Chapter 2

Modeling Automated Warehouses Using
Semi-Open Queueing Networks

Xiao Cai, Sunderesh S. Heragu, and Yang Liu

2.1 Introduction

A typical warehouse consists of three areas: reserve area, forward area, and cross-
dock area. The reserve area is a high-density, narrow-aisle storage area with unit
loads (pallets, totes or bins) stored on racks that extend from floor to ceiling and
wall to wall. Because the aisles are narrow to maximize storage density, full pal-
let loads are typically handled in the reserve area and the throughput is high, this
area of a warehouse is typically automated. Two main types of automated material
handling technologies have been used in the reserve area of a warehouse. One of
them, the automated storage and retrieval system (AS/RS), has been widely used
for decades. The other technology, the autonomous vehicle storage and retrieval
system (AVS/RS), is relatively new and has been installed in over fifty warehouses
in Europe and other parts of the world.

The AS/RS consists of narrow aisles with storage racks usually located on both
sides of the aisle. A storage/retrieval (S/R) crane capable of handling one or two unit
loads traverses the entire depth and height of the aisle to store or retrieve units loads
in or from their respective storage locations. Each crane is mounted on a mast and
there are two sets of motors, one driving the crane up and down a mast and another
moving the mast in and out of an aisle. This allows a crane to access any stor-
age location anywhere on the rack. The crane-mast system can be designed so they
are aisle-captive or can move from aisle to aisle. The aisle-captive designs are more

X. Cai
FedEx Corporation, Memphis, TN, USA
e-mail: xiao.cai @fedex.com

S.S. Heragu (<)
University of Louisville, Louisville, KY, USA
e-mail: s.heragu@louisville.edu

Y. Liu
Chrysler Group LLC, Belvidere, IL, USA
e-mail: y.liu@chrysler.com

J.M. Smith and B. Tan (eds.), Handbook of Stochastic Models and Analysis of Manufacturing 29
System Operations, International Series in Operations Research & Management Science 192,
DOI 10.1007/978-1-4614-6777-9_2, © Springer Science+Business Media New York 2013


xiao.cai@fedex.com
s.heragu@louisville.edu
y.liu@chrysler.com

30 X. Cai et al.

common. After all, the primary reason warehouse managers invest in automation
is due to the high levels of throughput requirement they face and thus minimizing
the number of cranes by making them travel aisle to aisle could reduce the through-
put that might be achieved by aisle-captive systems. An example of an AS/RS is
provided in Fig. 2.1.

Fig. 2.1 An example of the AS/RS

An AVS/RS is an alternative automated material handling system also used in
the reserve area of warehouse, but it uses a combination of autonomous vehicles to
move pallets within a tier and lifts to transport empty or loaded vehicles between
tiers (see Fig.2.2). As shown in Fig. 2.3, the autonomous vehicle has two sets of
motors one for travel in the x-dimension and another for the y-dimension.

If the pallet is to be stored in a floor other than the one where it was picked
up (which typically is on the ground floor), the autonomous vehicle travels to
the nearest elevator with the pallet load and summons a lift. When the lift arrives, the
vehicle and pallet are transported to the destination tier. Once at the tier, the vehicle
travels to the specific storage location to store the inbound pallet load. If the pallet
load is to be stored on a rack located on the ground floor, lift travel is not necessary.
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Fig. 2.2 An example of the AVS/RS

Fig. 2.3 Autonomous vehicle with two sets of motors
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In a retrieval transaction, outbound pallets are retrieved from their storage locations
and transported one at a time using a vehicle-lift combination as done in a storage
transaction, but in reverse order.

Modeling systems in which an incoming customer must be paired with another
resource and the two must stay together until service to the customer is completed,
as an open queuing network (OQN) or closed queuing network (CQN) leads to an
underestimation of the true sojourn time of the customer. The reason for this is that
the OQN implicitly assumes there is an infinite number of the secondary resource
and so an incoming customer never has to wait outside the system. A CQN, on the
other hand, assumes there is an infinite number of customers waiting externally and
so a resource assigned to a customer who has just completed service immediately
reenters the system with a new customer. In reality, a customer must sometimes wait
for a resource or vice-versa. For these systems, a semi-open queuing network is a
preferred model because it captures the fact that sometimes a customer must wait for
a resource or a resource must wait for a customer. In the AVS/RS considered in our
paper, a storage or retrieval transaction is a customer and the autonomous vehicle
is the secondary resource. Because we have a finite number of each, it is important
to model the AVS/RS as an SOQN in which a vehicle (secondary resource) must be
synchronized or paired with a storage or retrieval transaction and stay with it until
the transaction is completed.

An SOQN represents a queueing network with an additional resource. Initially,
all the resources wait in a resource queue. A new customer is required to be syn-
chronized or paired with a resource before entering the service network. If there is
no resource available, the customer has to wait in an external customer queue until
a resource becomes available. Once the customer is synchronized or paired with a
resource, the service process begins. When the customer exits the network, the re-
source associated with this customer returns to the resource queue and waits for the
next customer. A general SOQN is shown in Fig.2.4.

In this chapter, we model the AVS/RS as an SOQN and propose two efficient al-
gorithms based on a state space method and the matrix geometric method (MGM),
to evaluate the performance of the AVS/RS. A set of steady-state results can be ob-
tained for semi-open queuing networks via an approximate, but tractable method
via the use of Norton’s theorem. This successful application of MGM is due to
the unique lack-of-memory property of the exponential distribution. However, as-
suming such exponential distributions on the inter-arrival and service times does
not reflect many real world scenarios. On the other hand, analyzing an SOQN with
general inter-arrival and service times through simulation is very time-consuming.
A compromise is to develop a method that approximates general distributions so that
the MGM can still be applied. To that end, we use Phase-type distributions to ap-
proximate the general distribution and utilize the MGM to solve the general SOQN
problems (see [7-9]).
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Fig. 2.4 A general SOQN
2.2 SOQN Notation

The main parameters and system performance measures of the AVS/RS used in
this chapter are:

S: number of service stages in the network

V: number of vehicles (resources) in the system

A: overall external customer arrival rate

uj: service rate of jth service stage, j=1,---,§

Ley: average number of customers waiting in the external queue
Lp,: average number of vehicles in the vehicle queue

L;: average number of customers at jth service stage, j =1,---,S
L,: average number of customers in the network

W;: average waiting time per customer in the system

In this chapter, we assume the number of vehicles is known and the route of
customers is fixed. The service rate of each server is also assumed to be known and
the same for all customers.

2.3 Single-Class SOQN with Two Stages of Exponential Servers
and Poisson Arrivals

2.3.1 State Space Solution

Figure 2.5 shows a two-stage, single-class SOQN with exponential servers and
interarrival times. The state (i, j) denotes that there are a total of i customers in the
external queue and the first server, and j customers in the second service stage. The
state space Sy is the infinite set {(0,0),(0,1),---,(0,V),(1,0),(1,1),---}, and each
state s,, in S is:
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Fig. 2.5 Single-class, two-stage SOQN

sm=(i,]), where i >0,0< j<V,andm=i(V+1)+ .

Figure 2.6 shows the state space of this SOQN.

Fig. 2.6 The state space of single-class, two-stage SOQN with two variables

This two-stage, single-class SOQN with exponential servers and Poisson arrivals
is a continuous-time Markov chain (CTMC) process, which means the conditional
probability mass function (pmf) of this process satisfies:

Pin(t) = P{X (s+1) = 5| X (s) = s, },Vs,¢ >0, and sy, 5, € S;. 2.1

Here py,(t) is the transition probability from state s, to state s, at time ¢ and

Ysnes, Pmn = 1. The pyps are usually summarized in a nonnegative transition matrix
P(z):

POOEI) p()l(tg pozgt)
t) (r t)
P(1) = [oun()] = [ pact) ot () paa(t) -
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The unconditional state probability 7, (¢) can be expressed by pu,(¢) and the
initial condition 7,,(0):

Ta(t) = Y, pon(t)7m(0), 2.2)
SmESs
or
n(t) = n(0)P(z), 2.3)

where 7(r) = [my(¢), 71 (), ].
The main result of homogeneous CTMCs is Kolmogorov’s forward differential
equation:

Prn(t) =, Puk(1)Gins (2.4)

Sk ESs

where g,,,(¢) is the instantaneous transition rate. The definition of g, is:

Dimm (8 1+A1)—1 (2'5)

A otherwise.

lima,—0 —pm"(tA’t,Mt) m#n,
Gmn(t) =4 ..
limy; o
For example, from state s0(0,0) to state sy (1,0), goy denotes the arrival process
of a customer, so ggy = A. Since sy can only arrive to sy, the value of goy can be
calculated as:

1)=1
CIOO( ) Atlglo -
= lim l_zsnesxpon(t—FAt)_ 1
At—0 At
= lim —es, Pon(t + At)
At—0 At
_ i —Pov(t4n)
At—0 At
=—qov =—A.
We combine (2.2) and (2.4):
#(t) = n(1)Q, (2.6)

where the matrix Q is:

Q = [an]vvsm;sn € Ss. 2.7)

For example, the Q of the SOQN with two vehicles is:
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-1 0 0 A 0 0 0

H —(2+A) 0 0 A 0 0

0 753 —(U+A4) 0 0 A 0

0 I 0 —(t+24 0 0 A

0 0 i . —(u+u+A) 0 0
Q=10 0 0 0 1153 —(+2) 0

0 0 0 0 U 0 (M1 +A) -

0 0 0 0 0 i 153

0 0 0 0 0 0 0

If the unconditional steady state 7 of the CTMC exists, it should be independent
of time:

tlgg 7(t) =0.
Finally,
nQ=0. (2.8)

Additionally, the normalization condition holds:
rl=1. (2.9)

Since the state space of SOQN is infinite, there is no closed form expression
for this stochastic process. An alternative method is to truncate the state space at a
certain level k to obtain an approximate solution.

