Chapter 2
Search Games for an Immobile Hider

Thomas Lidbetter

Abstract A search game for an immobile hider is a zero-sum game taking place
in some search space. The hider picks a point in the space and a searcher who is
unaware of the hider’s location moves around attempting to find him in the least
possible time. We give an overview of the theory of search games on a network with
an immobile hider, starting with their conception in the Rufus Isaac’s 1965 book on
Differential Games, then moving on to some classic results in the field from Shmuel
Gal and others. Finally we discuss some recent work on new search game models
which consider, for example, what happens when the searcher does not have a fixed
starting point or when the speed of the searcher depends on the direction in which
he is traveling.
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2.1 Introduction

Since the conception of search games almost 50 years ago, the field has expanded
and developed in many different directions, as seen in Chap. 1. In this chapter we
focus in on one particular theme: that of search games on a network with a mobile
searcher and an immobile hider. Games of this type may be described as ‘hide-
and-seek’ games. The classic results in this field can be found in Alpern and Gal’s
monograph [4] and Gal’s recent survey [13]. Here we do not aim to give an ex-
haustive list of all work in the field, but we follow on from Sects. 1.1.1 and 1.1.2 in
Chap. 1, taking a more detailed look at some classic results and linking them to new
work on search games with an immobile hider.

We begin in Sect. 2.2 by discussing how Isaacs [14] first introduced search games
of this type, and how he described strategies for both the hider and the searcher
which would continue to be of fundamental importance in later work in the field. In
Sect. 2.3 we then turn to the first rigorous definition, given by Gal [10], of a search
game with an immobile hider and a mobile searcher who starts from a given point.
We indicate how Gal solved his game if the search space is a tree or if it is Eulerian.

We then show in Sect. 2.4 how Reijnierse and Potters [17] extended Gal’s anal-
ysis to weakly cyclic networks, which have the structure of a tree with some nodes
replaced by cycles. We describe the solution of Gal’s game on these networks, and
how Gal proved an analagous result for weakly Eulerian networks.

In the final two sections we discuss some more recent work on search games on
networks with an immobile hider. Section 2.5 deals with a version of Gal’s original
game in which the searcher can start from any point in the network. Section 2.6
describes three new Search Game models [2, 5, 6] which all modify or generalize
Gal’s classic model in some way.

2.2 The Birth of Search Games

Search games were first introduced by Rufus Isaacs in his 1965 book Differential
Games [14], as indicated in Chap. 1. The book was originally motivated by combat
problems, and indeed, many of the problems discussed in the book have a military
focus to them. Earlier chapters in the book are concerned with so called Pursuit
Games, in which a Pursuer (or Pursuers) aim to capture an Evader whose location
is known to him at all times during the game. Search games are introduced later
in the book in a chapter called ‘Toward a Theory with Incomplete Information’.
The model presented differs from Pursuit Games in that Pursuers now aim to capture
an Evader about whose position the Pursuers now do not have complete information.
The terminology changes: the Evader becomes the hider and the Pursuers become
the searchers. This terminology has stuck and is now widely used in the search
games literature.

Isaacs begins by defining what he calls the simple search game. This could be
regarded as the simplest and most general possible search game, and is described in
informal terms. In an arbitrary region %, which may be a subset of Euclidean space
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of any dimension, a hider picks a hiding point (that is a point in %). The searcher
then picks some sort of unit speed trajectory in the region. The payoff (or search
time) is the time taken until the searcher’s trajectory meets the hider. There is an
assumption that the searcher is able to find a tour of the region that is not wasteful,
so that it does not ‘double back’ on itself. The solution of the game Isaacs gives is
simple: the searcher picks one such tour S, then follows it with probability one half
and follows the reverse tour with probability one half. Supposing & has measure L,
if S finds a point in % at time ¢, the reverse of S will find the same point at time
u —t. Hence the expected time 7 to find any given point is given by

T=1/2t+1/2(u—t)=u/2

The value of the game is therefore at most pt /2. The hider can ensure the payoff
is no more than u/2 by hiding uniformly in &%, so that the probability he hides
in any subset of Z is proportional to its measure. By using this strategy, the hider
ensures that the probability the searcher finds him before time # is no more than ¢/
for 0 <7 < u, so the probability the search time is ¢ or more is at least 1 —¢/u.
Hence the expected time T satisfies

T = / Pr(search time is > t)dt
0

u
> [T =i/wr
= u/2.

