G] : G € T}, where [-,G] = {4 € P(Y) : A C G}.
Similarly, the lower topology 7; on P(Y) is generated by the subbase £ defined
by L ={lg:G e T}, where I¢c ={U e P(Y):UNG # @}.If (Y,d) isa
separable metric space, then the Borel o-algebra of the metric space (Comp(Y), i)
is generated by sets {K € Comp(Y) : K NV # @} for every open set V C
Y, where Comp(Y) C P(Y) contains all compact subsets of Y, and % is the
Hausdorff metric on Comp(Y'). These observations lead to the following definitions.
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Fig. 2.1 A mapping that is
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If (X,7x) and (Y,7y) are given topological spaces, then F : X — P(Y)
is said to be lower semicontinuous (l.s.c.) at x € X if for every U € Ty with
F(xX)NU # @, thereis V € Ty suchthat x € V and F(x) N U # @ for every
x € V.Wecall F: X — P(Y) upper semicontinuous (u.s.c.) at x € X if for
every U € Ty such that F(x) C U, thereis V € Ty such that x € V and
F(x) c U forevery x € V.If (X,p) and (Y,d) are given metric spaces, then a
set-valued mapping F : X — P(Y) is said to be H-l.s.c. at x € X if for every
e > 0, there exists § > 0 such that F(x) C V(F(x),¢) for every x € B(X,§),
where V(F(x),e) = {z € X : dist(z, F(x)) < ¢} and B(x,§) is an open ball of
X centered at x with radius §. It is clear that if F is H-l.s.c. at X € X, then
it is also ls.c. If F(x) € Comp(Y), then F is H-lLs.c. at x € X if and only
ifitis Ls.c.at x € X. We say that F is ls.c. (H-l.s.c.) on X ifitis Ls.c. (H-
l.s.c.) at every point X € X. In a similar manner, we can define H-u.s.c. set-valued
mappings on X. There are some H-u.s.c. set-valued mappings that are not u.s.c.
This is is illustrated in Fig.2.1, where F(t) = {(y.z) € R*>:y =t} for t € R.

Let us observe that for a given l.s.c. set-valued mapping, we can change its values
at finite points in such a way that it remains 1.s.c. This follows from the following
result.

Remark2.1. If F : X — P(Y) is Ls.c.on X and (xo, yo) € Graph(F), then
the set-valued mapping G : X — P(Y) defined by taking G(x) = F(x) for
x € X \ {xo} and G(x) = {yo} for x = xq, is also l.s.c. on X.

Proof. Tt is clear that G is l.s.c. at every point x € X \ {xo}. By the lower
semicontinuity of F at xo and the property of the point (xo, yo), for every
neighborhood U of yo we have F(xo) NU # @, and there is a neighborhood
V of x¢ suchthat F(x) NU # @ forevery x € V . Therefore, for every U € Ty
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such that G(xo) NU # @, there is V € Ty, a neighborhood of x(, such that
G(x)NU # @ forevery x € V. Then G is ls.c. at xg. |

A set-valued mapping F : X — P(Y) is said to be continuous (H-continuous)
on X ifitis Ls.c. (H-Ls.c.) and u.s.c. (H-u.s.c.) on X. It can be verified that a
multifunction F : X — Comp(Y) is continuous if and only if it is H-continuous.
If Y =RY and F : X — Comp(Y) takes convex values, then F is continuous
if and only if a function X > x — o(p, F(x)) € R is continuous for every
p € RY, where o(-, A) denotes the support function of A C R?. In optimal
control theory, we have to deal with parameterized set-valued functions of the form
F(x) ={f(x,u) :ue U}, where f: X xU — Y is a given function. We shall
show that if f(-,u) is continuous, then the multifunction F is Ls.c. Some other
properties of such multifunctions are given in Chap. 7.

Lemma 2.1. Assume that X and Y are topological Hausdorff spaces and let f :
X xU — Y, where U # @. If f(-,u) is continuous on X for every u € U,
then the set-valued mapping F : X — P(Y) defined by F(x) = f(x,U) isls.c.
on X .

Proof. Let X € X be fixed and let N be an open set of Y. Suppose & € U is such
that f(x,u) € N. By the continuity of f(-,u) at X, there is a neighborhood V
of X suchthat f(x,u) € N forevery x € V. Therefore, forevery x € V , we get

F(x) NN # 0. O

Let (7, F) be a measurable space and (Y, d) a separable metric space. A set-
valued mapping F : T — P(Y) is said to be measurable (weakly measurable) if
for every closed (open) set E C Y, wehave {t € T : Ft) N E # @} € F.Itis
clear thatif F is measurable, then it is weakly measurable. The converse statement
is not true in general.

Remark 2.2. Let (T, F) be a measurable space and (Y, || ||) a separable Banach
space. For F : T — P(Y), we denote by co F the set-valued mapping co F :
T — P(Y) defined by (co F)(t) = co F(¢) forevery t € T, where co F(t)
denotes the closed convex hull of F (). Itis clear that co F is measurable whenever
F is measurable. |

Remark 2.3. If (T, F) is a measurable space, Y = R?,and F : T — CI(Y) is
measurable, then the function 7 > ¢t — o(p, F(¢)) € R is measurable for every
peRIIf F: T — CI(RY) is convex-valued, then F is measurable if and only
if o(p, F(-)) is measurable for every p € R?. |

Remark 2.4. It can be proved that if X is a metric space, ¥ = R? ,and F : X —
Comp(Y) is continuous, then o (p, F(-)) is continuous for every p € R?. a

It is natural to expect that for a given multifunction F : X — P(Y), there exists
a function f : X — Y such that f(x) € F(x) for x € X. The existence of
such a function f, called a selector or a selection for F, follows immediately from
Zermelo’s axiom of choice. We recall first the Kuratowski—Zorn lemma, and then
we will verify how from this principle, the axiom of choice can be deduced.
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Lemma (Kuratowski-Zorn lemma). Let P be a nonempty partially ordered set
with the property that every completely ordered subset of P has an upper bound
in P . Then P contains at least one maximal element.

Lemma (Axiom of choice). Let £ be a nonempty family of nonempty subsets of
aset X. Then there exists a function f : £ — X suchthat f(E) € E foreach E
in &.

Proof. Consider the class P of all functions p : D(p) — X such that the domain
D(p) of p belongsto £ and p(E) € E foreach E in D(p). This is a nonempty
class, because £ contains a nonempty set £, and if x € E, the function with
domain {E} andrange {x} isamemberof P. We order P by the inclusion relation
in £ x X. It can be verified that P satisfies the conditions of the Kuratowski—Zorn
lemma. Therefore, we infer that there exists a function f : & — X such that
f(E) € E foreach E € £. |

Corollary 2.1. For nonempty sets X and Y , every set-valued mapping F : X —
P(Y) possesses at least one selector.

Proof. Let £ = {F(x)}rex. The family £ satisfies the conditions of Zermelo’s
axiom of choice. Therefore, there exists a function g : £ — Y suchthat g(F(x)) €
F(x) for every x € X . Thus the function f : X — Y defined by f(x) =
g(F(x)) for x € X is aselector for F. |

In applications of the theory of set-valued mappings, the existence of special
selectors for given multifunctions plays a crucial role. The most difficult part is to
deduce the existence of selectors with prescribed properties. In what follows, we
shall present some results dealing with the existence of continuous, measurable, and
Lipschitz continuous selectors. The fundamental problem deals with the existence
of continuous selections. The following example shows that continuous set-valued
mappings need not have, in general, continuous selections.

Example 2.1. Let F be the set-valued mapping defined on the interval (—1,1) by
setting

{(v1,v2) : v = cosB, v, =tsinH and % <60 §%+2n—|t|}

F(x) = for t e (—1,2)\{0},
{(v,v): =1 <v; <1, v, =0} for t=0.

For t # 0 and ¢t € (—1,1), F(t) is a subset of an ellipse in R? (see Fig.2.2),
whose minor axis shrinks to zero as ¢ — 0, so that the ellipse collapses to a segment
F(0).

The subset of the ellipse given by F(¢) is obtained by removing a section,
from the angle (1/¢) — |t| to the angle (1/¢). As ¢ gets smaller, the arc length
of this hole decreases, while the initial angle increases like (1/¢), i.e., it spins
around the origin with increasing angular velocity. However, F' is continuous at
the origin, while no selection f : (—1,0) — R? or g : (0,1) — R?, for example
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Fig. 2.2 The mapping F

f(t) = (cos(1/t),tsin(1/¢)), can be continuously extended to the whole interval
(—1,1). In fact, the hole in the ellipse would force this selection to rotate around
the origin with an angle p(¢) between (1/¢) and (1/¢) + 27 — |¢|, and lim,—¢ f(¢)
cannot exist.

We shall show that in some special cases, l.s.c. multifunctions possess continuous
selections. This follows from the famous Michael continuous selection theorem. We
precede it by the following lemmas.

Lemma 2.2. Let (X, p) and (Y,|| - ||) be a metric and a Banach space, respec-
tively, andlet ® : X — P(Y) be a convex-valued and L.s.c. multifunction. For every
e > 0, there is a continuous function ¢ : X — Y such that dist(p(x), ®(x)) <e
for x € X.

Proof. Let x € X be fixed and select y, € ®(x) and §, > 0 such that (y, +
eKo) N ®(x') # @ for every x’ € By, where B, = B(x,8,) denotes the open
ball of X centered at x with radius , > 0, and Ky is the unit open ball of Y
centered at 0 € Y. Since X is paracompact, there exists a locally finite refinement
{U.};en of {B. }.ex. Let {px}ren be a partition of unity subordinated to it and
define a function ¢ : X — Y by setting ¢(x) = > ., pz(x)y; for x € X.Itis
clear that ¢ is a continuous function on X. Furthermore, we have x € U, C B,
whenever p,(x) > 0. Hence it follows that y, € ®(x) + £Kj. Since this set is
convex, every convex combination of such y,, in particular ¢(x), belongs to it, too.
Therefore, dist(p(x), P(x)) <e for x € X . O

Lemma 2.3. Let (X,d) and (Y, p) be metric spaces, let G : X — P(Y) be lLs.c.,
andlet g : X — Y be continuous on X. If a real-valued function X > x —
e(x) € RT is Ls.c. on X, then the set-valued mapping ® : X — P(Y) defined by
®d(x) = B(g(x),e(x)) N G(x) is Ls.c. at every x € X such that ®(x) # 0.
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Proof. Let ¥ € X be such that ®(x) # @. Select y € ®(x) and let n > 0.
Assume g(x) > p(y,g(x)) and let 0 > 0 be such that p(y, g(x)) = e(X) — 0.
There exists a1 > 0 such that to every x € X with d(x,X) < o; we can associate
¥x € G(x) such that p(yy, ¥) < min(n, (1/3)0), 02 > 0 such that d(x,Xx) < o2
implies &(x) > &(x¥) — (1/3)0, and o3 > 0 such that d(x,X) < o3 implies
p(g(x), g(x)) < (1/3)0. Thus

P(¥x, (X)) < p(yx, ¥) + p(¥, g(x)) + p(g(x), g(x))
< (1/3)0 + &(X) —0 + (1/3)0 = &(%) — (1/3)0 < &(x),

whenever d(x, X) < min{oy, 02,03}. Then y, € ®(x) and p(yy, y) < n. |
Now we can prove Michael’s continuous selection theorem.

Theorem 2.1 (Michael). Let (X, p) and (Y, |-|) be a metric and a Banach space,
respectively, and let F : X — P(Y) be l.s.c. with closed convex values. Then there
exists a continuous function f : X — Y suchthat f(x) € F(x) for x € X.