Algorithm based on State Space

mv(0) =0.5,7(0) = [0, -, 7wy (0), - - 70]1><k(V+1);
n(l) = ”(O)Qk(v+1)xk(v+1);

n=0;
while |y (n+1) — ny(n)| > &
n+-4;
m(n+1)= () Q1) xk(v+1)>
end
n=mn(n+1);
Ty = 2”—;1"7"

The performance measures can be obtained directly from these unconditional
state probabilities ((2.10)—(2.15)).

k 1%
Lg=% > (+i=V)Tyine; (2.10)
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kv . U
i i f <V
L= 2 2 L;j, wherelL;; = lﬂz(v+.1)+] ' l+],_ (2.11)
i=0j=0 (V - J)ni(V+1)+j otherwise
kv
Ly=2" Y jmwvi)+ (2.12)
i=0,=0
L,=Li+ 1L, (2.13)
Lpg=V —Ln (2.14)
L,+L
W, = %. 2.15)

2.3.2 Matrix Geometric Method Solution

In the method described in the previous section, it is rather difficult to determine
the unconditional stationary state probabilities of a Markov process with infinite
number of states in a closed form solution. However, if the state space of a Markov
process can be expressed by a repetitive structure, the unconditional stationary state
probabilities can be obtained exactly. The unconditional stationary state probabili-
ties of this repetitive structure thus has a geometric form. Neuts [12] developed a
body of results of this repetitive structure that is called matrix geometric form. We
develop an algorithm based on this MGM to solve the two-stage, single-class SOQN
with exponential servers and Poisson arrivals.

First, we construct a state space of this SOQN with three parameters. The first
parameter is the number of customers waiting in the external queue i. The second
parameter is the number of customers j at the first server and the last parameter is
the number of customers k at the second server.

sm = (i, j,k) where i, j,k > 0,(j+k) <V,

{—W‘)(g*"“) +E, if i =0,

i(V+1)+ M +k, otherwise.

The instantaneous transition rates matrix Q is obtained by (2.5). Figure 2.7 shows
the state space which can be used to construct the matrix Q.

Next, we observe the behavior of this Markov process and find the following
properties:

1.If i > 1, j+ k= V. This property means that all vehicles are busy if there are
customers waiting outside.
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Fig. 2.7 The state space of single-class, two-stage SOQN with three variables

2.1t is impossible to travel from state (i, j,k) to (i, j,k) when |i —i'| > 2. Obvi-
ously, during an infinitesimal time interval [f,7 + At], only one customer enters or
exits the system.

3.1In Q, gups are independent of i.

Since this Markov process satisfies these properties, it is a continuous time, irre-
ducible, homogeneous quasi-birth-death (QBD) process. The original problem now
is treated as determining the unconditional stationary state probabilities of a QBD
process. In a QBD process, the number of customers in the external queue i is the ith
level, and number of customers at each service stage (j,k) is the phase (j,k). Ac-
cording to this, we denote 7; as the vector of unconditional stationary state probabil-
ities of all phases at the ith level. This QBD has a repetitive structure of Q like this:

Bgo Bor 0 0
Big A1 Ay 0

_ |0 Ay AL Ag - 2.16
Q 0 0 AyA;..| (2.16)

where B, Bo1 and By are instantaneous transition rate matrixes to determine the
initial state of the system.
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By denotes the transition rates from level O to level O:

[-A A 0
0 —(u+2) A0
7] 0 —(U2+A) 0 A
Boo = 00 0 ~(u+d) o - 0
U2 —(+m+4) m
2 (M t+m+A)
2 —(u2+2) |

By denotes the transition rates from level O to level 1:

B¢ denotes the transition rates from level 1 to level O:

(00 ---00
0 .
BlO _ . H2 .
_0 u 0
The repetitive structure includes Ay, Aj and A;.
A
A
A= ) ,
A (V4+1)x(V+1)
[— (i +2) W
=+ +2) W
A= )
—( + 4+ 24) W
L —(H2+2) (VA1) X (V41)
[Q - v 0
A2 — Uz
L H2 0y 1y (v

According to (2.8), the following repetitive balance equation holds:

Ti—1Ag+ A1+ i 1A =0,i>2. 2.17)
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The QBD has an important property described in Theorem 2.1 (Proof can be
found in [13]).

Theorem 2.1. [f the QBD is positive recurrent (n;Age < wiAze), then

wiy1 = nwiR fori > 1, (2.18)
or

mi=mR™ fori>1, (2.19)

where R is a rate matrix.

Substituting (2.18) into (2.17) and simplifying yields
Ao +RA; +R?*A; = 0. (2.20)

If we can get R and 71, we can get all &;. A simple heuristic procedure is applied to
get R. First, (2.20) can be written as

R=—(Ag+R*A)A L (2.21)

Then, the procedure to obtain R is:

Ry=0
Ri = —(Ag+R3A2)A,
k=0
while |[Ri 1| — [Ry|| > €
k++;
Rii1 = —(Ag+R2AA
end
R =Ry.

7 can be obtained from the boundary part of the balance equations (2.8):

B By =
m1Boo + 11 B19 = 0, (2.22)
moBo1 + 1AL+ mAy = 0.
), = 77,'1R.
Substituting this fact into (2.22) and simplifying in matrix form, we get:
Boo  Bo _
[77.7() 77,'1] [BIO Al—l—RAz] =0. (2.23)

Since the coefficient matrix is not full rank, equation (2.23) is not sufficient to de-
termine the values of my and 7. We can use the normalization condition (2.9) to
determine these values:

1=npe+7m 3 R 'e=mo+m(I-R) e (2.24)
i=1
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Adding (2.24) to (2.23), we get:

e Boo Bn _
[0 ] [(I—R)le Bio A1+RAJ = (1], (2.25)
or
_ e Boo Bn
[71'0 7(1] - [1 0] / |:(I_R)1e Bio A1+RA2:| . (2.26)

The performance measures can be obtained from these unconditional stationary
state probabilities :

Leg =Y. imie =11 (I-R) e, (2.27)
i=1
L, =nom +V Y me=nory +Vr;(I-R) e, (2.28)
i=1
Lyg =V —Ly, (2.29)
Lo+L
W, = % (2.30)

2.3.3 Numerical Example 1

Consider the two-stage, single-class SOQN with two exponential servers. The
service rate of the first stage u; is 12 and the service rate of the second stage U,
is 13. The arrival process is Poisson and the arrival rate A is 10. We conduct ex-
periments by varying the number of vehicles (V) in the system. Results as well
as computing times from simulation (S), the algorithm based on state space ( Al)
and the algorithm based on the matrix geometric method (A2) are provided in
Tables 2.1 and 2.2.

Table 2.1 Comparison of Al and S for SOQN with two stages

Leg Ly, L, Utilization W Computing time
Al | S | A1 | S |Al1| S | Al S Al S Al S
V =5118.42(19.36| 0.38 | 0.38 |4.62|4.62(92.4%|92.4%|146.52|143.78|40.04 27.00
V =10| 251|248 |3.40 | 3.41 [6.60(6.59|66.0%|65.9%| 54.65 | 54.48 |12.16| 27.00
V =20]0.36 | 0.32 |12.01|12.05|7.99(7.95|40.0%|39.8%| 50.14 | 49.63 [18.91| 27.00
V =40/ 0.01 | 0.01 [31.61|31.70(8.39(8.33|21.0%|20.8%| 40.78 | 40.18 |32.42| 27.00

We see from these results that the algorithm based on state space and the algo-
rithm based on MGM provide estimates of performance measures (e.g., Ley, W) that
are very close to those of simulation when the utilization of the vehicles is reason-
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Table 2.2 Comparison of A2 and S for SOQN with two stages

Leg Ly L, Utilization W Computing time
A2 | S | A2 | S |A2| S | A2 S A2 S | A2 S
V =5118.50{19.36( 0.38 | 0.38 |4.62|4.62(92.4%|92.4%|138.68|143.78|0.00| 27.00
V =10|251]248 |3.40 | 3.41 [6.60(6.59|66.0%|65.9%| 54.67 | 54.48 |0.00{ 27.00
V =20]0.36 | 0.32 |12.01|12.05(7.99(7.95|40.0%|39.8%| 50.14 | 49.63 [0.00| 27.00
V =40 0.00 | 0.01 [31.82]31.70(8.18(8.33|20.5%|20.8%| 49.06 | 40.18 |0.00{ 27.00

able (utilization < 90%). When the utilization exceeds 90%, the number of states
that must be considered in the truncation process increases exponentially. The algo-
rithm based on state space is not efficient and is either unstable or it takes too long
to converge.

2.4 Single-Class SOQN with Multiple Stages of Exponential
Servers and Poisson Arrivals

2.4.1 Decomposition-Aggregation Method

For multiple stages of service, neither the state space based method nor a di-
rect application of the MGM is practical. An approximation approach is used to
solve this problem. The main idea is to convert the original multi-stage SOQN
into an equivalent two-stage SOQN and then apply the algorithms we discussed
in Sect. 2.3.