The value of the game is therefore at least /2, and combining the bounds we
have

Theorem 1 (Isaacs). The value of the simple search game is | /2.

These strategies given by Isaacs are important and direct a lot of the later research
on search games.

2.3 Search Games on Networks

A more precise formulation of Isaac’s game is given by Gal [10] and [11]. Gal
focuses on the game played on a network Q, which is any connected finite set of
arcs of measure i with a distinguished starting point O, called the root. The hider
picks a point H in Q and the searcher picks a unit speed path S starting from O.
The payoff (or search time) is the time taken for the path to reach H. This game is
mentioned in Sect. 1.1.1 of Chap. 1.

In [10], Gal uses Isaacs hider strategy to give a lower bound for the value V of
the game: by hiding uniformly in the network the hider can ensure that the search
time always at least u/2. We call this strategy u. However, the assumption made
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by Isaacs that the searcher can find a non-wasteful trajectory is not made, so the
searcher strategy given in [14] is not always available and the value of the game
may be greater than p/2. The searcher is also restricted to picking a path which
starts from O, so it may not be possible for him to implement the ‘reverse’ of a path.
For instance, if Q is a single unit length arc with the root O at one end and a point
A at the other, the value of this game is clearly 1 > /2. The hider simply uses the
pure strategy of hiding at A and the searcher picks the path from O to A.

However, adapting the searcher strategy given in [14], Gal gives an upper bound
for the value. The searcher may not be able to find a non-wasteful, reversible path in
0, but he will always have some minimal time tour S of Q starting and ending at O of
length fi > u. He can then use the mixed strategy where he picks S with probability
1/2 and the reverse of S with probability 1/2, ensuring that he finds every point in
Q in expected time no more than fi /2. The searcher’s minimal tour S is later called
a Chinese Postman Tour (CPT) in [12], and the randomized strategy given here is
called the Random Chinese Postman Tour (RCPT). The RCPT gives an upper bound
for the value V, and combining this with the lower bound we have

w/2<V<i/2 @.1)

Gal examines when these two bounds are tight. Suppose Q is Eulerian, so that
it has a continuous closed path that visits each point of Q exactly once. Then the
searcher’s CPT is one such Eulerian path starting at O. Since the length fi of this
tour is U, the bounds in (2.1) are tight and we have V = /2 = fi/2. The uniform
strategy u is optimal for the hider. It is easy to see that Eulerian networks are the
only networks for which 1 = u.

We can also consider the game played on a tree, that is a network without any
cycles. In a sense, a tree is the opposite of an Eulerian network since the CPT of
a tree has the maximum possible length, i =2, as all arcs must be traversed in
both directions. The inequalities (2.1) therefore become 1 /2 <V < u. Clearly the
uniform hider strategy u is not optimal for the hider, since every point H of Q is
dominated in strategies by a leaf node (a node of degree 1). Hence an optimal hider
strategy must be some distribution on the leaf nodes. In [10] Gal defines a hider
distribution later called the Equal Branch Density (EBD) distribution in [12], and
shows that it is optimal for the hider, guaranteeing him an expected search time of
no less than g = fi /2, which is the value of the game. The RCPT is optimal for the
searcher.

The EBD distribution can be defined in terms of a concept called search density,
which extends to general search spaces Q that may not be networks. For a connected
subset A of Q and a hider hidden on Q according to a fixed distribution, the search
density p(A) is defined as the time taken for the searcher to tour A divided by the
probability the hider is in A. Consider a tree Q and a node x of Q that has degree at
least 3. We call x a branch node. The arcs touching x consist of one arc on the path
from x to O and some other arcs. For each of these other arcs a, we define a branch
at x which consists of a together with all arcs whose unique path to O intersects
with a. The EBD distribution is the unique hider distribution on the leaf nodes of Q
that ensures that at every branch node of Q, all branches have equal search density.
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We illustrate the EBD distribution with an example. In Fig. 2.1 nodes are labelled
by letters and arc lengths indicated by numbers. To calculate the EBD distribution
on this network, first note that there are two branches at O, which must have equal
search density. This can be achieved by assigning hider probability 3/9 = 1/3 to
the branch consisting of the arc OC, and probability 2/3 to the other branch. The
branch node D has two branches, and to ensure these have equal search density, the
hider probability assigned to the arcs AD and BD must be proportional to 2 and 3,
respectively. Hence the probabilities the hider is at nodes A and B are 2/5-1/3 =
2/15and 3/5-1/3 = 3/15 respectively. The probability the hider is at C is 1/3.

