
Chapter 2
Set-Valued Stochastic Processes

This chapter is devoted to basic notions of the theory of set-valued mappings and
set-valued stochastic processes. We begin with the notions and basic properties
of the space of subsets of a given metric space. Selected properties of set-valued
mappings, Aumann integrals, and set-valued stochastic processes are presented.
The last two parts of this chapter discuss properties of a set-valued conditional
expectation and selection properties of set-valued integrals depending on random
parameters.

1 Spaces of Subsets of a Metric Space

Let .X; �/ be a metric space and .An/
1
nD1 a sequence of subsets of X . The

sets
T1
nD1

S1
kD0 AnCk and

S1
nD1

T1
kD0 AnCk are denoted by Lim supAn and

Lim infAn, respectively and said to be a limit superior and a limit inferior,
respectively of a sequence .An/1nD1. Immediately from the above definitions, the
following properties of Lim supAn and Lim infAn follow.

Lemma 1.1. Let .An/1nD1 and .Bn/
1
nD1 be sequences of subsets of X and let

C � X . Then

(i) Lim infAn D .Lim supA�
n /

�, where D� D X nD for D � X ,
(ii) Lim inf.An \ Bn/ D Lim infAn \ Lim infBn,

(iii) Lim inf.An \ C/ D .Lim infAn/ \ C ,
(iv)

T1
nD1 An � Lim infAn � Lim supAn � S1

nD1 An.

Corollary 1.1. For every family fAin W i; n D 1; 2; : : :g of subsets of X , one hasT1
iD1ŒLim inf Ain/ D Lim infŒ

T1
iD1 Ain�. �

Apart from the limits Lim supAn and Lim infAn , we can also define the
Kuratowski limits LiAn and LsAn. The set LiAn is defined by the property
x 2 LiAn if and only if for every neighborhood U of x , there is an integer N � 1
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68 2 Set-Valued Stochastic Processes

such that U \ An ¤ ; for every n � N . It is said to be the Kuratowski limit
inferior of a sequence .An/1nD1. Similarly, the Kuratowski limit superior LsAn of
a sequence .An/1nD1 is defined by the property: x 2 LsAn if and only if for every
neighborhood U of x , there are infinitely many n with U \An ¤ ;.

Corollary 1.2. For every sequence .An/1nD1 of subsets of X , one has

(i) LiAn � LsAn,
(ii) x 2 LiAn if and only if there exist an integer N � 1 and a sequence .xn/1nD1

of X with xn 2 An for n � N such that x D limn!1 xn,
(iii) x 2 LsAn if and only if there exist an increasing subsequence .nk/1kD1 of

.n/1nD1 and a sequence .xnk /
1
kD1 of X such that xnk 2 Ank for k D 1; 2; : : :

and x D limk!1 xnk . �

The following properties of the Kuratowski limits follow immediately from the
above definitions.

Lemma 1.2. Let .An/1nD1 and .Bn/1nD1 be sequences of subsets of X . Then

(i) if An � Bn for n � 1, then LiAn � LiBn and LsAn � LsBn,
(ii) Lim infAn � LiAn,

(iii) Li.An \ Bn/ � .LiAn/\ .LiBn/,
(iv) Ls.An \ Bn/ � .LsAn/ \ .LsBn/,
(v) LsAn D T1

nD1
S1
kD0 AkCn,

(vi) if An D A for n � 1, then LiAn D NA D LsAn.

Let Cl.X/ denote the family of all nonempty closed subsets of X . For every
A;B 2 Cl.X/ , we define the Hausdorff distance h.A;B/ with respect to the
metric � on X by setting h.A;B/ D inff" W A � V".B/ and B � V".A/g,
where V".C / denotes the "-neighborhood of C 2 Cl.X/, i.e., V".C / D fx 2 X W
dist.x; C / � "g.

Lemma 1.3. The function h W Cl.X/ � Cl.X/ ! Œ0;1� has the following
properties:

(i) h.A;B/ D 0 if and only if A D B for A;B 2 Cl.X/,
(ii) h.A;B/ D h.B;A/ for every A;B 2 Cl.X/,

(iii) h.A;B/ � h.A;C /C h.C;B/ for every A;B;C 2 Cl.X/.

Proof. To prove (i), let us observe that h.A;B/ D maxf Nh.A;B/; Nh.B;A/g,
where Nh.C;D/ D supx2C dist.x;D/ for C;D 2 Cl.X/. Hence it follows
that h.A;B/ D 0 implies that A � B and B � A , because A;B 2
Cl.X/. Then A D B . Statement (ii) is evident. To prove (iii), if A � V".C /

and C � V�.B/, then A � V"C�.B/. Consequently, we get Nh.A;B/ �
Nh.A;C / C Nh.C;B/. Thus h.A;B/ D maxf Nh.A;B/; Nh.B;A/g � maxf Nh.A;C / C
Nh.C;B/; Nh.B;C / C Nh.C;A/g � maxfh.A;C / C h.C;B/; h.B;C / C h.C;A/g
D h.A;C /C h.C;B/. �
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Theorem 1.1. Let .X; �/ be a compact metric space. Then .Cl.X/; h/ is a
compact metric space, too. In such a case, a sequence .An/1nD1 of Cl.X/ converges
to A 2 Cl.X/ in the h-metric topology if and only if LiAn D A D LsAn.

Proof. By virtue of Lemma 1.3, the mapping h is a metric on Cl.X/. The proof of
compactness of .Cl.X/; h/ can be found in [49]. If a sequence .An/1nD1 of Cl.X/
converges to A 2 Cl.X/ in the h-metric topology, then by the definitions of the
metric h and the Kuratowski limits LiAn and LsAn , we get A � LiAn and
LsAn � A. Then LiAn D A D LsAn. Conversely, let A � X be such that
LiAn D A D LsAn. By the compactness of the metric space .X; �/ , we have
A ¤ ;. Then A 2 Cl.X/. We have to show that for every " > 0 and sufficiently
large n � 1 , one has An � V".A/ and A � V".An/. If the first inclusion were
false, we would obtain a contradiction to A D LsAn. If the second inclusion were
false, we would obtain a contradiction to LiAn D A. �

Remark 1.1. The above results can be extended to the case of a locally compact
separable metric space .X; �/, because it possesses a one-point compactification,
denoted by X [ f1g. �

We can extend the definition of Hausdorff distance on the family Pb.X/ of all
nonempty bounded subsets of a metric space .X; �/. Similarly as above, for every
A;B 2 Pb.X/ , we define Nh.A;B/ D inff" > 0 W A � V"g , and then the Hausdorff
pseudometric h on Pb.X/ is defined by h.A;B/ D maxf Nh.A;B/; Nh.B;A/g for
every A;B 2 Pb.X/. It can be verified that h.A;B/ D 0 if and only if NA D NB .

Corollary 1.3. For every A;B 2 Pb.X/ , one has Nh.A;B/ D supfdist.a; B/ W a 2
Ag, where dist.a; B/ D inff�.a; b/ W b 2 Bg.

Proof. For every A;B 2 Pb.X/ , we have A � V".B/ if for every a 2 A , we
have dist.a; B/ � ". Then A � V".B/ implies Nh.A;B/ � ". Similarly, we can
verify that Nh.A;B/ � " implies A � V".B/. Hence it follows that inff" > 0 W A �
V".B/g D inff" > 0 W " � Nh.A;B/g D Nh.A;B/. �

Lemma 1.4. For every A;B 2 Pb.X/, one has h. NA; NB/ � h.A;B/.

Proof. For every a 2 NA and " > 0 , there is a" 2 A such that �.a; a"/ � ".
Therefore, dist.a; NB/ � �.a; a"/C dist.a"; NB/ � "C inff�.a"; b/ W b 2 NBg � "C
inff�.a"; b/ W b 2 Bg � "C Nh.A;B/. Thus supfdist.a; NB/ W a 2 NAg � "C Nh.A;B/,
i.e., Nh. NA; NB/ � "C Nh.A;B/ for every " > 0. Then Nh. NA; NB/ � Nh.A;B/. Similarly,
we get Nh. NB; NA/ � Nh.B;A/. �

Remark 1.2. It can be verified that for every A;B 2 Pb.X/, one has h. NA; NB/ D
h.A;B/. �

If X is a linear normed space and A;B 2 Pb.X/ , then we define A C B D
fx 2 X W x D a C b; a 2 A; b 2 Bg. Similarly, for A 2 Pb.X/ and 	 2 R , we
define 	 � A D fx 2 X W x D 	a; a 2 Ag. Immediately from the last definition, it
follows that we can define a set AC .�1/B , which is often called the Minkowski
difference of sets A;B 2 Pb.X/. In the general case, we have AC .�1/A ¤ f0g.
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For some nonempty compact convex sets A;B � X , a difference A � B , known
as a Hukuhara difference, can be defined such that A�A D f0g. It is easy to verify
that for all compact convex sets A;B 2 Pb and 
;	 2 RC , one has (i) ACf0g D
f0g C A D A; (ii) .AC B/C C D A C .B C C/ (iii) A C B D B C A, (iv)
ACC D BCC implies A D B , (v) 1 �A D A, (vi) 
 �.ACB/ D 
 �AC
 �B ,
and (vii) .
C 	/ � A D 
 � AC 	 � A.

Lemma 1.5. Let .X; jj � jj/ be a linear normed space. For every A;B;C;D 2
Pb.X/ and 	 2 RC , one has (i) Nh.	A;	B/ D 	 Nh.A;B/ and (ii) Nh.ACB;C C
D/ � Nh.A;C /C Nh.B;D/.
Proof. (i) If A � V".B/ , then 	A � V	".	B/ . Hence it follows that inff� > 0 W
	A � V�.	B/g D 	 inff� > 0 W A � V�.B/g D 	 Nh.A;B/. (ii) If A � V".C /

and B � V�.D/ , then A C B � V"C�.C C D/. Therefore, inff" C � W A C
B � V"C�.C C D/g � inff" W A � V".C /g C inff� W B � V�.D/g D Nh.A;C /
C Nh.B;D/. �
Corollary 1.4. For every 	 2 Œ0; 1� and A;B;C;D 2 Pb.X/ , one has Nh.	AC
.1 � 	/B;	C C .1 � 	/D/ � 	 Nh.A;C /C .1 � 	/ Nh.B;D/. �

Corollary 1.5. For every A;B;C;D 2 Pb.X/, one has Nh.AC B;C CD/ �
Nh.A;C /C Nh.B;D/. �

Corollary 1.6. For every A;B;C;D 2 Pb.X/, one has h.AC B;C CD/ �
h.A;C /C h.B;D/. �

2 Set-Valued Mappings

Let X and Y be nonempty sets and let P.Y / denote the family of all nonempty
subsets of Y . By a set-valued mapping defined on X with values in P.Y / we
mean a mapping F W X ! P.Y /. It is clear that a set-valued mapping F can be
defined as a relation contained in X � Y with the domain Dom.F / D X . It is
defined by its graph: Graph.F / D f.x; y/ 2 X � Y W y 2 F.x/g. In applications,
we need set-valued mappings having some special regularities, such as continuity
and measurability. To define such set-valued mappings, we have to consider X and
P.Y / as topological or measurable spaces. It can be verified that if .Y; T / is a
topological space, then we can define on P.Y / the upper topology Tu generated
by the base U D fŒ �; G� W G 2 T g, where Œ �; G� D fA 2 P.Y / W A � Gg.
Similarly, the lower topology Tl on P.Y / is generated by the subbase L defined
by L D fIG W G 2 T g, where IG D fU 2 P.Y / W U \ G ¤ ;g. If .Y; d/ is a
separable metric space, then the Borel �-algebra of the metric space .Comp.Y /; h/
is generated by sets fK 2 Comp.Y / W K \ V ¤ ;g for every open set V �
Y , where Comp.Y/ � P.Y / contains all compact subsets of Y , and h is the
Hausdorff metric on Comp.Y /. These observations lead to the following definitions.
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Fig. 2.1 A mapping that is
H-u.s.c. but not u.s.c. at t D 0

If .X; TX/ and .Y; TY / are given topological spaces, then F W X ! P.Y /
is said to be lower semicontinuous (l.s.c.) at Nx 2 X if for every U 2 TY with
F. Nx/ \ U ¤ ; , there is V 2 TX such that Nx 2 V and F.x/ \ U ¤ ; for every
x 2 V . We call F W X ! P.Y / upper semicontinuous (u.s.c.) at Nx 2 X if for
every U 2 TY such that F. Nx/ � U , there is V 2 TX such that Nx 2 V and
F.x/ � U for every x 2 V . If .X; �/ and .Y; d/ are given metric spaces, then a
set-valued mapping F W X ! P.Y / is said to be H-l.s.c. at Nx 2 X if for every
" > 0 , there exists ı > 0 such that F. Nx/ � V.F.x/; "/ for every x 2 B. Nx; ı/,
where V.F.x/; "/ D fz 2 X W dist.z; F .x// � "g and B. Nx; ı/ is an open ball of
X centered at Nx with radius ı. It is clear that if F is H-l.s.c. at Nx 2 X , then
it is also l.s.c. If F. Nx/ 2 Comp.Y / , then F is H-l.s.c. at Nx 2 X if and only
if it is l.s.c. at Nx 2 X . We say that F is l.s.c. (H-l.s.c.) on X if it is l.s.c. (H-
l.s.c.) at every point Nx 2 X . In a similar manner, we can define H-u.s.c. set-valued
mappings on X . There are some H-u.s.c. set-valued mappings that are not u.s.c.
This is is illustrated in Fig. 2.1, where F.t/ D f.y; z/ 2 R2 W y D tg for t 2 R.

Let us observe that for a given l.s.c. set-valued mapping, we can change its values
at finite points in such a way that it remains l.s.c. This follows from the following
result.

Remark 2.1. If F W X ! P.Y / is l.s.c. on X and .x0; y0/ 2 Graph.F / , then
the set-valued mapping G W X ! P.Y / defined by taking G.x/ D F.x/ for
x 2 X n fx0g and G.x/ D fy0g for x D x0 , is also l.s.c. on X .

Proof. It is clear that G is l.s.c. at every point x 2 X n fx0g. By the lower
semicontinuity of F at x0 and the property of the point .x0; y0/ , for every
neighborhood U of y0 we have F.x0/ \ U ¤ ; , and there is a neighborhood
V of x0 such that F.x/ \ U ¤ ; for every x 2 V . Therefore, for every U 2 TY
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such that G.x0/ \ U ¤ ; , there is V 2 TX , a neighborhood of x0 , such that
G.x/ \ U ¤ ; for every x 2 V . Then G is l.s.c. at x0 . �

A set-valued mapping F W X ! P.Y / is said to be continuous (H-continuous)
on X if it is l.s.c. (H-l.s.c.) and u.s.c. (H-u.s.c.) on X . It can be verified that a
multifunction F W X ! Comp.Y / is continuous if and only if it is H-continuous.
If Y D Rd and F W X ! Comp.Y / takes convex values, then F is continuous
if and only if a function X 3 x ! �.p; F.x// 2 R is continuous for every
p 2 Rd , where �. �; A/ denotes the support function of A � Rd . In optimal
control theory, we have to deal with parameterized set-valued functions of the form
F.x/ D ff .x; u/ W u 2 U g, where f W X � U ! Y is a given function. We shall
show that if f . �; u/ is continuous, then the multifunction F is l.s.c. Some other
properties of such multifunctions are given in Chap. 7.

