
Chapter 2
Introduction to Renewal Theory

2.1 Introduction

Let fXig1
iD1 be a series of independent and identically distributed nonnegative

random variables. Assume they are continuous. In particular, there exists some
density function fX .x/, x � 0, such that FX .x/ � P.Xi � x/ D R x

tD0
fX .t/ dt ,

i � 1. Imagine Xi representing the life span of a lightbulb. Specifically, there are
infinitely many lightbulbs in stock. At time t D 0, the first among them is placed.
It burns out after a (random) time of X1. Then it is replaced by a fresh lightbulb that
itself is replaced after an additional (random) time of X2, etc. Note that whenever a
new lightbulb is placed all statistically starts afresh. Let Sn D ˙n

iD1Xi , n � 1, and
set S0 D 0. Of course, SnC1 D Sn C XnC1, n � 0.

For t � 0, let

N.t/ � supfn � 0jSn � tg:
In words, N.t/ is the number of lightbulbs which were burnt out during the time
interval Œ0; t �. Note that it is possible that N.t/ equals zero. The set of random
variables N.t/, t � 0, is called a renewal process. The following equality between
events clearly holds:

fN.t/ D ng D fSn � t; SnC1 > tg; t � 0; n � 0:

We are interested in the following three processes. The first is A.t/ D t � SN.t/,
called the age process, and the second is R.t/ D SN.t/C1 � t , called the residual
process. Indeed, A.t/ is the length of time since the last replacement prior to time t ,
and R.t/ is the length of time until the next replacement. For the third process, let
L.t/ D A.t/ C R.t/, called the length process. Note that L.t/ D SN.t/C1 � SN.t/ D
XN.t/C1. Also, L.t/ is the total life span of the lightbulb that is functioning at
time t . We are interested in the limit distributions of these three sequences of random
variables when t goes to infinity.
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22 2 Introduction to Renewal Theory

2.2 Main Renewal Results

2.2.1 The Length Bias Distribution and the Inspection Paradox

Let L be the length bias random variable associated with X . Specifically, L has the
same support as X but a different density function. Yet, its density function stems
from that of X :

fL.`/ D f̀X.`/

E.X/
; ` � 0: (2.1)

The definition of the density fL.`/ suits cases in which the sampling is favorably
biased towards observations with large values, as for example when sampling for
the life span is done randomly sometime during the individual’s lifetime (and not at
birth or at death). Here, the density is not only proportional to the original likelihood
but also to the value itself, i.e., the life span. Hence, fL.`/ is proportional to the
product between ` and fX .`/. Finally, one has to divide this product by E.X/ in
order to get a density function; i.e., the integral between zero and infinity is then
equal to one. We claim without a proof that when t goes to infinity, L.t/ as defined
above, follows the length bias distribution. In other words,

lim
t!1 P.L.t/ � x/ D

Z x

tD0

fL.`/ dt D
Z x

`D0

f̀X .`/

E.X/
d`; x � 0:

The interested reader is referred, e.g. to the text [41], pp. 117–118, for a formal
argument. An alternative justification is given below in Sect. 2.3. See Example 3
there. The intuition is clear: a lightbulb whose life span is twice as long as that of
another is twice as likely to be sampled when one inspects the process at a random
time (and not at the time of replacement).

It is easy to see from (2.1) that E.L/ D E.X2/=E.X/ or, in general, that

E.Ln/ D E.XnC1/

E.X/
; n D 0; 1; 2; : : : (2.2)

Example 1 (The exponential distribution). It is possible to see that if X is exponen-
tially distributed with parameter �, then L is with

fL.`/ D �.�`/e��`; ` � 0

which is an Erlang distribution with parameters 2 and �.

Example 2 (The Erlang distribution). The result in the previous example can be
generalized as follows. If X follows an Erlang distribution with parameters n and
�, then L follows an Erlang distribution with parameters n C 1 and �. Indeed, if
fX .x/ D �.�x/n�1e��x=.n � 1/Š with mean n=�, then
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j
S1 � � �

j
SN.t/

j
t

j
SN.t/C1 � � �

L.t/

A.t/ R.t/

Fig. 2.1 The renewal process

fL.`/ D `
�.�`/n�1e��`

.n � 1/Š
=

n

�

D �.�`/n e��`

nŠ
; ` � 0

which is the density function of an Erlang random variable with parameters n C 1

and �, and mean nC1
�

.