Proof. By virtue of Lemma?2.2, for &; = 1/2 and ® = F, there exists a continuous
function f; : X — Y such that dist( fi(x), F(x)) <¢&; for x € X .Let ®;(x) =
(fix)+e1Ko)NF(x) for x € X. Wehave ®;(x) # @ for x € X.By Lemma2.3,
the multifunction ®; is 1.s.c. Then by Lemma 2.2, for &, = (1/2)?, there exists a
continuous function f, : X — Y such that dist( f/2(x), D1(x)) < & for x € X.
Thus dist( f2(x), F(x)) < & and dist( /2(x), (f1(x) + €1Kp)) < &, 1.e., fo(x) —
fi(x) € (e1 + &2)K for x € X. Continuing the above procedure, we can deduce
that for every ¢, = (1/2)" with n =0, 1, 2,.. ., there exists a continuous function
Juw X — Y such that dist(f,(x), F(x)) < & and f,(x) — fu—1(x) € (gg—1 +
€,) Ko for x € X. Hence in particular, it follows that sup, .y || f» (x) — fi—1(x)| <
€r—1 + &, for n > 1, which implies that (f,)72, is a Cauchy sequence in the
Banach space C(X,Y) of all continuous bounded functions g : X — Y with the
supremum norm. Thus there exists a continuous function f : X — Y such that
sup,ey || fu(x) — f(x)|| = 0 as n — oo. Hence it follows that f(x) € F(x) for
x € X, because F(x) is a closed subset of ¥ and dist( f,(x), F(x)) < &, for
xeXadn=1,2,.... O

Remark 2.5. There are closed convex-valued u.s.c. multifunctions that do not
possess continuous selections. A simple example is the set-valued mapping F
defined by the formula

{—1} for x <0,

F(x) =4 [-1,1] for x =0,
{+1} for x>0,

with the graph presented in Fig. 2.3. |
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Fig. 2.3 The mapping F A
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It can be proved that the above set-valued mapping possesses an approximation
continuous selection of u.s.c mutifunction

Immediately from Michael’s continuous selection theorem we obtain the exis-
tence of continuous approximation selections for some special multifunctions. The
proof of such a theorem is based on the following lemma.

Lemma 2.4. Let (X,p), (Y,|-1]) and (Z,| - ||) be Polish and Banach spaces,
respectively. If A : X xY — Z and v : X — Z are continuous and F : X —
PY) is Ls.c. such that v(x) € A({x} x F(x)) for x € X, then for every Ls.c.
function ¢ : X — (0,00), the set-valued mapping ® : X — P(Y) defined by
Px)=Fx)N{ueY : |A(x,u) —v)| <e(x)} for x € X isls.c.on X.

Proof. Let ¥ € X. For every open set U/ C Y such that & N $(x) # @, there are
u € ®(x) and n > 0 such that (x,u) € Graph(®) and (z + nKo) C U, where
Ky is the unit ball of Y. There is o > 0 such that |A(X,u) — v(X))| = &(X) — 0.
Let § > 0 be such that ||[A(x,u) — A(X,u)| < (1/3)o forevery (x,u) € X xY
satisfying max{p(x, ¥), |u — it|} < §. By the lower semicontinuity of F, there is
o1 > 0 such that forevery x € X satisfying p(x, X) < o7, there exists y, € F(x)
such that |y, —u| < min{n, (1/3)0, §}. By the continuity of v, thereis o, > 0 such
that ||lv(x) — v(¥)|| < (1/3)0 for x € X satisfying p(x,X) < 0. Furthermore,
by the lower semicontinuity of ¢, there is 03 > 0 such that e(x) > &(x) — (1/3)0
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for every x € X satisfying p(x,Xx) < o3. Then for every x € X satisfying
p(x,x) < min{é, 01,02, 03}, we get

[A(x, yx) = v = [IA(x, yo) — A(x, 0|
HIA G, w) — v + [[v(x) —v(x) ]l
< (1/3)o+e(X)—0 + (1/3)0 < e(x).

Thus y, € ®(x) and ||yx — ]| < n. For u € ®(x) and n > 0 chosen above,
we can choose &€ = min{é, 01,02, 03} such that (& + nKo) N P(x) # @ for every
x € B(x,&). Therefore, for every open set A/ C Y such that & N ®(x) # @, there
is & > 0 such that (u + nKo) N ®(x) # @ and (u + nKp) N d(x) C U N P(x)
forevery x € B(x,¢&). |

Theorem 2.2. Let (X,p), (Y,|-]|) and (Z,| - ||) be Polish and Banach spaces,
respectively. Assume that A : X xY — Z and v : X — Z are continuous
and F : X — P(Y) is Ls.c. with closed convex values. If A(x,-) is affine and
v(x) € A(x, F(x)) for x € X, then for every ¢ > 0, there exists a continuous
function f, : X — Y such that f.(x) € F(x) and |A(x, f:(x)) —v(x)| < € for
xeX.

Proof. By virtue of Lemma 2.4, for every ¢ > 0, the set-valued mapping &, : X —
P(Y) defined by ®.(x) = F(x)N{u €Y : [|[A(x,u) —v(x)| < e} for x € X
is I.s.c. on X. Therefore, cl(®,) is also l.s.c. on X. By the convexity of F(x) and
the property of A(x,-) for fixed x € X, it follows that ®,(x) and cl(d.)(x) are
convex for x € X. Therefore, by Michael’s theorem, for every ¢ > 0, there exists a
continuous selector f. for cl(®,). Itis clear that f; is a selector of F and satisfies
IA(x, fo(x)) —v(x)| < e for x € X. |

Now we consider the problem of the existence of more regular selections of
multifunctions. Such selections are connected with special properties of the “Steiner
point map” s : Conv(R?) — R? defined by

d/2)[c(1,A) + o(—1,4)] for d =1,

s(4) = d [r,yo(y, Adr for d > 1,

@2.1)

for A € Conv(RR?), where T, is the boundary of an open unit ball of R? and dr
denotes a differential of the surface measure r on I'; proportional to the Lebesgue
measure such that r(I'})) = 1. As usual, o(+, A) denotes the support functions
of A € Conv(R?), and Conv(R?) is the family of all nonempty convex compact
subsets of R¢.

Immediately from the above definition, it follows that (i) s({x}) = x for every
x € R?. Furthermore, (ii) s(A + B) = s(A) + s(B) and (iii) s(AA4) = As(A) for
A, B € Conv(R?) and A € R. Indeed, for every A, B € Conv(IR?), one obtains
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s(A+B)=d | o(y,A+ B)ydr
I

=d | o(y,A)dr+d | o(y,B)dr
I r

= s(A4) + s(B).

Quite similarly, we also get s(AA4) = As(A4) for A € R and A € Conv(R?). Then
conditions (ii) and (iii) are also satisfied.

We shall show that for every A € Conv(IR?), one has s(4) € A. To prove
this, let us recall some properties of the group O(R9) of all orthogonal linear
transformations on R?. It can be verified that s(/[A]) = [[s(A)] for every
[ € O(RY) and A € Conv(R?). It is also known that the surface measure 7 ()
on T is invariant under the action of elements in O(RR¢).

Lemma 2.5. For every A € Conv(R?), one has s(A) € A.

Proof. Suppose there is A € Conv(R¢) such that s(A) ¢ A. Define C = A —
s(A). Then 0 ¢ C, and by (i)—(iii), we get s(C) = 0. Let 0 # ¢ be such that
(c—¢é,%) > 0 forevery ¢ € C, where £ = ¢||¢||™!, and (-,-) denotes the inner
productin R? . But (¢, %) = (¢ + (c —¢),%) = (6. %) + (c — &, %) and (¢, %) =
I€]l. Then for every ¢ € C , one has |¢|| < {c, X).

Let [ : R? — R? be the linear transformation defined by /(X) = % and
I(x) = —x for x € R? orthogonal to X. It can be verified that / belongs to
the group O(IR?) of orthogonal linear transformations on R¢ and /%> = I, the
identity map. So [ = [*.Let D = C +I(C). Then /(D) = D, and so s(D) = 0.
In addition, for every d € D, we have (d,x) > 2||¢|| > 0,andso 0 & D. Now let

I{={yel:(y.£) =05 ={yel:(y.%)>0}and
I ={yel:{yx) <0}

Then Iy = 'Y U T} U T, and these three sets '), T'}", I';” are disjoint. Also,
r(I'Y) = 0. So we have

s(D) =d/r+cr(y,D)dr+d/F_cr(y,D)dr

=d g [o(y, D) —o(—y, D)]dr.

Let y € 1"1+ and e € D besuch that o(—y, D) = (—y,e). Then
o(y.D) —o(=y,D) =o(y.l(D)) —o(-y.D)

=0(l(y). D) —o(=y. D)
([(y).e) + (y.e) = ([ + D)(y).e).

A%
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But ({ + I)(y) = 2(y,x)x. Theno(y, D) —o(—y,D) > 2(y,x) - (X,e) > 0,
since y € 1"1+ and (X, e) > 0. Therefore,

(s(D).x) =d g [0(y.D) —0(=y.D)]-(y.X) dr > 0.

which contradicts s(D) = 0. Then s(A) € A for A € Conv(R?). a

Corollary 2.2. There is K > 0 such that for every A, B € Conv(R?), one has
Is(4) —s(B)| = K -h(A, B).

Proof. Let us observe that for A, B € Conv(IR?), we have h(A, B) = max{|o(x, 4)
—o(x, B)| : x| = 1}. Then |s(4) —s(B)| = d [, ylo(y,A) —o(y, B)|dr <
K -h(A, B) forevery K > d. O

Remark 2.6. In the above inequality we can compute the optimal Lipschitz constant

K(d) > 0.Ttisequalto d!'/(d — 1)!! if d isodd, and K(d) = d!/[x(d — )]
if d is even. |

Theorem 2.3. If (X, p) is a metric space and F : X — Conv(R?) is Lipschitz
continuous, then F admits a Lipschitz continuous selection.

Proof. Let h(F(x;), F(x2)) < Lp(x1,x,) forsome L > 0 andevery x;,x, € X .
Put f(x) = s(F(x)) for x € X. By Corollary 2.2, we get | f(x1) — f(x2)| =
Is(F(x1))=s(F(x2))| < K(d)-h(F(x1), F(x2)) < K(d)-L p(x1,x2), where K(d)
is as in Remark 2.6. By Lemma 2.5, for every x € X, we have f(x) € F(x). O

Remark 2.7. Theorem 2.3 cannot be extended to multifunctions with values in an

infinite-dimensional Banach space (Y, ]| - ||). It can be proved that if a Lipschitz
continuous multifunction F : X — Conv(Y) admits a Lipschitz continuous
selection, then Y is finite-dimensional. O

Remark 2.8. 1t can be proved that if F : X — P(RY) with X € Conv(R™) is
convex-valued such that F~({y}) = {x € X : y € F(x)} isan open setin X for
every y € R?, then F admits an C - selection. a

We shall now show that some measurable multifunctions admit measurable
selections. We begin with the following lemma.

Lemma 2.6. Let (X, p) be a separable metric space and (T, F) a measurable
space. Then a multifunction F : T — P(X) is weakly measurable if and only if
the function T >t — dist(x, F(t)) € Rt is measurable for each x € X.

Proof. Letus observe that F is weakly measurable if and only if F~(B(x,¢)) € F
forevery x € X and ¢ > 0. On the other hand, a function 7 > t — dist(x, F(t)) €
R* is measurable for fixed x € X if and only if {¢t € T : dist(x, F(¢)) < &} € F
forevery ¢ > 0. But F~(B(x,¢e)) ={t €T : F@t)NB(x,e) #0} ={teT:
dist(x, F(t)) < &}. This completes the proof. |
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Theorem 2.4 (Kuratowski and Ryll-Nardzewski). Let (X, p) be a Polish space
and (T, F) a measurable space. If F : T — CI(X) is measurable, then F admits
a measurable selector.