Lemma 2.1. Assume that X and Y are topological Hausdorff spaces and let f W
X � U ! Y , where U ¤ ;. If f . �; u/ is continuous on X for every u 2 U ,
then the set-valued mapping F W X ! P.Y / defined by F.x/ D f .x; U / is l.s.c.
on X .

Proof. Let Nx 2 X be fixed and let N be an open set of Y . Suppose Nu 2 U is such
that f . Nx; Nu/ 2 N . By the continuity of f . �; Nu/ at Nx , there is a neighborhood V
of Nx such that f .x; Nu/ 2 N for every x 2 V . Therefore, for every x 2 V , we get
F.x/ \ N ¤ ;. �

Let .T;F/ be a measurable space and .Y; d/ a separable metric space. A set-
valued mapping F W T ! P.Y / is said to be measurable (weakly measurable) if
for every closed (open) set E � Y , we have ft 2 T W F.t/ \ E ¤ ;g 2 F . It is
clear that if F is measurable, then it is weakly measurable. The converse statement
is not true in general.

Remark 2.2. Let .T;F/ be a measurable space and .Y; jj � jj/ a separable Banach
space. For F W T ! P.Y /, we denote by coF the set-valued mapping coF W
T ! P.Y / defined by .coF /.t/ D coF.t/ for every t 2 T , where coF.t/
denotes the closed convex hull of F.t/. It is clear that coF is measurable whenever
F is measurable. �

Remark 2.3. If .T;F/ is a measurable space, Y D Rd , and F W T ! Cl.Y / is
measurable, then the function T 3 t ! �.p; F.t// 2 R is measurable for every
p 2 Rd . If F W T ! Cl.Rd / is convex-valued, then F is measurable if and only
if �.p; F.�// is measurable for every p 2 Rd . �
Remark 2.4. It can be proved that if X is a metric space, Y D Rd , and F W X !
Comp.Y / is continuous, then �.p; F.�// is continuous for every p 2 Rd . �

It is natural to expect that for a given multifunction F W X ! P.Y / , there exists
a function f W X ! Y such that f .x/ 2 F.x/ for x 2 X . The existence of
such a function f , called a selector or a selection for F , follows immediately from
Zermelo’s axiom of choice. We recall first the Kuratowski–Zorn lemma, and then
we will verify how from this principle, the axiom of choice can be deduced.



2 Set-Valued Mappings 73

Lemma (Kuratowski–Zorn lemma). Let P be a nonempty partially ordered set
with the property that every completely ordered subset of P has an upper bound
in P . Then P contains at least one maximal element.

Lemma (Axiom of choice). Let E be a nonempty family of nonempty subsets of
a set X . Then there exists a function f W E ! X such that f .E/ 2 E for each E
in E .

Proof. Consider the class P of all functions p W D.p/ ! X such that the domain
D.p/ of p belongs to E and p.E/ 2 E for each E in D.p/. This is a nonempty
class, because E contains a nonempty set E , and if x 2 E , the function with
domain fEg and range fxg is a member of P . We order P by the inclusion relation
in E �X . It can be verified that P satisfies the conditions of the Kuratowski–Zorn
lemma. Therefore, we infer that there exists a function f W E ! X such that
f .E/ 2 E for each E 2 E . �
Corollary 2.1. For nonempty sets X and Y , every set-valued mapping F W X !
P.Y / possesses at least one selector.

Proof. Let E D fF.x/gx2X . The family E satisfies the conditions of Zermelo’s
axiom of choice. Therefore, there exists a function g W E ! Y such that g.F.x// 2
F.x/ for every x 2 X . Thus the function f W X ! Y defined by f .x/ D
g.F.x// for x 2 X is a selector for F . �

In applications of the theory of set-valued mappings, the existence of special
selectors for given multifunctions plays a crucial role. The most difficult part is to
deduce the existence of selectors with prescribed properties. In what follows, we
shall present some results dealing with the existence of continuous, measurable, and
Lipschitz continuous selectors. The fundamental problem deals with the existence
of continuous selections. The following example shows that continuous set-valued
mappings need not have, in general, continuous selections.

Example 2.1. Let F be the set-valued mapping defined on the interval .�1; 1/ by
setting

F.x/ D
8
<

:

f.v1; v2/ W v1 D cos �; v2 D t sin � and 1
t

� � � 1
t

C 2� � jt jg
for t 2 .�1; 2/ n f0g;

f.v1; v2/ W �1 � v1 � 1; v2 D 0g for t D 0 :

For t ¤ 0 and t 2 .�1; 1/, F.t/ is a subset of an ellipse in R2 (see Fig. 2.2),
whose minor axis shrinks to zero as t ! 0, so that the ellipse collapses to a segment
F.0/.

The subset of the ellipse given by F.t/ is obtained by removing a section,
from the angle .1=t/ � jt j to the angle .1=t/. As t gets smaller, the arc length
of this hole decreases, while the initial angle increases like .1=t/, i.e., it spins
around the origin with increasing angular velocity. However, F is continuous at
the origin, while no selection f W .�1; 0/ ! R2 or g W .0; 1/ ! R2, for example



74 2 Set-Valued Stochastic Processes

Fig. 2.2 The mapping F

f .t/ D .cos.1=t/; t sin.1=t//, can be continuously extended to the whole interval
.�1; 1/. In fact, the hole in the ellipse would force this selection to rotate around
the origin with an angle �.t/ between .1=t/ and .1=t/C 2� � jt j, and limt!0 f .t/

cannot exist.
We shall show that in some special cases, l.s.c. multifunctions possess continuous

selections. This follows from the famous Michael continuous selection theorem. We
precede it by the following lemmas.

Lemma 2.2. Let .X; �/ and .Y; jj � jj/ be a metric and a Banach space, respec-
tively, and let ˆ W X ! P.Y / be a convex-valued and l.s.c. multifunction. For every
" > 0 , there is a continuous function ' W X ! Y such that dist.'.x/;ˆ.x// � "

for x 2 X .

Proof. Let x 2 X be fixed and select yx 2 ˆ.x/ and ıx > 0 such that .yx C
"K0/ \ ˆ.x0/ ¤ ; for every x0 2 Bx , where Bx D B.x; ıx/ denotes the open
ball of X centered at x with radius ıx > 0 , and K0 is the unit open ball of Y
centered at 0 2 Y . Since X is paracompact, there exists a locally finite refinement
fUzgz2ƒ of fBzgz2X . Let fpxgx2ƒ be a partition of unity subordinated to it and
define a function ' W X ! Y by setting '.x/ D P

z2ƒ pz.x/yz for x 2 X . It is
clear that ' is a continuous function on X . Furthermore, we have x 2 Uz � Bz

whenever pz.x/ > 0. Hence it follows that yz 2 ˆ.x/ C "K0. Since this set is
convex, every convex combination of such yz, in particular '.x/, belongs to it, too.
Therefore, dist.'.x/;ˆ.x// � " for x 2 X . �

Lemma 2.3. Let .X; d/ and .Y; �/ be metric spaces, let G W X ! P.Y / be l.s.c.,
and let g W X ! Y be continuous on X . If a real-valued function X 3 x !
".x/ 2 RC is l.s.c. on X , then the set-valued mapping ˆ W X ! P.Y / defined by
ˆ.x/ D B.g.x/; ".x// \G.x/ is l.s.c. at every x 2 X such that ˆ.x/ ¤ ;.



2 Set-Valued Mappings 75

Proof. Let Nx 2 X be such that ˆ. Nx/ ¤ ;. Select Ny 2 ˆ. Nx/ and let � > 0.
Assume ". Nx/ > �. Ny; g. Nx// and let � > 0 be such that �. Ny; g. Nx// D ". Nx/ � � .
There exists �1 > 0 such that to every x 2 X with d.x; Nx/ < �1 we can associate
yx 2 G.x/ such that �.yx; Ny/ < min.�; .1=3/�/, �2 > 0 such that d.x; Nx/ < �2
implies ".x/ > ". Nx/ � .1=3/� , and �3 > 0 such that d.x; Nx/ < �3 implies
�.g. Nx/; g.x// < .1=3/� . Thus

�.yx; g.x// � �.yx; Ny/C �. Ny; g. Nx//C �.g. Nx/; g.x//
< .1=3/� C ". Nx/� � C .1=3/� D ". Nx/ � .1=3/� < ".x/;

whenever d.x; Nx/ < minf�1; �2; �3g. Then yx 2 ˆ.x/ and �.yx; y/ < �. �

Now we can prove Michael’s continuous selection theorem.

Theorem 2.1 (Michael). Let .X; �/ and .Y; j � j/ be a metric and a Banach space,
respectively, and let F W X ! P.Y / be l.s.c. with closed convex values. Then there
exists a continuous function f W X ! Y such that f .x/ 2 F.x/ for x 2 X .

Proof. By virtue of Lemma 2.2, for "1 D 1=2 and ˆ D F; there exists a continuous
function f1 W X ! Y such that dist.f1.x/; F.x// � "1 for x 2 X . Let ˆ1.x/ D
.f1.x/C"1K0/\F.x/ for x 2 X . We have ˆ1.x/ ¤ ; for x 2 X . By Lemma 2.3,
the multifunction ˆ1 is l.s.c. Then by Lemma 2.2, for "2 D .1=2/2; there exists a
continuous function f2 W X ! Y such that dist.f2.x/;ˆ1.x// � "2 for x 2 X .
Thus dist.f2.x/; F.x// � "2 and dist.f2.x/; .f1.x/ C "1K0// � "2, i.e., f2.x/ �
f1.x/ 2 ."1 C "2/K0 for x 2 X . Continuing the above procedure, we can deduce
that for every "n D .1=2/n with n D 0; 1; 2; : : :, there exists a continuous function
fn W X ! Y such that dist.fn.x/; F.x// � "n and fn.x/ � fn�1.x/ 2 ."n�1 C
"n/K0 for x 2 X . Hence in particular, it follows that supx2X kfn.x/�fn�1.x/k �
"n�1 C "n for n � 1, which implies that .fn/1nD1 is a Cauchy sequence in the
Banach space C.X; Y / of all continuous bounded functions g W X ! Y with the
supremum norm. Thus there exists a continuous function f W X ! Y such that
supx2X kfn.x/ � f .x/k ! 0 as n ! 1. Hence it follows that f .x/ 2 F.x/ for
x 2 X , because F.x/ is a closed subset of Y and dist.fn.x/; F.x// � "n for
x 2 X and n D 1; 2; : : :. �

Remark 2.5. There are closed convex-valued u.s.c. multifunctions that do not
possess continuous selections. A simple example is the set-valued mapping F

defined by the formula

F.x/ D
8
<

:

f�1g for x < 0;

Œ�1; 1� for x D 0;

fC1g for x > 0;

with the graph presented in Fig. 2.3. �
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Fig. 2.3 The mapping F

Fig. 2.4 Approximation
continuous selection of u.s.c
mutifunction

It can be proved that the above set-valued mapping possesses an approximation
continuous selection of u.s.c mutifunction

Immediately from Michael’s continuous selection theorem we obtain the exis-
tence of continuous approximation selections for some special multifunctions. The
proof of such a theorem is based on the following lemma.

Lemma 2.4. Let .X; �/, .Y; j � j/ and .Z; k � k/ be Polish and Banach spaces,
respectively. If 
 W X � Y ! Z and v W X ! Z are continuous and F W X !
P.Y / is l.s.c. such that v.x/ 2 
.fxg � F.x// for x 2 X , then for every l.s.c.
function " W X ! .0;1/ , the set-valued mapping ˆ W X ! P.Y / defined by
ˆ.x/ D F.x/ \ fu 2 Y W k
.x; u/ � v.x/k < ".x/g for x 2 X is l.s.c. on X .

Proof. Let Nx 2 X . For every open set U � Y such that U \ˆ. Nx/ ¤ ; , there are
Nu 2 ˆ. Nx/ and � > 0 such that . Nx; Nu/ 2 Graph.ˆ/ and .Nu C �K0/ � U , where
K0 is the unit ball of Y . There is � > 0 such that k
. Nx; Nu/ � v. Nx//k D ". Nx/� � .
Let ı > 0 be such that k
.x; u/ � 
. Nx; Nu/k < .1=3/� for every .x; u/ 2 X � Y
satisfying maxf�.x; Nx/; ju � Nujg < ı. By the lower semicontinuity of F , there is
�1 > 0 such that for every x 2 X satisfying �.x; Nx/ < �1 , there exists yx 2 F.x/
such that jyx� Nuj < minf�; .1=3/�; ıg. By the continuity of v , there is �2 > 0 such
that kv.x/ � v. Nx/k < .1=3/� for x 2 X satisfying �.x; Nx/ < �2. Furthermore,
by the lower semicontinuity of ", there is �3 > 0 such that ".x/ > ". Nx/ � .1=3/�
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for every x 2 X satisfying �.x; Nx/ < �3. Then for every x 2 X satisfying
�.x; Nx/ < minfı; �1; �2; �3g , we get

k
.x; yx/� v.x/jj � k
.x; yx/� 
. Nx; Nu/k
Ck
. Nx; Nu/� v. Nx/k C kv. Nx/ � v.x/k

< .1=3/� C ". Nx/ � � C .1=3/� < ".x/ :

Thus yx 2 ˆ.x/ and kyx � Nuk < �. For Nu 2 ˆ. Nx/ and � > 0 chosen above,
we can choose N" D minfı; �1; �2; �3g such that .Nu C �K0/ \ ˆ.x/ ¤ ; for every
x 2 B. Nx; N"/. Therefore, for every open set U � Y such that U \ˆ. Nx/ ¤ ; , there
is N" > 0 such that .Nu C �K0/ \ ˆ.x/ ¤ ; and .Nu C �K0/ \ ˆ.x/ � U \ ˆ.x/

for every x 2 B. Nx; N"/. �

Theorem 2.2. Let .X; �/, .Y; j � j/ and .Z; k � k/ be Polish and Banach spaces,
respectively. Assume that 
 W X � Y ! Z and v W X ! Z are continuous
and F W X ! P.Y / is l.s.c. with closed convex values. If 
.x; �/ is affine and
v.x/ 2 
.x; F.x// for x 2 X , then for every " > 0 , there exists a continuous
function f" W X ! Y such that f".x/ 2 F.x/ and k
.x; f".x// � v.x/k � " for
x 2 X .