First, we combine stages other than the bottleneck stage as a closed queueing
network (CQN). Then, we apply the mean value analysis (MVA) to solve this CQN
to get load-dependent throughput. This CQN can be treated as an equivalent load-
dependent server S, whose service rate U, (n) is the throughput of this CQN. Now,
the original network can be replaced by a two-stage SOQN where the first stage is
the bottleneck stage, and the second stage is a load-dependent server.

This decomposition-aggregation method is based on Norton’s theorem—an im-
portant theorem in electrical circuit theory. According to this theorem, the behavior
of a subsystem o between two points is the same when other parts of this circuit
are replaced by a single current source and a parallel internal resistance. The value
of the current source equals the current flowing between these two points when the
subsystem o is short-circuited [2]. Chandy et al. [4] proved that Norton’s theorem
holds for queueing networks with local balance. In order to study the behavior of a
subsystem ¢ between two points, other parts can be replaced by a single compos-
ite queue. The service rate for this composite queue is equal to the rate at which
customers pass between the two points.

Figure 2.8 shows how to apply this method to a multi-stage SOQN. Here we
assume the first stage is the bottleneck stage.
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Fig. 2.8 Approximation method based on Norton’s theorem

2.4.2 Numerical Example 2

We conduct a five-stage, single-class SOQN with exponential servers and Pois-
son arrival. The service rates for these five stages are: u; = 12, up = 13, u3 = 15,
Uq = 14 and ps = 13.5. The arrival rate A is 10. As before, we conduct experiments
by varying the number of vehicles in the system. Results from simulation (S), algo-
rithm based on state space (A1) and algorithm based on matrix geometric method
(A2) are listed in Tables 2.3 and 2.4.

Table 2.3 Comparison of Al and simulation for SOQN with multiple stages

Leg Ly, L, Utilization W Computing time
Al | S [A1 | S [A1] S Al S Al S Al S
V =15(12.02]10.27| 1.84 | 1.83 |13.16(13.17|87.7%|87.8%|151.08|140.64(99.34| 53.12
V =20(2.80|2.69|5.66|5.62|14.34(14.38|71.7%|71.9%|102.83|102.42(31.37| 53.12
V =25(1.02]0.9110.00{10.02|15.00{14.98|60.0%|59.9%| 96.14 | 95.34 (27.68| 53.12
V =30(0.41]0.46 |14.64[14.56|15.36(15.44|51.2%|51.5%| 94.62 | 95.40 [19.62| 53.12

Table 2.4 Comparison of A2 and simulation for SOQN with multiple stages

Leg Ly, L, Utilization W Computing time
A2 | S [A2 | S [ A2 ] S A2 S A2 S | A2 S
V =15(12.07(10.27| 1.83 | 1.83 |13.17(13.17(87.8%|87.8%(151.41(140.64|0.00| 53.12
V =20|2.81]2.69|5.66 |5.62|14.34(14.38|71.7%|71.9%|102.90{102.42(0.00| 53.12
V' =25[0.99 | 0.91 |10.02]10.02|14.98(14.98(59.9%(59.9%| 95.78 | 95.34 {0.00| 53.12
V =30(0.42 | 0.46 |14.45[14.56|15.55(15.44|51.8%|51.5%| 86.83 | 95.40 [0.00| 53.12
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2.5 Phase-Type Distribution

In order to evaluate the SOQN with general arrival and service times, we need to
introduce the Phase-type distribution (PH distribution) first.

2.5.1 Definition

To analyze the property of a random variable S, we usually need the first two mo-
ments, E[S] and Var[S], or E[S] and the squared coefficient of variation (SCV) of S,
C%(S) = Var(S)/(E[S])>. When S is exponentially distributed, C%(S) is equal to 1.
If all random variables of a queueing network model are exponentially distributed,
we can analyze this network as a Markov system. Otherwise, the queueing network
model is a non-Markovian system. A phase-type distribution is useful in approxi-
mating a non-Markovian system as a Markovian system. After this approximation
process, we can then use MGM to analyze the equivalent Markov process.

Reference [6] is the earliest paper that introduced the phase concept to approx-
imate general distributions. In this chapter, the well-known Erlang-k distribution
could be decomposed into k independent and identical exponential distributions.
These k exponential distributions are called k phases of the Erlang-k distribution.
Figure 2.9 shows a random variable with an Erlang-k distribution.

o o W) ST S—

" o s

Phase 1 Phase 2 Phase k

Fig. 2.9 A random variable with Erlang-k distribution

Cox [5] generalized the result of Erlang [6] and presented the set of PH distribu-
tions. The definition of PH distributions is given below:

Definition 2.1. A probability distribution F (x) is a PH distribution if and only if the
stochastic process of the time until absorption is a finite Markov process Q. The pair
(a,T) is a representation of the PH distribution.

In Definition 2.1, Q is the transition matrix of a finite Markov process with m+ 1
states. States 1 to m are transient and absorbed into state m + 1.

T T
0= {0 0]. (2.31)
The distribution F (x) is

F(x) =1— aexp(Tx)e, x > 0. (2.32)
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The Laplace-Stieltjes transform f(s) of F(x) is:

oo

£(s) = Efexp(—sX)] = / ¢ dF (x) = Oyt + o(sT—T) 1T, (2.33)

—oo

where the real part of s is bigger than 0.
Additionally, the generator Q* is T +TYA°, where A® = (1 — @, )T . Q* is
used to find the stationary probability vector 7 of m states:

Q" = n(T+T°A% =0,

(2.34)
re=1.

The m x m matrix T is the transition matrix of m transient states and T is a
m transition vector from m transient states to the absorbing state m + 1. T and T°
satisfy

Te+T =0, (2.35)

where e is a m x 1 standard unit vector.

The other essential factor to define this Markov process is the initial probability
of m+ 1 states, which is given by (o, 0,1 1). Obviously, a and 0,11 should satisfy
the following equation:

oe+ Oy =1. (2.36)

From (2.35) and (2.36), we can see a pair of (o, T) is sufficient to represent a PH
distribution.

We give two examples to indicate how to define PH distributions. The first ex-
ample is the classic Erlang-k distribution with parameters A1, ..., A; and the initial
probabilities of the k states are & = {1,0,...,0}. Then, the transition matrix of k
states is given by

M A
—A A
T= ..
—Me—1 My
_A«k
The transition vector to the absorbed state k +1 T® = —Te is {0,..., —/'Lm}/. The
initial probability of absorbed state k+1 0y, 1 =1 — e is 0. If A1 = A, = ... = A,

C% of this PH distribution is 1/k.

The second example is the Coxian distribution or Coxian-k distribution. This is
also the PH distribution used in this chapter. As the name of this distribution sug-
gests, the Coxian-k distribution is represented by a k-phase Markov process. Each
phase has an exponentially distributed rate p;. After the ith phase, the probability
of entering the next phase is a;, and the probability of being absorbed is b;, where
a;+b; = 1. Figure 2.10 shows a random variable with Coxian-k distribution.
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Phase 1 Phase 2 Phase k

a4 a Ay-1

Fig. 2.10 Coxian-k distribution

This Coxian-k distribution can be represented by a pair (o, T) where o =
{1,0,...,0} and

—H1 aith
—H2 axlly

—H—1 Ak—1Hk—1
—Hk

There are two cases of Coxian-k distribution.

CaseI: C)z( < 1. In this case, all phases have same service rate 1, and the probability
of entering the next phase is 1 except for the first phase. This case is shown in
Fig.2.11.

Phase 1 Phase 2 Phase k

a4

bi=1-a, 1

Fig. 2.11 Coxian-k distribution with C)z( <1

The representation of this case is oo = {1,0,...,0} and T is

—Hal
—Hu

—uou
—u

According to Sauer and Chandy [14], u and a; can be estimated by (2.37),
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k—(1—a)(k—1)
X_ )

2kCE 4 (k— 1) — /K2 + 4 — 4kC3 (2.37)
1—

2(C2+1)(k—1) ’

l",“:

a) =
where X is the mean value. The number of phases k can be estimated by (2.38),

k=T (2.38)

1
gl

Case II: C)z( > 1. In this case, the number of phases is fixed to 2. Therefore, it is
also called a Coxian-2 distribution. The service rate of the first stage is y; and the
service rate of the second stage is L. Figure 2.12 shows the Coxian-2 distribution.

Phase 1 Phase 2

b=1-a 1

\i 4 .

Fig. 2.12 Coxian-k distribution with Cz > 1 (Coxian-2 distribution)

According to Sauer and Chandy [14], i, 4, and a are estimated by (2.39),

2
:ul - )T(a
1
U = X_C)%’ (2.39)
1
2C%°

2.5.2 Closure Properties and Kronecker Product

2.5.2.1 Closure Properties

We can estimate general distributions with different Czs by a PH distribution.
We start from a single stage queueing model where the inter-arrival and service
times are generally distributed. Now we can approximate a simple GI/G/1 queue as
a PH/PH/1 queue, in which the arrival procedure is represented by the pair (o, T)
and the service procedure is represented by the pair (,S). Neuts [13] proved that
the PH distribution property holds even after the mixture.
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Theorem 2.2. If F is a PH distribution of m+ 1 states with representation (o, T)
and G is also a PH distribution of n states with representation (3,S), then the con-
volution F * G is still a PH distribution with representation (7, L), where

Y=o, 01 ]
L [TT'B (2.40)
S0 S |
Figure 2.13 shows the process of a PH/PH /1 queue with the arrival procedure
(a, T) and the service procedure (f3,S). According to Theorem 2.2, the distribution

of this process is still a PH distribution.
Here we assume Czs of both inter-arrival and service times are greater than 1.

ar

br=1-at 1

Arrival Procedure
bs=1 -ag 1

Service Procedure

Fig. 2.13 A PH/PH/1 queue

There are 4 stages in this PH/PH /1 queue. Initially, there is no customer at any
stage. Once a customer is generated, there is one customer at the first phase of the
arrival process. The next moment, the probability that this customer is transferred to
the second phase is ar, and the probability the customer is absorbed is br. Here, the
arrival procedure is renewed when the absorption state is reached. At the same time,
the customer is transferred to the first phase of the service process. We can denote
the state of this PH/PH /1 queue as (n,a;,s;), where n is the number of customers
in the service node or the level, g; is the /th phase of the arrival process and s; is the
Ith phase of the service process.