Proof. Let {x1,x7,...} be a countable dense subset in X and let B,(i) = {x €
X 1 p(x,x;) < 1/n} for i,n > 1. Without any loss of generality, we may assume
that diam(X) < 1, where diam(X) = sup{p(x,y) : x,y € X}. We will construct
a sequence (f,)92, of measurable functions f, : T — X such that

() dist(fu(0), F(t)) < &n and (i)  p(fu(?), fu-1(t)) < &n—

forn >0 and t € T, where ¢, = (1/2)" for n =0,1,2,.... Let fo(t) = x for
t € T. Then dist( fo(2), F(¢)) < 1. Suppose fo,..., fu—1 have been constructed
and let A} = {t € T : dist(fp(t),F(t)) < €3 and C}] = {t € T :
p(xXk, fu=1(t)) < ey—1}. Put D} = A} N Cl'. We claim that T = | J;., D} for
n > 1. Fix t € T. By the inductive hypothesis, we can find z € F(¢) such that
p(fu=1(t),z) < €,—1. On the other hand, there is k > 1 such that p(x;,z) < &,
and p(xi,z) + p(z, fu—1(t)) < &4 + &4—1 < 28,2 = &,1. Therefore, t € D}
and T C (Jy>, D}. By virtue of Lemma 2.6 and the continuity of the function
dist(-, F'(t)) for fixed t € T, we obtain that A7 € F. The inductive hypothesis
givesthat C}' € F.Then D} € F.Nowdefine f, : T — X bysetting f,(t) = xx

for t € D} \ Uf:i D!. Clearly, f, is measurable. Moreover, by (ii), we see that
(fu(1))52, is a Cauchy sequence in X for every fixed ¢ € T. Then there exists
a function f : T — X such that f,(t) — f(¢) forevery t € T as n — ooc.
We also have dist(f(z), F(¢z)) = 0 for every t € T. Hence it follows that f is

measurable such that f(¢) € F(¢) forevery t € T. O

In what follows, we shall consider “complete” measurable spaces defined in the
following way. For a given measurable space (7', F) and every probability measure
w1 on F, we denote by F, the u-completion of F and define F =) o Fu- The

space (T, F) is said to be complete if F = F.

Remark 2.9. 1t can be proved that for a given complete measure space (7, F, 1), a
multifunction F : T — P(R") such that Graph(F) € F ® S(R™) is measurable
and admits a measurable selection. a

A consequence of the above measurable selection theorem is the following
implicit function theorem.

Theorem 2.5. Assume that (X, p) is a Polish space, (T, F) a measurable space,
and (Y,d) a metric space. Suppose [ : T x X — Y is a function measurable in
t € T and continuousin x € X, andlet I' : T — Comp(X) be a measurable
multifunctionand g : T — Y a measurable function such that g(t) € f(t,T'(t))
for t € T. Then there exists a measurable function y : T — X such that y(t) €

I'(t) and g(t) = f(t,y(@)) fort €T.

Proof. Let us observe that the set-valued function F : T — P(X) defined by
Ft)={xeX: f(t,x) eU} for t € T is measurable for every openset & C Y.
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Indeed, let B be a closed subset of X and let A be a countable dense subset of B.
We have

F~(B)={teT:Ft)NB+# 0}
={teT: f(t,x) elU for some x € B}
={teT: f(t,a) el for some a e A}

= JlteT: fa.0)cuy.

a€A

Therefore, F~(B) € JF, because we have {t € T : f(t,a) € U} € F
for every fixed a € A. Define multifunctions H(t) = T'¢) N{x € X :
d(f(t,x),g(t)) =0} fort € T and F,(¢) = {x € X : d(f(t,x),g()) <
1/n} for t € T and n > 1. For every n = 1,2,..., a multifunction F, is
measurable and also weakly measurable. Hence it follows that its closure F, is
weakly measurable, because F, (B) = F, (B) for every open set B C X.
Clearly, {x € X : d(f(t,x),g(t)) = 0} = (2, F,(t) for t € T, because
F.(t) C {x € X : d(f(t.x).g(t)) < 1/n} for t € T and n > 1. Hence it
follows that the multifunction H defined above can be also defined by H(t) =
I'(t) N[N, Fu(t)] for ¢ € T, which implies that H is measurable. Therefore,
by Theorem 2.4, there is a measurable selector y for H that in particular is a
selector for T" satisfying d(f(z,y(t)),g(t)) =0 fort € T. |

Corollary 2.3. If (X, p) is a Polish space, (T, F) a measurable space, and T" :
T — Comp(X) and g : T — X are measurable, then there exists a measurable
selector y for T suchthat dist(g(t), ' (¢)) = p(g(t),y(t)) for t € T. |

The following important result follows immediately from the Kuratowski and
Ryll-Nardzewski measurable selection theorem.

Theorem 2.6. Let (X, p) be a Polish space, (T, F) a measurable space, and let
F : T — CI(X). The following conditions are equivalent:

(i) F is measurable;
(ii) there exists a sequence (f,)92, of measurable selectors of F such that F(t) =

cl{ f1(t), fo(2),...} forevery t € T.

Proof. Let F be measurable and (x,)72, a dense sequence of X. For every
n,k > 1, we define

F(t) N B(xp, &) if t € F7(B(xy, &k)),

F.x () =
ni (1) F(t) otherwise,

where g = (1/2)¥ and F~(B(x,,ex)) = {t € T : F(t) N B(x,, &) # 0}.
Note that F~(B(x,,&r)) € F and that the set-valued function 7 > t — F(t) N
B(x,,er) C X is measurable. So F, ; is measurable, which implies that cl [F, k]
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is also measurable. Therefore, by Theorem 2.4, there exist measurable functions
fok : T — X suchthat f,x(t) € cl[F,x](t) forevery t € T. We shall show that
F(t) =cl{fyx() :n,k > 1} for t € T.Indeed, fix t € T andlet x € F(¢t) and
e>0.Let k > 1 and n > 1 be such that ex_; < ¢ and x € B(x,,é&x). Then
t € F(B(x,,60) and fyi(t) € B, 80). S0 p(fyx(1), %) < p(fork (1), %) +
p(x,,x) < e, which proves that F(t) = cl{f,x(¢) : n,k > 1}. Then (i) = (ii).
Assume that (ii) is satisfied. Then for every open set &/ C X , we have

FrUy={eT:FoOnU#0y=|JtreT: fi)elyeF.
n>1

Then F is weakly measurable and therefore measurable. Thus (ii)=>(i). O

Remark 2.10. 1t can be proved that if (7, F) is a complete measurable space,
(G, Q) is a measurable space, X is a Suslin space, g : T x G — X is jointly
measurable, I' : T — P(G) is a multifunction such that Graph(I') € F ® G, and
h: T — X is ameasurable map such that h(t) € g(¢,'(¢)) for ¢t € T, then there
exists a measurable selector y : T — G of I' such that h(t) = g(¢,y(¢)) for
teT. a

We shall consider now the existence of Carathéodory-type selections of measur-
able multifunctions depending on two variables. More precisely, let (7, F) be a
measurable space, (X, p) a Polish space, and (Y, || - |) a separable Banach space.
Consider the set-valued mapping F : T x X — CI(Y), which is assumed to be
measurable, i.e., for every closed set A C Y ,wehave F7(A) ={(t,x) e T x X :
F(t,x)N A # 0} € F ® B(X). We are interested in the existence of a function
f:TxX —Y,aselector of F,suchthat f(-,x) is measurable for fixed x € X,
and f(¢,-) is continuous for fixed ¢ € T. Such selectors of F are said to be of
Carathéodory type or simply to be Carathéodory selectors for F.

Theorem 2.7. Let (T, F) be a complete measurable space, (X, p) a Polish space,
(Y, |l - I|) a separable Banach space, and F : T x X — CI(Y) a convex-valued
measurable set-valued mapping. If furthermore, F(t,-) is Ls.c. for fixed t € T,
then F admits a Carathéodory selection.

Proof. Let (y,)52, be a dense sequence of Y. For t € T, n > 1,and ¢ > 0,
define G;(t) = {x € X : y, € (F(¢t,x) + ¢B)}, where B is an open unit ball in
Y. By the lower semicontinuity of F(z,-), a set G/(t) is open for every t € T,
e > 0,and n > 1. Also, the family {G;(¢) : n > 1} is an open covering of X.
Moreover,

Graph(G;) = {(t,x) € T x X : dist(y,, F(¢,x)) < e} € F @ B(X),
because of the measurability of F. Let &, = (1/2)" and

G, () ={x € G, (¢) : dist(x, X \ G,) > &p} and U, (t) = G, (1) \ U G, (D)

1<k<n
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for n,m > 1. It can be verified that the family {{/5(t) : n > 1} is a locally
finite covering of X and every multifunction ¥ : T — P(X) has a measurable
graph. Hence it follows that the set-valued mapping 7 > ¢t — X \U:(¢t) C X is
measurable with closed values. Let

dist(x, X \ U (1))
ps1 dist(e, X\ U ()

Pt x) = 5

By virtue of Lemma 2.6, the function p; (-, x) is measurable for every n > 1
and fixed x € X. By the above definition, p:(t,-) is continuous for fixed t € T.
Then p{ is a Carathéodory function for every ¢ > 0 and n > 1. Furthermore,
doas1 Dot x) = 1. Let fe(t,x) = Y o, pi(t,x) - y,. It is clear that f* is a
Carathéodory function. By the convexity of F(z,x), forevery (1,x) € T x X we
get fe(t,x) € F(t,x)+¢B for (t,x) € T x X andevery ¢ > 0.

Let g, = (1/2)" for n = 1,2,.... We define now a sequence (f,)s, of
Carathéodory functions f, : T x X — Y such that f,(z,x) € F(¢,x) + ¢,B and
Il fu(t, x) — fu=1ll < €n—1 for (¢t,x) € T x X and n > 2. We start with f; = f*!
and then we put F,(t,x) = F(¢t,x) N {fi(t,x) + e B} for (t,x) € T x X. By
virtue of Lemma 2.3, a multifunction F(t,-) is Ls.c. for fixed ¢ € T. It is easy
to see that F, is measurable. Consequently, its closure cl[F3] is measurable and
cl[F>] (¢,-) is Ls.c. for fixed ¢t € T. From this and the first part of the proof, it
follows that for ¢ = &, there exists a Carathéodory function f, suchthat f,(¢,x) €
cl[F>] (t,x)+&,B for (t,x) € T x X.Itisclear that f,(¢,x) € F(t,x)+¢&,B and
| A2(¢, x) — fi(t,x)|| <& for (¢,x) € T x X. By the inductive procedure, we can
define a sequence (f,,)52, of Carathéodory functions f, : T x X — Y such that
fu(t,x) € F(t,x) +&,B and || f,(t, x) — fu—1(¢,x)|| < &n—1 for (¢,x) € T x X.
Hence it follows that there exists a Carathéodory function f : T x X — Y such
that f,(t,x) — f(t,x) as n — oo for (t,x) € T x X. By the closedness of
F(t,x), this implies that f(¢,x) € F(t,x) for (t,x) e T x X. |

Remark 2.11. Ttcanbe provedthatif T is alocally compact metric space furnished
with a Radon measure @, X is a Polish space, Y is a separable reflexive Banach
space,and F : T x X — CI(Y) is as in Theorem 2.7, then there exists a sequence
(fm)S, of Carathéodory selectors f,, : T x X — Y of F suchthat F(f,x) =
cl{ fu(t,x) :m > 1} forevery (t,x) e T x X. |

There are quite a number of set-valued fixed-point theorems. We present below
one of them that generalizes the classical Banach fixed-point theorem.

Theorem 2.8 (Covitz—Nadler). Let (X, p) be a complete metric space and let
F : X — CU(X) be such that h(F(x), F(x)) < Kp(x,Xx) forevery x,x € X
with K € (0, 1). Then there exists x € X such that x € F(x).

Proof. Let L € (K,1) and A = K~ 'L. For some x € X, we have
B(x, A -dist(x, F(x)))NF(x) # @,because A > 1. Then we can select x; € F(x)
such that p(x, x;) < A-dist(x, F(x)). Forsuch x; € X, we can select x, € F(x)
such that p(xy, x2) < A -dist(x;, F(x1)). Continuing this procedure, we can find a
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sequence (x,)%2, of X suchthat p(x,,x,41) < A -dist(x,, F(x,)) for n > 1.
Hence it follows that p(x,, x,+1) < A -dist(x,, F(x,)) < A-h(F(x,—1, F(x,)) <
Lp(xy—1,x,) < L"dist(x, F(x)). Now, similarly as in the proof of the Banach
fixed-point theorem, we can verify that the above defined sequence (x,);2, has
a limit, say x,, belonging to X. Since F is H-continuous and dist(x, F(x)) <
p(x, x,) + dist(x,, F(xy+1)) + h(F((xy41), F(x)) for n > 1, it follows that
x € F(x). |

3 The Aumann Integral

Let (T, F,u) be a o-finite measure space that is not necessarily complete. For
p > 1,by L(T, ]Rd) we denote the Banach space .7 (T, F, u, Rd) with the norm
| - || defined in the usual way, i.e., by || f|? = [, |f()|?du for f € L7(T, RY).
In what follows, we shall consider L?(7,R¢) with p = 1 and p = 2. Instead
of LY(T,RY), we shall write I.(T, R?). Let us recall that if 4#(T) < oo, then a
set K C LP(T,RY) is relatively sequentially weakly compact if K is bounded
and uniformly integrable, i.e., if lim,g)—o [ f(1)du = O uniformly for f € K.
By the reflexivity of I2(7,R%), a set K C L*(T,R¥) is relatively sequentially
weakly compact if and only if it is bounded. By the Eberlein—-Smulian theorem, it
follows that for a bounded set K C ]LZ(T, Rd) , its closure cl,, K with respect to the
weak topology of IL2(T, R¢) is weakly compact. In particular, if K is also closed
and convex, then it is weakly compact, because in such a case, we have K = cl,, K.