Proof. By virtue of Lemma 2.4, for every " > 0 , the set-valued mapping ˆ" W X !
P.Y / defined by ˆ".x/ D F.x/ \ fu 2 Y W k
.x; u/ � v.x/k < "g for x 2 X

is l.s.c. on X . Therefore, cl.ˆ"/ is also l.s.c. on X . By the convexity of F.x/ and
the property of 
.x; �/ for fixed x 2 X , it follows that ˆ".x/ and cl.ˆ"/.x/ are
convex for x 2 X . Therefore, by Michael’s theorem, for every " > 0 , there exists a
continuous selector f" for cl.ˆ"/. It is clear that f" is a selector of F and satisfies
k
.x; f".x// � v.x/k < " for x 2 X . �

Now we consider the problem of the existence of more regular selections of
multifunctions. Such selections are connected with special properties of the “Steiner
point map” s W Conv.Rd / ! Rd defined by

s.A/ D
(
.d=2/ Œ�.1; A/C �.�1;A/� for d D 1;

d
R
�1
y �.y;A/dr for d � 1;

(2.1)

for A 2 Conv.Rd /, where �1 is the boundary of an open unit ball of Rd and dr
denotes a differential of the surface measure r on �1 proportional to the Lebesgue
measure such that r.�1/ D 1. As usual, �. �; A/ denotes the support functions
of A 2 Conv.Rd / , and Conv.Rd / is the family of all nonempty convex compact
subsets of Rd .

Immediately from the above definition, it follows that (i) s.fxg/ D x for every
x 2 Rd . Furthermore, (ii) s.ACB/ D s.A/C s.B/ and (iii) s.
A/ D 
s.A/ for
A;B 2 Conv.Rd / and 
 2 R. Indeed, for every A;B 2 Conv.Rd / , one obtains
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s.AC B/ D d

Z

�1

�.y; AC B/y dr

D d

Z

�1

�.y; A/ dr C d

Z

�1

�.y; B/ dr

D s.A/C s.B/:

Quite similarly, we also get s.
A/ D 
s.A/ for 
 2 R and A 2 Conv.Rd /. Then
conditions (ii) and (iii) are also satisfied.

We shall show that for every A 2 Conv.Rd / , one has s.A/ 2 A. To prove
this, let us recall some properties of the group O.Rd / of all orthogonal linear
transformations on Rd . It can be verified that s.lŒA�/ D lŒs.A/� for every
l 2 O.Rd / and A 2 Conv.Rd /. It is also known that the surface measure r.�/
on �1 is invariant under the action of elements in O.Rd /.

Lemma 2.5. For every A 2 Conv.Rd / , one has s.A/ 2 A.

Proof. Suppose there is A 2 Conv.Rd / such that s.A/ 62 A. Define C D A �
s.A/. Then 0 62 C , and by (i)–(iii), we get s.C / D 0. Let 0 ¤ Oc be such that
hc � Oc; Oxi > 0 for every c 2 C , where Ox D Ock Ock�1 , and h�; �i denotes the inner
product in Rd . But hc; Oxi D h Oc C .c � Oc/; Oxi D h Oc; Oxi C hc � Oc; Oxi and h Oc; Oxi D
kOck. Then for every c 2 C , one has k Ock � hc; Oxi :

Let l W Rd ! Rd be the linear transformation defined by l. Ox/ D Ox and
l.x/ D �x for x 2 Rd orthogonal to Ox. It can be verified that l belongs to
the group O.Rd / of orthogonal linear transformations on Rd and l2 D I , the
identity map. So l D l�. Let D D C C l.C /. Then l.D/ D D, and so s.D/ D 0.
In addition, for every d 2 D, we have hd; Oxi � 2k Ock > 0 , and so 0 62 D. Now let

�01 D fy 2 �1 W hy; Oxi D 0g; �C
1 Dfy 2 �1 W hy; Oxi > 0g and

��
1 D fy 2 �1 W hy; Oxi < 0g:

Then �1 D �01 [ �C
1 [ ��

1 , and these three sets �01 , �C
1 , ��

1 are disjoint. Also,
r.�01 / D 0. So we have

s.D/ D d

Z

�
C

1

�.y;D/ dr C d

Z

��

1

�.y;D/ dr

D d

Z

�1

Œ�.y;D/ � �.�y;D/� dr:

Let y 2 �C
1 and e 2 D be such that �.�y;D/ D h�y; ei. Then

�.y;D/ � �.�y;D/ D �.y; l.D// � �.�y;D/
D �.l.y/;D/ � �.�y;D/
� hl.y/; ei C hy; ei D h.l C I /.y/; ei :
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But .l C I /.y/ D 2 hy; Oxi Ox. Then �.y;D/ � �.�y;D/ � 2 hy; Oxi � h Ox; ei > 0,
since y 2 �C

1 and h Ox; ei > 0. Therefore,

hs.D/; Oxi D d

Z

�1

Œ�.y;D/ � �.�y;D/� � hy; Oxi dr > 0;

which contradicts s.D/ D 0. Then s.A/ 2 A for A 2 Conv.Rd /. �
Corollary 2.2. There is K > 0 such that for every A;B 2 Conv.Rd / , one has
js.A/ � s.B/j � K � h.A;B/.
Proof. Let us observe that forA;B 2 Conv.Rd /, we have h.A;B/ D maxfj�.x;A/
��.x; B/j W kxk D 1g. Then js.A/ � s.B/j � d

R
�1
y j�.y;A/ � �.y;B/j dr �

K � h.A;B/ for every K � d . �

Remark 2.6. In the above inequality we can compute the optimal Lipschitz constant
K.d/ > 0. It is equal to dŠŠ=.d � 1/ŠŠ if d is odd, and K.d/ D dŠŠ=Œ�.d � 1/ŠŠ�

if d is even. �

Theorem 2.3. If .X; �/ is a metric space and F W X ! Conv.Rd / is Lipschitz
continuous, then F admits a Lipschitz continuous selection.

Proof. Let h.F.x1/; F.x2// � L�.x1; x2/ for some L > 0 and every x1; x2 2 X .
Put f .x/ D s.F.x// for x 2 X . By Corollary 2.2, we get jf .x1/ � f .x2/j D
js.F.x1//�s.F.x2//j � K.d/�h.F.x1/; F.x2// � K.d/�L�.x1; x2/, where K.d/
is as in Remark 2.6. By Lemma 2.5, for every x 2 X , we have f .x/ 2 F.x/. �

Remark 2.7. Theorem 2.3 cannot be extended to multifunctions with values in an
infinite-dimensional Banach space .Y; jj � jj/. It can be proved that if a Lipschitz
continuous multifunction F W X ! Conv.Y / admits a Lipschitz continuous
selection, then Y is finite-dimensional. �
Remark 2.8. It can be proved that if F W X ! P.Rd / with X 2 Conv.Rm/ is
convex-valued such that F�.fyg/ D fx 2 X W y 2 F.x/g is an open set in X for
every y 2 Rd , then F admits an C1- selection. �

We shall now show that some measurable multifunctions admit measurable
selections. We begin with the following lemma.

Lemma 2.6. Let .X; �/ be a separable metric space and .T;F/ a measurable
space. Then a multifunction F W T ! P.X/ is weakly measurable if and only if
the function T 3 t ! dist.x; F.t// 2 RC is measurable for each x 2 X .

Proof. Let us observe that F is weakly measurable if and only if F�.B.x; "// 2 F
for every x 2 X and " > 0. On the other hand, a function T 3 t ! dist.x; F.t// 2
RC is measurable for fixed x 2 X if and only if ft 2 T W dist.x; F.t// < "g 2 F
for every " > 0. But F�.B.x; "// D ft 2 T W F.t/ \ B.x; "/ ¤ ;g D ft 2 T W
dist.x; F.t// < "g. This completes the proof. �
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Theorem 2.4 (Kuratowski and Ryll-Nardzewski). Let .X; �/ be a Polish space
and .T;F/ a measurable space. If F W T ! Cl.X/ is measurable, then F admits
a measurable selector.

Proof. Let fx1; x2; : : :g be a countable dense subset in X and let Bn.i/ D fx 2
X W �.x; xi / � 1=ng for i; n � 1. Without any loss of generality, we may assume
that diam.X/ < 1, where diam.X/ D supf�.x; y/ W x; y 2 Xg. We will construct
a sequence .fn/1nD1 of measurable functions fn W T ! X such that

(i) dist.fn.t/; F .t// � "n and (ii) �.fn.t/; fn�1.t// � "n�1
for n � 0 and t 2 T , where "n D .1=2/n for n D 0; 1; 2; : : :. Let f0.t/ D x1 for
t 2 T . Then dist.f0.t/; F .t// < 1. Suppose f0; : : : ; fn�1 have been constructed
and let Ank D ft 2 T W dist.fk.t/; F .t// < "ng and Cn

k D ft 2 T W
�.xk; fn�1.t// < "n�1g. Put Dn

k D Ank \ Cn
k . We claim that T D S

k�1 Dn
k for

n � 1. Fix t 2 T . By the inductive hypothesis, we can find z 2 F.t/ such that
�.fn�1.t/; z/ < "n�1. On the other hand, there is k � 1 such that �.xk; z/ < "n
and �.xk; z/ C �.z; fn�1.t// < "n C "n�1 < 2"n�2 D "n�1. Therefore, t 2 Dn

k

and T � S
k�1 Dn

k . By virtue of Lemma 2.6 and the continuity of the function
dist.�; F .t// for fixed t 2 T , we obtain that Ank 2 F . The inductive hypothesis
gives that Cn

k 2 F . Then Dn
k 2 F . Now define fn W T ! X by setting fn.t/ D xk

for t 2 Dn
k n Sk�1

iD1 Dn
i . Clearly, fn is measurable. Moreover, by (ii), we see that

.fn.t//
1
nD1 is a Cauchy sequence in X for every fixed t 2 T . Then there exists

a function f W T ! X such that fn.t/ ! f .t/ for every t 2 T as n ! 1.
We also have dist.f .t/; F .t// D 0 for every t 2 T . Hence it follows that f is
measurable such that f .t/ 2 F.t/ for every t 2 T . �

In what follows, we shall consider “complete” measurable spaces defined in the
following way. For a given measurable space .T;F/ and every probability measure
	 on F , we denote by F	 the 	-completion of F and define QF D T

	F	. The

space .T;F/ is said to be complete if F D QF .

Remark 2.9. It can be proved that for a given complete measure space .T;F ; 	/ , a
multifunction F W T ! P.Rn/ such that Graph.F / 2 F ˝ ˇ.Rm/ is measurable
and admits a measurable selection. �

A consequence of the above measurable selection theorem is the following
implicit function theorem.

Theorem 2.5. Assume that .X; �/ is a Polish space, .T;F/ a measurable space,
and .Y; d/ a metric space. Suppose f W T � X ! Y is a function measurable in
t 2 T and continuous in x 2 X , and let � W T ! Comp.X/ be a measurable
multifunction and g W T ! Y a measurable function such that g.t/ 2 f .t; �.t//
for t 2 T . Then there exists a measurable function � W T ! X such that �.t/ 2
�.t/ and g.t/ D f .t; �.t// for t 2 T .

Proof. Let us observe that the set-valued function F W T ! P.X/ defined by
F.t/ D fx 2 X W f .t; x/ 2 Ug for t 2 T is measurable for every open set U � Y .
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Indeed, let B be a closed subset of X and let A be a countable dense subset of B .
We have

F�.B/ D ft 2 T W F.t/ \ B ¤ ;g
D ft 2 T W f .t; x/ 2 U for some x 2 Bg
D ft 2 T W f .t; a/ 2 U for some a 2 Ag
D
[

a2A
ft 2 T W f .t; a/ 2 Ug :

Therefore, F �.B/ 2 F , because we have ft 2 T W f .t; a/ 2 Ug 2 F
for every fixed a 2 A. Define multifunctions H.t/ D �.t/ \ fx 2 X W
d.f .t; x/; g.t// D 0g for t 2 T and Fn.t/ D fx 2 X W d.f .t; x/; g.t// <
1=ng for t 2 T and n � 1. For every n D 1; 2; : : :, a multifunction Fn is
measurable and also weakly measurable. Hence it follows that its closure NFn is
weakly measurable, because F�

n .B/ D NFn�
.B/ for every open set B � X .

Clearly, fx 2 X W d.f .t; x/; g.t// D 0g D T1
nD1 NFn.t/ for t 2 T , because

NFn.t/ � fx 2 X W d.f .t; x/; g.t// � 1=ng for t 2 T and n � 1. Hence it
follows that the multifunction H defined above can be also defined by H.t/ D
�.t/ \ �T1

nD1 NFn.t/
�

for t 2 T , which implies that H is measurable. Therefore,
by Theorem 2.4, there is a measurable selector � for H that in particular is a
selector for � satisfying d.f .t; �.t//; g.t// D 0 for t 2 T . �

Corollary 2.3. If .X; �/ is a Polish space, .T;F/ a measurable space, and � W
T ! Comp.X/ and g W T ! X are measurable, then there exists a measurable
selector � for � such that dist.g.t/; �.t// D �.g.t/; �.t// for t 2 T . �

The following important result follows immediately from the Kuratowski and
Ryll-Nardzewski measurable selection theorem.

Theorem 2.6. Let .X; �/ be a Polish space, .T;F/ a measurable space, and let
F W T ! Cl.X/. The following conditions are equivalent:

(i) F is measurable;
(ii) there exists a sequence .fn/1nD1 of measurable selectors ofF such that F.t/ D

clff1.t/; f2.t/; : : :g for every t 2 T .

Proof. Let F be measurable and .xn/
1
nD1 a dense sequence of X . For every

n; k � 1 , we define

Fn;k.t/ D
�
F.t/ \ B.xn; "k/ if t 2 F�.B.xn; "k//;
F .t/ otherwise;

where "k D .1=2/k and F�.B.xn; "k// D ft 2 T W F.t/ \ B.xn; "k/ ¤ ;g.
Note that F�.B.xn; "k// 2 F and that the set-valued function T 3 t ! F.t/ \
B.xn; "k/ � X is measurable. So Fn;k is measurable, which implies that cl ŒFn;k�
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is also measurable. Therefore, by Theorem 2.4, there exist measurable functions
fn;k W T ! X such that fn;k.t/ 2 cl ŒFn;k� .t/ for every t 2 T . We shall show that
F.t/ D clffn;k.t/ W n; k � 1g for t 2 T . Indeed, fix t 2 T and let x 2 F.t/ and
" > 0. Let k � 1 and n � 1 be such that "k�1 � " and x 2 B.xn; "k/. Then
t 2 F �.B.xn; "k// and fn;k.t/ 2 B.xn; "k/. So �.fn;k.t/; x/ � �.fn;k.t/; xn/ C
�.xn; x/ � " , which proves that F.t/ D clffn;k.t/ W n; k � 1g. Then (i) ) (ii).
Assume that (ii) is satisfied. Then for every open set U � X , we have

F �.U/ D ft 2 T W F.t/ \ U ¤ ;g D
[

n�1
ft 2 T W fn.t/ 2 Ug 2 F :

Then F is weakly measurable and therefore measurable. Thus (ii))(i). �

Remark 2.10. It can be proved that if .T;F/ is a complete measurable space,
.G;G/ is a measurable space, X is a Suslin space, g W T � G ! X is jointly
measurable, � W T ! P.G/ is a multifunction such that Graph.�/ 2 F ˝ G , and
h W T ! X is a measurable map such that h.t/ 2 g.t; �.t// for t 2 T , then there
exists a measurable selector � W T ! G of � such that h.t/ D g.t; �.t// for
t 2 T . �

We shall consider now the existence of Carathéodory-type selections of measur-
able multifunctions depending on two variables. More precisely, let .T;F/ be a
measurable space, .X; �/ a Polish space, and .Y; k � k/ a separable Banach space.
Consider the set-valued mapping F W T � X ! Cl.Y / , which is assumed to be
measurable, i.e., for every closed set A � Y , we have F�.A/ D f.t; x/ 2 T �X W
F.t; x/ \ A ¤ ;g 2 F ˝ ˇ.X/. We are interested in the existence of a function
f W T �X ! Y , a selector of F , such that f . �; x/ is measurable for fixed x 2 X ,
and f .t; � / is continuous for fixed t 2 T . Such selectors of F are said to be of
Carathéodory type or simply to be Carathéodory selectors for F .