The state space of this PH/PH /1 queue is complex. However, the Markov pro-
cess of the PH/PH /1 queue can be viewed as an embedded finite Markov process
(PH distribution) in a M /M1 queue. The M /M /1 queue is an example of the birth-
death process. Hence, Neuts [13] discussed the PH/PH /1 as a direct example of a
QBD process. We divide the state space into two parts. The first part is the initial
part, or state space between level 0 and level O, as well as between level 0 and level
1. The second part is the repetitive state space between levels 1 and n — 1, as well as
between levels n — 1 and n.

Since this Markov process satisfies these properties, it is a continuous time, irre-
ducible, homogeneous QBD process. The original problem now is treated as deter-
mining the unconditional stationary state probabilities of QBD. In a QBD process,
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the number of customers in the external queue i is the ith level, and number of cus-
tomers at each service stage (j,k) is the phase (j,k). According to this, we denote
7; as the vector of unconditional stationary state probabilities of all phases at the ith
level. This QBD has a repetitive structure of Q like this:

BooBor 0 0 ---
Big A1 Ag 0 ---
Q=0 A2 A14-~ (2.41)

)

0 0 Ay Ay

where By, Bo1 and By are instantaneous transition rate matrices that determine the
initial state of the system.

©0,1) (0,2)
_(0,1) (—wmr arp
B°°‘(0,2)< 0 LleT>’

(1,1,1) (1,1,2) (1,2,1) (1,2,2)

B _0,1) [ (I=ar)mrouPfr (1—ar)mroaPr (1—ar)mroep (1—ar)uironfs
01 = ;
) ot oy By ot o B Mot o B ot 02 3o

(0,1) (0,2)
(17171) (l_aS)/ils 0
_ (17172) Has 0
Bio=121) 0 (1—as)ms
(17272) 0 Has

Similarly, we can get the transition matrices of the repetitive part of the state
space of this PH/PH /1 queue.

(l’l*l,l,l) (n713172) (VI*I,I,I) (VL*LI,Z)

(n,1,1) /(1 —ar)mroy 0 (1 —ar)mrop 0

Ag = (n,1,2) 0 (I —ar)tiroq 0 (1—ar)mron
(l’l72, 1) Mot O 0 Hor 0 0 ’
(l’l7272) 0 Hor O 0 HoT O
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(n,1,1) (n,1,2) (n,1,1) (n,1,2)
(n,1,1) [ —wir — s aspis arpr 0
(n,1,2) 0 —r — Htos 0 arthr
Ar=
(n,2,1) 0 0 —Mar — His asps
1(n,2,2) 0 0 0 — Uo7 — Mag
(n,1,1) (n,1,2) (n,1,1) (n,1,2)
(n=1,1,1) [ (1—=as)usPi (1 —as)uisPa 0 0
A, — (n=1,12) HasP tasPa 0 0
27 (h-1,2,1) 0 0 (I1-ag)msPr  (1—ag)shs
(n—1,2,2) 0 0 pasPi Has B>

Now, we can get a similar generator Q as (2.41), and apply the MGM to analyze
this PH/PH /1 queue.

2.5.2.2 Kronecker Product

Although PH/PH/1 is a very simple queue, the generator Q is very complex.
Moreover, Theorem 2.2 can be extended to the convolution of multiple PH distribu-
tions. The generator Q of this case will be even more complex.

Fortunately, an important property of matrices called the Kronecker product of
matrices can be used to simplify Q. The detail and proof of the Kronecker product
of matrices can be found in [1].

Definition 2.2. Let A be an m; X n; matrix and B be an m, X n, matrix. Then the
Kronecker product of A and B, A ®B, is

AlB ApB ... AlnlB
A1B ApB ... AZ”IB
. o : (2.42)

A 1B AnaB ... Apn,B

mypmy Xniyny

According to Neuts [13], the generator Q of the PH/PH /1 queue can be rewrit-
ten as follows:

By =T,

By = T°A’® B,
By =Ir®S°,
Ag=T'A' g,

A =TRIg+IT®S,
A2:IT®SOB0.
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Here It is the diagonal matrix with the same size of T and Ig is the diagonal matrix
with the same size of S.

2.6 Single-Class SOQN with Two Stages of General Servers
and General Arrival

2.6.1 State Space Analysis

Compared to the PH/PH /1 queue we discussed in Sect.2.5, the second stage
brings in new phases. In order to simplify the notation, we still assume C)z( of the
service process at the second stage is greater than 1. It is easy to extend to the C)Z( <1
case. Figure 2.14 shows this two-stage SOQN with PH distributions.

Arrival Procedure  Eyiarnal
Queue

Vehicle Pool
Second Stage

Fig. 2.14 A two-stage SOQN with PH distributions

The arrival process is represented by the pair (¢, T). The service processes at the
first and second stages are represented by the pairs (,S;1) and (v,S;) respectively.
Since we do not want these processes to begin in the absorption phase, we set o3 =
B3 = v3 = 0. Therefore,

TAY = T
040 0
SiAs, =518,

S)Ag, =Syv.

3

We extend the notation of the PH/PH /1 queue in Sect. 2.5 to describe the SOQN
with PH distributed arrival and service processes. Each state s,, in the state space
(i,,a1,811,521) denotes that there are i customers at the external and first queue, or
level i, there are j customers at the second queue, the current phase of arrival process
is a; and the current phases of the two service processes are sj; and s;; respectively:

sm=(i,],a1,51;,821), where 0 <i,0 < j<N.

Similar to the PH /PH /1 queue, the Markov process of this SOQN can be viewed
as a QBD process with several embedded finite state Markov processes. The gener-
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ator Q of this process is similar to (2.41), but much more elaborate. As before, we
analyze the initial and repetitive parts separately.

By is the transition matrix of level O, where j is changed from O to N. This
transition matrix can be viewed as a part of the generator of PH/PH /1 queue of the
first N levels. The only difference is that it is impossible to travel from j to j + 1.
This is reasonable because if there is no customer at the external queue and the first
stage, the number of customers at the second stage cannot be increased. This slight
difference does not hurt the QBD property. By still contains the initial and repetitive
parts.

In By, (0,0) denotes two states (0,0, 1,0,0) and (0,0,2,00,0). (0, j) denotes
four states (0,0, 1,00, 1), (0,0,1,03,2), (0,0,2,00,1), and (0,0,2,0,2). O] means the
states of this process does not change in this part.

0,0)  (0,1) (0,2) . (0,N)
(0,0) T
(07 1) IT@Sg T®ISZ +IT®S,
Boo = (0,2) Tresly Tels, +Hir®S;
(0,N) IpeSYy  Tels, +IreS;

By is the transition matrix from level O to level 1, where j is changed from 1 to
N. In this part, the situation is more complicated than Bgg. The initial part is from
(0,0) to (1,0). (1,0) denotes four states (1,0,1,1,0), (1,0,1,2,0), (1,0,2,1,0),
and (1,0,2,2,00).

The transition matrix from (0, j) to (1, ) is different because it involves three
PH distributed processes. (1,;) denotes eight states: (1,j,1,1,1), (1,/,1,1,2),
(1,5,1,2,1),(1,,1,2,2), (1,/,2,1,1), (1, ,2,1,2), (1,,2,2,1), and (1, ,2,2,2).
Neuts [13] proved that Theorem 2.2 can be extended to a more general conclusion: a
finite mixture of PH distributions is still a PH distribution. Therefore, the transition
matrix from (0,1) to (1,1) can be extended from the transition matrix of PH/PH /1
queue from level O to level 1.

The second difference is the last part of By from (0,N) to (1,N). (1,N) denotes
four states (1,N,1,00,1), (1,N,1,0,2), (1,N,2,00,1) and (1,N,2,00,2). Since there
are at most NV customers at two stages and the number of customers at the second
stage is NV, the number of customers at the first stage must be 0. Hence, this one cus-
tomer of (1,N) must be at the external queue waiting for the next available resource.

By is the transition matrix from level 1 to level 0, where j is changed from 1 to
N. The initial part is the transition matrix from (1,0) to (0,1). Similar to Bys, the
convolution of three PH distributions is still a PH distribution. Hence, the initial part
is the mixture of the initial part from level 1 to level O at the external queue, the first
stage and the initial part from level O to level 1 at the second stage.
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0,00 (1)  (0,2) ... (0,N)
(1,0) IT®S(1]®’)/
(1, 1) Ipesiels,
By = .
(IL,LN—=1) Iresiels,
(L,N)

The repetitive part can also be separated into three parts. Ay is the transition
matrix from level i — 1 to level i, where j is changed from O to N. Ay has a layout
similar to Bg;. The transition matrix of the service process at the second stage is the
same in Ag and By;. Note that although A¢ and Bg; look similar, Ay is the repetitive
part and By is the boundary part of the generator.