Example 3 (The hyper-exponential distribution).

fL.`/ D `
P

n
pn

�n

X

n

pn�ne��n`; ` � 0:

Example 4 (Mixture of Erlang distributions). Let d be the mean number of stages.
Then, d=� is the mean value of the random variable. Hence, by (1.13),

fL.`/ D `
X

n

pn

�.�`/n�1e��`

.n � 1/Š
=.d=�/:

Remark. We next give an explanation for the fact that E.L/ D E.X2/=E.X/.
Suppose xi , i � 1, is a realization of the random variables Xi , i � 1. Then, the
sample average of L.t/ along the time interval Œ0; T � is defined by

L.T / D 1

T

Z T

tD0

L.t/ dt:

Recall that L.t/ is the length of the renewal interval covering point t , t � 0, i.e.,
L.t/ D xN.t/C1. Figure 2.1 depicts the case where x1 D 1, x2 D 0:5, x3 D 0:7 and
x4 D 1:3.

Clearly,

L.T / D 1

T

2

4
N.T /X

j D1

x2
j C x.N.T /C1/.T �

N.T /X

j D1

xj /

3

5
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or

L.T / D N.T /

T

1

N.T /

2

4
N.T /X

j D1

x2
j C xN.T /C1.T �

N.T /X

j D1

xj /

3

5:

When T ! 1, N.T /=T goes with probability one (see, e.g. [41], p. 133) to
1=E.X/ as the latter is the renewal rate. Moreover, as its second term goes to zero,

1

N.T /

2

4
N.T /X

j D1

x2
j C xN.T /C1.T �

N.T /X

j D1

xj /

3

5

goes to E.X2/ with probability one. In summary,

lim
T !1 L.T / D E.X2/

E.X/

as required.

The inspection paradox. The fact that E.L/ D E.X2/=E.X/ leads immediately to
the conclusion that E.L/ �E(X) with an equality if and only if X is deterministic.
This inequality is known as the inspection paradox. Suppose for example that the
renewal process under consideration is that of lightbulbs that are replaced one by
another as soon as one is burnt out. One who inspects the current functioning
lightbulb assesses the distribution of the lifespan of this light bulb (age plus residual)
by that as the distribution of L, in particular its mean equals E.X2/=E.X/ which is
greater than or equal to E.X/. Thus, an inspected light bulb is on average better than
an average light bulb! This seams as a paradox. Yet, as we have seen throughout this
section, among those lightbulbs which are inspected there is a bias towards the long
lightbulbs due to the fact that long ones are more likely to be sampled (even if under
the distribution of X they are equally likely).

2.2.2 The Age and the Residual Distributions

When an individual is sampled during his lifetime, it makes sense to define the
following two random variables. Specifically, denote two nonnegative random
variables by A and R, called age and residual, respectively. They are the limit
random variables of A.t/ and R.t/ as defined in Sect. 2.1. The former reflects the
age of the sampled individual, while the latter reflects how much life is still ahead
of him. Of course, their sum gives the total life span. Assuming that for a given life
span, all points of time during one’s life are equally likely to be sampled. Hence,
conditioning on L D x, we assume that the age follows a uniform distribution
whose support is the Œ0; x� interval. Formally,
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fAjLDx.a/ D
(

1
x

a � x

0 a > x:
(2.3)

Since R D L � A, we conclude that RjL D x follows the same distribution as
AjL D x. Moreover, the marginal, i.e., unconditional, distributions of both A and R

are identical. Indeed, note the symmetry here between A and R: if one reverses the
orientation of time, then age and residual life swap their meanings. An alternative
way to define A and R given L, is to say that .A; R/ D .UL; .1 � U /L/ when U

is a continuous zero-one uniformly distributed random variable that is independent
of L.

Remark. Our point of departure here was that AjL was distributed uniformly in
Œ0; L�. However, it is possible to prove formally that

lim
t!1 P.A.t/ � aL.t/ D `/ D a

l
; 0 � a � `

from which the joint distribution of A and L (and hence the conditional distribution
of AjL) follow. See Exercise 9 for the approach suggested below in Sect. 2.3.

Next we find the marginal density function of A (and hence of R):

fA.a/ D
Z 1

xD0

fAjLDx.a/fL.x/ dx D
Z 1

xDa

xfX .x/

E.X/

1

x
dx D F X .a/

E.X/
; a � 0 :

(2.4)
Note that fA.a/ is monotone decreasing with a, a � 0. The intuition behind that is
simple: if a � b, then whoever’s current age is b has been at age a at some time in
the past. The converse is not always true: If one’s age has been a it is not necessarily
true that he/she will reach age b.