Theorem 2.7. Let .T;F/ be a complete measurable space, .X; �/ a Polish space,
.Y; k � k / a separable Banach space, and F W T � X ! Cl.Y / a convex-valued
measurable set-valued mapping. If furthermore, F.t; � / is l.s.c. for fixed t 2 T ,
then F admits a Carathéodory selection.

Proof. Let .yn/1nD1 be a dense sequence of Y . For t 2 T , n � 1 , and " > 0 ,
define G"

n.t/ D fx 2 X W yn 2 .F.t; x/ C "B/g, where B is an open unit ball in
Y . By the lower semicontinuity of F.t; � / , a set G"

n.t/ is open for every t 2 T ,
" > 0 , and n � 1. Also, the family fG"

n.t/ W n � 1g is an open covering of X .
Moreover,

Graph.G"
n/ D f.t; x/ 2 T �X W dist.yn; F.t; x// < "g 2 F ˝ ˇ.X/;

because of the measurability of F . Let "m D .1=2/m and

G"
n;m.t/ D fx 2 G"

n.t/ W dist.x;X nG"
n/ � "mg and U "n.t/ D G"

n.t/n
[

1�k<n
G"
n;k.t/
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for n;m � 1. It can be verified that the family fU "n.t/ W n � 1g is a locally
finite covering of X and every multifunction U "n W T ! P.X/ has a measurable
graph. Hence it follows that the set-valued mapping T 3 t ! X n U "n.t/ � X is
measurable with closed values. Let

p"n.t; x/ D dist.x;X n U "n.t//P
n�1 dist.x;X n U "n.t//

:

By virtue of Lemma 2.6, the function p"n. �; x/ is measurable for every n � 1

and fixed x 2 X . By the above definition, p"n.t; �/ is continuous for fixed t 2 T .
Then p"n is a Carathéodory function for every " > 0 and n � 1. Furthermore,P

n�1 p"n.t; x/ D 1. Let f ".t; x/ D P
n�1 p"n.t; x/ � yn. It is clear that f " is a

Carathéodory function. By the convexity of F.t; x/ , for every .t; x/ 2 T � X we
get f ".t; x/ 2 F.t; x/C "B for .t; x/ 2 T �X and every " > 0.

Let "n D .1=2/n for n D 1; 2; : : :. We define now a sequence .fn/
1
nD1 of

Carathéodory functions fn W T � X ! Y such that fn.t; x/ 2 F.t; x/ C "nB and
kfn.t; x/ � fn�1k < "n�1 for .t; x/ 2 T �X and n � 2. We start with f1 D f "1

and then we put F2.t; x/ D F.t; x/ \ ff1.t; x/ C "1Bg for .t; x/ 2 T � X . By
virtue of Lemma 2.3, a multifunction F2.t; �/ is l.s.c. for fixed t 2 T . It is easy
to see that F2 is measurable. Consequently, its closure cl ŒF2� is measurable and
cl ŒF2� .t; � / is l.s.c. for fixed t 2 T . From this and the first part of the proof, it
follows that for " D "2, there exists a Carathéodory function f2 such that f2.t; x/ 2
cl ŒF2� .t; x/C"2B for .t; x/ 2 T �X . It is clear that f2.t; x/ 2 F.t; x/C"2B and
kf2.t; x/ � f1.t; x/k < "1 for .t; x/ 2 T �X . By the inductive procedure, we can
define a sequence .fn/1nD1 of Carathéodory functions fn W T � X ! Y such that
fn.t; x/ 2 F.t; x/C "nB and kfn.t; x/ � fn�1.t; x/k < "n�1 for .t; x/ 2 T �X .
Hence it follows that there exists a Carathéodory function f W T � X ! Y such
that fn.t; x/ ! f .t; x/ as n ! 1 for .t; x/ 2 T � X . By the closedness of
F.t; x/ , this implies that f .t; x/ 2 F.t; x/ for .t; x/ 2 T �X . �

Remark 2.11. It can be proved that if T is a locally compact metric space furnished
with a Radon measure 	, X is a Polish space, Y is a separable reflexive Banach
space, and F W T �X ! Cl.Y / is as in Theorem 2.7, then there exists a sequence
.fm/

1
mD1 of Carathéodory selectors fm W T � X ! Y of F such that F.t; x/ D

clffm.t; x/ W m � 1g for every .t; x/ 2 T �X . �

There are quite a number of set-valued fixed-point theorems. We present below
one of them that generalizes the classical Banach fixed-point theorem.

Theorem 2.8 (Covitz–Nadler). Let .X; �/ be a complete metric space and let
F W X ! Cl.X/ be such that h.F.x/; F. Nx// � K�.x; Nx/ for every x; Nx 2 X

with K 2 .0; 1/. Then there exists x 2 X such that x 2 F.x/.
Proof. Let L 2 .K; 1/ and 
 D K�1L. For some x 2 X , we have
B.x; 
 � dist.x; F.x///\F.x/ ¤ ; , because 
 > 1. Then we can select x1 2 F.x/
such that �.x; x1/ � 
 � dist.x; F.x//. For such x1 2 X , we can select x2 2 F.x1/
such that �.x1; x2/ � 
 � dist.x1; F.x1//. Continuing this procedure, we can find a
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sequence .xn/1nD1 of X such that �.xn; xnC1/ � 
 � dist.xn; F.xn// for n � 1.
Hence it follows that �.xn; xnC1/ � 
 � dist.xn; F.xn// � 
 � h.F.xn�1; F .xn// �
L�.xn�1; xn/ � Lndist.x; F.x//. Now, similarly as in the proof of the Banach
fixed-point theorem, we can verify that the above defined sequence .xn/

1
nD1 has

a limit, say x;, belonging to X . Since F is H -continuous and dist.x; F.x// �
�.x; xn/ C dist.xn; F.xnC1// C h.F..xnC1/; F .x// for n � 1, it follows that
x 2 F.x/. �

3 The Aumann Integral

Let .T;F ; 	/ be a �-finite measure space that is not necessarily complete. For
p � 1 , by Lp.T;Rd / we denote the Banach space Lp.T;F ; 	;Rd / with the norm
k � k defined in the usual way, i.e., by kf kp D R

T jf .t/jpd	 for f 2 Lp.T;Rd /.
In what follows, we shall consider Lp.T;Rd / with p D 1 and p D 2. Instead
of L1.T;Rd / , we shall write L.T;Rd /. Let us recall that if 	.T / < 1 , then a
set K � Lp.T;Rd / is relatively sequentially weakly compact if K is bounded
and uniformly integrable, i.e., if lim	.E/!0

R
E f .t/d	 D 0 uniformly for f 2 K .

By the reflexivity of L2.T;Rd / , a set K � L2.T;Rd / is relatively sequentially
weakly compact if and only if it is bounded. By the Eberlein–Šmulian theorem, it
follows that for a bounded set K � L2.T;Rd / , its closure clwK with respect to the
weak topology of L2.T;Rd / is weakly compact. In particular, if K is also closed
and convex, then it is weakly compact, because in such a case, we have K D clwK .

Given a measurable set-valued mapping F W T ! Cl.Rd / , we define
subtrajectory integrals S.F / of F as the subset of the space Lp.T;Rd / defined
by S.F / D ff 2 Lp.T;Rd / W f .t/ 2 F.t/ a:e:g. It can be verified that
S.F / is a closed subset of Lp.T;Rd /. In what follows we shall consider only
the cases p D 1 and p D 2 . Immediately from properties of multifunction F

it will be easily seen if S.F / is a subset of L.T;Rd / or L2.T;Rd /, respectively.
In what follows, we shall denote by M.T;Rd / the space of all measurable set-
valued mappings F W T ! Cl.Rd / and by A.T;Rd / the subspace of M.T;Rd /

containing all F 2 M.T;Rd / such that S.F / ¤ ;. It can be proved that every
F 2 M.T;Rd / belongs to A.T;Rd / if and only if there exists k 2 Lp.T;RC/
such that dist.0; F.t// � k.t/ for a.e. t 2 T . We have the following simple results.

Lemma 3.1. If F 2 A.T;Rd / , then there exists a sequence .fn/1nD1 of functions
fn 2 S.F / such that F.t/ D clff1.t/; f2.t/; : : :g for t 2 T .

Proof. By virtue of Theorem 2.6, there exists a sequence .gn/1nD1 of measurable
functions gn W T ! Rd such that F.t/ D clfg1.t/; g2.t/; : : :g for t 2 T .
Taking a countable measurable partition fA1;A2; : : :g of T with 	.Ak/ < 1
and a function f 2 Lp.T;Rd / such that f .t/ 2 F.t/ for t 2 T , we
define Bj;m;k D ft 2 T W m � 1 � jgj .t/j < mg \ Ak and fj;m;k D
1Bj;m;kgj C 1T nBj;m;k f for j;m; k � 1. It is easy to see that fj;m;k 2 S.F / and

F.t/ D ffj;m;k.t/ W j;m; k � 1g for t 2 T . �



3 The Aumann Integral 85

Corollary 3.1. If F;G 2 A.T;Rd /, then S.F / D S.G/ if and only if F.t/ D
G.t/ for a.e. t 2 T . �

Lemma 3.2. Let F 2 A.T;Rd / and let .fn/1nD1 be a sequence of S.F / such
that F.t/ D clff1.t/; f2.t/; : : :g for t 2 T . Then for every f 2 S.F / and
" > 0, there exists a finite measurable partition fA1; : : : ; Amg of T such that
kf �Pm

iD1 1Ai fik < ".
Proof. Assume f .t/ 2 F.t/ for every t 2 T and let � 2 Lp.T;R/ be strictly
positive such that

R
T
�d	 < "=3. Then there exists a countable measurable partition

fB1;B2; : : :g of T such that jf .t/ � fi .t/j < �.t/ for t 2 Bi and i � 1. Take
an integer m such that

P1
iDmC1

R
Bi

jf .t/jd	 < "=6 and
P1

iDmC1
R
Bi

jfi .t/jd	 <
"=6 and define a finite measurable partition fA1; : : : ; Amg as follows: A1 D B1 [
.
S1
iDmC1 Bi / and Aj D Bj for 2 � j � m. Then we have

�
�
�
�
�
f �

mX

iD1
1Ai fi

�
�
�
�
�

D
mX

iD1

Z

Bi

jf .t/ � fi .t/jd	C
1X

iDmC1

Z

Bi

jf .t/ � fi .t/jd	

�
Z

T

�d	C
1X

iDmC1

Z

Bi

.jf .t/j C jfi .t/j/d	 < ": �

Lemma 3.3. Let .T;F ; 	/ be a measure space with a �-finite measure 	. If F 2
A.T;Rd /, then coS.F / D S.coF /.

Proof. We have coS.F / � S.coF /. Assume that there exists f 2 S.coF / such
that f 62 coS.F /. By the strong separation theorem, we can find h 2 L1.T;Rd /

such that supf.h; g/ W g 2 S.F /g < .h; f /, where .�; �/ denotes the duality bracket.
Hence it follows that

R
T
�.h.t/; coF.t//d	 <

R
T hh.t/; f .t/i d	. On the other

hand, f .t/ 2 coF.t/ a.e. Then
R
T hh.t/; f .t/i d	 � R

T
�.h.t/; coF.t//d	, a

contradiction. Therefore, coS.F / D S.coF /. �

A multifunction F W T ! P.Rn/ is said to be p-integrably bounded if there
is k 2 Lp.T;RC/ such that kF.t/k DW h.f0g; F .t// � k.t/ for a.e. t 2 T . In
particular, for p D 1 , we say simply integrably bounded instead of 1-integrably
bounded. Similarly, if p D 2 , then instead of 2-integrably bounded, we say square
integrably bounded. It is clear that F is p-integrably bounded if and only if the
function T 3 t ! kF.t/k 2 RC belongs to Lp.T;RC/. For every p-integrably
bounded multifunction F 2 M.T;Rn/ , we have S.F / ¤ ;.

Remark 3.1. Immediately from the definition of subtrajectory integrals, it follows
that for every measurable and p-integrably bounded multifunction F W T !
Conv.Rd / , its subtrajectory integral S.F / is a nonempty convex weakly sequen-
tially compact subset of Lp.T;Rd /. In particular, it is a weakly compact convex
subset of this space for p > 1. �
Lemma 3.4. If F;G 2 A.T;Rd then S.F CG/ D S.F /C S.G/.
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Proof. Immediately from Theorem 2.6, it follows that H D F CG is measurable.
It is clear that S.H/ is closed, and therefore, S.F /C S.G/ � S.H/. On the
other hand, we may find sequences .fn/

1
nD1 � S.F / and .gm/

1
mD1 � S.G/

such that F.t/ D clffn.t/ W n � 1g and G.t/ D clfgn.t/ W n � 1g a.e.
Evidently, H.t/ D ffn.t/C gm.t/ W n;m � 1g, which, by Lemma 3.2, implies
that for given h 2 S.H/ and " > 0 , we can select a finite F -measurable
partition .Ak/

N
kD1 of T and positive integers n1; : : : ; nN and m1; : : : ; mN such

that kh � PN
kD1 1Ak .fnk C gmk /k < ". Hence it follows that h 2 S.F /C S.G/:

Then S.H/ � S.F /C S.G/. �
Let .T;F ; 	/ be a measure space, QR D Œ�1;C1� and let � W T � X !

QR be an F ˝ ˇ.Rd /-measurable function. The functional T� defined on the
space L0.T;Rd / of measurable functions f W T ! Rd by setting T�.f / DR
T
�.t; f .t//d	 if the integral exists, permitting C1 or �1, is called the integral

functional.

Lemma 3.5. Let F 2 M.T;Rd / and let � W T � Rd ! QR be F ˝ ˇ.Rd /-
measurable. Assume either that (i) �.t; x/ is u.s.c. in x for every fixed t 2 T or
that (ii) .T;F ; 	/ is complete and �.t; x/ is l.s.c. in x for every fixed t 2 T . Then
the function T 3 t ! inff�.t; x/ W x 2 F.t/g � QR is measurable.