(i,0) (i,1) (i,2) .. (i,N)

(i—1,0) /Tlasls,

(i—-1,1) Tasls, @Is,
A() — (l — 1,2 T006®ﬁ®152
(l— I,N) TO(X®ISZ

Aj is the transition matrix from level i to level i, where j is changed from O to
N. Aj should have a layout similar to Bgg. In By, the states of the service processes
at the first stage do not change. However, A; is more complicated because of the
mixture of three PH distributed processes.

(i,0) (i,1) (i,2) . (i,N)

(1,0) [ Tels, +1xes

(i,1) Ipols &S] (Tels, +IrS))sls, +Irs, ©S;
A= (i,2) Ipels, @83y (Tols, +Ir@Sy)@ls, +Irs, ©S;
(i,N) IroBesly  Tels,+Ires,

Aj is the transition matrix from level i+ 1 to level i, where j is changed from 0
to N. A, has a layout similar to Byg. The only difference is that the initial part in
B¢ should be replaced by the repetitive part in Aj.

L) 1) (2 .. (QN)
(l =+ 1,0) IT®S(1][3®’)/
(i+1,1) Iy@s}pels,
AzZI

(l+ I,N— 1) IT®S‘1)®ISZ
(i+1,N)

From the state space analysis of single-class SOQN with two general stages and
arrival process, we find the generator Q is very complex. Hence, the state space
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solution is not a good choice to solve stationary probabilites. The MGM is used to
get stationary probability vectors.

2.6.2 Numerical Example 3

The system considered is a warehouse where autonomous vehicles are paired
with storage or retrieval transactions. Thus, the storage and retrieval transactions
are the customers and the vehicles are the resources. We conduct numerical experi-
ments to show the effectiveness of the approximation method. The results from the
approximation method (A) are compared with those from simulation (S).

The first part is to examine the accuracy of our method for systems with low and
high variances. The first case is a Coxian-k distribution with low variance and the
second case is a Coxian-2 distribution with high variance. We construct a one-stage
generalized SOQN or a PH/PH /1 queue with population restriction. There are two
sets of experiments.

In the first set of experiments, we set the distribution of the inter-arrival time
as exponential with a mean value of 1.5 and the distribution of the service time
as Erlang-2 with a mean value of 1. The exponential distribution is an example
of moderate variance with C)z( = 1. The Erlang-2 distribution is an example of low
variance since C)z( = 0.5 in this case. We conduct experiments by varying the number
of vehicles V in the system. Table 2.5 shows the number of customers in the external
queue L., the number of customers at service stage L, and the utilization of the
vehicles.

Table 2.5 Results of Exponential/Erlang-2/1
V=10 V=5 V=2
Ley | Lpg |Utilization| Ly, | Ly, |Utilization| Ly, | Ly, |Utilization
A 0.25(3.36] 33.6% |0.95|2.66| 53.2% |(2.12|1.49| 74.5%
S 0.19|3.43| 34.3% |0.86|2.78| 55.6% |[1.97(1.64| 82.0%
error % (24.0|2.08 1.05 9.47(4.51 5.13 7.08(10.1 10.1

From Table 2.5, we can see that our proposed approximation method works well.

In the second set of experiments, we assign distribution with higher variance
(Gamma with a mean value of 1.5 and C}Z( = 1.2) to the arrival process and distri-
bution with lower variance (Erlang-3 with a mean value of 1 and C)z( =1/3) to the
service process.

As shown in Table 2.6, the accuracy is not as good as the accuracy in Table 2.5.
One possible explanation is that it is caused by the approximate estimation of dis-
tributions with high and low variances.

The second part of our experiment is to examine our approximation method of
the two-stage, single-class SOQN with PH distributions. We construct a two-stage
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Table 2.6 Results of Gamma/Erlang-3/1
V=10 V=5 V=2
Ley | Lpg |Utilization| Ly, | Ly, |Utilization| Ly, | Ly, |Utilization
A 0.009(1.69| 16.9% [0.13(1.57| 31.4% |0.62(1.08| 54.0%
S 0.007({1.93( 19.3% [0.11{1.83| 36.6% |0.80(1.59| 79.5%
error%| 22.2 |14.2 2.89 15.4|16.6 7.60 12.9147.2 55.4

SOQN as follows: the inter-arrival time is exponentially distributed with a mean of
1.5. The distributions of service time at the first and second stages are Erlang-2 with
amean of 1 and C)% of 0.5, Gamma with a mean of 1 and C}Z( of 1.2, respectively.

From Table 2.7, we can see that the result of the second stage is better than the
result of the first stage. It appears that the approximation method of distributions
with low variance needs to be improved.

Table 2.7 Results of two-stage SOQN
V=10 V=5 V=2
Leq | Ly | Ly |Utilization|Le, | Ly | L, |Utilization| L., | Ly | Ly [Utilization|
A 0.0140.451.54 19.9% [0.180.44{1.39] 36.5% [1.120.380.91] 64.5%
S 10.0120.34{1.39] 17.3% 0.130.33[1.29] 32.4% 0.78/0.3/0.88 59.0%
error%| 14.330.99.74 3.24 [27.725.007.2| 6.45 [30.421.13.30| 15.5

2.6.3 Multiple Servers

If there are multiple servers at a service stage and the service time of each server is
exponentially distributed, the service time of the entire stage is no longer exponen-
tially distributed. Neuts [13] proved that the MGM can give a complete generator for
a PH/PH /c queue with heterogeneous servers. However, the critical matrix R used
in MGM is rather difficult to compute when the number of parallel servers is large.
In order to get results in reasonable computation time, we make two assumptions on
the SOQNs. The first assumption is that the servers on the same stage are identical,
which means all servers have the same service time distribution. This assumption
allows a major simplification in the state space description. It is also a reasonable
assumption in real world applications because servers in the same service node of-
ten execute the same task. The second assumption is that the number of servers is
not greater than 10, which is due to the limitation of the MGM.

The algorithm for the multiple servers situation was first introduced by May-
hugh and McCormick [11] for the PH/PH /c queue model. Let ¢; and ¢, being
the number of parallel servers at the first and second stage respectively. Each state
sm now can be described as (i, ,a;,51/1,---:S1ic, 52115 - - - »521¢,) OF (i, j,ar,511,821),
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where sq1 and sy are vectors of current phases of all possible busy servers at the
two stages. It is straightforward to extend the generator of the SOQN of the single-
server case to the generator of the SOQN of the multi-server case. We know that if
all servers at a stage are busy, the behavior of this stage should be the same as that of
the single-server stage because customers have to wait in the queue in front of that
stage. Hence, the only difference is in the initial part when some servers are idle.
The generator Q is rewritten as

[A10 Ago
Az1 A1 A
Axn A Ap
Q= Aze,—1 Arey—1 Ao -1 ’ (243)
A2c1 A1c1 AOcl
Az 11 Atey Ao,

Before we analyze this generator, we introduce an additional notation called Kro-
necker sum, which is a simple extension of Kronecker product (Definition 2.2).

Definition 2.3. The Kronecker sum of matrices A and B is
AGB=A®Ig+I,®B. (2.44)

Additionally, the Kronecker product and Kronecker product of multiple matrices
can be expressed as:

A)RAIRQ...0AN = VA,

(2.45)
A)DALD...DAN =D A,

In Q, Ay, Ayt and A are extended from Ay, Ay and Ay of the single-server case.
They indicate the transition behavior when there are ¢ servers busy at the first stage.
We choose Ay, to discuss in detail, and give the result of Ag¢ and Ay directly.

Similar to the Ay of single-server case, Ay has two parts.

(t,0) (1) (t,V)
0,0
(4,0) Aéi 0; (1.1)
) - V,.\}fl \AY
(1.V) ATV ApY

)

The first part contains sub-matrices on the diagonal, Ag:’v , where v is the number

of customers at stage 2. By using Definition 2.3, Agv’v) can be written as T®S; & S,.
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Hence,
Ag‘t’w) =Ta® (Ggmin(t,va)sl) ® (@min(v,cz)sl)'

The second part contains sub-matrices from (¢,v) to (r,v —1). In Ay, A} is
ItT®ls, ® SY, A(lv’vfl) isIr®Is, ® Sgy and A(IV’Vfl) isIr®B® Sgy. Aq¢ is more

complicated because we must consider different scenarios of busy servers at the
second stage.

el <v<a

In this scenario, there is no customer waiting for service at the second stage.
Hence, there is no change in the arrival process and the service process at the first
stage transitions from (¢,v) to (#,v —1).

1 v—1
AV =1 (915 © (h 3 152 ® (2"1s,) +th (@"1s,) ®SY).

ecy<v<Vandt+v<V

In this scenario, there are some customers waiting in front of the second stage
and no customer is waiting outside. When a customer leaves the system, the first
customer in the queue in front of the second stage enters into the second stage when
the system transitions from (z,v) to (z,v—1).

AN — 1 @ (@'15,) @ (@28%y).

ecy<v<Vandr+v>V

In this scenario, there are customers waiting in front of the second stage and
outside. When the system transitions from (¢,v) to (¢,v — 1), a customer leaves the
system from the second stage, the first customer in the queue in front of the second
stage enters into the stage, and the first customer waiting outside obtains the released
resource to be served at the first stage.

AV e (0¥ 15, @ B © (0%, 7).

Ayt is the transition matrix from the current level to the next level, which is
similar to Ay of the single-server case. Ag¢ has sub-matrices only on the diagonal.

(tr+1,0) (¢t+1,1) ... (t+1,V)
0,0
(1,00 [ A .
1 Al
Al)t: (ta ) 0t
(t,V) AGY
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AV =T (0'15,) @ B @ (@'Ts,).
ey <v<Vandr+v<V
AYY =T0® (@'s,) ® B (2°1s,).
ecy<v<Vandr+v>V
AN =T (01, @ (@71s,).