Fig. 2.1 A tree network

In [10], Gal shows that if the hider uses the EBD distribution, this ensures that
any depth-first search of Q, and in particular any CPT finds the hider in expected
time exactly y = {1 /2, which must therefore be the value of the game. In the case of
the network in Fig. 2.1, the value of the game is 4 = 9.

Hence we have

Theorem 2 (Gal). If Q is an Eulerian network or a tree then the value of the search
game with an immobile hider played on Q is fi/2.

As discussed in Sect. 1.1.1 of Chap. 1, the RCPT is not optimal for all networks,
in particular the 3-arc network depicted in Fig. 1.1, though this was not shown for
another 15 years [15].

2.4 Weakly Cyclic and Weakly Eulerian Networks

Solutions of the game described in the previous section are not limited to trees and
Eulerian networks. In [17] Reijnierse and Potters solve the game for weakly cyclic
networks, showing that the RCPT is optimal for the searcher, so that the value is
f1/2. A weakly cyclic network can be thought of as a tree network for which some of
the nodes have been replaced with cycles. Alternatively, a weakly cyclic network can
be defined more precisely as a network for which there are at most two disjoint paths
between any two nodes. Weakly cyclic networks cannot contain any subnetwork
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that is topologically homeomorphic to the three arc network depicted in Fig. 1.1.
A weakly cyclic network is depicted on the left hand side of Fig. 1.2; the cycles are
indicated by the dotted lines.

Reijnierse and Potters give an algorithm to calculate the optimal hider distribu-
tion, in which the hider hides with some probability on leaf nodes and with some
probability hides uniformly on the cycles. Alpern and Gal [4] later give an alterna-
tive version of the algorithm, in which every cycle in the network is replaced with a
leaf arc of half the length of the cycle, and the EBD distribution is calculated on the
new network. The network depicted on the right hand side of Fig. 1.2 is the modi-
fication of the weakly cycle network on the left. The hider probability that should
be assigned to a cycle in the original network is then the probability assigned to the
end of the associated leaf arc in the new network (Fig.2.2).

Fig. 2.2 A weakly cyclic network and its modifications

Reijnierse [16] later showed that the equivalent result holds if we replace ‘weakly
cyclic’ with ‘weakly Eulerian’. A network is weakly Eulerian if it can be obtained
from a tree by replacing some nodes with Eulerian networks. Gal [12] found a sim-
ple proof of this result, showing not only that the value V of the game is fi/2 for
weakly Eulerian networks, but, as mentioned in Chap. 1, these are the only networks
for which this is the value, and the RCPT is optimal. In summary,

Theorem 3 (Gal). The value of the search game with an immobile hider played on
a network Q is 1 /2 if and only if Q is weakly Eulerian.

Notice that the class of weakly Eulerian networks includes both trees and Eule-
rian networks, so Theorem 3 generalizes Theorem 2.

2.5 Search Games Without a Fixed Searcher Starting Point

In a recent paper [9] Dagan and Gal define a new Search Game model on a net-
work Q in which the assumption that the searcher has a fixed starting point O is
dropped, and the searcher can begin his search from any point on Q. This model has
already been discussed in Sect. 1.1.2 in Chap. 1, where it was noted that provided the
searcher has some Eulerian path (one which visits every point of the network exactly
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once), [saac’s result holds and the value of the game is i /2. The searcher can simply
choose the Eulerian path with probability 1/2 and its reverse with probability 1/2;
the hider can hide uniformly on the network. The networks that have an Eulerian
path include the 3 arc network in Fig. 1.1, whose solution in Gal’s classic model
was so elusive. For the arbitrary start model, the value of this game is pt/2 = 3/2.
Just as we define Chinese Postman Tours, we can define a Chinese Postman Path
of a network Q as a minimal time path that visits all the points of Q. We can then
define i as the length of a Chinese Postman Path, and we obtain a result analgous
to (2.1) for the value V of the Search Game played on networks with an arbitrary
starting point:

w/2<V<i/2. 2.2)