Proof. Let �.t/ D inff�.t; x/ W x 2 F.t/g and assume that (i) is satisfied.
By Theorem 2.6, there exists a sequence .fn/1nD1 of measurable selectors of F
such that F.t/ D cl.ff1.t/; f2.t/; : : :g/ for t 2 T . Then we have �.t/ D
infn�1 �.t; fn.t// for t 2 T , which implies that � is measurable. Let (ii) be
satisfied and let H W T ! P.Rd � R/ be defined by H.t/ D f.x; ˛/ 2 Rd � R W
x 2 F.t/; �.t; x/ � ˛g for t 2 T . Then H.t/ is closed in Rd � R for every
t 2 T , and Graph.H/ D ŒGraph.F / \ R� \ f.t; x; ˛/ W ˆ.t; x/ � ˛ � 0g belongs
to F ˝ ˇ.Rd / ˝ ˇ.R/ D F ˝ ˇ.Rd ˝ R/. Therefore, by virtue of Remark 2.9
and Theorem 2.6, there exists a sequence .gn; �n/

1
nD1 of measurable functions

gn W T ! Rd and �n W T ! R such that H.t/ D cl.f.g1; �1/.t/; .g2; �2/.t/; : : :g/
for t 2 Dom.H/. Hence we have �.t/ D infn�1 �n.t/ for t 2 Dom.H/ and
�.t/ D 1 for t 2 T n Dom.H/. This shows that � is measurable. �

Theorem 3.1. Let F 2 A.T;Rd / and let � W T � X ! QR be F ˝ ˇ.Rd /-
measurable. Assume either that (i) �.t; x/ is u.s.c. in x for every fixed t 2 T , or
that (ii) .T;F ; 	/ is complete and �.t; x/ is l.s.c. in x for every fixed t 2 T . If
the integral functional T� is defined for all f 2 S.F / and T�.f0/ < 1 for some
f0 2 S.F / , then inffT�.f / W f 2 S.F /g D R

T
inff�.t; x/ W x 2 F.t/gd	:

Proof. Let �.t/ D inff�.t; x/ W x 2 F.t/g. By virtue of Lemma 3.4, � is
measurable and �.t/ � �.t; f .t// a.e. for every f 2 S.F /. Taking f D f0 ,
we can see that the integral of � exists and

R
T �d	 � inffT�.f / W f 2 S.F /g.

If T�.f0/ D �1 , then the proof is complete. Thus assume T�.f0/ to be finite, so
that the function T 3 t ! �.t; f0.t// 2 QR is in L.T;R/. Let ˇ >

R
T
�d	 be

given. We shall show that T�.f / < ˇ for some f 2 S.F /. Take a sequence
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.An/
1
nD1 of measurable sets An 2 F such that 	.An/ < 1 and such that

An " T and a strictly positive function � 2 L.T;R/. For n � 1 , define
Bn D An \ ft 2 T W �.t; f0.t// � �ng and

�n.t/ D
8
<

:

�.t/C �.t/=n textif t 2 Bn and �.t/ � �n;
�nC �.t/=n if t 2 Bn and �.t/ < �n;
�.t; f0.t//C �.t/=n if t 2 T n Bn :

It is easy to see that �n 2 L.T;R/ for n � 1 and �n.t/ # �.t/ a.e., so
that

R
T �n0d	 < ˇ for some n0. Setting � D �n0 , we have

R
T �d	 < ˇ and

�.t/ < �.t/ a.e. We claim now that there exists a measurable function g W T ! Rd

satisfying g.t/ 2 F.t/ a.e. and �.t; g.t// � �.t/ a.e. For case (i), take a
sequence .gi /1iD1 of measurable functions such that F.t/ D cl.fg1.t/; g2.t/; : : :g
for all t 2 T . Since infi�1 �.t; gi .t// D �.t/ a.e., there exists a measurable
function g satisfying the conditions desired above. For case (ii), define F1.t/ D
F.t/ \ fx 2 Rd W �.t; x/ � �.t/g for t 2 T . Since F1.t/ is closed for every
t 2 T and Graph.F1/ 2 F ˝ ˇ.Rd / it follows by Remark 2.9 that F1 has a
measurable selection on Dom.F1/ 2 F . Thus the desired g is obtained from the
condition 	.T n Dom.F1// D 0. Using the function g defined above, we define
Cn D An \ ft 2 T W jg.t/j � ng and fn D 1Cng C 1T nCnf0 for n � 1 such that
fn 2 S.F / for n � 1 and

T�.fn/ D
Z

Cn

�.t; g.t//d	C
Z

T nCn
�.t; f0.t//d	

�
Z

T

�d	C
Z

T nCn
Œ�.t; f0.t// � ��d	:

Since
R
T
�d	 < ˇ and Cn " T , we have T�.fn/ < ˇ. �

Corollary 3.2. If F 2 A.T;Rd / if � W T � X ! QR is F ˝ ˇ.Rd /-measurable
and satisfies (i) or (ii) of Theorem 3.1, and if T� is defined for all f 2 S.F /

and T�.f0/ > �1 for some f0 2 S.F / , then supfT�.f / W f 2 S.F /g DR
T supf�.t; x/ W x 2 F.t/gd	. �

Corollary 3.3. For every F 2 A.T;Rd / , one has supfkf kp W f 2 S.F /g DR
T

supfjxjp W x 2 F.t/gd	 D R
T

kF.t/kpd	. Then F is p-integrably bounded if
and only if S.F / is a bounded subset of Lp.T;Rd /. �

Let M � L0.T;Rd / be a set of measurable functions f W T ! Rd . We call
M decomposable with respect to F if f1; f2 2 M and A 2 F imply 1Af1 C
1T nAf2 2 M . It is clear that if M is decomposable, then

Pm
iD1 1Ai fi 2 M for

each finite F -measurable partition fA1; : : : ; Amg of T and ff1; : : : ; fmg � M .
The following theorem is a characterization of decomposable subsets of the space
Lp.T;Rd /.
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Theorem 3.2. Let M be a nonempty closed subset of Lp.T;Rd / with p � 1.
Then there exists an F 2 A.T;Rd / such that M D S.F / if and only if M is
decomposable.

Proof. Let us observe that S.F / is decomposable for every F 2 A.T;Rd /. If
M � Lp.T;Rd / is such that there exists F 2 A.T;Rd / such that M D S.F / ,
then it is decomposable. To prove the converse, assume that M is a nonempty
closed decomposable subset of Lp.T;Rd /. Let us observe that a multifunction G
defined by G.t/ D Rd for every t 2 T belongs to A.T;Rd /. Therefore, by virtue
of Lemma 3.1, there exists a sequence .fi /

1
iD1 of Lp.T;Rn/ such that Rd D

cl.fi .t/ W i � 1g for every t 2 T . Let ˛i D inffkfi � gk W g 2 M g for i �
1 and choose a sequence fgij W j � 1g � M such that kfi � gij j ! ˛i as
j ! 1. Define F 2 A.T;Rd / by F.t/ D clfgij .t/ W i; j � 1g. We shall
prove that M D S.F /. By Lemma 3.2, for each f 2 S.F / and " > 0, we
can select a finite measurable partition fA1; : : : ; Amg of T and fh1; : : : ; hmg �
fgij .t/ W i; j � 1g such that kf � Pm

kD1 1Akhkk < ". Since
Pm

kD1 1Akhk 2 M ,
this implies that f 2 M . Then S.F / � M . Now suppose that S.F / ¤ M .
Then there exist an f 2 M , an A 2 F with 	.A/ > 0, and a ı > 0 such that
infi;j�1 jf .t/ � gij .t/j � ı for t 2 A. Take an integer i , fixed in the rest of the
proof, such that the set B D A \ ft 2 T W jf .t/ � fi .t/j < ı=3g has positive
measure, and let g0

j D 1Bf C 1T nBgij , for j � 1. Since g0
j 2 M for j � 1 and

jfi .t/ � gij .t/j � jf .t/ � gij .t/j � jf .t/ � fi .t/j > 2ı=3 it follows that

kfi � gij kp � ˛i � kfi � gij kp � kfi � g0
j kp

D
Z

B

�jfi .t/ � gij .t/jp � jfi .t/ � f .t/jp	 d	

� Œ.2ı=3/p � .ı=3/p� � 	.B/ > 0

for j � 1. If j tends to infinity, we get limj!1 kfi � gij k > ˛i , a contradiction.
Thus M D S.F /. �

Remark 3.2. The above result is also true for nonempty closed subsets of Lp.T;X/,
where X is a separable Banach space. �

Remark 3.3. Similarly as in the proof of Michael’s continuous selection theorem, it
can be proved that if .X; �/ is a separable metric space and .T;F ; 	/ is a measure
space, then every l.s.c. multifunction F W X ! Cl.Lp.T;Rd // with decomposable
values admits a continuous selection f W X ! Lp.T;Rd /.

Proof (Sketch of proof). The proof follows from the following construction proce-
dure. For every " > 0 , we define continuous mappings f" W X ! Lp.T;Rd /

and '" W X ! Lp.T;RC/ such that F".x/ D fu 2 F.x/ W ju.t/ � f".t/j <
'".t/ a:e:g is nonempty and k'"kp < ". Now, by the inductive procedure, we
can define sequences .fn/n�0, .'n/n�0 , and .Fn/n�0 such that k'n.x/k < 1=2n,
jfn.x/.t/� fn�1.x/.t/j � 'n.x/.t/C 'n�1.x/.t/ a.e., and Fn.x/ ¤ ; for x 2 X .
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Hence the existence of a continuous selector f for F follows similarly as in the
proof of Michael’s theorem. �

Given C � Lp.T;Rd / , by decfC g we denote the decomposable hull of
C , i.e., the smallest decomposable set of Lp.T;Rd / containing C . The closed
decomposable hull decfC g of C is defined by decfC g D clLŒdecfC g�. It is easy
to see that

decfC g D
(

mX

iD1
1Ai fi W .Ai /miD1 2 ….T;F/ and .fi /

m
iD1 � C

)

;

where ….T;F/ denotes the family of all finite F -measurable partitions of T .
Immediately from the above definition, it follows that the decomposable hull of the
unit ball B of Lp.T;Rd / is equal to the whole space, i.e., decfBg D Lp.T;Rd /.
We have the following results dealing with decomposable hulls.

Lemma 3.6. Let .X; �/ be a metric space. If � W X ! P.Lp.T;Rd // is l.s.c.,
then the multifunction X 3 x ! decf�.x/g � Lp.T;Rd / is also l.s.c.

Proof. By virtue of ([49], Theorem II.2.8), one has to verify that dec.�/�.C / WD
fx 2 X W decf�.x/g � C g is a closed subset of X for every closed set C �
Lp.T;Rd /. Let C be a closed subset of Lp.T;Rd / and .xn/

1
nD1 a sequence of

dec.�/�.C / converging to x 2 X . For every u 2 decf�.x/g � decf�.x/g and
" > 0 , there exist a measurable partition .A"k/

N"
kD1 of T and a family .v"k/

N"
iD1 �

Lp.T;Rd / such that ku � PN"
iD1 1A"kv

"
kk < " and v"k 2 �.x/ for every k D

1; : : : ; N" . But � is l.s.c. at x 2 X . Therefore, by virtue of ([49], Theorem II.2.9),
for every k D 1; : : : ; N" and " > 0 there exists a sequence .vn;"k /1nD1 converging
to v"k such that vn;"k 2 �.xn/ for every n � 1, k D 1; : : : ; N" and " > 0. Hence
it follows that kPN"

kD1 1A"k v
n;"
k �PN"

kD1 1A"kv
"
kk ! 0 as n ! 1 for every " > 0.

Therefore, limn!1 ku�PN"
kD1 1A"k v

n;"
k k � " for every " > 0. But

PN"
iD1 1A"k v

n;"
k 2

decf�.xn/g � C for every n � 1 and " > 0. Then u 2 CC"B , where B denotes
the closed unit ball of Lp.T;Rd /. Therefore, for every u 2 decf�.x/g , one has u 2
C D C . Thus decf�.x/g � C , which implies that x 2 dec.�/�.C /. Therefore,
dec.�/�.C / is a closed subset of X for every closed set C � Lp.T;Rd /. �
Remark 3.4. Immediately from Lemma 3.6, it follows that by the assumption of
Lemma 3.6, the multifunction X 3 x ! decf�.x/g � Lp.T;Rd / is l.s.c.

Proof. By virtue of ([49], Theorem II.2.9) one has to verify that for every x 2 X ,
every sequence .xn/1nD1 of X converging to x , and u 2 decf�.x/g , there exists a
sequence .yn/1nD1 of Lp.T;Rd / converging to u such that yn 2 decf�.xn/g for
every n � 1. Let x 2 X be fixed, let .xn/1nD1 be a sequence of X converging to
x , and let u 2 decf�.x/g. For every " > 0 , one has decf�.x/g \ B.u; "/ ¤ ;.
By virtue of ([49], Proposition II.2.4) and Lemma 3.6, a multifunction ˆ.x/ D
decf�.x/g \ B.u; "/ is l.s.c. Then there exists a sequence .yn/1nD1 of Lp.T;Rd /
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converging to u such that yn 2 decf�.xn/g \ B.u; "/, which implies that yn 2
decf�.xn/g. �

Theorem 3.3. The decomposable hull of a convex set K � Lp.T;Rd / is itself
convex, and its closure is convex and sequentially weakly closed. If .�;F ; 	/ is
a �-fini te nonatomic space and K is a nonempty subset of Lp.�;F ; 	;Rd / ,
then decwfKg D coŒdecfKg�, where decwfKg denotes the closure of decfKg with
respect to a weak topology of Lp.T;Rd /.

Proof. Let K be a convex subset of Lp.T;Rd / and u; v 2 decfKg. There are
partitions .An/NnD1; .Bm/MmD1 2 ….T;F/ , and .un/NnD1; .vm/MmD1 � K such that
u D PN

nD1 1Anun and v D PM
mD1 1Bmvm. Let .Dk/

K
kD1 2 ….T;F/ be such that

u D PK
kD1 1Dk Nuk and v D PK

kD1 1Dk Nvk , where Nuk D unk and Nvk D vmk for
nk 2 f1; : : : ; N g and mk 2 f1; : : : ;M g for every k D 1; : : : ; K . For every 
 2
Œ0; 1� and 1 � k � K , one has 
Nuk C .1 � 
/ Nvk 2 K . Therefore, 
u C .1 � 
/

v D PK
kD1 1Dk Œ
Nuk C .1 � 
/ Nvk� 2 decfKg: Thus decfKg is a convex subset of

Lp.�;F ;Rr /. Hence the convexity of decwfKg follows. Now, immediately from
Mazur’s theorem ([4], Theorem 9.11), it follows that decfKg is sequentially weakly
closed. Finally, immediately from ([41], Theorem 2.3.17), the equality decwfKg D
coŒdecfKg� follows. �

Remark 3.5. If K � L2.T;Rd / is convex and square integrably bounded, then
decfKg is convex and weakly compact.

Proof. If K � L2.T;Rd / is square integrably bounded, then decfKg is square
integrably bounded, too. Therefore, decfKg is relatively weakly compact, which
by virtue of Theorem 3.3, implies that it is convex and weakly compact. �

Remark 3.6. If F W T ! Rd is measurable and p-integrably bounded, then the
interior IntŒS.F /� of S.F / is the empty set and S.F / D decffn W n � 1g, where
fn 2 S.F / for n � 1 are such that F.t/ D clffn.t/ W n � 1g for t 2 T .