Ay, is a special case because all servers at the first stage are busy. The next
incoming customer has no impact on states of the two stages.

A(V7V) —Ta (®min(c1,V7v)Isl) ® (®min(cz7v)lsz),

Oc 1

Ay is the trasition matrix from the current level to the previous level, which is
similar to A of the single-server case.

(t,0) (,1) (,2) ... (V)
(t+1,0) ALY
(t+1,1) AL?

Axn = N
(t+1,V—1) ALY
(1+1,V)

o 0<v<,

There is no customer waiting outside and in front of the second stage.

1 t—1
AV e (Y Ste (@) + Y (@'1s,) 98Y) ® (2'1s,) © 7.
h=t—1 h=1

e, <v<V

In this situation, all servers at the second stage are busy. Customers have to wait
in front of the second stage. A customer who is leaving the system will not change
the states of the second stage.

min (1,V—v)—

v+1
R LR Y CL RS A CL SSEEHEICE 9

Ajc, 11 1s special because all servers are busy at the first stage for both the current
level and the previous level.

e 0<v<p

In this situation, there is a customer waiting in front of the first stage. When
a customer leaves the first stage, the released server begins to serve the waiting
customer immediately.

v,v+1 ¢ v
ALY — e (080B) © (@'Ts,) @ 7.
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ecr<vV-—qc

In this situation, the first stage is the same as in the previous situation. Customers
have to wait in front of the second stage because all the servers at the second stage
are busy.

AR — Ip @ (69180B) © (2%15,) © 7.

oV —ci<v<V
All servers at both stages are busy.

<

1
AR = Tre (X St (115 + 3 (615 081 0 (&1,
—V h=1

2.6.4 Numerical Example 4

We construct a single-class SOQN with two service stages. The servers at each
stage are parallel and identical. The inter-arrival time distribution is Gamma with a
mean of 2 and C)z{ of 1.2. The first stage has one server, and the distribution of its
service time is exponential with a mean value of 1.5. The second stage has 2 parallel
servers, and each server has a Erlang-2 distribution for service time with a mean of
3 and C2 of 0.5.

Similar to the experiments conducted for single-server case, we conduct exper-
iments by varying the number of vehicles V in the system. Table 2.8 shows the
number of customers outside L4, the number of customers at the first stage L1, the
number of customers at the second stage L, and the utilization of vehicles.

Results in Table 2.8 show that our method is relatively accurate for both high
variance and low variance distributions.

Table 2.8 Results of two-stage SOQN with multiple servers

Ley | L1 | Ly |Utilization
A 0.05(0.91(2.04] 29.5%
S [0.07(0.97|1.87| 28.3%

error % |40.0(6.59|8.33| 4.07

A ]0.80(0.71{1.85] 51.2%
S ]0.65|0.67(1.70| 47.4%
error% 18.8|5.63(8.33 7.42

A |2.58(0.42]1.66] 69.2%
S 2.89(0.40(1.45| 61.6%
error% 12.0|14.76(12.7 11.0
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2.7 Single-Class SOQN with Multiple Stages of General Servers
and General Arrival

2.7.1 Modified Decomposition-Aggregation Method

We can apply a decomposition-aggregation method to approximate a multi-stage
SOQN as an equivalent two-stage SOQN. In this approximation process, the arrival
process is PH distributed, one of the two stages is a single-load dependent server
with exponentially distributed service time and the other is a multi-server stage with
PH distributed service time.

Marie [10] discussed a method to solve non-product-form CQNs. We apply this
method to get the load-dependent throughput of the CQN that contains the stages
we want to aggregate.

The next modification of the decomposition-aggregation method relates to the
representation of the load-dependent exponential distribution as a PH distribution.
We can then apply the algorithm of the two-stage SOQN with PH distributions to
analyze this equivalent two-stage SOQN. One possible solution is to view the expo-
nential distribution as a PH distribution with one transient phase. Assume (a,T) is
the representation of a service stage with a load-dependent exponential distribution.
According to (2.37), the initial probability of the transient state ¢ is 1, the transition
matrix T is —u(v) and the transition matrix of absorbed state T? is u(v). Here v is
the number of customers being served, or the load of this stage.

Figure 2.15 shows the equivalent two-stage SOQN with a PH distributed ar-
rival process, a load-dependent exponentially distributed service stage and a PH
distributed service stage.

Arrival Pr r
al Procedure External Queue

@) @)
First Stage S, M 1

Second Stage S,

‘ Vehicle Pool

Fig. 2.15 Equivalent two-stage SOQN of multi-stage SOQN

2.7.2 Numerical Example 5

We conduct the experiment based on a four-stage, single-class SOQN with generally
distributed servers and arrival processes. The distribution of the inter-arrival time is
Erlang-2 with a mean of 1.5. The first stage has a single server with an exponen-
tially distributed service process, where the mean of service time is 1. The second
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stage has two identical parallel servers. The distribution of the service time of each
server is Erlang-3 with a mean value of 2. The third stage has three identical par-
allel servers. The distribution of the service time of each server is Gamma with a
mean value of 3 and C)z{ of 1.2. The last stage has a single server. The service time
has a Gamma distribution with a mean value of 1 and C)z( of 2. Table 2.9 shows the
configuration of this four-stage SOQN.

Table 2.9 Four-stage single-class SOQN

Stage i|# of servers c;|Mean value u|SCV C)z(
1 1 1 1
2 2 2 0.33
3 3 3 1.2
4 1 1 2

Table 2.10 Results of four-stage SOQN

V=12

A [1.02|0.79/0.56|1.20|0.63

S 1.14{0.84{0.50|1.24|0.60
error% 12.1{6.33(10.7|3.33|4.76
V=10
Leg| Li | Lo | L3 | Ly

A ]2.31/0.85[0.51]0.92]0.55

S 2.5010.81(0.45|0.97|0.52
error% 8.23(4.71|11.7|5.43|5.45
V=1

A [27.3]0.55/0.31]0.43]0.32

S 25.8]|0.58(0.28]0.46|0.30
error%|5.50|5.45(9.67|6.98|6.25

The results in Table 2.10 show that our proposed method works well for heavy,
normal and lightly loaded networks. Again, our method is expected to improve for
the low variance distributions. For example, the error is greater when our method is
used to estimate the queue length of the second stage with an Erlang-3 distribution.
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2.8 Multi-Class SOQN with Multiple Stages of General Servers
and General Arrivals

In the real world, there are often more than one class of customers in a queueing
network. For example, a manufacturing facility needs to process multiple types of
products. Each type of product has its own product routing policy and processing
times. So it is important to extend the algorithm to multi-class SOQN.

2.8.1 Aggregation Method

The algorithm to evaluate multi-class SOQN is inspired by Buitenhek et al. [3].
An aggregation method is presented to evaluate performance measures of a
multi-class SOQN. The basic idea is to aggregate multiple classes of customers
into one equivalent class of customers. After this aggregation, we can apply the al-
gorithm of a single-class SOQN to get the performance measures of this equivalent
class of customers. Finally, we can get the performance measures of each class of
customers.

The number of customer classes in the multi-class SOQN is denoted as R. The rth
class of customer has a generally distributed arrival process with an arrival rate A,
and the SCV of the inter-arrival time is C)%r, where r =1,...,R. Whitt [15] presented
a set of formulae to aggregate multiple arrival processes into a compound arrival
process with the arrival rate A and the SCV of inter-arrival time C2

o>
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We use M to denote the number of service stages. For each class of customers,
we assume it has its unique and deterministic route, which means a customer cannot
change its routing within the network. The server in each stage has different service
processes for different classes of customers, the service rate is ¢, [, and the SCV
of service time is C%,,, /¢y, Where c;, is the number of parallel servers at the mth
stage,r € R, andm=1,... M. Here, R, is the set of classes of customers who visit
the mth stage. Whitt [15] also presented a set of formulae to aggregate these service
processes into one service process for the compound class:

‘LAL _ ZFERm )Lr
" 2reRy, A/ Cmbim ’
ZrGRm (C)zfrm/cm + 1)/(Cmﬂrm)2 /.12
ZFER,’ )Lr "

(2.47)
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Each class of customers has its own deterministic path and each server has its
own set of classes of customers. We aggregate these classes into one compound
class. However, this compound class is different from the class in the single-class
SOQN. In the single-class SOQN, the layout of service stages is tandem. In the
multi-class SOQN, the compound class visits each stage with a probability. We use
routing probability p;; to denote the probability that a customer is transferred from
the ith stage to the jth stage.

Another important parameter is the visit ratio vi,,, which is the mean number of
visits of a customer to the mth stage.

—

. A
Vi = 7’”, (2.48)
where A, = Y.rer,, Ar is the aggregated arrival rate at the mth stage.
The vi,, can also be expressed by routing probabilities,
M
Vip = Y Vijpjm, form=1,... .M. (2.49)

j=1

So far, we have already replaced the original multi-class SOQN with an equiv-
alent single-class SOQN. However, it is still difficult to apply the decomposition-
aggregation method we used in the single-class SOQN. In the single-class SOQN,
we can divide the network into two subnetworks from any node. The average
throughput rate of first subnetwork is equal to the arrival rate of the second sub-
network. This fact does not hold in the multi-class SOQN after aggregation because
each stage has a certain visit ratio and these visit ratios may not be equal to 1. In
other words, the throughput rate of the ith node may not be equal to the arrival rate
of the jth node. Hence, we cannot divide the network into two parts.