The arbitrary start model was further studied in [3] in which the authors call a
network simply searchable if the upper bound on V in (2.2) is tight. They give suffi-
cient conditions for a network to be simply searchable, and in particular they show
that trees are simply searchable and that the hider should use the EBD distribution,
with respect to a root located at the center of the tree: that is the point ¢ whose great-
est distance from any other point in the tree is minimal. For example, in Fig. 2.1 the
center c is located halfway between nodes O and D. If we add a node at c, then at
this point there are two branches of lengths 7/2 and 11/2, which the hider chooses
with probabilities proportional to 7 and 11, respectively. Hence the hider chooses
the node C with probability 7/18 and nodes A and B with total probability 11/18.

2.6 Other Search Game Models

Recently some alternative models of search games on networks have been proposed.
In the models we have discussed so far the searcher’s strategy space is a set of unit
speed paths. However we might consider associated games in which the searcher
has a different strategy set.

In [2] Alpern defines a new model called find-and-fetch in which he considers a
searcher who not only wishes to find a hider but also wishes to return to the root O.
This models common problems such as search-and-rescue and foraging problems
in which an animal must find food and then return to its lair. As in Gal’s model, the
searcher follows a unit speed path from O, but then upon reaching the hider takes
the shortest path back to O at speed p. The payoff is the total time to find the hider
and return to O. In the case of a bird being weighed down by food he is taking back
to his nest we might have p < 1, whilst p > 1 might be more appropriate for the
case of someone searching for a contact lens, in which the return speed would be
quicker.

Alpern finds that if Q is a tree, the optimal strategy for the hider is still the EBD
distribution in this game. However, the RCPT is no longer optimal for the searcher.
Instead, he randomizes between all possible depth-first searches using a type of
strategy called a branching strategy. Upon reaching a node for the first time the
searcher chooses which outward branch to take according to a certain probability.
Alpern proves the following.
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Theorem 4 (Alpern). The value V of the find-and-fetch game on a tree is
V=u+D/p, (2.3)

where D = D(Q) is the mean distance from O to the leaf nodes of Q, weighted
according to the EBD distribution.

To illustrate how D is calculated, consider the network in Fig. 2.1. The probabil-
ities that the hider is at nodes A, B and B are 2/15, 3/15 and 10/15, respectively, and
the distances of these nodes from O are 3,4 and 3. Hence D =2/15(3) +3/15(4) +
5/15(3) = 11/5. For p = 1/2, the value V of the find and fetch game played on the
tree in Fig.2.1is V =9+ (11/5)/(1/2) = 10.1. Note that as p tends to infinity so
that the searcher can return instantaneously to the root after finding the hider, the
value V in (2.3) tends to u, Gal’s classic result (Theorem 2).

A different model of search is given in [6], in which the authors suppose that
the searcher can use an expanding search. This is defined as a sequence of unit
speed paths on a network Q, starting at O, each of which starts from a point already
reached by the searcher. Another way to think of expanding search is as a family of
connected subsets of Q starting with O and expanding at unit speed. To differentiate
expanding search from the type of search used in Gal’s model, we call the latter
pathwise search. Expanding search provides a model of mining, in which the time
taken to recommence mining from a location already reached in small compared to
the time taken up by the mining itself. As before, the hider simply picks a point on
Q and the searcher picks an expanding search. The search time is the time taken for
the searcher to reach the hider.

Again, if Q is a tree it turns out that the EBD distribution is optimal for the hider,
and the searcher’s optimal strategy is a branching strategy. The authors show that

Theorem 5 (Alpern and Lidbetter). The value V of the expanding search game on
atree is

V=1/2(u+D), (2.4)

The variable D is defined as above. In the case of the network in Fig. 2.1 where
D=11/5and y =9, the valueis V =1/2(9+11/5)=5.6.