Given a measurable set-valued mapping F : T — CI(R?), we define
subtrajectory integrals S(F) of F as the subset of the space L?(7,R?) defined
by S(F) = {f € L”(T\RY) : f(t) € F(t) a.e.}. It can be verified that
S(F) is a closed subset of IL”(T,R¢). In what follows we shall consider only
the cases p = 1 and p = 2. Immediately from properties of multifunction F
it will be easily seen if S(F) is a subset of I.(T,R?) or L*(T,R?), respectively.
In what follows, we shall denote by M(T, ]Rd) the space of all measurable set-
valued mappings F : T — CI(RY) and by A(T,R) the subspace of M (T, R¢)
containing all F € M(T,R?) such that S(F) # @. It can be proved that every
F € M(T,RY) belongs to A(T,R?) if and only if there exists k € L?(T,R")
such that dist(0, F(¢)) < k(t) fora.e. t € T. We have the following simple results.

Lemma 3.1. If F € A(T,RRY), then there exists a sequence (fn)S2, of functions
fu € S(F) such that F(t) = cl{ f1(t), fo(t),.. .} for t € T.

Proof. By virtue of Theorem 2.6, there exists a sequence (g,);>, of measurable
functions g, : T — R? such that F(t) = cl{gi(t),g:(t),...} for t € T.
Taking a countable measurable partition {A, Az,...} of T with u(Ax) < oo
and a function f € ILZ(T,RY) such that f(1) € F(t) for t € T, we
define Bjux = {t € T : m—1 < |g;(®)] < m} N Ax and fimr =
1s,,.8; + 1r\s,,,f for j,m,k > 1.1tis easy to see that f;,x € S(F) and

F(t)={fjmi(t):jmk>1}fort eT. 0




3 The Aumann Integral 85

Corollary 3.1. If F.G € A(T,RY), then S(F) = S(G) if and only if F(t) =
G(t) forae teT. |

Lemma 3.2. Let F € A(T,R?) and let (f, ne, be a sequence of S(F) such
that F(t) = cl{fi(t), [2(t),...} for t € T. Then for every f € S(F) and
e > 0, there exists a finite measurable partition {Ai,...,An} of T such that

If =2 1 fill <&

Proof. Assume f(t) € F(t) forevery t € T andlet p € L?(T,R) be strictly
positive such that |. 7 pdu < &/3. Then there exists a countable measurable partition
{Bi1, By,...} of T suchthat |f(z) — f;(¢)| < p(t) for t € B; and i > 1. Take
an integer m such that 3272 ., [ [f(O)]dp <e/6 and 372, 1) [p | fi(D]dp <
¢/6 and define a finite measurable partition {A,,..., A,} as follows: A; = B; U
(U241 Bi) and A; = B; for 2 < j < m. Then we have

"f_;mifi" =;/};i|f(t)—ﬁ(t)ldu+ Z /Bilf(t)—ﬁ(t)ldu

i=m+1

o0
< [+ ¥
T

i=m+1

[ aror+isoban <. .

Lemma 3.3. Let (T, F, 1) be a measure space with a o-finite measure . If F €
A(T,RY), then coS(F) = S(co F).

Proof. We have co S(F) C S(co F). Assume that there exists f € S(co F) such
that f ¢ co S(F). By the strong separation theorem, we can find h € IL°°(T, R%)
such that sup{(h,g) : g € S(F)} < (h, f), where (-,-) denotes the duality bracket.
Hence it follows that [, o(h(r),c0 F(t))d <[5 (h(z), f(t)) djt. On the other
hand, f(r) € cOF(r) ae. Then [, (h(t), f(1))du < [, o(h(r),co F(r))dpu, a
contradiction. Therefore, co S(F) = S(coF). |

A multifunction F : T — P(R") is said to be p-integrably bounded if there
is k € LP(T,R") such that |F(t)| =: h({0}, F(¢t)) < k(t) forae. t € T.In
particular, for p = 1, we say simply integrably bounded instead of 1-integrably
bounded. Similarly, if p = 2, then instead of 2-integrably bounded, we say square
integrably bounded. It is clear that F' is p-integrably bounded if and only if the
function T > t — ||F(¢)|| € R™ belongs to I.?(T,R*). For every p-integrably
bounded multifunction F € M(T,R"), we have S(F) # 0.

Remark 3.1. Immediately from the definition of subtrajectory integrals, it follows
that for every measurable and p-integrably bounded multifunction F : T —
Conv(R?), its subtrajectory integral S(F) is a nonempty convex weakly sequen-
tially compact subset of L?(T,R?). In particular, it is a weakly compact convex
subset of this space for p > 1. |

Lemma34. If F,G € AT,RY then S(F + G) = S(F) + S(G).
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Proof. Immediately from Theorem 2.6, it follows that H = F + G is measurable.
It is clear that S(H) is closed, and therefore, S(F)+ S(G) C S(H). On the
other hand, we may find sequences (f,)72, C S(F) and (gn)or, C S(G)
such that F(¢) = cl{f,(t) : n > 1} and G(t) = cl{ig,(t) : n > 1} ae.
Evidently, H(¢) = {f.(t) + gu(t) : n,m > 1}, which, by Lemma 3.2, implies
that for given 7 € S(H) and ¢ > 0, we can select a finite F-measurable

partition (Ak)]](\'=l of T and positive integers ny,...,ny and mi,...,my such
that ||h — Z]]Ll L4, (fu, + &m)ll < e Hence it follows that 7 € S(F) + S(G).
Then S(H) C S(F) + S(G). O

Let (T, F, /) be a measure space, R = [—o0o,+0c0] andlet ¢ : T x X —
R be an F ® B(R¢)-measurable function. The functional T4 defined on the
space LY(T,R?) of measurable functions f : T — RY by setting T,(f) =
[7 @, f(1))du if the integral exists, permitting +o0o or —oo, is called the integral
functional.

Lemma3.5. Let F € M(T,R?) andlet ¢ : T x RY — R be F ® B(RY)-
measurable. Assume either that (i) ¢(t,x) is u.s.c. in x for every fixed t € T or
that (ii) (T, F, n) is complete and ¢ (¢, x) isl.s.c. in x forevery fixed t € T. Then
the function T > t — inf{¢(t,x) : x € F(1)} C R is measurable.

Proof. Let £(t) = inf{¢(¢,x) : x € F(t)} and assume that (i) is satisfied.
By Theorem 2.6, there exists a sequence (f,)72, of measurable selectors of F
such that F(t) = cl({fi(t), fa(t),...}) for t € T. Then we have £(t) =
inf,>; ¢(t, fu(¢)) for t € T, which implies that & is measurable. Let (ii) be
satisfied and let H : T — P(R¢ x R) be defined by H(t) = {(x,a) e R xR :
x € F(t), ¢(t,x) < a} for t € T. Then H(t) is closed in R x R for every
t € T, and Graph(H) = [Graph(F) N R] N {(z, x, ) : (z,x) — o < 0} belongs
to F ® B(RY) ® B(R) = F ® B(R? ® R). Therefore, by virtue of Remark 2.9
and Theorem 2.6, there exists a sequence (g,,&,)52,; of measurable functions
g : T — RYand &, : T — R such that H(t) = cl({(g1.&)(1), (g2.&)(1)....})
for t € Dom(H). Hence we have £(¢) = inf,>;&,(¢t) for t € Dom(H) and

&(t) = oo for t € T \ Dom(H ). This shows that & is measurable. |

Theorem 3.1. Ler F € A(T.R?) andlet ¢ : T x X — R be F ® B(R?)-
measurable. Assume either that (i) ¢(t,x) is u.s.c. in x for every fixed t € T, or
that (ii) (T, F, ) is complete and ¢(t,x) is l.s.c. in x for every fixed t € T. If
the integral functional Ty is defined for all f € S(F) and T4(fo) < oo for some
fo € S(F), then inf{Ty(f): f € S(F)} = [,inf{p(t,x) : x € F(t)}dpu.

Proof. Let £(t) = inf{¢(¢t,x) : x € F(t)}. By virtue of Lemma 3.4, £ is
measurable and £(¢) < ¢(¢, f(t)) ae. forevery f € S(F). Taking f = fo,
we can see that the integral of £ exists and [, &du < inf{T4(f) : f € S(F)}.
If T4(fo) = —oo, then the proof is complete. Thus assume 74( fo) to be finite, so
that the function 7 3> t — ¢(t, fo(r)) € R is in L(T,R). Let 8 > [ &dp be
given. We shall show that 74(f) < B for some f € S(F). Take a sequence
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(4,);2, of measurable sets A, € JF such that u(4,) < oo and such that
A, 1 T and a strictly positive function p € L(7,R). For n > 1, define
B,=A4,N{t T :¢(, fo(t)) > —n} and

E@)+ p(t)/n textif te€ B, and £(t) > —n,
() = —n+p@)/n if t€ B, and £(t) < —n,
¢, fot)) + p(t)/n if 1 €T\ B, .

It is easy to see that § € I(7T,R) for n > 1 and §,(¢) | &(t) ae., so
that [} &,du < B for some ng. Setting { = §,,, we have [, ¢du < B and
£(t) < £(t) a.e. We claim now that there exists a measurable function g : T — R
satisfying g(¢) € F(¢t) ae. and ¢(z,g(t)) < ((t) ae. For case (i), take a
sequence (g;)72, of measurable functions such that F(t) = cl({gi(?), g2(¢). ...}
for all + € T. Since infi>; ¢(¢,g:(t)) = &(t) ae., there exists a measurable
function g satisfying the conditions desired above. For case (ii), define Fj(t) =
Fit)yn{x € RY : ¢(t,x) < £(t)} for t € T. Since F\(t) is closed for every
t € T and Graph(F)) € F ® B(RY) it follows by Remark 2.9 that F; has a
measurable selection on Dom(F}) € F. Thus the desired g is obtained from the
condition p(T \ Dom(F;)) = 0. Using the function g defined above, we define
C,=A,N{teT:|gt) <n}and f, =1c,g + 1Inc, fo for n > 1 such that
fn € S(F) for n > 1 and

Tolf) = /C $(1. g(0)du + /T P SNy
< [ ¢ + [ [, folt)) — Lldp.
T T\C,

Since [, ¢dpu < B and C, 1 T, we have Ty(f,) < B. O

Corollary 3.2. If F € A(T,RY) if ¢ : T x X — R is F ® B(R?)-measurable
and satisfies (i) or (ii) of Theorem 3.1, and if Ty is defined for all f € S(F)
and Ty(fo) > —oo for some fo € S(F), then sup{T4,(f) : f € S(F)} =
[ sup{g(t,x) : x € F(r)}dp. |

Corollary 3.3. For every F € A(T,RY), one has supf{| f|? : f € S(F)} =
[rsup{|x|? : x € F()ydp = [, IF(t)|?dp. Then F is p-integrably bounded if
and only if S(F) is a bounded subset of 1.7 (T, R%). |

Let M C IL°%(T,R?) be a set of measurable functions f : T — R?. We call
M decomposable with respect to F if fi, f, € M and A € F imply 14/ +
Ir\afo € M. Itis clear that if M is decomposable, then Y ;- 14 f; € M for
each finite F-measurable partition {A;,..., Ay} of T and {fi,..., fu} C M.
The following theorem is a characterization of decomposable subsets of the space
L7(T,RY).
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Theorem 3.2. Let M be a nonempty closed subset of L?(T,R?) with p > 1.
Then there exists an F € A(T,R?) such that M = S(F) if and only if M is
decomposable.

