Chapter 2

A Short Tour of the Predictive Modeling
Process

Before diving in to the formal components of model building, we present a
simple example that illustrates the broad concepts of model building. Specif-
ically, the following example demonstrates the concepts of data “spending,”
building candidate models, and selecting the optimal model.

2.1 Case Study: Predicting Fuel Economy

The fueleconomy.gov web site, run by the U.S. Department of Energy’s Of-
fice of Energy Efficiency and Renewable Energy and the U.S. Environmental
Protection Agency, lists different estimates of fuel economy for passenger cars
and trucks. For each vehicle, various characteristics are recorded such as the
engine displacement or number of cylinders. Along with these values, lab-
oratory measurements are made for the city and highway miles per gallon
(MPG) of the car.

In practice, we would build a model on as many vehicle characteristics as
possible in order to find the most predictive model. However, this introductory
illustration will focus high-level concepts of model building by using a single
predictor, engine displacement (the volume inside the engine cylinders), and
a single response, unadjusted highway MPG for 2010-2011 model year cars.

The first step in any model building process is to understand the data,
which can most easily be done through a graph. Since we have just one
predictor and one response, these data can be visualized with a scatter plot
(Fig.2.1). This figure shows the relationship between engine displacement
and fuel economy. The “2010 model year” panel contains all the 2010 data
while the other panel shows the data only for new 2011 vehicles. Clearly,
as engine displacement increases, the fuel efficiency drops regardless of year.
The relationship is somewhat linear but does exhibit some curvature towards
the extreme ends of the displacement axis.
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Fig. 2.1: The relationship between engine displacement and fuel efficiency of
all 2010 model year vehicles and new 2011 car lines

If we had more than one predictor, we would need to further understand
characteristics of the predictors and the relationships among the predictors.
These characteristics may suggest important and necessary pre-processing
steps that must be taken prior to building a model (Chap. 3).

After first understanding the data, the next step is to build and evaluate
a model on the data. A standard approach is to take a random sample of
the data for model building and use the rest to understand model perfor-
mance. However, suppose we want to predict the MPG for a new car line.
In this situation, models can be created using the 2010 data (containing
1,107 vehicles) and tested on the 245 new 2011 cars. The common terminol-
ogy would be that the 2010 data are used as the model “training set” and the
2011 values are the “test” or “validation” set.

Now that we have defined the data used for model building and evaluation,
we should decide how to measure performance of the model. For regression
problems where we try to predict a numeric value, the residuals are important
sources of information. Residuals are computed as the observed value minus
the predicted value (i.e., y; — ;). When predicting numeric values, the root
mean squared error (RMSE) is commonly used to evaluate models. Described
in more detail in Chap.7, RMSE is interpreted as how far, on average, the
residuals are from zero.

At this point, the modeler will try various techniques to mathematically
define the relationship between the predictor and outcome. To do this, the
training set is used to estimate the various values needed by the model equa-
tions. The test set will be used only when a few strong candidate models
have been finalized (repeatedly using the test set in the model build process
negates its utility as a final arbitrator of the models).

Suppose a linear regression model was created where the predicted MPG
is a basic slope and intercept model. Using the training data, we estimate the
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Fig. 2.2: Quality of fit diagnostics for the linear regression model. The training
set data and its associated predictions are used to understand how well the
model works

intercept to be 50.6 and the slope to be —4.5 MPG/liters using the method of
least squares (Sect. 6.2). The model fit is shown in Fig. 2.2 for the training set
data.! The left-hand panel shows the training set data with a linear model fit
defined by the estimated slope and intercept. The right-hand panel plots the
observed and predicted MPG. These plots demonstrate that this model misses
some of the patterns in the data, such as under-predicting fuel efficiency when
the displacement is less than 2L or above 6 L.

When working with the training set, one must be careful not to simply
evaluate model performance using the same data used to build the model.
If we simply re-predict the training set data, there is the potential to pro-
duce overly optimistic estimates of how well the model works, especially if
the model is highly adaptable. An alternative approach for quantifying how
well the model operates is to use resampling, where different subversions of
the training data set are used to fit the model. Resampling techniques are
discussed in Chap.4. For these data, we used a form of resampling called
10-fold cross-validation to estimate the model RMSE to be 4.6 MPG.

Looking at Fig.2.2, it is conceivable that the problem might be solved
by introducing some nonlinearity in the model. There are many ways to
do this. The most basic approach is to supplement the previous linear re-
gression model with additional complexity. Adding a squared term for en-
gine displacement would mean estimating an additional slope parameter
associated with the square of the predictor. In doing this, the model equation
changes to

1 One of our graduate professors once said “the only way to be comfortable with your
data is to never look at it.”
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Fig. 2.3: Quality of fit diagnostics for the quadratic regression model (using
the training set)

efficiency = 63.2 — 11.9 x displacement 4 0.94 x displacement?

This is referred to as a quadratic model since it includes a squared term; the
model fit is shown in Fig. 2.3. Unquestionably, the addition of the quadratic
term improves the model fit. The RMSE is now estimated to be 4.2 MPG
using cross-validation. One issue with quadratic models is that they can per-
form poorly on the extremes of the predictor. In Fig.2.3, there may be a
hint of this for the vehicles with very high displacement values. The model
appears to be bending upwards unrealistically. Predicting new vehicles with
large displacement values may produce significantly inaccurate results.