In [6] the expanding search game is also solved for 2-arc-connected networks.
These are networks that cannot be disconnected by the removal of fewer than two
arcs. The authors show that on these networks it is optimal for the hider to hide
uniformly, and for the searcher to make an equiprobable choice of a reversible ex-
panding search and its reverse. A reversible expanding search is simply one whose
reverse is also an expanding search, analogous to an Eulerian circuit in Gal’s model.
The authors show that such a search always exists on a 2-arc-connected network,
and the randomized choice of this search and its reverse ensures that the searcher
finds the hider in expected time no greater than (1 /2, which is the value of the game.
For example, the 3-arc network depicted in Fig. 1.1 in Chap. | is 2-arc-connected,
and hence has value /2 =3/2.
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For trees, the find and fetch model and the expanding search model can both
be encapsulated in a single overarching model. In [1] Alpern examines the Search
Game on a network with asymmetric travel times, meaning that the speed it takes
for the searcher to traverse an arc depends on the direction in which he travels. An
equivalent formulation is given in [5] in which the searcher moves with a speed that
depends on his direction of travel. We therefore call this the variable speed model.
The game is then defined as usual: the searcher picks a path in the network starting
at O, the hider picks a point on the network and the payoff is the time taken for the
searcher to reach the hider. The model clearly encompasses Gal’s model of networks
with symmetric travel times if the travel times of each arc are set to be the same in
either direction.

For a tree Q we can give every point x on Q a height §(x), equal to the time taken
to travel from O to x (along the shortest path) minus the time taken to travel from x
to O. This definition is motivated by the assumption that it is quicker to travel uphill
than downhill. In [1] Alpern shows that the EBD is once again optimal for this game
played on a tree, and he gives recursive formulae for the optimal branching strategy
for the searcher. In [5], the authors derive a closed form expression for the optimal
searcher strategy as well as a formula for the value V of the game:

Theorem 6 (Alpern and Lidbetter). The value V of the variable speed search
game is

V=1/2(t+A), (2.5)

where T is defined as the time taken for the searcher to tour the network, and A =
A(Q) is defined as the mean height of the leaves, weighted with respect to the EBD
distribution.

If the network is symmetric, then all leaf nodes have height 0, and 7 = 2u,
s0 (2.5) reduces to Gal’s classic result, V = pu = fi/2 given in Theorem 2. In fact, in
the case that the network Q is a tree, the variable speed network model also encom-
passes both the find and fetch model and the expanding search model, as we now
explain.

We first consider the find and fetch game, in which the searcher must return to O
along the shortest path at speed p after finding the hider. It is optimal for the hider to
choose a leaf node x, and for any such choice of x at shortest distance d(x,0) from
O, the searcher must travel for additional time d(x, O)/p after finding the hider. We
therefore form a new network Q' from Q by adding an asymmetric arc from x to a
new leaf node x* with forward travel time (from x to x™) of d(x,0) /p and backward
travel time —d(x,0)/p. The variable speed game played on Q' is then equivalent to
the find and fetch game played on Q: traveling to x™ in Q' is equivalent to traveling
to x in the original network and then back to O at speed p, and if the hider is not at x
the extra arc from x to x* makes no contribution to the search time. Hence the two
models are equivalent.

The total tour time T of Q' is equal to twice the length 2 of Q, and in the Q' the
leaf node x* has height 2d(x,0)/p, so A = A(Q’) is the mean value of 2d(x,0)/p,
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weighted with respect to the EBD distribution, which is equal to 2D(Q)/p. Hence
by (2.5), the value is

V =1/2(2u+2D/p)
=u+D/p,

as given in (2.3).

We now return to the expanding search model played on a tree Q. Suppose we
form a new network Q" by replacing each arc of Q of length A with an asymmetric
arc with forward travel time (away from O) of A and backward travel time 0. Then a
depth-first pathwise search on Q” is equivalent to an expanding search on Q. It can
be shown that it is optimal to use a depth-first search in the expanding search game,
so that the two models are equivalent. The total tour time of the new network is the
length u of the original network, and the height of a leaf node in the new network is
the distance from that node to O in the old network, so A(Q") = D(Q). Hence, by
(2), the value is

V=1/2(u+D),

as given in (2.4).

2.7 Conclusion

We have seen how an idea in [14] sparked a field of research which has produced
many elegant results, and continues to develop and expand. We have focused here
on search games on a network with an immobile hider, but search games are not
limited to this paradigm. Much has been achieved in the field of search games with
a mobile hider (also originally motivated by Isaacs [14]), as well as many other
variations on the classic models. The connected field of search games in unbounded
domains, initiated independently by Bellman [8] and Beck [7], has also been ex-
tensively studied. Many unanswered questions in search games remain and new
problems arise, capturing the imaginations of those who have taken the childhood
game of hide-and-seek to its mathematical extreme.
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