Proof. Let us observe that S(F) is decomposable for every F € A(T,R?). If
M c LP(T,R?) is such that there exists F € A(T,RY) such that M = S(F),
then it is decomposable. To prove the converse, assume that M is a nonempty
closed decomposable subset of I.” (T, RY). Let us observe that a multifunction G
defined by G(¢) = R? forevery t € T belongs to A(T, R?). Therefore, by virtue
of Lemma 3.1, there exists a sequence (f;)72, of L”(7,R") such that RY =
cl(fi(¢) i > 1} forevery t € T.Let o; = inf{||f; — g|| : g € M} for i >
1 and choose a sequence {g;; : j = 1} C M such that ||f; — gij| — o; as
j — oc. Define F € A(T,RY) by F(t) = cl{gi;(t) : i,j > 1}. We shall
prove that M = S(F). By Lemma 3.2, for each f € S(F) and ¢ > 0, we
can select a finite measurable partition {A;,...,A,} of T and {hy,..., hy} C
{gij(t) 1 i,j = 1} suchthat || f — Y )/, La hill < e Since Y ) Lahx € M,
this implies that f € M. Then S(F) C M . Now suppose that S(F) # M.
Then there existan f € M ,an A € F with u(A) > 0,and a § > 0 such that
inf; j>1|f(¢t) — gij(t)] = 6 fort € A. Take an integer i, fixed in the rest of the
proof, such that the set B = AN{t € T : |f(t) — fi(¢)] < &/3} has positive
measure, and let g = 1 f + 17\pg;;, for j > 1. Since g; € M for j > 1 and

|fi(@) = & (O = [ /(1) = gi; O] = [ f () = fi(t)] > 28/3 it follows that
Lfi = gij 7" —ei = 1fi = gis 17 = 1.fi — &I

=/B(Iff(t)—gij(t)lf’—Ifi(t)—f(t)lp)du
> [(28/3)" — (8/3)7] - u(B) > 0

for j > 1.If j tends to infinity, we get lim; oo || fi — gijll > o, a contradiction.
Thus M = S(F). O

Remark 3.2. The above result is also true for nonempty closed subsets of IL.7 (7, X),
where X is a separable Banach space. |

Remark 3.3. Similarly as in the proof of Michael’s continuous selection theorem, it
can be proved that if (X, p) is a separable metric space and (7, F, i) is a measure
space, then every Ls.c. multifunction F : X — CI(IL?(T,R%)) with decomposable
values admits a continuous selection f : X — L?(T,R9).

Proof (Sketch of proof). The proof follows from the following construction proce-
dure. For every ¢ > 0, we define continuous mappings f, : X — L7(T,RY)
and ¢, : X — LP(T,R%") such that F,(x) = {u € F(x) : |ut) — f:(1)| <
@s(t)a.e.} is nonempty and |¢.[, < & Now, by the inductive procedure, we
can define sequences ( f,)n>0, (@n)n>0,and (F,)a>0 such that |@,(x)|| < 1/2",
[ /u () (1) = fum1 ()(D)] = @n(x) () + @u—1(x)(2) ae.,and F,(x) # @ for x € X.
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Hence the existence of a continuous selector f for F follows similarly as in the
proof of Michael’s theorem. O

Given C C LP(T,RY), by dec{C} we denote the decomposable hull of
C, i.e., the smallest decomposable set of IL?(7,IR?) containing C. The closed
decomposable hull dec{C} of C is defined by dec{C} = cly[dec{C}]. It is easy
to see that

dec{C} = 14 fi : ()L, € I(T.F) and (fi)jL, C Cy.

i=1

where II(7,F) denotes the family of all finite F-measurable partitions of 7.
Immediately from the above definition, it follows that the decomposable hull of the
unit ball B of L?(T,RY) is equal to the whole space, i.e., dec{B} = L”(T,R%).
We have the following results dealing with decomposable hulls.

Lemma 3.6. Let (X,p) be a metric space. If T : X — PALP(T,R?)) is Ls.c.,
then the multifunction X 3 x — dec{T'(x)} C L?(T,R?) is also Ls.c.

Proof. By virtue of ([49], Theorem I1.2.8), one has to verify that dec(I')—(C) :=
{x € X : dec{I'(x)} C C} is a closed subset of X for every closed set C C
IL”(T,R9). Let C be a closed subset of I.”(T,R¢) and (xn);2, a sequence of
dec(T")_(C) converging to x € X. For every u € dec{I'(x)} C dec{I'(x)} and
e > 0, there exist a measurable partition (Ai),ivil of T and a family (vf{)f\';l C
L?(T,R%) such that |ju — Z,N;l Lavpll < & and vy € I'(x) for every k =
I,...,N..But T isls.c.at x € X. Therefore, by virtue of ([49], Theorem 11.2.9),

forevery k = 1,..., N, and ¢ > 0O there exists a sequence (v,)72, converging
to vf such that v* € I'(x,) forevery n > 1, k = 1,..., N, and & > 0. Hence
it follows that || Z,I{Vgl Lo — Z,I{Vgl Ly vl — 0 as n — oo forevery & > 0.

. N, n,e N; n,e
Therefore, lim, oo [u—) ;2 Tac vy || < & forevery e > 0.But } ;= T v° €

dec{T"(x,)} C C forevery n > 1 and & > 0. Then u € C +¢B, where B denotes
the closed unit ball of I.” (T, R¢). Therefore, for every u € dec{I'(x)}, one has u €
C = C. Thus dec{T'(x)} C C, which implies that x € dec(I')_(C). Therefore,
dec(T")_(C) is a closed subset of X for every closed set C C L”(T,R¢). |

Remark 3.4. Immediately from Lemma 3.6, it follows that by the assumption of
Lemma 3.6, the multifunction X 3 x — dec{I'(x)} C L”(T,RY) is Ls.c.

Proof. By virtue of ([49], Theorem I1.2.9) one has to verify that for every x € X,
every sequence (x,)52, of X convergingto x,and u € dec{T'(x)}, there exists a
sequence (y,),o, of L”(T, R?) converging to u such that y, € dec{I'(x,)} for
every n > 1. Let x € X be fixed, let (x,);2, be a sequence of X converging to
x,and let u € dec{I'(x)}. For every & > 0, one has dec{I'(x)} N B(u.,&) # @.
By virtue of ([49], Proposition 11.2.4) and Lemma 3.6, a multifunction ®(x) =

dec{I"(x)} N B(u, &) is l.s.c. Then there exists a sequence (y,)52, of L7(T, RY)
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converging to u such that y, € dec{I'(x,)} N B(u, &), which implies that y, €
dec{I"(x,)}. |

Theorem 3.3. The decomposable hull of a convex set K C L?(T,RY) is itself
convex, and its closure is convex and sequentially weakly closed. If (2, F, 1) is
a o-fini te nonatomic space and K is a nonempty subset of ILP(Q2, F, u,R%),
then dec,,{K} = co[dec{K}], where dec,{K} denotes the closure of dec{K} with
respect to a weak topology of L (T, R?).

Proof. Let K be a convex subset of L?(T,R?) and u,v € dec{K}. There are
partitions (A,)_,,(B,)M_, € II(T, F), and (u,)"_,, (vu)M_, C K such that
u=3N Mgu and v =YY 1p v, Let (Dx)K_, € TI(T,F) be such that
u = Z,il]lpkﬁk and v = Zf:l]].Dkl_)k, where iy = u,, and Uy = v, for
ng €{l,...,N} and my € {1,...,M} forevery k = 1,..., K. Forevery A €
[0,1] and 1 < k < K, one has Auy + (1 — A)v; € K. Therefore, Au+ (1 — A7)
v = Zle 1p, [Aux + (1 — A)vx] € dec{K}. Thus dec{K} is a convex subset of
L7(2, F,R"). Hence the convexity of dec,{K} follows. Now, immediately from
Mazur’s theorem ([4], Theorem 9.11), it follows that dec{K} is sequentially weakly
closed. Finally, immediately from ([41], Theorem 2.3.17), the equality dec,,{K} =
co[dec{K}] follows. |

Remark 3.5. 1If K C IL>(T,R¥) is convex and square integrably bounded, then
dec{K} is convex and weakly compact.

Proof. If K C L2(T,RY) is square > integrably bounded, then dec{K} is square
integrably bounded, too. Therefore, dec{K} is relatively weakly compact, which
by virtue of Theorem 3.3, implies that it is convex and weakly compact. |

Remark 3.6. If F : T — R? is measurable and p-integrably bounded, then the
interior Int[S(F)] of S(F) is the empty set and S(F) = dec{f, : n > 1}, where
fn € S(F) for n > 1 are suchthat F(¢t) =cl{f,(t) :n>1} fort € T.

Proof. Suppose Int[S(F)] # @. For every f € Int[S(F)]), there exists an open
ball B(f) containing f such that B(f) C Int[S(F)] C S(F). Hence it follows
that dec{B(f)} C dec{S(F)}. But S(F) is a decomposable subset of I.”(T, R).
Therefore, dec{B(f)} C S(F), which is a contradiction, because S(F) is bounded
and dec{B(f)} = L?(T,R?). Then Int[S(F)] = @. Let us observe that by the
properties of S(F), wehave dec{f, : n > 1} C S(F). On the other hand, by virtue
of Lemma 3.2, for every f € S(F) and & > O there exist a partition (Ak);{vzl €

I1(T, F) and a family (fn,(),]{\’=l C {fy, :n > 1} suchthat | f —Z,i\;l Ly, forll <
e, which implies that f € dec{f, : n > 1}. Thus S(F) = dec{f, : n > 1}. |

Lemma 3.7. Assume that (T, F, ) and (X, p) are measure and metric spaces,
respectively. Let F : T x X — CI(RY) be such that F(-,x) is measurable for
fixed x € X and there exist m,k € L*(T,RT) such that |F(t,x)| < m(t)
and h(F(t,x), F(t,x)) < k@)p(x,x) for pu-ae. t € T and x,x € X.



3 The Aumann Integral 91

Then H(S(F(-,x),S(F(-, X)) < Kp(x,Xx) for every x,X € X, where K =
(fT k2(t)dp)'/? and H is the Hausdorff metric on CI(IL>(T, R%)).

Proof. Assume x,X € X and select arbitrarily f* € S(F(-,x)). By virtue of
Theorem 3.1, one has

1/2
dist(f*, S(F(-, X)) = inf§ (/Tlf,"—ftlzdu) SIS S(F(-,fc))}
1/2
= ( / dist?( £, F(t,)‘c))d,u)
T

1/2
< (/ kz(t)pz(x,)"c)d,u) < Kp(x, %),
T

where K = (fOT k2(¢)dt)"/2. Then H(S(F(-,x)),S((F(-,X))) < Kp(x,%).Ina
similar way, we obtain H (S(F(-, X)), S(F(-,x))) < Kp(x, %). O

Remark 3.7. Similarly as above, one can prove that if (7, F, ) and (X, p) are as
aboveand F : T x X — CI(RY) is measurable and uniformly square integrably
bounded such that F(z,-) is Ls.c. for a.e. fixed ¢ € T, then a set-valued mapping
X 3 x — S(F(-,x)) € C(L*(T,RY)) is L.s.c.

Proof. Let us observe first that for given metric spaces X and Y , a multifunction
®: X - PX)is Lsc.at x € X ifitis H-ls.c,, i.e., if for every ¢ > 0,
there exists a § > 0 such that for every x € X satisfying p(x,x) < &, one has
h(®P(x), P(x)) < . Indeed, suppose the above condition is satisfied and & is not
L.s.c. at x. There exists an openset U C Y with ®(x) N U # @ such that in every
neighborhood V of x, there exists X € V' such that ®(x)NU = @. Therefore, we
can select a sequence (x,)72, of X converging to X such that ®(x,) N U =0
for every n = 1,2, .... On the other hand, for every ¢ > 0, there exists N, > 1
such that for every n > N, , we have ®(¥) C V°[®(x,). ]. Hence in particular, it
follows that ®(X)NU C VO[®(x,),¢] for n > N,.Let y € ®(X)NU, nx = Ny
forevery k = 1,2,... and select y; € ®(x,,) such that d(yx,y) < 1/k. For k
sufficiently large, we have y; € U and therefore ®(x,,) NU # 9, a contradiction.