Equation (2.4), coupled with (1.3), leads to the fact that E.A/ D E.X2/=2E.X/.
In general, from (1.3) we can learn that

E.Rn/ D E.An/ D
Z 1

xD0

xn F X .x/

E.X/
dx D E.XnC1/

.n C 1/E.X/
; n � 0: (2.5)

As L D A C R and as E.A/ D E.R/, we conclude that E.A/ D E.L/=2 or
E.A/ D E.R/ D E.L/=2, whereby we get an alternative proof that E.A/ D E.R/ D
E.X2/=2E.X/: This result should be compared with Solomon’s Wisdom. Finally,
since the conditional distribution of A and R given L coincide, the same is true of
their marginal distributions. In summary, A and R are identically distributed. Of
course, in general, they are not independent.

Remark. The counterpart of Fig. 2.2 for the sample paths of the age and residual
processes is given below in Figs. 2.3 and 2.4, respectively. Comparing the three
figures, it is clear that E.A/ D E.R/ D E.L/=2.
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t

L.t/
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x1 D 1 x2 D 0:5 x3 D 0:7 x4 D 1:3
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0.7
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1.3

Fig. 2.2 The length process

t

A.t/

1 1.5 2.2 3.5

x1 D 1 x2 D 0:5 x3 D 0:7 x4 D 1:3

0.5

0.7

1

1.3

Fig. 2.3 The age process

Remark. Trivially, E.A/ D E.R/ � E.L/. Yet, all the following three options are
possible: E.A/ < E.X/, E.A/ D E.X/ and E.A/ > E.X/. The third option might
look counterintuitive but it is possible. This phenomenon can be explained by the
inspection paradox as it possible that E.L/ � 2E.X/. See Exercise 5 for an example.
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Fig. 2.4 The residual process

Example 1 (cont.). Note that in the case where X follows an exponential distribu-
tion with parameter �

fR.a/ D fA.a/ D e��a

1=�
D �e��a ; a � 0:

In other words, the age (as well as the residual) follows an exponential distribution
with the same parameter of �. It is also possible to show that A (or R) and X follow
the same distribution, only if X is exponential. In fact R (or A) and X having the
same distribution can be looked at as an alternative definition of the memoryless
property.

Example 2 (cont.). In the case where X follows an Erlang distribution with param-
eters n and �,

F X .x/ D
n�1X

kD0

e��x .�x/k

kŠ
and E.X/ D n=�;

(see (1.11)) we get that

fR.a/ D fA.a/ D 1

n

nX

kD1

�e��a .�a/k�1

.k � 1/Š
:
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This distribution can be seen as a mixture between n random variables, each of
which is Erlang with the same scale parameter of � but with a different number
of stages, where the number of stages is uniformly distributed between 1; 2; : : : ; n.
This leads to the following observation. When one inspects a component whose
longevity follows an Erlang distribution with parameters n and �, i.e., the sum
of n random stages (which are independent and exponentially distributed, and
share the same expected length of ��1), then the index of the current stage (and
the number of stages to be completed inclusive of the current one) are uniformly
distributed between 1 and n. In other words, given stage d , the age follows an
Erlang distribution with parameters d and � while the residual follows an Erlang
distribution with parameters n � d C 1.1 Since all stages are equally likely, we
conclude that

E.R/ D E.A/ D n C 1

2�
:

The following lemma contains two facts. The first is trivial while for the second
we supply a short proof.

Lemma 2.1.

fLjADa.l/ D fX .l/

F X .a/
; l � a � 0:

Of course, the corresponding value when l < a is zero. Also,

f.A;R/.a; r/ D fX .a C r/

E.X/
; r; a � 0: (2.6)

Proof of Equation (2.6).

f.A;R/.a; r/ D fA.a/fRjADa.r/ D F X .a/

E.X/

fX .a C r/

F X.a/
D fX .a C r/

E.X/
:

Remark. Note that the joint density in Eq. (2.6) is a function of a and r only through
their sum. This is not a surprise given that L D A C R and that both AjL and RjL
are uniformly distributed in Œ0; L�.

2.2.3 The Memoryless Property (Versions 4 and 5)

As can be seen, the joint density function (2.6) does not in general equal to
fA.a/fR.r/, and hence A and R are not necessarily independent. These properties

1The current stage is counted both in terms of age and residual lifetime.
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do obtain, however, when X follows an exponential distribution, as the reader
can easily check. We next show that this is the only case resulting in such an
independence. Thus, the independence of A and R is equivalent to memorylessness.
Put differently, the mutual independence of the age and the residual is in fact
equivalent to the memoryless property. To show this, we need the following lemma:

Lemma 2.2.