Buitenhek et al. [3] suggested a simplified decomposition-aggregation method.
We can simply aggregate all service stages and replace it with a load dependent
stage. The problem is then reduced to a simple queue with general arrival process
and a load dependent service stage. We can use the PH distribution to approxi-
mate the general distribution of the arrival process. Finally, the problem becomes a
PH/u(v) queue.

The performance measures of each single class are easy to obtain from the per-
formance measures of the compound class. The external queue length of the rth
class of customers is

Logr = Leq%. (2.50)

The expected number of customer of rth class at the mth stage L, can be divided
into two parts. The first part is the expected number of customers of rth class in the
mth service stage P, = % The second part is the expected number of customers
of the rth class in front of the mth service stage. It is known that the ratio of the
expected number of rth class of customers in the queue should be the same as the
ratio of the expected number of arrivals of rth class of customers.
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A
Lur = Prm+ (L — Y, prm)=, for r € Ryy. (2.51)
reR,, m

2.8.2 Numerical Example 6

We construct an SOQN with six service stages (S,...,S¢) and five different
classes of customers. Table 2.11 shows the deterministic routes of these five classes
of customers.

Table 2.11 Routes of the five classes of customers in the SOQN

Class # Route
1 ST — 8 — 85— 8¢
2 ST — 84— 83— 8¢
3 S — 84 — S
4 S — 83— S5
5 S — 851 —S4— 83— 85— 55

The first set of experiments assumes that arrival processes of all the five classes
are Poisson processes. The arrival rates are 0.6, 0.6, 0.8, 0.8, and 1, respectively.
Each of the six service stages has only one server. Table 2.12 shows the mean and
C% of service times of each stage for five classes. “N/A” means the particular class
does not visit the corresponding service stage.

From Table 2.12, we can see that there are three kinds of distributions among
the service times of the six stages: exponential distribution, Erlang-2 distribution
and Coxian-2 distribution. These three kinds of distributions represent moderate,
low and high variance cases respectively. Similar to the experiments conducted in
previous sections, we vary the number of vehicles in the network from 18 to 25.
The expected number of customers at the external queue and each stage for the
aggregated class as well as the five classes are shown in Tables 2.13-2.15.

Results in these tables show that our approximation method works well when
compared to the simulation models. Relative errors of expected number of cus-
tomers in front of the six stages are very small. Although the relative error of ex-
pected number of customers outside is greater in the heavy load case, our method
works well for moderate and light load cases.

In the second set of experiments, we examine the accuracy of our method for
general arrival processes. We keep the arrival rates of five classes the same, but
change the distribution type. The distribution of the arrival processes of classes 1 and
2 are Coxian-2 distributions with C3 = 2. The distribution of the arrival processes
of classes 3 and 4 are still exponential. The distribution of the arrival process of
class 5 is Erlang-2. We conduct this set of experiments by changing the number of
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Table 2.12 The first two moments of service times
Class # Sl Sz S3 S4 S5 S(,

1 0.2,2 [0.5,0.8| N/A | N/A |0.4,1.5/0.25,0.5
03,15 N/A ]0.3,1{0.25,1] N/A ]0.25,0.5
N/A 03,1 |[N/A[05,1| N/A | 05,1
0.25,1 N/A 04,1 N/A | 0.2,3 | N/A
0.15,0.75(0.26, 1.2|0.2, 1| 0.2, 1 0.2, 0.5| 0.15,2

| | W

Table 2.13 Result of 5-class Poisson arrival 6-stage single-server SOQN with 18 pallets
Aggregated| Loy | Ly | Lo | Lz | Ly | Ls | L

S 34.3(1.98(2.55]2.39|3.16(1.77(4.72

A 45.3|2.00|2.50|2.29(2.98(1.77|4.69

error% (24.4|1.00|2.00|4.37(6.04(0.00|0.64
Class 1 Leq L1 Lz L3 L4 L5 L6

S 5.42(0.39]0.74|N/A|N/A|0.53|0.92

A 7.15]0.39(0.73|N/A|N/A|0.53]0.92
Class 2 Leq Ll L2 L3 L4 L5 L(,

S 5.42|0.45|N/A(0.60]0.75|N/A[0.92

A 7.15(0.45|N/A|0.58]0.71|N/A|0.92
Class 3 Leq L1 Lz L3 L4 L5 L6
S 7.22{N/A|0.82|N/A|1.20{N/A|1.43

A 9.54|N/A|0.81|N/A|1.14|N/A|1.42
Class 4 Leq Ll L2 L3 L4 L5 L(,

S 7.2210.55|N/A|0.88|N/A|0.55|N/A

A 9.54(0.56|N/A|0.85|N/A[0.55|N/A
Class 5 Leq Ll L2 L3 L4 L5 L(,

S 9.03(0.59]0.99(0.90]1.20(0.69|1.44

A 11.9{0.60{0.97|0.86|1.13|0.69|1.43

vehicles in the network from 20 to 25. Tables 2.16-2.18 show the expected number
of customers at the external queue and each stage for the aggregated class and the
five classes.

Similar to the first set of experiments, these tables show that our method works
very well for estimating the expected number of customers in the network. If the
load of this SOQN is moderate, the accuracy of our method is also good for estimat-
ing the expected number of customers outside.

From the previous two sets of experiments we notice that the queue lengths of
stages 2, 4 and 6 are long. Therefore, we add some parallel servers in these stages
and conduct the last set of experiments. We set the numbers of servers at stages 2
and 4 as 2, and the number of servers at stage 6 as 3. The number of vehicles in the
network ranges from 7 to 10. The arrival processes of five classes are still generally
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Table 2.14 Result of 5-class Poisson arrival 6-stage single-server SOQN with 22 pallets

Aggregated| Loy | Ly | Lo | L3 | Ly | Ls | Lg
S 8.87(2.04(2.73|2.57|3.24(1.88(5.25

A 9.92(2.06|2.78|2.39|3.16(1.82|5.21
error% [10.6|0.97|1.80(7.53(2.53|3.30(0.77
Class 1 Leq L1 Lz L3 L4 L5 L6
S 1.40(0.40|0.78|N/A|N/A[0.56|1.03

A 1.57]0.40{0.79|N/A|N/A|0.55(1.02
Class 2 Leq Ll L2 L3 L4 L5 L(,
S 1.40|0.46{N/A|0.65]|0.77|N/A[1.03

A 1.57(0.46|N/A|0.61|0.75|N/A|1.02
Class 3 Leq L1 Lz L3 L4 L5 L6
S 1.87|N/A[0.88|N/A|1.23|N/A|1.57

A 2.09|N/A|0.90|N/A|1.20|N/A|1.56
Class 4 Leq Ll L2 L3 L4 L5 L(,
S 1.87|0.57|N/A|0.94|N/A[0.57|N/A

A 2.09|0.58|N/A|0.88|N/A|0.57|N/A
Class 5 Leq L1 Lz L3 L4 L5 L6
S 2.33(0.61]1.06|0.98]1.24(0.73|1.62

A 2.61{0.62{1.09(0.90]1.20(0.71|1.60

Table 2.15 Result of 5-class Poisson arrival 6-stage single-server SOQN with 25 pallets

Aggregated| Loy | L1 | Lo | L3 | Ly | Ls | L
S 4.36|2.09|2.90|2.56(3.25({1.85|5.75

A 4.91)|2.09|2.93(2.43|3.24|1.84|5.51
error% [11.2{0.00|1.02|5.35({0.31{0.54|4.00
Class 1 Leq L1 Lz L3 L4 L5 L6
S 0.69(0.41|0.83|N/A|N/A|[0.55|1.13

A 0.77(0.41]0.83|N/A|N/A|0.55|1.08
Class 2 Leq Ll L2 L3 L4 L5 L(,
S 0.69|0.47|N/A|0.65|0.78|N/A|1.13

A 0.77|0.47{N/A|0.61]|0.77|N/A[1.08
Class 3 Leq Ll L2 L3 L4 L5 L(,
S 0.92|N/A|0.94|N/A|1.23|N/A|1.70

A 1.03|N/A[0.95|N/A|1.23|N/A|1.64
Class 4 Leq L1 Lz L3 L4 L5 L6
S 0.92(0.58|N/A|0.94|N/A|0.58|N/A

A 1.03]|0.58{N/A|0.90|N/A[0.57|N/A
Class 5 Leq Ll L2 L3 L4 L5 L(,
S 1.15]0.63(1.14|0.98|1.24(0.72{1.78

A 1.29(0.63(1.15|0.92|1.24(0.72{1.70
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Table 2.16 Result of 5-Class general arrival 6-stage single-server SOQN with 20 pallets
Aggregated| Loy | Ly | Lo | L3 | Ly | Ls | Lg
S 16.8]2.03(3.66|2.33|3.23(1.83(4.93

A 20.7(2.04(3.66|2.35|3.08|1.80(4.98

error% [18.8]0.49|0.00/0.85(4.87(1.67|1.00
Class 1 Leq L1 Lz L3 L4 L5 L6
S 2.65(0.40(1.02|N/A|N/A|0.55]0.97

A 3.27|0.40({1.02|N/A|N/A[0.54{0.98
Class 2 Leq Ll L2 L3 L4 L5 L(,
S 2.65|0.46{N/A|0.59|0.77|N/A[0.97

A 3.27|0.46{N/A|0.59|0.73|N/A[0.98
Class 3 Leq L1 Lz L3 L4 L5 L6

S 3.54|N/A[1.19|N/A|1.23|N/A[1.49

A 4.36|N/A|1.19|N/A[1.18|N/A|1.50
Class 4 Leq Ll L2 L3 L4 L5 L(,

S 3.54(0.57|N/A|0.86|N/A[0.57 N/A

A 4.36|0.57|N/A[0.87|N/A|0.56|N/A
Class 5 Leq L1 Lz L3 L4 L5 L6
S 4.4210.61|1.45|0.88(1.23|0.71|1.51

A 5.45(0.61|1.45|0.89|1.17(0.70|1.53

distributed and have the same parameters as in the second set of experiments. Ta-
bles 2.19-2.21 show the expected number of customers at the external queue and
each stage for the aggregated class and the five classes.

