
Chapter 2
Vibrations 1

Sound begins with vibrations. For example, the sound of a guitar begins with the
vibration of the strings, and the sound of a trumpet begins with the vibrations of
the player’s lips. Perhaps less obvious, the sound of the human voice begins with the
vibration of vocal folds (vocal cords), and sounds that are reproduced electronically
are ultimately converted into acoustical waves by the vibration of a loudspeaker
cone. Because sound starts with vibrations, it’s natural that the study of acoustics
begins with the study of vibrations.

Fundamentally, a vibration is a motion that is back and forth. Vibrations can be
simple, like the swinging of a pendulum, or they can be complicated, like the rattle
of your car’s glove box when you drive on a bumpy road. Here we follow a path
that is traditional in science; we consider first the simplest possible system and try
to describe it as completely as possible. This vibration is called simple harmonic
motion.

2.1 Mass and Spring

2.1.1 Definitions

The most fundamental mechanical vibrator is a single mass hanging from a spring.
If there is no motion (no vibration) the force of gravity pulling the mass down
is just balanced by the force of the spring pulling up. The mass is at rest. It is
said to be at equilibrium. If the mass moves away from its equilibrium position
it has a displacement. If the mass moves up above the equilibrium position, the
displacement is positive, if it moves down, the displacement is negative. When the
mass is at equilibrium the displacement is zero (Fig. 2.1).

If the spring and mass system is allowed to vibrate freely, the mass will undergo
simple harmonic motion. As the mass vibrates up and down, its displacement is
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Fig. 2.1 The spring and
mass system. In equilibrium
the displacement is zero.
When the mass moves above
the equilibrium point the
displacement is positive.
When the mass moves below
the equilibrium point the
displacement is negative

Fig. 2.2 The sine wave has extreme values ˙A, called the amplitude. It has a characteristic
waveform shape as shown here. The sine wave is periodic, so that any two equivalent points on the
waveform are separated in time by the time interval T known as the “period.” Theoretically, the
sine wave extends indefinitely to infinite positive and infinite negative time, having no beginning
or end

alternately positive and negative. The displacement (x) can be plotted as a function
of time (t ) on a graph like Fig. 2.2.

The maximum displacement is called the amplitude. The most negative dis-
placement is the same number with a minus sign in front of it. Simple harmonic
motion is an example of periodic motion. That means that the motion is repeated
indefinitely. There is a basic pattern, called a cycle, that recurs. The duration of the
cycle is called the period. It is a time and it is measured in seconds, or milliseconds
(1 one-thousandth of a second).

2.1.2 How It Works

To start the vibrations of a mass and spring system, you displace the mass from
its equilibrium position and let it go. Let us suppose that you gave the mass a
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negative (downwards) displacement, stretching the spring. Because the spring is
stretched, there is a force on the mass trying to bring the mass back to its equilibrium
position. Therefore, the mass moves toward equilibrium. Soon the mass arrives at
the equilibrium position, and at that point there is no more force. You might think
that the mass would just stop at equilibrium, but this is not what happens. The mass
doesn’t stop because in the process of coming back to equilibrium, the mass has
acquired some speed and, precisely because it is massive, it has acquired some
momentum. Because of the momentum, the mass overshoots the equilibrium point,
and now it has a positive displacement. The positive displacement causes the spring
to be compressed, which ultimately forces the mass to move back down again toward
equilibrium. As the mass passes the equilibrium point for a second time, it now has
momentum in the opposite direction. That momentum keeps the mass going down
until it has reached the negative amplitude that it had at the very start of this story.
The mass and spring system has now executed one complete cycle. The amount of
time needed to complete the cycle is one period.

The workings of a simple harmonic vibrating system like the mass and spring
illustrate some very general principles. First, it seems clear that if we have a very
stiff spring, then any displacement from equilibrium will lead to a large force and
that will accelerate the mass back toward equilibrium faster than a weak spring.
Therefore, we expect that making the spring stiffer ought to make the motion faster
and decrease the period. Second, it also seems clear that if the mass is very massive,
then it will respond only sluggishly to the force from the spring. (Did you know
that the English-system unit for mass is the slug? How appropriate!) Therefore, we
expect that making the mass heavier ought to make the motion slower and increase
the period. As we will see in Chap. 3, that is exactly what happens.