Proof. Suppose IntŒS.F /� ¤ ;. For every f 2 IntŒS.F /�/ , there exists an open
ball B.f / containing f such that B.f / � IntŒS.F /� � S.F /. Hence it follows
that decfB.f /g � decfS.F /g. But S.F / is a decomposable subset of Lp.T;Rd /.
Therefore, decfB.f /g � S.F /, which is a contradiction, because S.F / is bounded
and decfB.f /g D Lp.T;Rd /. Then IntŒS.F /� D ;. Let us observe that by the
properties of S.F / , we have decffn W n � 1g � S.F /. On the other hand, by virtue
of Lemma 3.2, for every f 2 S.F / and " > 0 there exist a partition .Ak/

N
kD1 2

….T;F/ and a family .fnk /
N
kD1 � ffn W n � 1g such that kf �PN

kD1 1Akfnkk �
", which implies that f 2 decffn W n � 1g. Thus S.F / D decffn W n � 1g. �

Lemma 3.7. Assume that .T;F ; 	/ and .X; �/ are measure and metric spaces,
respectively. Let F W T � X ! Cl.Rd / be such that F.�; x/ is measurable for
fixed x 2 X and there exist m; k 2 L2.T;RC/ such that kF.t; x/k � m.t/

and h.F.t; x/; F.t; Nx// � k.t/�.x; Nx/ for 	-a.e. t 2 T and x; Nx 2 X .
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Then H.S.F. �; x/; S.F. �; Nx/// � K�.x; Nx/ for every x; Nx 2 X , where K D
.
R
T
k2.t/d	/1=2 andH is the Hausdorff metric on Cl.L2.T;Rd //.

Proof. Assume x; Nx 2 X and select arbitrarily f x 2 S.F. �; x//. By virtue of
Theorem 3.1, one has

dist.f x; S.F. �; Nx// D inf

(�Z

T

jf x
t � ft j2d	

�1=2
W f 2 S.F. �; Nx//

)

D
�Z

T

dist2.f x
t ; F .t; Nx//d	

�1=2

�
�Z

T

k2.t/�2.x; Nx/d	
�1=2

� K�.x; Nx/;

where K D .
R T
0
k2.t/dt/1=2. Then NH.S.F. �; x//; S..F. �; Nx/// � K�.x; Nx/. In a

similar way, we obtain NH.S.F. �; Nx//; S.F. �; x/// � K�.x; Nx/: �
Remark 3.7. Similarly as above, one can prove that if .T;F ; 	/ and .X; �/ are as
above and F W T � X ! Cl.Rd / is measurable and uniformly square integrably
bounded such that F.t; � / is l.s.c. for a.e. fixed t 2 T , then a set-valued mapping
X 3 x ! S.F. �; x// 2 Cl.L2.T;Rd // is l.s.c.

Proof. Let us observe first that for given metric spaces X and Y , a multifunction
ˆ W X ! P.Y / is l.s.c. at Nx 2 X if it is H-l.s.c., i.e., if for every " > 0 ,
there exists a ı > 0 such that for every x 2 X satisfying �.x; Nx/ < ı , one has
Nh.ˆ. Nx/;ˆ.x// � ". Indeed, suppose the above condition is satisfied and ˆ is not
l.s.c. at Nx. There exists an open set U � Y with ˆ. Nx/\U ¤ ; such that in every
neighborhood V of Nx , there exists Qx 2 V such that ˆ. Qx/\U D ;. Therefore, we
can select a sequence .xn/1nD1 of X converging to Qx such that ˆ.xn/ \ U D ;
for every n D 1; 2; : : : . On the other hand, for every " > 0 , there exists N" � 1

such that for every n � N" , we have ˆ. Nx/ � V 0Œˆ.xn/; "�. Hence in particular, it
follows that ˆ. Nx/\U � V 0Œˆ.xn/; "� for n � N". Let y 2 ˆ. Nx/\U , nk D N1=k
for every k D 1; 2; : : : and select yk 2 ˆ.xnk / such that d.yk; y/ < 1=k. For k
sufficiently large, we have yk 2 U and therefore ˆ.xnk /\U ¤ ;, a contradiction.

Let us observe now that if ˆ. Nx/ is a compact subset of Y , then ˆ is l.s.c.
at Nx 2 X if and only if for every " > 0 , there exists a ı > 0 such that for
every x 2 X satisfying �.x; Nx/ < ı , one has Nh.ˆ. Nx/;ˆ.x// � ". Indeed,
for i D 1; : : : ; m , let yi be such that fB0.yi ; .1=2/"/ W i D 1; : : : ; mg
covers ˆ. Nx/ and for i D 1; : : : ; m , let ıi > 0 be such that �.x; Nx/ < ıi
implies ˆ.x/ \ B0.yi ; .1=2/"/ ¤ ;. Let ı D minfıi W i D 1; : : : ; mg. Then
�.x; Nx/ < ı implies that yi 2 V 0.ˆ.x/; .1=2/"/ for i D 1; : : : ; m, i.e.,
B0.yi ; .1=2/"/ � V 0.ˆ.x/; .1=2/"/ for all i D 1; : : : ; m. Therefore, ˆ. Nx/ �Tm
iD1 B0.yi ; .1=2/"/ � V 0.ˆ.x/; .1=2/"/ for x 2 B0. Nx; ı/, which is equivalent

to NhŒˆ. Nx/;ˆ.x/� � " for x 2 B0. Nx; ı/.



92 2 Set-Valued Stochastic Processes

Let m 2 L2.T;RC/ be such that kF.t; x/k � m.t/ for every x 2 X and
a.e. t 2 T . Therefore, F.t; x/ is a compact subset of Rd for every x 2 X and
a.e. t 2 T . Similarly as in the proof of Lemma 3.7, we can verify that for every
Nx; x 2 X , one has

NHŒS.F.�; Nx//; S.F.�; x//� �
�Z

T

Nh2ŒF.t; Nx/; F.t; x/�dt
� 1

2

:

Thus for every Nx 2 X and every sequence .xn/
1
nD1 of X converging to Nx ,

we obtain
R
T

Nh2ŒF.t; Nx/; F.t; xn/�dt ! 0 as n ! 1, which implies that
NHŒS.F.�; Nx//; S.F.�; xn//� ! 0 as n ! 1. Then the set-valued mapping X 3
x ! S.F.�; x// 2 Cl.L2.T;Rd // is l.s.c. at Nx. �
Lemma 3.8. Assume that T is an interval of the real line and let F W T � Rd !
Cl.Rd / and G W T � Rd ! Cl.Rd�m/ be measurable uniformly p-integrably
bounded and such that F.t; � / and G.t; � / are l.s.c. for fixed t 2 T . There are
continuous functions u W Rd ! Lp.T;Rd / and v W Rd ! Lp.T;Rd�m/ such
that

(i) u.x/ 2 S.F. �; x// and v.x/ 2 S.G. �; x// for x 2 Rd ;
(ii) mappings f W T � Rd 3 .t; x/ ! u.x/.t/ 2 Rd and g W T � Rd 3 .t; x/ !

v.x/.t/ 2 Rd�m are ˇT ˝ ˇ.Rd /-measurable such that f .t; x/ 2 F.t; x/

and g.t; x/ 2 G.t; x/ for a.e. t 2 T and x 2 Rd .

Proof. The existence of continuous functions u and v satisfying (i) follows
immediately from Remarks 3.3 and 3.7. Let I be the identity mapping on T

and define .I � u/ W T � Rd ! T � Lp.T;Rd / by setting .I � u/.t; x/ D
.t; u.x// for .t; x/ 2 T � Rd . The function I � u is continuous on T � Rd

and therefore .ˇT ˝ ˇ.Rd /; ˇT ˝ ˇ.Lp//-measurable, where ˇT , ˇ.Rd / and
ˇ.Lp/ denote the Borel �-fields on T , Rd and Lp.T;Rd /, respectively. Let
� W T �Lp.T;Rd / ! Rd be defined by �.t; z/ D z.t/ for .t; z/ 2 T �Lp.T;Rd /:

The mapping � is .ˇT ˝ˇ.Lp/; ˇ.Rd //-measurable because � is such that �.t; � /
is continuous and �.�; z/ is measurable for fixed t 2 T and z 2 Lp.T;Rd /,
respectively. Hence it follows that a mapping f W T �Rd 3 .t; x/ ! u.x/.t/ 2 Rd

is measurable on T � Rd , i.e., is .ˇT ˝ ˇ.Rd /; ˇ.Rd //-measurable because
f .t; x/ D Œ� ı .I � u/�.t; x/ D �.t; u.x// for .t; x/ 2 T � Rd . Measurability
of a mapping g can be verified in a similar way. It is clear that f .t; x/ 2 F.t; x/

and g.t; x/ 2 G.t; x/ for a.e. t 2 T and x 2 Rd . �

Similarly as above, let T be an interval of the real line. Denote by J the linear
mapping defined on Lp.T;Rd / by setting J.f / D R

T
f .t/dt for f 2 Lp.T;Rd /.

For a nonempty set K � Lp.T;Rd / , by J.K/ we denote its image by the mapping
J , i.e., a set of the form fR

T
f .t/dt W f 2 Kg.

Lemma 3.9. If K � Lp.T;Rd / is nonempty decomposable, then J.K/ is a
nonempty convex subset of Rd .
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Proof. Let z1; z2 2 J.K/ and 
 2 Œ0; 1�. There exist f1; f2 2 K such that
z1 D R

T
f1.t/dt and z2 D R

T
f2.t/dt . Let LT be the family of all Lebesgue

measurable subsets of T and put 	.E/ D .
R
E
f1.t/dt;

R
E
f2.t/dt/ for E 2 LT .

By Lyapunov’s theorem, 	.LT / is a convex compact subset of R2d . Since .0; 0/
and .z1; z2/ belong to 	.LT / , then we have also .
z1; 
z2/ 2 	.LT /. Therefore,
there exists H 2 LT such that .
z1; 
z2/ D 	.H/ , which by the definition
of the measure 	 implies that 
z1 D R

T
1Hf1.t/dt and 
z2 D R

T
1Hf2.t/dt .

Let f D 1Hf1 C 1T nHf2. By the decomposability of K , we have f 2 K .
Therefore,

R
T
f .t/dt 2 J.K/. But

R
T
f .t/dt D R

T
.1Hf1 C 1T nHf2/.t/dt DR

T
1H.f1 � f2/.t/dt C R

T
f2.t/dt D 
z1 � 
z2 C z2 D 
z1 C .1 � 
/z2 : Then


z1 C .1� 
/z2 2 J.K/ . �

For F 2 A.T;Rd / , the set J.S.F // is denoted by
R
T
F.t/dt and is said to be

the Aumann integral of F on the interval T .

Corollary 3.4. For every F 2 A.T;Rd / , the Aumann integral
R
T
F.t/dt is a

nonempty convex subset of Rd . If furthermore, F is p-integrably bounded, thenR
T
F.t/dt is a bounded subset of Rd . �

Denote by V.�r / the set of r C 1 vertices of the .r C 1/-dimensional simplex
�r D f.�0; : : : ; �r / 2 RrC1 W 0 � �i � 1;

Pr
iD0 �i D 1g. It is clear that if

ui 2 L1.T;R1/ for i D 0; 1; : : : ; r , then .u0; : : : ; ur / 2 L1.T;RrC1/, where
L1.T;R1/ consists of all 	-essentially bounded measurable scalar functions
defined on T .

Lemma 3.10. Let Y.t/ be an n� .rC1/-matrix-valued function with components
in L1.T;R1/, ‰ D fu 2 L1.T;RrC1/ W u.t/ 2 �r for t 2 T g , and ‰0 D fu 2
L1.T;RrC1/ W u.t/ 2 V.�r / for t 2 T g. Then fRT Y.t/ � u.t/dt W u 2 ‰g D
fRT Y.t/ � u.t/dt W u 2 ‰0g , and both of these sets are compact and convex.

Proof. Let J.u/ D R
T
Y.t/ � u.t/dt for u 2 L1.T;RrC1/. Clearly, ‰ is convex

and bounded in the L1.T;RrC1/-norm topology. Hence if we can show that ‰ is
weakly�-closed, it will imply that ‰ is weakly�-compact. Suppose u0 is a weak�-
limit of a sequence of ‰ that does not belong to ‰. Then there is a set E � T

of positive measure such that u0.t/ 2 �r for t 2 E and u0 2 ‰. One may readily
establish the existence of an " > 0 and � 2 RrC1 such that the inner product
satisfies h�; �i � C if � 2 �r and

˝
�; u0.t/

˛
< C � " for t in a subset E1 of E

having a positive measure 	.E1/. Define a function w.t/ D .w0.t/; : : : ;wr .t// by
setting

wi .t/ D
�
�i=	.E1/ for t 2 E1;
0 for t 62 E1;

for i D 1; : : : ; r . It is clear that w 2 L1.T;RrC1/. From the properties of � 2
RrC1 , it follows that w separates u0 and ‰, contradicting u0 being a weak�-limit
of a sequence of ‰. Thus ‰ is closed, convex, and weak�-compact. It is easily
seen that J is weak�-continuous, because the weak topology was defined so that
the linear functionals that were continuous on a given normed space X with its
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norm topology are still continuous when X has its weak topology. In particular,
J D .J1; : : : ; Jn/ is a continuous linear mapping from X� taken with its norm
topology to Rd such that components Ji of J are representable as elements of
X . Then J is continuous as a mapping of X� with the weak�-topology to Rd .
Therefore, J‰ D fJ u W u 2 ‰g is a compac,t convex subset of Rd . Clearly,
J‰0 � J‰. Similarly as in the proof of Lyapunov’s theorem, we can also show
that J‰ � J‰0. �

Lemma 3.11. Let F W T ! Cl.Rd / be measurable and integrably bounded. ThenR
T
F.t/dt D R

T
coF.t/dt , and both sets are nonempty and convex in Rd .

Proof. The nonemptiness and convexity of
R
T F.t/dt follow from Corollary 3.4.

By the definition of the Aumann integral, it follows that
R
T F.t/dt � R

T coF.t/dt .
Suppose y 2 R

T coF.t/dt , and let f 2 S.coF / be such that y D R
T f .t/dt .

By Carathéodory’s theorem, for every t 2 T , the point f .t/ 2 coF.t/ may be
expressed as a convex combination f .t/ D Pd

iD0 �i .t/f i .t/ with f i.t/ 2 F.t/,
0 � �i .t/ � 1, and

Pd
iD0 �i .t/ D 1. Let �d denote the simplex in the space RdC1,

i.e., �d D f.�0; : : : ; �d / 2 RnC1 W 0 � �i � 1;
Pd

iD0 �i D 1g: Denote by �.t/

the vector .�0.t/; : : : ; �d .t// 2 �d . Let us observe that the functions �i and f i

can be chosen to be measurable. Indeed, let g.t; �; ˇ0; : : : ; ˇd / D Pd
iD0 �i .t/ˇi

for t 2 T and ˇ0; : : : ; ˇd 2 R and let �.t/ D �dC1 � F.t/ � � � � � F.t/

with F.t/ appearing n C 1 times in the product. Since f is measurable and
f .t/ 2 g.t; �.t// for a.e. t 2 T , then by Theorem 2.5, there exists a measurable
function T 3 t ! .�0.t/; : : : ; �n.t/; f

0.t/; : : : ; f d.t// 2 �.t/ such that f .t/ D
g.t; .�0.t/; : : : ; �n.t/; f

0.t/; : : : ; f d.t// for a.e. t 2 T . Let the vectors f i.t/ be
the columns of an d � .d C 1/-matrix Y . By virtue of Lemma 3.10 there exists a
measurable vector function �� D .��

0 ; : : : ; �
�
d / on T taking values in the vertices

of the simplex �d such that
R
T f .t/dt D R

T Y.t/ � �.t/dt D R
T Y.t/ � ��.t/dt .