P.A � a; R � r/ D P.A � a C r/ D P.R � a C r/: (2.7)

Proof. The right equality is trivial as A and R are identically distributed. The left
equality follows from Eq. (2.6):

P.A � a; R � r/ D
Z

a0�a

Z

r 0�r

f.A;R/.a
0; r 0/ da0 dr 0

D 1

E.X/

Z

a0�a

Z

r 0�r

fX .a0 C r 0/ da0 dr 0

D
Z

a0�a

F X .a0 C r/

E.X/
da0 D

Z

a0�a

fA.a0 C r/ da0 D P.A � a C r/;

as required. ut
Remark. Note from (2.7) that P.A � a; R � r/ is a function of a and a only
through a C r .

Equation (2.7) immediately leads to the following:

P.A � ajR � r/ D P.A � a; R � r/

P.R � r/
D P.R � a C r/

P.R � r/
: (2.8)

Theorem 2.1. The random variables A and R are independent if and only if X

follows an exponential distribution.

Proof. From (2.8) and the fact that A are R are identically distributed, we learn that
A and R are independent if and only if

P.R � a C r/

P.R � r/
D P.R � a/ :

This is equivalent to R possessing the memoryless property (see (1.7)). Hence,

fR.r/ D �e��r ; r � 0; (2.9)

for some � > 0. Then, by (2.4), F X .x/ D E.X/�e��x; x � 0. This implies that X

has an exponential tail which is possible if and only if X is exponentially distributed.
This concludes the proof. ut
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Remark. To conclude: fA;R.a; r/ D fA.a/fR.r/; a; r � 0, namely the age and
the residual being independent, is our fourth version of the memoryless property. It
is possible to see from (2.9) that this is equivalent for the residual (and hence the
age) to follow an exponential distribution. Hence, this will be our fifth version for
memoryless.

Later on we will need the Laplace transforms of A, R, and L in terms of the
Laplace transform of the random variable X . They are related as follows:

Lemma 2.3. Let F �
X .s/ be the LST of the nonnegative and continuous random

variable X . Then,

F �
R .s/ D F �

A .s/ D 1 � F �
X .s/

E.X/s
(2.10)

is the LST of the age (and the residual) distribution. Also,

F �
L .s/ D �d F �

X .s/

d s

1

E.X/
(2.11)

is the LST of the length bias distribution.

Proof.

F �
A .s/ D

R 1
xD0 F X .x/e�sx dx

E.X/

which by integration by parts, equals

D �F X.x/e�sx 1

sE.X/
j1xD0 �

Z 1

xD0

1

sE.X/
fX .x/e�sx dx D 1

sE.X/
� F �

X .s/

sE.X/

as required. The proof of (2.11). ut
The final limit result we would like to mention (without a proof) concerns the

limit probability of a renewal during the next instant of time.

Theorem 2.2.

lim
t!1 P.N.t C �t/ � N.t/ D 1/ D 1

E.X/
�t C o.�t/:

As E.X/ is the expected time between renewals, 1=E.X/ is the rate of renewals,
i.e., the expected number of renewals per unit of time. What Theorem 2.2 states
is stronger than an average rate result. It states that this rate, when looked at as
a probability of renewal, holds, at the limit, for any instant of time. Alternatively,
by (1.4),

Z 1

xD0

hX .x/fA.x/ dx D
Z 1

xD0

fX .x/

F X .x/

F X .x/

E.X/
dx D 1

E.X/
:
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In words, the average hazard rate with respect to the age distribution equals 1=E.X/;
i.e., the average failure rate, which is in fact the average renewal rate, is the
reciprocal of the mean time between renewals. Finally, note that in the case of
exponential distribution, the theorem holds for any time and not only at the limit.

2.3 An Alternative Approach

Let Zi D Xi C Yi , i � 1, be a series of independent and identically distributed
nonnegative and continuous random variables. The same can be said of the two
series Xi and Yi but, and this is worth noting, for a given i , Xi and Yi are
not necessarily independent. Consider now a renewal process in which any Zi is
followed by ZiC1, i � 1. Moreover, each period of the Zi , commences with Xi and
then is followed by Yi . We say that the process is in an “on” mode if currently an
Xi is running and it is said to be “off” if currently a Yi is running. Quite naturally, a
realization of a Zi is called a cycle.