2.2 Mathematical Representation

Mathematically, simple harmonic motion is described by the sine function of
trigonometry. Therefore, simple harmonic motion is sometime called “sine wave
motion,” and the waveform shown in Fig. 2.2 is called a sine wave. It is described
by the equation

x.t/ D A sin.360 t=T C �/ (2.1)

where A is the amplitude, T is the period in seconds, and � is the phase in degrees.
[Note: Symbol � is the Greek letter phi. The names of all Greek letters are in
Appendix H.] A review of trigonometry, particularly the sine function, is given in
Appendix B.

We will spend some words dissecting equation (2.1). The units of the amplitude
A are the same as the units of x, in our case, mechanical displacement. It might
be measured in millimeters. If the sine wave x.t/ describes some other physical
property, such as air pressure or electrical voltage, the units of the amplitude change
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accordingly. By convention, A is always a positive real number. Amplitude A can be
zero, but in that case there is no wave at all, and there is nothing more to talk about.
The amplitude multiplies the sine function—sin—which has a maximum value of
1 and a minimum value of �1. It follows that the sine wave x.t/ has a maximum
value of A and a minimum value of �A.

The sine function is a function of an angle, i.e., whenever you see an expression
like sin.: : :/, the quantity: : :, which is the argument of the sine function, has to be
an angle. Therefore, “360t=T C �” is an angle. The special phase � in the equation
is the value of the angle when t D 0. In some cases we are interested in the function
only for positive values of time t , it being presumed that the wave starts at time
t D 0. Then phase � is called the “starting phase.”

The sine function is periodic; it repeats itself when the angle (or argument)
changes by 360ı. Equation (2.1) shows that if the running time variable t starts at
some value and then increases by T seconds, the function comes back to its starting
point. That is why we call T the period.

The reciprocal of the period leads us to the definition of the frequency (f ) of the
sine wave,

f D 1=T; (2.2)

and its units are cycles per second, or Hertz, (abbreviated Hz). Therefore, one can
write the sine wave in another form,

x.t/ D A sin.360 f t C �/: (2.3)

Example: As an example, we consider the sine-wave vibration of an object whose
position in millimeters is given by

x.t/ D 4 sin.360 � 60 t C 90/: (2.4)

From Eq. (2.1), the amplitude of the vibration is 4 mm, which means that the
maximum positive and negative excursions are ˙4 mm. The frequency is 60 Hz,
and the starting phase is 90ı. See Fig. 2.3.

The argument of the sine function, here given by 360f t C �, is an angle called
the instantaneous phase. We will give it the symbol ‚. It is assumed that angle ‚ is
always expressed in units of degrees. In a complete circle there are 360ı.

The role of the sine function as a periodic function of a time-dependent
instantaneous phase is emphasized by separating the aspects of periodicity and time
dependence. One simply writes the sine wave in the form

x.t/ D A sin.‚/ (2.5)
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Fig. 2.3 Panel (a) shows the instantaneous phase angle ‚, increasing from an initial value � D 90

as time goes on. Over the duration shown, this angle advances through three multiples of 360ı.
Panel (b) shows what happens when one takes the sine of angle ‚ and multiplies by the amplitude
A. Here the amplitude A was chosen to be 4 mm

Fig. 2.4 The wave shown by the solid line is said to lead the wave shown by the dashed line
because every waveform feature—peak, positive-going zero crossing, etc.—occurs at an earlier
time for the solid line. Alternatively the dashed line wave can be said to lag the solid line wave.
Both waves have the same frequency and amplitude, but their starting phases are different

where ‚ is the instantaneous phase angle, measured in degrees, as shown in
Appendix B. Here, angle ‚ is a function of time

‚ D ‚.t/ D 360f t C � (2.6)

As t increases, the angle ‚ increases linearly, and the sine function goes through
its periodic oscillations, as shown in Fig. 2.3. Figure 2.3 shows the special case
where the phase is � D 90ı.