Now ��
i .T / � f0; 1g for all i D 0; 1; : : : ; d and

Pd
iD0 ��

i .t/ D 1. Let Ti D ft 2
T W ��

i .t/ D 1g. Then Ti is measurable and
Sd
iD0 Ti D T and Ti \ Tj D ;

for i ¤ j . Define f �.t/ D f i .t/ for t 2 Ti for i D 0; 1; : : : ; d . It is clear that
f � is measurable and such that f �.t/ 2 F.t/ and

R
T
f �.t/dt D R

T
f .t/dt . ThenR

T
F.t/dt D R

T
co F .t/dt . �

Theorem 3.4 (Aumann). If F W T ! Cl.Rd / is measurable and integrably
bounded, then

R
T F.t/dt D R

T coF.t/dt , and both integrals are nonempty convex,
compact subsets of Rd .

Proof. By virtue of Lemma 3.11, we have
R
T
F.t/dt D R

T
coF.t/dt , and both

integrals are nonempty convex subsets of Rd . By virtue of Remark 3.1, a set
S.coF / is a weakly sequentially compact subset of L.T;Rd/. By the definition
of the Aumann integral, we have

R
T

coF.t/dt D J.S.coF //; where J is a linear
and continuous mapping defined on L.T;Rd /. By the linearity of J , it follows that
J is also continuous on L.T;Rd/ with respect to its weak topology. Therefore,
J.S.coF // is a compact subset of Rd . �
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Remark 3.8. It can be proved that if .X; k � k/ is a separable Banach space, T
is an interval of the real line, and F W T ! Cl.X/ is measurable and integrably
bounded, then cl.

R
T
F.t/dt/ D cl.

R
T

coF.t/dt/ , where the closure is taken in the
norm topology of X . �

Theorem 3.5. If F W T ! Cl.Rd / is measurable and integrably bounded, then
for every p 2 Rd and A 2 LT , one has

R
A �.p; F.t//dt D �.p;

R
A F.t/dt/.

Proof. Let us observe that �.p; F.� // is measurable and integrably bounded for
every fixed p 2 Rd . Then it is integrable and

R
A
�.p; F.t//dt < 1 for

every p 2 Rd and A 2 LT . For every f 2 S.F / and p 2 Rd , we have˝
p;
R
A
f .t/dt

˛ D R
A hp; f .t/i dt � R

A
�.p; F.t//dt: Therefore, for every p 2 Rd ,

one has �.p;
R
A
F.t/dt/ � R

A
�.p; F.t//dt . We shall show now that for every

˛ 2 R and p 2 Rd such that ˛ <
R
A
�.p; F.t//d; there is f 2 S.F / such

that ˛ < �.p;
R
A
f .t/dt/. Indeed, let us take arbitrarily g 2 S.F / and define for

every n � 1 a multifunction Fn by setting Fn.t/ D fx 2 F.t/ W jx � g.t/j < ng.
Similarly as in the proof of Theorem 2.5, we can verify that Fn, and hence also
cl.Fn/, is measurable. Then �.p; Fn.�// is measurable for every p 2 Rd and
n � 1. It is also integrably bounded. Furthermore, �.p; Fn.t// ! �.p; F.t// for
t 2 T as n ! 1. Then

R
A
�.p; Fn.t//dt ! R

A
�.p; F.t//dt for every p 2 Rd

as n ! 1. Thus we have ˛ <
R
A
�.p; Fn.t//dt for n large enough. Then there

exists an integrable function ' W T ! R such that ˛ <
R
A
'.t/dt and '.t/ <

�.p; Fn.t// for a.e. t 2 T . Let G.t/ D fx 2 F.t/ W hp; xi > '.t/g for t 2 T . It
is clear that G.t/ ¤ ; and that G has a measurable graph. Therefore, by virtue of
Remark 2.9, there exists a measurable selector f of G , and hence also of F , such
that '.t/ < hp; f .t/i : Thus

R
A
'.t/dt <

˝
p;
R
A
f .t/dt

˛
. Hence it follows that ˛ <˝

p;
R
A
f .t/dt

˛
. Now taking in particular ˛n D R

A
�.p; F.t//dt � 1=n for n � 1 ,

we can select fn 2 S.F / such that ˛n < �.p;
R
A
fn.t/dt/ � �.p;

R
A
F.t/dt/ for

every p 2 Rd and n � 1; which implies that
R
A
�.p; F.t//dt � �.p;

R
A
F.t/dt/

for every p 2 Rd and A 2 LT . �

Remark 3.9. The above results are also true for measurable and p-integrably
bounded multifunctions with p � 1. �

4 Set-Valued Stochastic Processes

Similarly as in Chap. 1, we assume that we are given a complete filtered probability
space PF D .�;F ;F; P / with a filtration F D .Ft /t�0 satisfying the usual
conditions. By a set-valued random variable, we mean an F -measurable multifunc-
tion Z W � ! Cl.Rd /. If Z 2 A.�;Rd / , then the Aumann integral

R
�
ZdP

is denoted by EŒZ� and is said to be the mean value of the set-valued random
variable Z . A set-valued random variable Z 2 A.�;Rd / is said to be Aumann
integrable. Immediately from properties of measurable set-valued mappings, the
following results, dealing with set-valued random variables, follow.
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Lemma 4.1. Let Z W � ! Cl.Rd / be an Aumann integrable set-valued random
variable. Then

(i) S.Z/ is a closed decomposable subset of Lp.�;F ;Rd / and S.coZ/ D
coS.Z/.

(ii) Z is p-integrably bounded if and only if S.Z/ is a bounded subset of
Lp.�;F ;Rd /.

(iii) If Z is p-integrably bounded, then IntŒS.Z/� D ; and S.Z/ ¤ Lp

.�;F ;Rr /.
(iv) There exists a sequence .zn/1nD1 of d -dimensional random variables such

that zn.!/ 2 Z.!/ and Z.!/ D clfzn.!/ W n � 1g for n � 1 and ! 2 �.
If fzn W n � 1g � S.Z/ , then S.Z/ D decfzn.!/ W n � 1g.

(v) If .zn/1nD1 � S.Z/ is such that Z.!/ D clfzn.!/ W n � 1g for ! 2
�, then for every z 2 S.Z/ and every " > 0 , there exist a partition
.Ak/

N
kD1 2 ….�;F/ and a family .znk /

N
kD1 � fzn W n � 1g such that

Ejz �PN
kD1 1Ak znk j � ".

(vi) If F and G are Aumann integrable set-valued random variables such that
S.F / D S.G/ , then F.!/ D G.!/ for a.e. ! 2 �.

(vii) If Z is convex-valued and square integrably bounded, then S.Z/ is a
decomposable, convex, and weakly compact subset of L2.�;F ;Rd /.

(viii) If F and G are convex-valued and integrably bounded set-valued random
variables, then S.F CG/ D S.F /C S.G/.

A family ˆ D .ˆt /t�0 of set-valued random variables ˆt W � ! Cl.Rq/ is
called a set-valued stochastic process. Similarly as in the case of point-valued
stochastic processes, a set-valued process ˆ D .ˆt /t�0 can also be defined as a
set-valued mapping ˆ W RC � � 3 .t; !/ ! ˆt.!/ 2 Cl.Rq/ such that ˆ.t; � /
is a set-valued random variable for every t � 0 . If such a multifunction ˆ is
ˇ.RC/ ˝ F -measurable, then a set-valued process ˆ is said to be measurable. If
furthermore, for every t � 0 , the set-valued mapping ˆt is Ft -measurable, then
ˆ is said to be F-nonanticipative. It is easy to see that ˆ is F-nonanticipative if
and only if it is †F -measurable, where †F D fA 2 ˇT ˝F W At 2 Ft for t 2 T g,
and At denotes the t-section of a set A � T ��. Given p � 1 , we call a set-valued
process ˆ D .ˆt /t�0 p-integrably bounded if there exists m 2 Lp.RC ��;RC/
such that kˆt.!/k � m.t; !/ for a.e. .t; !/ 2 RC � �. A set-valued process
ˆ D .ˆt /t�0 is said to be bounded if there exists a number M > 0 such that
kˆt.!/k � M for a.e. .t; !/ 2 RC � �. It is clear that every bounded set-
valued process is p-integrably bounded for every p � 1. Similarly as above,
by S.ˆ/ we denote the subtrajectory integrals of a set-valued stochastic process
ˆ W RC � � ! Cl.Rq/, i.e., the set of all measurable and dt � P -integrable
selectors of ˆ. By SF.ˆ/ we denote the subset of S.ˆ/ containing all F-
nonanticipative elements of S.ˆ/. If ˆ is an p-integrably bounded set-valued
process defined on Œ0; T � �� , its subtrajectory integrals will be denoted by S.ˆ/
for every p � 1 . In this case, S.ˆ/ � Lp.Œ0; T � � �;ˇT ˝ FT ;Rq/. Similarly,
if ˆ W Œ0; T � � � ! Cl.Rq/ is F-nonanticipative and square integrably bounded,
then SF.ˆ/ � L2.Œ0; T ���;†F;R

q/. Similarly as above, ˆ is said to be Aumann
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(Itô) integrable if S.ˆ/ ¤ ; (SF.ˆ/ ¤ ;). We shall consider set-valued stochastic
processes with q D d and q D d �m.

Let us denote by M.RC��;Rd / and MF.R
C��;Rd / the spaces of all mea-

surable and F-nonanticipative, respectively set-valued stochastic, processes on a
filtered probability space .�;F ;F; P / with values in Cl.Rd /. Similarly, the space
of all F-nonanticipative processes on .�;F ;F; P / with values in Cl.Rd�m/ will
be denoted by MF.R

C � �;Rd�m/ . We denote by L2.�;Rd / the space of all
(equivalence classes of) set-valued random variables Z W � ! Cl.Rd / such that
EkZk2 < 1; where kZk.!/ D supfjxj W x 2 Z.!/g for a.e. ! 2 �. Elements of
the space L2.�;Rd / are called Rd -set-valued square integrably bounded random
variables. We shall consider L2.�;Rd / as a metric space with a metric H defined
by H.Z1;Z2/ D ŒEh2.Z1.� /;Z2.� //�1=2 for Z1;Z2 2 L2.�;Rd /. Similarly as in
the case of L2.�;F ;Rd / , it can be verified that .L2.�;Rd /;H/ is a complete
metric space. By L2F.RC ��;Rd / and L2F.RC ��;Rd�m/ we shall denote the
spaces of all square integrably bounded elements of spaces MF.R

C ��;Rd / and
MF.R

C��;Rd�m/; respectively. Similarly as above, the spaces L2F.RC��;Rd /

and L2F.RC ��;Rd�m/ will be considered metric spaces with metric dH defined
by dH .ˆ;‰/ D ŒE

R1
0
h2.ˆt ; ‰t/dt �1=2 for every ˆ D .ˆt /t�0; ‰ D .‰t/t�0 2

L2F.RC ��;Rd / or ˆ D .ˆt /t�0; ‰ D .‰t /t�0 2 L2F.RC ��;Rd�m/. It can be
verified that .L2F.RC ��;Rd /; dH/ is a complete metric space. For fixed T > 0 ,
we define L2F.T;�;Rd / D f.1Œ0;T �ˆt /t�0 W .ˆt /t�0 2 L2F.RC��;Rd /. The space
L2F.T;�;Rd�m/ is defined similarly. We shall consider L2F.T;�;Rd / with the

metric dH , which in this case, is defined by dH.ˆ;‰/ D ŒE
R T
0
h2.ˆt ; ‰t /dt �1=2

for ˆ;‰ 2 L2F.T;�;Rd /. We shall also consider spaces L4F.T;�;Rd / and
L4F.T;�;Rd�m/ , defined in a similar way. In what follows, stochastic processes
ˆ and ‰ belonging to L2F.T;�;Rd / and L2F.T;�;Rd�m/ will be written as
families ˆ D .ˆt /0�t�T and ‰ D .‰t/0�t�T , respectively. We shall also consider
metric spaces ClŒL2.Œ0; T ���;†F;R

d /� and ClŒL2.Œ0; T ���;†F;R
d�m/� with

Hausdorff metrics denoted in both cases by D. Given a sequence .F n/1nD1 of
set-valued stochastic processes, F n D .F n

t /0�t�T 2 L2F.T;�;Rd / is said to be
uniformly integrably bounded if there exists m 2 L2.Œ0; T � � �;†F;R

C/ such
that kF n

t .!/k � mt.!/ for n � 1 and a.e. .t; !/ 2 Œ0; T � � �. It is said to be
uniformly integrable if

lim
C!1 sup

n�1

Z Z

f.t;!/WkFnt .!/k>C g
kF n

t .!/k2dtdP D 0 :

It is clear that every uniformly integrably bounded sequence .F n/1nD1 of set-valued
stochastic processes of L2F.T;�;Rd / is also uniformly integrable. It is easy to
see that every sequence .'n/1nD1 of F-nonanticipative selectors 'n of a uniformly
integrable sequence .F n/1nD1 � L2F.T;�;Rd / is uniformly integrable. Finally,
let us observe that every sequence .F n/1nD1 of set-valued stochastic processes of
L2F.T;�;Rd / converging in the dH -metric topology to F 2 L2F.T;�;Rd / is
uniformly integrable.
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Lemma 4.2. Let J and J be linear continuous mappings defined on
L2.Œ0; T � ��;†F;R

d / and L2.Œ0; T � � �;†F;R
d�m/; respectively, with values

at L2.�;FT ;Rd /. If .ˆn/1nD1 and .‰n/1nD1 are sequences of L2F.T;�;Rd / and
L2F.T;�;Rd�m/ converging in the dH -metric topology to ˆ 2 L2F.T;�;Rd /; and
‰ 2 L2F.T;�;Rd�m/, respectively, then

(i) limn!1 Œmax fD.SF.ˆn/; SF.ˆ//;D.SF.‰n/; SF.‰//g� D 0;
(ii) limn!1 Œmax fH.J.SF.ˆn//; J.SF.ˆ//;H.J .SF.‰n//;J .SF.‰///g� D 0:

Proof. By Theorem 3.1, for every ' 2 SF.ˆn// , one has EŒ
R T
0

inffk't.!/�xk2 W
x 2 ˆ.t; !/gdt � D inffE R T

0
k't � ftk2dt W f 2 SF.ˆ/g D Dist2.'; SF.ˆ//.

Similarly, for every f 2 SF.ˆ/ , we get Dist2.f; SF.ˆn// D E
R T
0

inffkft .!/ �
xk2 W x 2 ˆnt .!/gdt . Hence it follows that D.SF.ˆn/; SF.ˆ// � dH .ˆ

n;ˆ/ for
every n � 1, which implies D.SF.ˆn/; SF.ˆ// ! 0 as n ! 1. In a similar way,
we also get D.SF.‰n/; SF.‰// ! 0 as n ! 1.