Similar to the first two sets of experiments, these tables show that our method
still works well for estimating the expected number of customers in the network.
However, the accuracy for estimating the expected number of customers in the ex-
ternal queueing is not very good. There are two sources of error. The first source is
from the aggregation process of multiple classes of customers. The second one is
from the aggregation process of parallel servers.

2.9 Conclusions

In this chapter, we discuss how to model the automated warehouse by using
semi-open queueing networks. We present two algorithms for solving SOQN with
exponential interarrival and service times. The first method is the state space based
method. The key point of this method is to truncate the state space of two-stage,
single-class SOQN at a certain level, then estimate the steady state probabilities.
However, if the number of resources (i.e., the number of vehicles in AVS/RS) is
large, this method is time consuming because the size of the state space is large. The
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Table 2.17 Result of 5-class general arrival 6-stage single-server SOQN with 22 pallets

Aggregated| Loy | Ly | Lo | L3 | Ly | Ls | Lg
S 10.7|2.07{4.00(2.40|3.18|1.79(5.14

A 11.2|2.07|3.80|2.39|3.17(1.83|5.23
error% (4.30{0.00|5.26/0.42(0.32(2.19|1.72
Class 1 Leq L1 Lz L3 L4 L5 L6
S 1.69(0.40|1.10|N/A|N/A|0.54|1.01

A 1.77]0.40{1.05|N/A|N/A[0.55(1.03
Class 2 Leq Ll L2 L3 L4 L5 L(,
S 1.69|0.46|N/A[0.61]|0.76|N/A|1.01

A 1.77(0.46|N/A|0.60|0.76|N/A|1.03
Class 3 Leq L1 Lz L3 L4 L5 L6
S 2.26|N/A|1.31|N/A|1.21|N/A|1.54

A 2.36(N/A|[1.24|N/A|1.21|N/A|1.57
Class 4 Leq Ll L2 L3 L4 L5 L(,
S 2.26|0.58|N/A[0.89|N/A|0.56|N/A

A 2.36|0.58|N/A[0.88|N/A|0.57|N/A
Class 5 Leq L1 Lz L3 L4 L5 L6
S 2.82(0.62(1.59|0.91|1.21|0.70|1.58

A 2.95(0.62{1.51|0.90|1.21{0.71|1.61

Table 2.18 Result of 5-class general arrivals 6-stage single

server SOQN with 25 pallets

Aggregated| Loy | L1 | Lo | L3 | Ly | Ls | L
S 5.51|2.10{3.98(2.68|3.28|1.81(5.72

A 5.68|2.10(3.96(2.44|3.26|1.85|5.55
error% (3.00{0.00|0.51|9.84(0.61{2.16|3.06
Class 1 Leq L1 Lz L3 L4 L5 L6
S 0.87(0.41|1.10|N/A|N/A|0.54|1.12

A 0.90({0.41|1.09|N/A|N/A|0.55|1.09
Class 2 Leq Ll L2 L3 L4 L5 L(,
S 0.87]|0.47|N/A|0.68]|0.78|N/A[1.12

A 0.90]0.47|N/A0.62]|0.78|N/A[1.09
Class 3 Leq Ll L2 L3 L4 L5 L(,
S 1.16|N/A[1.30|N/A|1.24|N/A|1.70

A 1.20|N/A[1.29|N/A|1.24|N/A|1.65
Class 4 Leq L1 Lz L3 L4 L5 L6
S 1.16{0.59|N/A|0.98|N/A|0.56|N/A

A 1.20{0.59|N/A|0.90|N/A|0.58|N/A
Class 5 Leq Ll L2 L3 L4 L5 L(,
S 1.45]0.63{1.59|1.03|1.25(0.70{1.77

A 1.49(0.63(1.58|0.93|1.25(0.72{1.72
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Table 2.19 Result of 5-class general arrival 6-stage multiple-server SOQN with 7 pallets
Aggregated| Loy | Ly | Lo | L3 | Ly | Ls | Lg

S 36.1{1.66(0.66|1.89]0.62(1.44(0.44

A 30.4|1.64(0.65(1.85|0.61|1.47(0.41

error% |[18.8]1.22|1.54|2.16(1.64(2.04|7.32
Class 1 Leq L1 Lz L3 L4 L5 L6
S 5.70(0.32]0.27|N/A|N/A|0.45]0.07

A 4.80]0.32]0.26|N/AN/A|0.46|0.06
Class 2 Leq Ll L2 L3 L4 L5 L(,
S 5.70|0.38[N/A |0.48|0.12|N/A [0.07

A 4.80|0.38|N/A|0.47(0.12{N/A|0.06
Class 3 Leq L1 Lz L3 L4 L5 L6

S 7.60{N/A|0.19|N/A|0.36/N/A|0.29

A 6.40{N/A[0.19|N/A|0.35|N/A0.28
Class 4 Leq Ll L2 L3 L4 L5 L(,

S 7.60|0.47|N/A|0.72|N/A|0.44|N/A

A 6.40|0.46|N/A|0.70|N/A|0.45|N/A
Class 5 Leq L1 Lz L3 L4 L5 L6
S 8.50/0.49(0.20(0.70{0.15]0.55{0.01

A 8.00]0.48(0.20{0.68|0.14|0.56{0.00

Table 2.20 Result of 5-class general arrival 6-stage multiple-server SOQN with 8 pallets
Aggregated| Loy | L1 | Lo | L3 | Ly | Ls | L
S 7.43(1.76{0.69|1.95]|0.64|1.53]0.43

A 9.71(1.73{0.66|1.97|0.62|1.54{0.41
error% |23.5(1.73|4.551.02(3.23|0.65|4.88
Class 1 Leq L1 Lz L3 L4 L5 L6
S 1.17]0.34{0.27|N/A|N/A[0.47{0.07

A 1.53]0.34{0.27|N/A|N/A[0.48(0.06
Class 2 Leq Ll L2 L3 L4 L5 L(,
S 1.17(0.40{N/A|0.49]0.12|N/A|0.07

A 1.53(0.40{N/A[0.50|0.12|N/A [0.06
Class 3 Leq Ll L2 L3 L4 L5 L(,

S 1.56|N/A[0.20|N/A|0.36|N/A[0.29

A 2.04|N/A[0.19|N/A|0.36|N/A [0.28
Class 4 Leq L1 Lz L3 L4 L5 L6
S 1.56|0.50{N/A|0.74|N/A[0.47{N/A

A 2.04{0.49|N/A|0.74|N/A|0.47|N/A
Class 5 Leq Ll L2 L3 L4 L5 L(,
S 1.96(0.52{0.21]0.72]0.15]0.59{0.01

A 2.56|0.51{0.20(0.73]0.15]0.59{0.00




70

X. Cai et al.

Table 2.21 Result of 5-class general arrival 6-stage multiple-server SOQN with 10 pallets

Aggregated| Loy | Ly | Lo | L3 | Ly | Ls | Lg

S 3.20(1.83(0.69]2.13]0.63(1.72(0.44

A 3.18|1.87(0.67(2.17|0.63|1.65(0.41

error% [0.63|2.14|2.98|1.84(0.00(4.24|7.32
Class 1 Leq L1 Lz L3 L4 L5 L6
S 0.51{0.36]0.27|N/A|N/A|0.52]0.07

A 0.50]0.36{0.27|N/A|N/A|0.50{0.06
Class 2 Leq Ll L2 L3 L4 L5 L(,
S 0.51]0.42{N/A|0.54|0.12|N/A[0.07

A 0.50{0.42|N/A|0.55]|0.12|N/A|0.06
Class 3 Leq L1 Lz L3 L4 L5 L6

S 0.67|N/A|0.20|N/A|0.36/N/A|0.29

A 0.67|N/A[0.20|N/A|0.36|N/A|0.28
Class 4 Leq Ll L2 L3 L4 L5 L(,

S 0.67|0.51|N/A|0.80|N/A|0.53|N/A

A 0.67|0.53|N/A|0.81|N/A|0.51|N/A
Class 5 Leq L1 Lz L3 L4 L5 L6
S 0.84(0.54/0.21|0.80]0.15(0.67|0.01

A 0.84(0.56/0.21]0.81]0.15(0.64|0.00

second method is the matrix geometric method, which develops a generator matrix
with repetitive structures that can be solved exactly via an iterative procedure. We
then solve the two-stage SOQN with generally distributed service time and arrival
processes. The structure of the generator matrix is discussed in detail. We also dis-
cuss the structure of the generator matrix in detail, especially how to extend the
single-server case to the multi-server case. We then extend the two-stage SOQN to
multi-stage SOQN by applying the decomposition-aggregation method. We apply
Marie’s method for the general distributions. Finally, we discuss the approximation
algorithm for multiple-class SOQN. The basic idea is to aggregate multiple classes
into a single equivalent class and then aggregate the network into a single load-
dependent stage by using Marie’s method.
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