Chapters 6-8 discuss many other techniques for creating sophisticated
relationships between the predictors and outcome. One such approach is
the multivariate adaptive regression spline (MARS) model (Friedman 1991).
When used with a single predictor, MARS can fit separate linear regression
lines for different ranges of engine displacement. The slopes and intercepts
are estimated for this model, as well as the number and size of the separate
regions for the linear models. Unlike the linear regression models, this tech-
nique has a tuning parameter which cannot be directly estimated from the
data. There is no analytical equation that can be used to determine how many
segments should be used to model the data. While the MARS model has in-
ternal algorithms for making this determination, the user can try different
values and use resampling to determine the appropriate value. Once the value
is found, a final MARS model would be fit using all the training set data and
used for prediction.
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Fig. 2.4: The cross-validation profile for the MARS tuning parameter
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Fig. 2.5: Quality of fit diagnostics for the MARS model (using the training
set). The MARS model creates several linear regression fits with change points
at 2.3, 3.5, and 4.3L.

For a single predictor, MARS can allow for up to five model terms (similar
to the previous slopes and intercepts). Using cross-validation, we evaluated
four candidate values for this tuning parameter to create the resampling
profile which is shown in Fig.2.4. The lowest RMSE value is associated with
four terms, although the scale of change in the RMSE values indicates that
there is some insensitivity to this tuning parameter. The RMSE associated
with the optimal model was 4.2 MPG. After fitting the final MARS model
with four terms, the training set fit is shown in Fig. 2.5 where several linear
segments were predicted.
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Fig. 2.6: The test set data and with model fits for two models

Based on these three models, the quadratic regression and MARS models
were evaluated on the test set. Figure 2.6 shows these results. Both models fit
very similarly. The test set RMSE values for the quadratic model was 4.72
MPG and the MARS model was 4.69 MPG. Based on this, either model
would be appropriate for the prediction of new car lines.

2.2 Themes

There are several aspects of the model building process that are worth dis-
cussing further, especially for those who are new to predictive modeling.

Data Splitting

Although discussed in the next chapter, how we allocate data to certain
tasks (e.g., model building, evaluating performance) is an important aspect
of modeling. For this example, the primary interest is to predict the fuel
economy of new vehicles, which is not the same population as the data used
to build the model. This means that, to some degree, we are testing how
well the model extrapolates to a different population. If we were interested in
predicting from the same population of vehicles (i.e., interpolation), taking
a simple random sample of the data would be more appropriate. How the
training and test sets are determined should reflect how the model will be
applied.
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How much data should be allocated to the training and test sets? It gener-
ally depends on the situation. If the pool of data is small, the data splitting
decisions can be critical. A small test would have limited utility as a judge
of performance. In this case, a sole reliance on resampling techniques (i.e.,
no test set) might be more effective. Large data sets reduce the criticality of
these decisions.

Predictor Data

This example has revolved around one of many predictors: the engine dis-
placement. The original data contain many other factors, such as the number
of cylinders, the type of transmission, and the manufacturer. An earnest at-
tempt to predict the fuel economy would examine as many predictors as
possible to improve performance. Using more predictors, it is likely that the
RMSE for the new model cars can be driven down further. Some investi-
gation into the data can also help. For example, none of the models were
effective at predicting fuel economy when the engine displacement was small.
Inclusion of predictors that target these types of vehicles would help improve
performance.

An aspect of modeling that was not discussed here was feature selection:
the process of determining the minimum set of relevant predictors needed by
the model. This common task is discussed in Chap. 19.

Estimating Performance

Before using the test set, two techniques were employed to determine the
effectiveness of the model. First, quantitative assessments of statistics (i.e.,
the RMSE) using resampling help the user understand how each technique
would perform on new data. The other tool was to create simple visualizations
of a model, such as plotting the observed and predicted values, to discover
areas of the data where the model does particularly good or bad. This type
of qualitative information is critical for improving models and is lost when
the model is gauged only on summary statistics.

FEvaluating Several Models

For these data, three different models were evaluated. It is our experience
that some modeling practitioners have a favorite model that is relied on
indiscriminately. The “No Free Lunch” Theorem (Wolpert 1996) argues that,
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without having substantive information about the modeling problem, there
is no single model that will always do better than any other model. Because
of this, a strong case can be made to try a wide variety of techniques, then
determine which model to focus on. In our example, a simple plot of the
data shows that there is a nonlinear relationship between the outcome and
the predictor. Given this knowledge, we might exclude linear models from
consideration, but there is still a wide variety of techniques to evaluate. One
might say that “model X is always the best performing model” but, for these
data, a simple quadratic model is extremely competitive.

Model Selection

At some point in the process, a specific model must be chosen. This example
demonstrated two types of model selection. First, we chose some models over
others: the linear regression model did not fit well and was dropped. In this
case, we chose between models. There was also a second type of model selection
shown. For MARS, the tuning parameter was chosen using cross-validation.
This was also model selection where we decided on the type of MARS model
to use. In this case, we did the selection within different MARS models.

In either case, we relied on cross-validation and the test set to produce
quantitative assessments of the models to help us make the choice. Because
we focused on a single predictor, which will not often be the case, we also
made visualizations of the model fit to help inform us. At the end of the pro-
cess, the MARS and quadratic models appear to give equivalent performance.
However, knowing that the quadratic model might not do well for vehicles
with very large displacements, our intuition might tell us to favor the MARS
model. One goal of this book is to help the user gain intuition regarding the
strengths and weakness of different models to make informed decisions.

2.3 Summary

At face value, model building appears straightforward: pick a modeling tech-
nique, plug in data, and generate a prediction. While this approach will gener-
ate a predictive model, it will most likely not generate a reliable, trustworthy
model for predicting new samples. To get this type of model, we must first
understand the data and the objective of the modeling. Upon understand-
ing the data and objectives, we then pre-process and split the data. Only
after these steps do we finally proceed to building, evaluating, and selecting
models.
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