Let us observe now that if ®(X) is a compact subset of Y, then & is ls.c.
at X € X if and only if for every & > 0, there exists a § > 0 such that for
every x € X satisfying p(x,X) < &, one has h(P(x), P(x)) < e. Indeed,
for i = 1,...,m, let y; be such that {B°(y;,(1/2)e) : i = 1,...,m}
covers ®(x) and for i = 1,...,m, let §; > 0 be such that p(x,x) < §;
implies ®(x) N B%(y;,(1/2)e) # 0. Let § = min{§; : i = 1,...,m}. Then
p(x,X) < § implies that y; € VO(®(x),(1/2)e) for i = 1,....m, ie.,
B%(y;,(1/2)e) C VO(®(x),(1/2)e) for all i = 1,...,m. Therefore, ®(X) C
Nz, B°(yi, (1/2)e) € VO(®(x),(1/2)e) for x € B°(X,8), which is equivalent
to h[®(X), P(x)] < e for x € B(X,§).
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Let m € L2(T,R*) be such that ||F(t,x)|| < m(t) for every x € X and
ae.t € T. Therefore, F(t,x) is a compact subset of R? for every x € X and
a.e.t € T. Similarly as in the proof of Lemma 3.7, we can verify that for every
X,x € X, one has

HIS(F(- X)), S(F(-,x))] < (/T EZ[F(LX),F(I,X)]dI)

Thus for every X € X and every sequence (x,)72, of X converging to X,
we obtain [, R2[F(1,%), F(t,x,)]dt — 0 as n — oo, which implies that
H[S(F(-,X)).S(F(-,x,))] = 0 as n — ooc. Then the set-valued mapping X >
x — S(F(-,x)) € CI(LA(T,RY)) is ls.c.at X. O

Lemma 3.8. Assume that T is an interval of the real line and let F : T x R? —
CI(RY) and G : T x R? — CI(RY*™) be measurable uniformly p-integrably
bounded and such that F(t,-) and G(t,-) are Ls.c. for fixed t € T. There are
continuous functions u : RY — LP(T,RY) and v : RY — LP(T,R¥™) such
that

(i) u(x) e S(F(-,x)) and v(x) € S(G(-,x)) for x € R¢;

(ii) mappings f T xR? 3 (t,x) = u(x)(t) e R and g : T x R? > (¢, x) —
v(x)(t) € R are Br @ B(RY)-measurable such that f(t,x) € F(t,x)
and g(t,x) € G(t,x) forae. t € T and x € RY.

Proof. The existence of continuous functions u# and v satisfying (i) follows
immediately from Remarks 3.3 and 3.7. Let 7 be the identity mapping on T
and define (Z x u) : T x R — T x L?(T,RY) by setting (Z x u)(t,x) =
(t,u(x)) for (t,x) € T x R?. The function Z x u is continuous on T x R?
and therefore (87 ® B(RY), Br ® B(ILP))-measurable, where Br, B(R?) and
B(IL?) denote the Borel o-fields on 7, R¢ and IL7(T,RY), respectively. Let
p: T xLP(T,RY) — RY be defined by p(t,z) = z(t) for (t,z) € T x L?(T,RY).
The mapping p is (87 ® B(IL?), B(R))-measurable because p is such that p(z, )
is continuous and p(-,z) is measurable for fixed + € T and z € L”(T,RY),
respectively. Hence it follows that a mapping f : T xR? > (¢, x) — u(x)(t) € R?
is measurable on T x R?, ie., is (87 ® B(R?), B(IR?))-measurable because
ft,x) = [po (T xuwl(t,x) = p(t,u(x)) for (t,x) € T x RY. Measurability
of a mapping g can be verified in a similar way. It is clear that f(¢,x) € F(t, x)
and g(t,x) € G(t,x) forae. t € T and x € R?. a

Similarly as above, let T be an interval of the real line. Denote by J the linear
mapping defined on IL? (7T, RY) by setting J(f) = [r f(@)dt for f e LP(T, RY).
For a nonempty set K C I.”(T,R?), by J(K) we denote its image by the mapping
J,ie., asetof the form { [, f(t)dr : f € K}.

Lemma3.9. If K C L”(T,RY) is nonempty decomposable, then J(K) is a
nonempty convex subset of R¢.
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Proof. Let z1,z20 € J(K) and A € [0, 1]. There exist fi, f» € K such that
21 = [p i)dr and 2 = [, fo(t)dr. Let L7 be the family of all Lebesgue
measurable subsets of T and put w(E) = ([, fi(t)de, [, fo(t)dr) for E € Lr.
By Lyapunov’s theorem, u(Lr) is a convex compact subset of R??. Since (0, 0)
and (z1,722) belong to w(Lr), then we have also (Az1,Az) € u(Lr). Therefore,
there exists H € Lr such that (Az;,Azz) = w(H), which by the definition
of the measure p implies that Azy = [, 1y fi()dt and Az = [, 1y fo(r)dr.
Let f = 1y fi + 1p\u fo. By the decomposability of K, we have f € K.
Therefore, [, f(t)dt € J(K). But [, f(t)dt = [(Aufi + Lpyfo)@)dt =
Jr1u(fi — L)@)dt + [, fo(t)dt = Azi — Azp + 22 = Azt + (1 — A)z2. Then
Az + (1 -2z € J(K). O

For F € A(T,RY), the set J(S(F)) is denoted by fT F(¢)dt and is said to be
the Aumann integral of F on the interval 7.

Corollary 3.4. For every F € A(T,R?), the Aumann integral [ F()dt is a
nonempty convex subset of R?. If furthermore, F is p-integrably bounded, then
fT F(t)dt is a bounded subset of R¢. a

Denote by V(c") the set of r + 1 vertices of the (r + 1)-dimensional simplex
o = {(&,....&) e R0 < & < 1, YI_,& = 1}. It is clear that if
u; € L®(T,RY) for i = 0,1,...,r, then (ug, ..., uy) € L®(T, R’+1), where
IL°°(T,R') consists of all u-essentially bounded measurable scalar functions
defined on 7.

Lemma 3.10. Let Y(¢) be an n x (r + 1)-matrix-valued function with components
in L®(T,R"), ¥ = {u € L®(T,R"*") : u(t) € o” fort € T}, and ¥y = {u €
Lo°(T,R"*Y) : u(t) € V(o) fort € T}. Then {[;Y(@) - u()dt : u € ¥} =
{fT Y(@)-u(t)dt : u e W}, and both of these sets are compact and convex.

Proof. Let J(u) = [, Y(1) - u(r)dr for u € L®(T,R""). Clearly, ¥ is convex
and bounded in the I.°°(7, R”*!)-norm topology. Hence if we can show that W is
weakly™*-closed, it will imply that W is weakly*-compact. Suppose u’ is a weak*-
limit of a sequence of W that does not belong to W. Then thereisaset E C T
of positive measure such that u°(¢) € o” for t € E and u° € W. One may readily
establish the existence of an & > 0 and n € R’*! such that the inner product
satisfies (n,€) > C if § € 0" and (n,u’(1)) < C —¢ for t inasubset E; of E
having a positive measure p(E;). Define a function w(t) = (wo(¢),...,w,(t)) by
setting

ni/u(Er) for t € Ey,

wilt) = 0 for t¢E,

for i = 1,...,r.Itis clear that w € IL°°(T,R"™"). From the properties of 7 €
R’ !, it follows that w separates u” and W, contradicting u’ being a weak™*-limit
of a sequence of W. Thus W is closed, convex, and weak®-compact. It is easily
seen that J is weak™-continuous, because the weak topology was defined so that
the linear functionals that were continuous on a given normed space X with its
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norm topology are still continuous when X has its weak topology. In particular,
J = (J1,...,J,) is a continuous linear mapping from X* taken with its norm
topology to R such that components J; of J are representable as elements of
X. Then J is continuous as a mapping of X* with the weak*-topology to R¢.
Therefore, JV = {Ju : u € W} is a compac,t convex subset of R Clearly,
JW¥, C JW. Similarly as in the proof of Lyapunov’s theorem, we can also show
that JW C J . |

Lemma 3.11. Let F : T — CI(RY) be measurable and integrably bounded. Then
[7 F(t)dt = [, co F(t)dt, and both sets are nonempty and convex in RY.

Proof. The nonemptiness and convexity of ;. F(z)dt follow from Corollary 3.4.
By the definition of the Aumann integral, it follows that [, F(r)dr C [, co F(r)dr.
Suppose y € [rcoF(r)dr, and let f € S(coF) be such that y = [, f(r)dr.
By Carathéodory’s theorem, for every ¢t € T, the point f(¢) € co F(¢) may be
expressed as a convex combination f(r) = Y9 & () f1(t) with fi(t) € F(1),
0<&() <1, and Z,C'I=0 £(t) = 1.Let 0% denote the simplex in the space R?*!,
ie, o0 = {(§.....E0) e R 1 0 < & < 1, Y% & = 1}. Denote by £()
the vector (£(t),....£4(t)) € o“. Let us observe that the functions & and f°
can be chosen to be measurable. Indeed, let g(z.£,8°,...,89) = Z?:o £
for t € T and B°, ....,8¢ € R andlet T'(t) = o?F' x F(t) x --- x F(t)
with F(t) appearing n + 1 times in the product. Since f is measurable and
f(t) € g(t,T(¢)) forae. t € T, then by Theorem 2.5, there exists a measurable
function T 3 ¢t — (£0(t),....&,(2), £O(t), ..., f9(t)) € T'(t) such that f(¢) =
g(t, (Eo(t),....E,(t), £O®t),..., fU(r)) forae. t € T. Let the vectors f'(¢) be
the columns of an d x (d + 1)-matrix Y. By virtue of Lemma 3.10 there exists a
measurable vector function £* = (§7,...,£]) on T taking values in the vertices
of the simplex o such that [, f(t)dr = [, Y(r)-E@)dr = [, Y(r) - £*(¢)dr.
Now £*(T) C {0,1} forall i =0,1,...,d and Y/_ &5 (1) = 1. Let T, = {r €
T : & (t) = 1}. Then T; is measurable and U?:()Ti =T ad T,NT; =0
for i # j.Define f*(t) = fi(t) fort € T; for i = 0,1,...,d. It is clear that
f* is measurable and such that f*(r) € F(r) and [, f*(t)dr = [, f(z)dt. Then
[r F()dt = [ coF (t)dr. O

Theorem 3.4 (Aumann). If F : T — CI(RY) is measurable and integrably
bounded, then [ F(t)dt = [} co F(t)dt, and both integrals are nonempty convex,
compact subsets of RY.

Proof. By virtue of Lemma 3.11, we have [ F(t)df = [, co F(r)dt, and both
integrals are nonempty convex subsets of IR?. By virtue of Remark 3.1, a set
S(co F) is a weakly sequentially compact subset of IL(T,RR¢). By the definition
of the Aumann integral, we have [, co F(z)dt = J(S(co F)), where J is a linear
and continuous mapping defined on IL(7, R?). By the linearity of J , it follows that
J is also continuous on ILL(7,1R?) with respect to its weak topology. Therefore,
J(S(co F)) is a compact subset of R? . O
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Remark 3.8. 1t can be proved that if (X, | - ||) is a separable Banach space, T
is an interval of the real line, and F : T — CI(X) is measurable and integrably
bounded, then cl( fT F(t)dt) = cl( fT co F(¢)dt), where the closure is taken in the
norm topology of X. O

Theorem 3.5. If F : T — CI(RY) is measurable and integrably bounded, then
forevery p e R? and A € Ly, one has fA o(p, F(t))dt = a(p,fA F(t)de).