It is clear that the process moves consecutively from an “on” mode to an “off”
mode, then to an “on” mode again, etc.2 We are interested in the limit probability
that the process in “on”. It is claimed here without a proof that it equals

P.“on”/ D E.X/

E.X/ C E.Y /
: (2.12)

The result is quite intuitive but it is somewhat surprising that it holds also when X

and Y are not independent.

Example 1. Suppose a machine works for a time whose length X follows a uniform
distribution in the unit interval. When the machine breaks, it undergoes repair which
lasts Y D X2. Clearly, E.X/ D 1=2 and E.Y / D 1=3. Thus, the long-term
probability that the machine is operational is

1
2

1
2

C 1
3

D 3

5
:

Example 2. Our first application of the above result is in deriving the limit
distribution of the age process. Fix an age of a and say that the process is “on”
as long as its age is less than or equal to a and it is “off” otherwise. Note that in this
example the “on” and the “off” periods are clearly not independent. Also, an “on”
period can be followed with a zero length “off” period (if x � a). The expected
cycle length is of course E.X/. The expected time of “on” is E.minfa; Xg/. The
latter value equals

2This does not rule out the possibility the length of one of these phases will equal zero.
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E.minfa; Xg/ D
Z a

tD0

F X .t/ dt; 3

Hence, by (2.12),

FA.a/ D
R a

tD0
F X .t/ dt

E.X/
:

Taking derivative with respect to a we conclude that

fA.a/ D F X .a/

E.X/
;

which coincides with (2.4).

Example 3. Next we derive the limit distribution of the length of the entire renewal
period when sampled at an arbitrary point of time (which from the above we know
follows the length bias distribution). Now we say that the process is “on” when the
length of the renewal interval is less than or equal to l (and it is “off” when it is
greater than l). Note that the product between the lengths of the “on” and “off”
periods is always zero. As before, E.X/ is the expected length of the cycle. Also,
the expected “on” time equals

R l

xD0
xfX .x/ dx. Note that when x � l , the “on”

period equals zero. Hence, by (2.12),

FL.l/ D
R l

xD0
xfX .x/ dx

E.X/
; l � 0:

Taking the derivative with respect to l , we get that

fL.l/ D lfX .l/

E.X/
; l � 0;

which coincides with (2.1).

2.4 A Note on the Discrete Version

Suppose the life span of a component is measured only by whole numbers, say days.
Then, P.X D i/ D pi , i � 1, for some nonnegative numbers that sum up to one.
Denote by qi , i � 1, the probability that the life span is at least i , i.e.,

qi D P.X � i/ D ˙1
j Di pj ; i � 1:

3See (1.3) for the case where n D 0 and for the random variable min fa; Xg. Note that the tail
function for all values from a and above equal zero.
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It is possible to see that

E.X/ D ˙1
iD1qi (2.13)

(see Exercise 1 for a proof), which is the counterpart of (1.3) when n D 1 for
integral random variables. Also, hi D pi =qi D P.X D i jX � i/ is the hazard
at i , i � 1 and it plays the same role as the hazard defined in (1.4) for continuous
random variables.

Next, the length bias distribution in the case of discrete random variables is
defined via

P.L D `/ D `p`

E.X/
; ` � 1 : (2.14)

Hence,

E.L/ D E.X2/

E.X/
(2.15)

as in the continuous version. Also, the age distribution is defined via

P.A D ajL D `/ D
�

1
`

1 � a � `

0 a > `

Hence,

P.A D a/ D
1X

`Da

P.L D `/P.A D ajL D `/ D
1X

`Da

`p`

E.X/

1

`
D qa

E.X/
; a � 1:

(2.16)
The residual here has the same meaning as in the continuous case but some care is
needed due to the integrality requirement. Specifically, as we like R and A to be
identically distributed, we need to define R as L C 1 � A and hence both age and
residual are inclusive of the current day. Clearly then,

P.A D a; R D r/ D P.L D a C r � 1/

a C r � 1
D paCr�1

E.X/
; a; r � 1 : (2.17)

Due to the double counting of the current day, E.A/ C E.R/ � 1 D E.L/. Since
E.A/ D E.R/, we conclude by (2.15) that

E.A/ D E.R/ D 1

2

�
E.X2/

E.X/
C 1

�

: (2.18)