Phase Lead–Phase Lag When two sine waves have the same frequency but
different starting phases, one of them is said to lead or to lag the other. Figure 2.4
is an example. The lagging wave is given by x.t/ D A sin.360f t/ and the leading
wave is given by x.t/ D A sin.360f t C 90/. According to Eqs. (2.5) and (2.6) the
starting phase angle for the leading wave is � D 90ı. This angle is positive and less
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than 180ı, which corresponds to a condition for leading. It should be evident that if
� had been equal to 180ı, then neither wave would lead or lag the other.

2.3 Audible Frequencies

The spring and mass system that we used to introduce simple harmonic motion lets
you see the vibration but the frequency is too low to hear. Such vibration is said to
be “infrasonic.” Vibrations of a few Hertz can sometimes be felt, and they can do
damage too (an earthquake would be an example), but they cannot be heard. The
audible range of frequencies is normally said to be from 20 to 20,000 Hz, or 20 Hz
to 20 kHz. That statement of the range is easy to remember, but the practical range
tends to be smaller. Without a special acoustical system it is not possible to hear
20 Hz. A frequency of 30 Hz is a more practical lower limit. Many college students
cannot hear 20,000 Hz either. A more realistic upper limit of hearing is 17,000 Hz.
We are quite accustomed to doing without the lowest and highest frequencies.
Many loudspeakers that claim to be high quality cannot reproduce sounds below
100 Hz. FM radio stations are not even allowed to transmit frequencies higher than
15,000 Hz, and telephone communication in the USA is normally limited to the band
between 300 and 3,300 Hz.

Octave Measure

To change a frequency by an octave means to multiply it or divide it by the
number 2. Starting with a frequency of 440 Hz, going up one octave gets you to
880 Hz and going up another octave gets you to 1,760 Hz. The sequence is continued
in Fig. 2.5. Again starting at 440 Hz, going down an octave leads to 220 Hz and
going down another octave leads to 110 Hz. The measure of an octave is a basic
element in the music of all cultures.

Fig. 2.5 The horizontal axis is a linear frequency scale. The circles show 440 Hz and octaves
above 440, namely 880, 1,760, 3,520, and 7,040 Hz. With increasing octave number the frequencies
become more widely spaced on the linear scale
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Exercises

Exercise 1, Human limits
Nominally, the limits of human hearing are 20 and 20,000 Hz. Find the periods

of those two waves.

Exercise 2, A low frequency
The second hand of a clock takes 60 s for one cycle. What is the frequency in

Hertz?

Exercise 3, Time conversions
A millisecond is 1 one-thousandth of a second, and a microsecond is 1 one-

millionth of a second. (a) How many milliseconds is 2 s? (b) How many milliseconds
is 30 �s?

Exercise 4, Frequency conversions
A kilohertz (kHz) is 1,000 Hz. (a) How many kilohertz is 16,384 Hz? (b) How

many hertz is 10 kHz?

Exercise 5, Period and frequency
(a) If the period is 1 ms, what is the frequency in kHz? (b and c) If the frequency

is 10,000 Hz, what is the period in milliseconds and in microseconds?

Exercise 6, Conditions for phase lag
The mathematical conditions for phase leading are described in the text. From

this, can you infer the conditions for lagging?

Exercise 7, Optical analogy
If an “infrasonic” sound has a frequency that is too low to hear, what is “infrared”

light?

Exercise 8, Telephone bandwidth
The telephone bandwidth is from 300 to 3,300 Hz. How many octaves is that

bandwidth?

Exercise 9, Sine waves
The sine wave in Fig. 2.2 has a starting phase of zero. It is reproduced in Fig. 2.6.

(a) On the same set of axes, draw a sine wave with the same frequency and same
amplitude but with a starting phase of 180ı. (b) Draw a sine wave with the same
amplitude but twice the frequency. (c) Draw a sine wave with the same frequency
but half the amplitude. (d) The sine wave is said to be a “single valued function,”
meaning that for every point in time there is one and only one value of the wave.
Sketch a function that is not single valued for comparison.
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Fig. 2.6 Three practice waves for Exercise 9
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