Proof. Let us observe that o(p, F(-)) is measurable and integrably bounded for
every fixed p € R?. Then it is integrable and S 40(p, F(t))dt < oo for
every p € R? and A € Lr. Forevery f € S(F) and p € R?, we have
(p. [, f()dt) = [, (p. f(t))dt < [, 0(p, F(t))ds. Therefore, for every p € R,
one has o(p, [, F(t)dt) < [,o(p,F(t))dt. We shall show now that for every
@ € Rand p € R? such that @ < Ji0(p. F(t))d, there is f € S(F) such
that @ < o(p, [, f(¢)dt). Indeed, let us take arbitrarily g € S(F) and define for
every n > 1 a multifunction F, by setting F,(t) = {x € F(¢) : |x — g(t)| < n}.
Similarly as in the proof of Theorem 2.5, we can verify that F,, and hence also
cl(F,), is measurable. Then o(p, F,(-)) is measurable for every p € R’ and
n > 1. It is also integrably bounded. Furthermore, o(p, F,(t)) — o(p, F(t)) for
t €T as n — oo.Then [,o(p. F,(1))dt — [, o(p, F(t))dt forevery p € R
as n — oo. Thus we have a < [, o(p, F,(t))dt for n large enough. Then there
exists an integrable function ¢ : T — R such that « < [ 4 e()de and @(1) <
o(p,F,(t)) forae. t € T.Let G(t) ={x € F(t) : (p,x) > @)} fort e T. 1t
is clear that G(¢) # @ and that G has a measurable graph. Therefore, by virtue of
Remark 2.9, there exists a measurable selector f of G, and hence also of F', such
that ¢(1) < (p, f(t)). Thus [, @(t)dt < (p. [, f(1)dr). Hence it follows that o <
(p. [, f(t)dt). Now taking in particular «,, = [, o(p, F(1))dt —1/n for n > 1,
we can select f, € S(F) such that o, < o(p, [, fu(t)dt) < U(p,fA F(t)dr) for
every p € R? and n > 1, which implies that [, o(p, F(1))dt < o(p. [, F(t)dt)
forevery p € R and 4 € L. O

Remark 3.9. The above results are also true for measurable and p-integrably
bounded multifunctions with p > 1. |

4 Set-Valued Stochastic Processes

Similarly as in Chap. 1, we assume that we are given a complete filtered probability
space Pr = (2, F,F, P) with a filtration F' = (F;);>0 satisfying the usual
conditions. By a set-valued random variable, we mean an JF-measurable multifunc-
tion Z : Q — CI(RY). If Z € A(Q2,R?), then the Aumann integral fQ ZdP
is denoted by E[Z] and is said to be the mean value of the set-valued random
variable Z. A set-valued random variable Z € A(Q,R?) is said to be Aumann
integrable. Immediately from properties of measurable set-valued mappings, the
following results, dealing with set-valued random variables, follow.
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Lemma4.1. Let Z : @ — CI(RY) be an Aumann integrable set-valued random
variable. Then

(i) S(Z) is a closed decomposable subset of L”(Q, F,R?) and S(co Z) =

coS(2).

(ii) Z is p-integrably bounded if and only if S(Z) is a bounded subset of
L7(Q, F,RY).

(iii) If Z is p-integrably bounded, then Int[S(Z)] = @ and S(Z) # 1P
(2, F,R").

(iv) There exists a sequence (z,)n, of d-dimensional random variables such
that z,(w) € Z(w) and Z(w) = cl{z,(w) :n > 1} for n > 1 and w € Q.
If {zo :n > 1} C S(2), then S(Z) = dec{z,(w) :n > 1}.

(v) If (z)y2y C S(2) is such that Z(w) = cl{z,(w) : n > 1} for w €
Q, then for every z € S(Z) and every ¢ > 0, there exist a partition
(Ak),iv=l e II(RQ,F) and a family (z,,,()]](\'=l C {z, : n = 1} such that
Elz— lecv=l Lapzn | < e

(vi) If F and G are Aumann integrable set-valued random variables such that
S(F) = S(G), then F(w) = G(w) fora.e w € Q.

(vii) If Z is convex-valued and square integrably bounded, then S(Z) is a
decomposable, convex, and weakly compact subset of 1>(S2, F,RY).

(viii) If F and G are convex-valued and integrably bounded set-valued random
variables, then S(F + G) = S(F) + S(G).

A family ® = (&;),;>0 of set-valued random variables ®, : Q — CI(RY?) is
called a set-valued stochastic process. Similarly as in the case of point-valued
stochastic processes, a set-valued process ® = (P;);>0 can also be defined as a
set-valued mapping ® : R x Q 3 (t,w) — ®,(w) € CI(RY) such that ®(z,-)
is a set-valued random variable for every ¢ > 0. If such a multifunction @ is
B(RT) ® F -measurable, then a set-valued process @ is said to be measurable. If
furthermore, for every ¢ > 0, the set-valued mapping ®; is F; -measurable, then
® is said to be F-nonanticipative. It is easy to see that ® is IF-nonanticipative if
and only if it is X -measurable, where Xy = {A € Br Q F : A" € F; fort € T},
and A" denotes the ¢-sectionof aset 4 C T x2. Given p > 1, we call a set-valued
process ® = (®,);>0 p-integrably bounded if there exists m € LP(RT x ,R*)
such that ||®,(w)| < m(t,w) for ae. (f,w) € Rt x Q. A set-valued process
® = (P;);>0 is said to be bounded if there exists a number M > 0 such that
[®:(w)|| < M forae. (t,w) € RT x Q. It is clear that every bounded set-
valued process is p-integrably bounded for every p > 1. Similarly as above,
by S(®) we denote the subtrajectory integrals of a set-valued stochastic process
® : Rt x Q — CI(RY), ie., the set of all measurable and dt x P-integrable
selectors of ®. By Sp(®) we denote the subset of S(P) containing all IF-
nonanticipative elements of S(®). If ® is an p-integrably bounded set-valued
process defined on [0, T'] x €2, its subtrajectory integrals will be denoted by S(P)
for every p > 1. In this case, S(®) C L?([0,T] x 2, Br ® Fr,RY). Similarly,
if ®:[0,7T]x Q — CI(R?) is F-nonanticipative and square integrably bounded,
then Sp(®) C IL2([0, T]x 2, =, RY). Similarly as above, ® is said to be Aumann
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(Itd) integrable if S(P) # @ (Sw(P) # @). We shall consider set-valued stochastic
processes with ¢ = d and ¢ = d x m.

Letus denoteby M(R*xQ,R?) and Mp(R*x,RY) the spaces of all mea-
surable and IF-nonanticipative, respectively set-valued stochastic, processes on a
filtered probability space (2, F, T, P) with values in CI(R?). Similarly, the space
of all TF-nonanticipative processes on (2, F,TF, P) with values in CI(R?*") will
be denoted by Mp(RT x Q,R¥*™). We denote by £*(2,1R?) the space of all
(equivalence classes of) set-valued random variables Z : Q@ — CI(R?) such that
E||Z]|]?> < oo, where || Z|(w) = sup{|x| : x € Z(w)} fora.e. w € Q. Elements of
the space £2(Q2,R) are called RY-set-valued square integrably bounded random
variables. We shall consider £2(2, R?) as a metric space with a metric H defined
by H(Z\, 2,) = [EhZ(Zl(-),Zz(- N2 for Zi, 2, € £2(,R?). Similarly as in
the case of I2(Q2, F,R?), it can be verified that (£2(Q2,R%), H) is a complete
metric space. By £2.(RT x Q,RY) and £L3(R* x Q, R¥*™) we shall denote the
spaces of all square integrably bounded elements of spaces Mp(R* x 2, R?) and
Mp(RT xQ, RY™), respectively. Similarly as above, the spaces £2 (R+><Q R%)
and L3, (R* x Q, R4*™) will be considered metric spaces with metric dy defined
by dH(CD, W) = [E [;° h2(®,, W,)dt]'/? forevery @ = (0;);50. ¥ = (V)10 €
L2RY x Q,RY) or @ = (D)0, ¥ = (V)50 € LL(RT x ©,R¥*™). Tt can be
verified that (LZ(RT x Q,R9), dy) is a complete metric space. For fixed T > 0,
we define £L3(T, 2, R?) = {(1p.11D:)r>0 : (P1)r0 € L2 (RT xQ, R?). The space
L3(T, L, R4 is defined similarly. We shall cons1der L3(T, Q ,R?) with the
metric dy, which in this case, is defined by dy(®, V) = [E fOT R (®,, ¥,)dt]"/?
for ®,¥ € L%F(T Q,RR?). We shall also consider spaces L% AVIRY ,R?%) and
L%(T Q,R?m), defined in a similar way. In what follows, stochastlc processes
® and ¥ belonging to L%F(T,Q,IR‘Z) and ﬁ%(T,Q,IRdX”’) will be written as
families ® = (P;)o<r<r and W = (¥;)o<: <7, respectively. We shall also consider
metric spaces CI[IL2([0, T] x Q, g, R?)] and CI[IL?([0, T] x 2, EF,Rde)] with
Hausdorff metrics denoted in both cases by D. Given a sequence (F")52, of
set-valued stochastic processes, F" = (F")o<i<r € L3 w (T, L, RY) is sald to be
uniformly integrably bounded if there exists m € ]LZ([O T] x Q,Zp,RT) such
that || F"(w)|| < m;(w) for n > 1 and a.e. (f,w) € [0,T] x Q. It is said to be
uniformly integrable if

lim sup / / |F/ (w)|%dtdP = 0.
C—00 ;> {(t,0):|| FI'(w)||>C}

It is clear that every umformly integrably bounded sequence (F")72, of set-valued
stochastic processes of L2 w (T, 9, R?) is also uniformly 1ntegrable It is easy to
see that every sequence ((p”)°° , of IF-nonanticipative selectors ¢" of a uniformly
integrable sequence (F")%2, C L3(T, <, R?) is uniformly integrable. Finally,
let us observe that every sequence (F ")°2., of set-valued stochastic processes of
L3(T,Q, R?) converging in the dp-metric topology to F € [2 w (T, 9, RY) is
uniformly integrable.
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Lemmad.2. Let J and J be linear continuous mappings defined on
L2([0, T] x Q, Zg, R?Y) and 12([0, T] x Q, Xp, RY>*™), respectively, with values
at 12(Q, Fr.RY). If (9", and (W), are sequences of L3(T, Q. RY) and
L3(T, Q. RP™) converging in the dg-metric topologyto ® € Li(T, Q. R%), and
v c E%F(T, Q, R¥™), respectively, then

(i) 1imy— o0 [max { D(Sp(®"), Sp(P)), D(Sp(¥"), Sp(¥))}] = 0;
(ii) 1imy— o0 [max {H (J (Sp (")), J(Sk(®)), H(T (Se(¥")), T (Sk(V)))}] = 0.

Proof. By Theorem 3.1, forevery ¢ € Sp(®")), one has E[fOT inf{ ¢, (w)—x||* :
x € ®(1,w)ydt] = inflE [ |l — fil’dr © f € Sp(®)} = Dist’(¢, Sp(P)).
Similarly, for every f € Sp(®), we get Dist?( £, Sp(®")) = E fOT inf{|| f; (@) —
x||? : x € ®'(w)}dr. Hence it follows that D(Sg(®"), Sp(®)) < dy(®", ®) for
every n > 1, which implies D(Sg(®"), Sp(P)) — 0 as n — oo. In a similar way,
we also get D(Sp(¥"), Sp(¥)) — 0 as n — oo.