Example 4 (Geometric random variables). Suppose X follows a geometric dis-
tribution with parameter p, i.e., P.X D i/ D p.1 � p/i�1, i � 1. Then,
qi D .1 � p/i�1, i � 1, E.X/ D 1=p and E.X2/ D .2 � p/=p2. Hence,
P.L D `/ D `p2.1 � p/`�1, ` � 1, and E.L/ D .2 � p/=p. Note that L follows
a negative binomial distribution with parameters 2 and p, counting the number of
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trials until (exclusive) the second success. Also, P.A D a/ D p.1 � p/i�1, i � 1,
which is the memoryless version of discrete random variables. The same of course
is the distribution of R. Also, by (2.17), for any a; r � 1,

P.A D a; R D r/ D p.1 � p/aCr�2=.1=p/ D p.1 � p/a�1p.1 � p/r�1

D P.A D a/P.R D r/:

In other words, A and R are independent. Again, this is the memoryless phe-
nomenon. Finally, by (2.18)

E.A/ D E.R/ D 1

2
.
2 � p

p
C 1/ D 1

p
;

as expected.

More involved is the case where we have a random sum of independent and
identically distributed random variables. Specifically, let Y D ˙N

iD1Xi , where
fXig1

iD1 are independent and identically distributed random variables and N is an
independent discrete random variable. Let LX , LY , and LN be the length bias
distribution of X , Y , and N , respectively. Note that the special case where N is
constant and Xi , 1 � i � N , follows exponential distribution is dealt with in
Example 2 in Sect. 2.2.1 since Y now follows an Erlang distribution.

Theorem 2.3. LY is distributed as LX C ˙
LN �1
iD1 Xi , where the summation here is

between independent random variables.

Proof. See Exercise 4.

A possible example is the case where Y is a mixture of Erlang random variables:
the Xi ’s, i � 1, are exponentially distributed and N has some discrete distribution.
Then, by Example 2 of Sect. 2.2.1, LX has an Erlang distribution whose first
parameter equals two. The second summand is also a mixture of Erlang random
variables.

2.5 Exercises

1. Prove formula (2.13).
2. Derive the density function of the age in the case where the original random

variable follows hyper-exponential distribution.
3. Derive the density function of the age in the case where the original random

variable is a mixture of Erlang random variables.
4. Prove Theorem 2.3 and state it in your own words.
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5. Recall that if X follows an Erlang distribution with parameters n and �, then X

is in fact a sum of n independent and exponentially distributed random variables
with parameter �, called stages. Let pi.t/ be the probability that the stage at
time t is i , given that X � t , 1 � i � n.

(a) Find pi .t/, 1 � i � n.
(b) Show that hX .t/ D �pn.t/. State this result in your own words.

6. Show that if X is with a DHR distribution then E.A/ � E.X/. Also, show that
E.A/ � E.X/ if and only if the coefficient of variation of X is greater than or
equal to 1.

7. Show that the following families of continuous distributions are closed in the
sense that if X ’s distribution belong to them, the same is the case with L’s.
Specifically,

(a) If X � � .˛; ˇ/ then L � � .˛ C 1; ˇ/.
(b) If X � beta.˛; ˇ/ then L � beta.˛ C 1; ˇ/

8. Show that the following families of discrete distributions are closed in the sense
that if X ’s distribution belong to them, the same is the case with L � 1’s.
Specifically,

(a) If X � Bin.n; p/ then L � 1 � Bin.n � 1; p/

(b) If X � NB.r; p/, then L � 1 � NB.r C 1; p/

(c) If X � Pois.�/, then L � 1 � Pois.�/. Moreover, show that if X and L � 1

follow the same distribution then X follows a Poisson distribution.

9. Define a renewal process as being ‘on’ when its age is larger than or equal to a

and when its residual is larger than or equal to r .4

(a) Show that the expected time in which the process is ‘on’ during one renewal
period equals

E.maxfX � a � r; 0g/:
Express this expected value in terms of fX .x/ and/or FX .x/.

(b) Deduce the limit joint distribution of A and R. In particular, show that

fA;R.a; r/ D fX .a C r/

E.X/
:

10. Define a renewal process as being ‘on’ when its age is smaller than or equal to
a and when its residual is smaller than or equal to r .5

(a) Show that the expected time in which the process is ‘on’ during one renewal
period equals

4This exercise is due to Yoav Kerner.
5This exercise is due to Binyamin Oz.
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E.minfa; Xg C minfr; Xg � minfa C r; Xg/:

Express this expected value in terms of fX .x/ and/or FX .x/.
(b) Deduce the limit joint distribution of A and R. In particular, show that

fA;R.a; r/ D fX .a C r/

E.X/
:
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