It is easy to see that (ii) follows immediately from (i) and the properties of the
mappings J and J . Indeed, let us observe first that by (i), continuity of J and
boundedness of SF.ˆ/ and SF.ˆn// , there exists M > 0 such that .EjJ.'/ �
J. /j2/1=2 � M.

R T
0 Ej' �  j2dt/1=2 for n � 1; ' 2 SF.ˆ/ and  2 SF.ˆn//.

Suppose now that (ii) is not satisfied and let A D J ŒSF.ˆ/� and An D J ŒSF.ˆn/�

for n � 1. There exist N" > 0 and an increasing subsequence .nk/1kD1 of .n/1nD1
such that H.Ank ; A/ > N" for every k � 1. Hence it follows that for every k � 1 ,
there exists gk 2 Ank such that N"=2 < .Ejgk � f j2/1=2 for every f 2 A. Let
'k 2 SF.ˆnk / and � 2 SF.ˆ/ be such that gk D J.'k/ for k � 1 and f D
J.�/. For every k � 1 , one has

N"=2 < .Ejgk � f j2/1=2 � M

�Z T

0

Ej'kt � �t j2dt
�1=2

:

By (i), it follows that for every 'k 2 S.ˆnk /; with k � 1 sufficiently large, there
exists �k 2 SF.ˆ/ such that .E

R T
0 j'kt � �kt j2dt/1=2 � N"=2M . Taking in particular

� D �k with sufficiently large k � 1 , we obtain

N"=2 < .Ejgk � f j2/1=2 � M

�Z T

0

Ej'kt � �kt j2dt
�1=2

M � N"=2M D N"=2;

a contradiction. Then HŒJ.SF.ˆn/; J.SF.ˆ//� ! 0 as n ! 1. In a similar way,
we also get HŒJ .SF.‰n/;J .SF.‰//� ! 0 as n ! 1. �

Remark 4.1. If J.'/ D R T
0
'tdt and J . / D R T

0
 tdBt for ' 2 L2.Œ0; T � �

�;†F;R
d / and  2 L2.Œ0; T ���;†F;R

d�m/; then H.J ŒSF.ˆn/�; J ŒSF.ˆ/�/ �p
T dH.ˆ

n;ˆ/ and H.J ŒSF.‰n/�;J ŒSF.‰/�/ � dH .‰
n;‰/ for every n � 1.

Proof. For every u 2 J ŒSF.ˆ
n/� , one has dist2.u; J ŒSF.ˆ/�/ � Eju � vj2 for

every v 2 J ŒSF.ˆ/�: But u D R T
0 'tdt and v D R T

0  tdt for some ' 2 SF.ˆn/
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and  2 SF.ˆ/. Therefore, dist2.u; J ŒSF.ˆ/�/ � Ej R T
0
.' �  /dt j2 for every

 2 SF.ˆ/. By Theorem 3.1, we have

inf

(

E

ˇ
ˇ
ˇ
ˇ

Z T

0

'tdt �
Z T

0

f tdt

ˇ
ˇ
ˇ
ˇ

2

W f 2 SF.ˆ/
)

� T inf

�

E

Z T

0

j't � ft j2dt W f 2 SF.ˆ/
�

D TE

Z T

0

dist2.'t ; ˆt /dt � Td2H .ˆ
n;ˆ/:

�

Thus dist2.u; J ŒSF.ˆ/�/ � Td2H .ˆ
n;ˆ/ for every u 2 J ŒSF.ˆn/�, which implies

that H.J ŒSF.ˆn/�; J ŒSF.ˆ/�/ � p
T dH.ˆ

n;ˆ/ for n � 1. In a similar way, we
also get H.J ŒSF.‰n/�;J ŒSF.‰/�/ � dH .‰

n;‰/ for every n � 1.
In what follows, we shall deal with a conditional expectation of set-valued

integrals depending on a random parameter. We begin with the general definition
of set-valued conditional expectation and its basic properties. Given a complete
probability space .�;F ;P/, a sub-�-algebra G of F , and a set-valued random
variable ˆ W � ! Cl.Rd / the following result follows immediately from
Theorem 3.2.

Lemma 4.3. If ˆ W � ! Cl.Rd / is a set-valued random variable such that
S.ˆ/ ¤ ; , then there exists a unique in the a.s. sense G-measurable set-valued
random variable ‰ W � ! Cl.Rd / such that S.‰/ D clLfEŒ'jG� W ' 2 S.ˆ/g.

Proof. Let A 2 G � F and H D fEŒ'jG� W ' 2 S.ˆ/g. For every  1; 2 2 H ,
there exist '1; '2 2 S.ˆ/ such that  1 D EŒ'1jG� and  2 D EŒ'2jG�. By the
decomposability of S.ˆ/ , it follows that EŒ1A'1 C 1�nA'2jG� 2 H. Then H
is decomposable, because EŒ1A'1 C 1�nA'2jG� D 1A 1 C 1�nA 2. Therefore,
clL.H/ is a decomposable subset of Lp.�;G;Rd /. By virtue of Theorem 3.2,
there exists a G-measurable set-valued mapping ‰ W � ! Cl.Rd / such that
S.‰/ D clL.H/. Suppose there are two G-measurable mappings ‰1;‰2 W � !
Cl.Rd / such that S.‰1/ D S.‰2/ D clL.H/. By Corollary 3.1, it follows that
‰1 D ‰2 a.s. �

A G-measurable set-valued mapping ‰ W � ! Cl.Rd / such that S.‰/ D
clLfEŒ'jG� W ' 2 S.ˆ/g is denoted by EŒˆjG� and is said to be a G-conditional
expectation of a set-valued mapping of ˆ W � ! Cl.Rd /. Let us observe that
for every square integrably bounded convex-valued set-valued random variable
ˆ W � ! Cl.Rd / , the set S.ˆ/ is a convex and weakly compact subset of
L2.�;Rd /. Then fEŒ'jG� W ' 2 S.ˆ/g is a closed subset of this space. Indeed,
for every u 2 clLfEŒ'jG� W ' 2 S.ˆ/g , there is a sequence .'n/1nD1 � S.ˆ/ such
that EŒ'njG� ! u as n ! 1. Let .'nk /

1
kD1 be a subsequence of .'n/1nD1 weakly
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converging to ' 2 S.ˆ/. Therefore, for every A 2 G , one has
R
A EŒ'nk jG�dP DR

A 'nkdP ! R
A 'dP D R

A EŒ'jG�dP as k ! 1. Then EŒ'nk jG� converges
weakly to EŒ'jG� as k ! 1, which implies that u D EŒ'jG� 2 fEŒ'jG� W ' 2
S.ˆ/g.

Corollary 4.1. If ˆ W � ! Cl.Rd / is a square integrably bounded convex-valued
set-valued random variable, then S.EŒˆjG�/ D fEŒ'jG� W ' 2 S.ˆ/g. �

Theorem 4.1. Let ˆ W � ! Cl.Rd / and ‰ W � ! Cl.Rd / be F -measurable
integrably bounded and let G be a sub-�-algebra of F . Then

(i) EŒ1AEŒˆjG�� D EŒ1Aˆ� for every A 2 G.
(ii) EŒ�ˆjG� D �EŒˆjG� for every � 2 L1.�;G;R/.

(iii) EŒcoˆjG� D coEŒˆjG�.
(iv) H.EŒˆjG�; EŒ‰jG�/ � H.ˆ;‰/, where H.ˆ;‰/ D EŒh.ˆ;‰/�.
(v) EŒˆC‰jG� D EŒˆjG�CEŒ‰jG� a.s.

Proof. (i) Let A 2 G be fixed. If u 2 S.EŒˆjG�/ , then there exists a sequence
.'n/

1
nD1 in S.ˆ/ such that ku �EŒ'njG�k ! 0 as n ! 1. Then EŒ1Au� D

limn!1EŒ1AEŒ'njG�� D limn!1EŒ1A'n�: Hence by the compactness of
the Aumann integral EŒ1Aˆ� , it follows that EŒ1Au� 2 EŒ1Aˆ�. Thus
EŒ1AEŒˆjG�� � EŒ1Aˆ�. Let H D fEŒ'jG� W ' 2 S.�/g. Then EŒ1AH� D
fEŒ1AEŒ'jG� W ' 2 S.�/g D EŒ1Aˆ�. Hence it follows that EŒ1Aˆ� �
EŒ1AclL.H/� D EŒ1AEŒˆjG��. Therefore, EŒ1AEŒˆjG�� D EŒ1Aˆ� for
every A 2 G.

(ii) Let � 2 L1.�;G;R/. We have to show that S.EŒ�ˆjG�/ D S.�EŒˆjG�/. By
the definition of a set-valued conditional expectation, we have S.EŒ�ˆjG�/ D
clL.fEŒf jG� W f 2 S.�ˆ/g/ and S.�EŒˆjG�/ D �S.EŒˆjG�/ D �clL
.fEŒ'jG� W ' 2 S.ˆ/g/. Let u 2 �clL.fEŒ'jG� W ' 2 S.ˆ/g/ and .'n/

1
nD1

be a sequence of S.ˆ/ such that k�EŒ'njG� � uk ! 0 as n ! 1. But
�EŒ'njG� D EŒ�'njG� for n � 1. Then kEŒ�'jG� � uk ! 0 as n ! 1. We
also have �'n 2 S.�ˆ/ for n � 1. Therefore, E Œ�'njG� 2 fEŒf jG� W f 2
S.�ˆ/g for n � 1, which implies that u 2 clLfEŒf jG� W f 2 S.�ˆ/g. Thus

�clL.fEŒ'jG� W ' 2 S.ˆ/g/ � clL.fEŒf jG� W f 2 S.�ˆ/g/:

Let v 2 clLfEŒf jG� W f 2 S.�ˆ/g and .'n/
1
nD1 � S.ˆ/ be such that

kEŒ�'njG�� vk ! 0 as n ! 1. Hence it follows that k�EŒ'njG�� vk ! 0

as n ! 1. Similarly as above, we get �EŒ'njG� 2 �fEŒ'jG� W ' 2 S.ˆ/g �
�clL.fEŒ'jG� W ' 2 S.ˆ/g/ for every n � 1. Therefore, v 2 �clL.fEŒ'jG� W
' 2 S.ˆ/g/. Then clL.fEŒf jG� W f 2 S.�ˆ/g/ � clL.fEŒ'jG� W ' 2
S.ˆ/g/; which implies that S.EŒ�ˆjG�/ D S.�EŒˆjG�/.

(iii) Let G D EŒˆjG�. By Lemma 3.3, we obtain S.EŒcoˆjG�/ D clLfEŒ'jG� W
' 2 coS.ˆ/g D co fEŒ'jG� W ' 2 S.ˆ/g D coS.G/ D S.coG/: Hence, by
Corollary 3.1, it follows EŒcoˆjG� D coEŒˆjG�.
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(iv) Let A D f! 2 � W supŒdist.y;EŒ‰jG�.!// W y 2 EŒˆjG�.!/� �
supŒdist.y;EŒˆjG�.!// W y 2 EŒ‰jG�.!/�g: We have A 2 G and

H.EŒˆjG�; EŒ‰jG�/ D EŒh.EŒˆjG�; EŒ‰jG�/�
D EŒ1A supŒdist.y;EŒ‰jG�.!// W y 2 EŒˆjG�.!/�

CEŒ1�nA supŒdist.EŒy;EŒˆjG�.!// W y 2 EŒ‰jG�.!/�
D supEŒ1A supŒdist.EŒ'jG�; EŒ‰jG�/ W ' 2 S.ˆ/�

CEŒ1�nA supŒdist.EŒ jG�; EŒˆjG�/ W  2 S.‰/�
� sup

'2S.ˆ/
inf

 2S.‰/EŒ1AEŒj' �  jjG��

C sup
 2S.‰/

inf
'2S.ˆ/EŒ1�nAEŒj' �  jjG��

D sup
'2S.ˆ/

inf
 2S.‰/EŒ1Aj' �  j�

C sup
 2S.‰/

inf
'2S.ˆ/EŒ1�nAj' �  j�

D
Z

A

supŒdist.x;‰.!// W x 2 ˆ.!/�dP

C
Z

�nA
supŒdist.x;ˆ.!// W x 2 ‰.!/�dP

D
Z

�

h.ˆ.!/;‰.!//dP D H.ˆ;‰/:

(v) By the definition of a multivalued conditional expectation, we have
S.EŒˆC‰jG�/ D clLfEŒgjG� W g 2 S.ˆC‰/. By virtue of Lemma 3.4,
we have

S.EŒˆC‰jG�/ D clL.fEŒ�jG�CEŒ jG� W � 2 S.ˆ/;  2 S.‰/g/
D S.EŒˆjG�/C S.EŒ‰jG�/ D S.EŒˆjG�C EŒ‰jG�/;

which by Corollary 3.1, implies that EŒˆC‰jG� D EŒˆjG�C EŒ‰jG� a.s.
�

Remark 4.2. It can be proved that if ˆ 2 A.�;F ;Rd / is convex-valued and T
is sub-�-algebra of G � F , then EŒˆjT � taken on the base space .�;F ; P / is
equal to EŒˆjT � taken on the base space .�;G; P / and EŒEŒˆjG�jT � D EŒˆjT �,
P -a.s. �
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5 Notes and Remarks

The definitions and results of the first two sections of this chapter are mainly
based on Aubin and Frankowska [12], Hu and Papageorgiou [41], Aubin and
Cellina [5], Kisielewicz [49], Kuratowski [69], Hildenbrand [40] and Klein, and
Thomson [63]. In particular, Michael’s continuous selection theorem is taken from
Aubin and Cellina [5] and Kisielewicz [49], whereas Theorem 2.2 comes from
Kisielewicz [57]. The proofs of the Kuratowski and Ryll-Nardzewski measurable
selection theorem and the Carathèodory selection theorem are taken from Hu
and Papageorgiou [41]. The existence of measurable selectors for measurable
multifunctions has been considered first by Kuratowski and Ryll-Nardzewski in
[70]. The existence of Carathéodory selections has been considered by Rybiński in
[91], Fryszkowski in [32], and Kucia and Nowak in [66]. The proof of Theorem 2.3,
dealing with the existence of Lipschitz-type selectors, is taken from Hu and
Papageorgiou [41]. The idea of this proof is due to Przesławski [90]. The proofs
of Lemmas 1.1 and 1.2, Remark 1.1, and Corollary 1.2 can be found in Kuratowski
[69] and Hildenbrand [40], respectively. Figures 2.1–2.4 are taken from Aubin and
Cellina [5] and Kisielewicz [49]. The proof of Remark 2.9 can be found in Hu
and Papageorgiou [41]. The definition and properties of Aumann integrals are taken
from Hiai and Umegaki [39] and Kisielewicz [49]. The first results dealing with
Aumann integrals are due to Aumann [14]. The existence of continuous selections
of multifunctions with decomposable values was proved by Fryszkowski [32].
The sketch of the proof of this theorem given in Sect. 2 is taken from Hu and
Papageorgiou [41]. The definition and properties of conditional expectation of set-
valued mappings are taken from Hiai and Umegaki [39]. More information on the
Hukuhara difference can be found in Hukuhara [42].
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