It is easy to see that (ii) follows immediately from (i) and the properties of the

mappings J and J. Indeed, let us observe first that by (i), continuity of J and
boundedness of Sp(®) and Sp(®,)), there exists M > 0 such that (E|J(¢) —
TP < M(fy Elp —wPPd)"/? for n = 1, ¢ € Sp(®) and ¢ € Sp(®,)).
Suppose now that (ii) is not satisfied and let A = J[Sp(®)] and A4, = J[Sp(P,)]
for n > 1. There exist £ > 0 and an increasing subsequence (ny)5>, of (1)52,
such that F(A,,k,A) > ¢ forevery k > 1. Hence it follows that for every k > 1,
there exists g& € A,, such that §/2 < (E|gr — f|*)"/? for every f € A. Let
¢* € Sp(®,,) and ¢ € Sp(®P) be such that g&¢ = J(¢*) for k > 1 and f =
J(¢). For every k > 1, one has

1/2

T
52 < (Elg = V2 < M ( /0 Elgf —¢f|2dz)

By (i), it follows that for every ¢ € S(®,,), with k > 1 sufficiently large, there
exists £ € Sp(®) such that (E fOT |k — EF|2dr)!/? < &/2M . Taking in particular
¢ = Ek with sufficiently large k > 1, we obtain

T 1/2
§/2<(Elg" - fPHV* <M (/0 Elof — si‘|2dt) M-i/2M =§/2,

a contradiction. Then H[J(Sp(®"), J(Sp(P))] — 0 as n — oo. In a similar way,
we also get H[J (Sp(V"), J(Sp(¥))] = 0 as n — oo. |

Remark4.1. If J(9) = [) ¢, dr and J(¥) = [ ¥.dB, for ¢ € L2([0, T] x
Q,Xp, RY) and ¥ € L2([0, T|x2, =, R¥™), then H (J[Sp(®")], J[SF(P)]) <
VTdy (@, ®) and H(J[Sr(¥")], J[SE(¥)]) < dy(¥", W) forevery n > 1.

Proof. For every u € J[Sp(®")], one has dist>(u, J [Sp(®)]) < E|u — v|*> for
every v € J[Sp(®P)]. But u = fOT ¢:dt and v = fOT Ydt for some ¢ € Sp(P")
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and ¥ € Sp(®). Therefore, dist?(u, J [Sp(P)]) < E|f0T(g0 — ¥)dz|? for every
¥ € Sp(®P). By Theorem 3.1, we have

T T
[ @ dt —/ frdt
0 0

T
§Tinf%E/0 lgr — fi]*de : f ESF(CD)}

2

inf{ E i f € Sp(P)

T
=TE / dist? (¢, ®,)dt < Td}(®", D).
0

|

Thus dist?(u, J [Sp(®)]) < Tdf{(@”, ®) for every u € J[Sp(P")], which implies
that H (J[Sp(®")], J[Sp(P)]) < VTdy(®", ®) for n > 1.1In a similar way, we
also get H(J[Sg(¥")], J[Sr(W)]) < dy(¥", W) forevery n > 1.

In what follows, we shall deal with a conditional expectation of set-valued
integrals depending on a random parameter. We begin with the general definition
of set-valued conditional expectation and its basic properties. Given a complete
probability space (2, F,IP), a sub-o-algebra G of F, and a set-valued random
variable ® : Q@ — CI(R?) the following result follows immediately from
Theorem 3.2.

Lemma4.3. If ® : Q — CI(RY) is a set-valued random variable such that
S(®) # @, then there exists a unique in the a.s. sense G-measurable set-valued
random variable W : Q — CI(R?) such that S(¥) = clp{E[¢|G] : ¢ € S(P)}.

Proof. Let A€ G C F and H = {E[p|G] : ¢ € S(D)}. Forevery ¥y, ¥, € H,
there exist ¢1,¢, € S(P) such that Yy = E[¢1|G] and ¥, = E[¢2|G]. By the
decomposability of S(®), it follows that E[14¢1 + Lo\a92|G] € H. Then H
is decomposable, because E[L4¢1 + Lo\ 4¢2|G] = L4¥1 + Lg\4¥». Therefore,
clp,(#) is a decomposable subset of L”(Q2,G,R¢). By virtue of Theorem 3.2,
there exists a G-measurable set-valued mapping ¥ : @ — CI(R?) such that
S(¥) = clp(H). Suppose there are two G-measurable mappings Wi, W, : @ —
CI(R?) such that S(¥;) = S(¥;) = cl(#). By Corollary 3.1, it follows that
‘-I—’l = ‘-I—’z a.s. O

A G-measurable set-valued mapping ¥ : @ — CI(RY) such that S(¥) =
clL{EfplG] : ¢ € S(P)} is denoted by E[P|G] and is said to be a G-conditional
expectation of a set-valued mapping of ® : @ — CI(R¢). Let us observe that
for every square integrably bounded convex-valued set-valued random variable
® : Q@ — CI(R?), the set S(®P) is a convex and weakly compact subset of
IL2(2,R?). Then {E[p|G] : ¢ € S(®)} is a closed subset of this space. Indeed,
foreveryu € clp{E[p|G] : ¢ € S(®)}, there is a sequence (¢,)°%, C S(P) such

n=1

that E[p,|G] — u as n — oo. Let (¢, )72, be a subsequence of (¢,)52, weakly
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converging to ¢ € S(®). Therefore, for every A € G, one has [, E[g,,|G]dP =
[yomdP — [,@dP = [, E[p|GldP as k — oo. Then E[g,,|G] converges
weakly to E[p|G] as k — oo, which implies that u = E[p|G] € {E[p|G] : ¢ €
S(®)}.

Corollary 4.1. If ® : @ — CI(RY) is a square integrably bounded convex-valued
set-valued random variable, then S(E[®|G]) = {E[p|G] : ¢ € S(D)}. |

Theorem 4.1. Let ® : @ — CI(RY) and ¥ : Q@ — CI(RY) be F-measurable
integrably bounded and let G be a sub-o-algebra of F. Then

(i) E[14E[®|G]] = E[149D] forevery A € G.
(ii) E[E®|G] = EE[®P|G] forevery & € L®°(Q,G,.R).
(iii) E[co @|G] = co E[P|]].
(iv) H(E[®|G], E[¥|G]) < H(®, V), where H(®, V) = E[h(D, V)].
(v) E[®+ V|G] = E[®|G] + E[V]|]] a.s.

Proof. (i) Let A € G be fixed. If u € S(E[®|F]), then there exists a sequence
(@n)y2, in S(P) suchthat ||u — E[,|G]|| — 0 as n — oo. Then E[L4u] =
limy,— oo E[L14E[p,|G]] = lim,—eo E[1 4¢,]. Hence by the compactness of
the Aumann integral E[1,®], it follows that E[1,4u] € E[14®]. Thus
E[M4E[®|G]) C E[14®]. Let H = {E[p|G] : ¢ € S(¢)}. Then E[14H] =
{E[14E[p|G] : ¢ € S(¢p)} = E[1,4®]. Hence it follows that E[1,4P] C
E[lclp(H)] = E[14E[®|F]]. Therefore, E[14E[®|G]] = E[149] for
every A € G.

(i) Let & € L*°(2, G, R). We have to show that S(E[§D|G]) = S(EE[D|FG]). By
the definition of a set-valued conditional expectation, we have S(E[ED|G]) =
ce({E[f1G] © f € S(EP)}) and SEE[P|G]) = ES(E[PG]) = &clp
(ElplG] : ¢ € S(P)}). Let u € Sclu({Efp]T] : ¢ € S(P)}) and (¢n);Z,
be a sequence of S(®) such that ||EE[p,|G] —u|| — 0 as n — oo. But
§E[pn|G] = E[§@n|G] for n = 1. Then ||E[§¢|G] —ul| — 0 as n — oco. We
also have &g, € S(§®) for n > 1. Therefore, E [E¢,|G] € {E[f|G] : f €
S(E®)} for n > 1, which implies that u € clp{E[f|F] : f € S(§P)}. Thus

§clL({Efpl9] - ¢ € S(P)}) Ccl({E[f1G] : | € S(ED))).

Let v € clk{E[f|G] : f € S(EP)} and (¢,)>2, C S(P) be such that
|E[E@n|G] — v]| = 0 as n — oo. Hence it follows that ||EE[¢,|G] — v|| = 0
as n — oo. Similarly as above, we get EE[p,|G] € E{E[p|G] : ¢ € S(P)} C
Eclp({Ep|G] : ¢ € S(®)}) for every n > 1. Therefore, v € &l ({E[p|F] :
¢ € S(®)}). Then cly({E[fIG] : f € S(EP))) C cl({Efpld] : ¢ €
S(®)}), which implies that S(E[ED|G]) = S(EE[D|F]).

(iii) Let G = E[®|G]. By Lemma 3.3, we obtain S(E[co ®|G]) = cln{E[p|d] :
p €coS(P)} =co{E[p|G] : ¢ € S(P)} = co0S(G) = S(coG). Hence, by
Corollary 3.1, it follows E[co ®|G] = co E[®|]].
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(iv) Let A = {0 € Q : sup[dist(y, E[¥|G](@)) : y € E[P|G](w)] =
sup[dist(y, E[®|G](w)) : y € E[¥|G](w)]}. We have A € G and
H(E[®|G]. E[¥|G]) = E[R(E[®|G], E[V]G])]
= E[L4sup[dist(y, E[V|G](w)) : y € E[P|G](w)]
+E[Lg\4 supl[dist(E[y, E[®[G](»)) : y € E[¥|G](w)]
= sup E[1L4 sup[dist(E[¢|G], E[W|G]) : ¢ € S(P)]
+E[Lg\4 sup[dist(E[y|G], E[®P|G]) : ¥ € S(V)]

< sup inf E[ﬂAEH(P V1G]]
pes(@) VES(Y)

+ su inf E[lgE g
o inf Elta\iElly — v9]

= sup mf E[llAlw V]
peS(d) VES(Y

+ sup inf E[]lsz\A|<p V]
yes(w) 9ES(P)

= / sup[dist(x, ¥(w)) : x € ®(w)]dP
4
+/ sup[dist(x, ®(w)) : x € V(w)]dP
Q\A

_ / h(®(w), Y(w))dP = H(®, V).
Q

(v) By the definition of a multivalued conditional expectation, we have

S(E[® + V|G]) = clp{E[glF] : ¢ € S(® + V). By virtue of Lemma 3.4,
we have

S(E[® + W[G]) = clL({E[¢|G] + E[Y]9] - ¢ € S(P). ¥ € S(¥)})
= S(E[®IG]) + S(E[V|G]) = S(E[®|9] + E[V[F)).

which by Corollary 3.1, implies that E[® + W|G] = E[®|G] + E[¥|F] as.
O

Remark 4.2. It can be proved that if ® € A(Q, F,R?) is convex-valued and T
is sub-g-algebra of G C F, then E[®|T] taken on the base space (2, F, P) is

equal to E[®|T] taken on the base space (2,G, P) and E[E[®|G]|T] = E[®|T],
P-as. a
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5 Notes and Remarks

The definitions and results of the first two sections of this chapter are mainly
based on Aubin and Frankowska [12], Hu and Papageorgiou [41], Aubin and
Cellina [5], Kisielewicz [49], Kuratowski [69], Hildenbrand [40] and Klein, and
Thomson [63]. In particular, Michael’s continuous selection theorem is taken from
Aubin and Cellina [5] and Kisielewicz [49], whereas Theorem 2.2 comes from
Kisielewicz [57]. The proofs of the Kuratowski and Ryll-Nardzewski measurable
selection theorem and the Caratheéodory selection theorem are taken from Hu
and Papageorgiou [41]. The existence of measurable selectors for measurable
multifunctions has been considered first by Kuratowski and Ryll-Nardzewski in
[70]. The existence of Carathéodory selections has been considered by Rybiriski in
[91], Fryszkowski in [32], and Kucia and Nowak in [66]. The proof of Theorem 2.3,
dealing with the existence of Lipschitz-type selectors, is taken from Hu and
Papageorgiou [41]. The idea of this proof is due to Przestawski [90]. The proofs
of Lemmas 1.1 and 1.2, Remark 1.1, and Corollary 1.2 can be found in Kuratowski
[69] and Hildenbrand [40], respectively. Figures 2.1-2.4 are taken from Aubin and
Cellina [5] and Kisielewicz [49]. The proof of Remark 2.9 can be found in Hu
and Papageorgiou [41]. The definition and properties of Aumann integrals are taken
from Hiai and Umegaki [39] and Kisielewicz [49]. The first results dealing with
Aumann integrals are due to Aumann [14]. The existence of continuous selections
of multifunctions with decomposable values was proved by Fryszkowski [32].
The sketch of the proof of this theorem given in Sect.2 is taken from Hu and
Papageorgiou [41]. The definition and properties of conditional expectation of set-
valued mappings are taken from Hiai and Umegaki [39]. More information on the
Hukuhara difference can be found in Hukuhara [42].
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