
Chapter 2
Some Statistical Perspectives of Growth Models
in Health Care Plans

Pranab K. Sen

Abstract Growth (and wear) curve models, having genesis in epidemiology and
system biology, have cropped up in every walk of life and science. In statistics,
such growth curve models have led to an evolution of multivariate analysis with
better performance characteristics and enhanced scope of applications in many
interdisciplinary field of research. Recent advances in bioinformatics and genomic
science have opened the Pandora’s box with high-dimensional data models, often
with relatively smaller sample sizes. Growth curve models are especially useful in
such contexts. There are also other areas where growth curve model-based analyses
are in high demand. In this vein, the scope and perspectives of growth models are
appraised with special emphasis on some health care and health study plans.

2.1 Introduction

In exploratory studies, especially in experimental biology, developmental biology,
medicine, epidemiology, socio-economics, psychology, and more recently, in
biotechnology, information technology, toxico-genomics and bioinformatics, such
growth models have been systematically studied under the terminology longitudinal
data models and repeated measurement models; classical growth curve models
(GCM) in simple parametric setups are regarded as precursors. Box (1950) initiated
the study of growth and wear curves in simple biometric setups. C.R. Rao (1958,
1965) made significant contributions to GCM while Potthoff and Roy (1964)
systematically integrated GCMs in the main stream of multivariate analysis
of variance (MANOVA) and linked it to multivariate analysis of covariance
(MANOCOVA). Rao (1959) developed procedures for parameter estimation and
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estimation of confidence bands for the response curve. Cole and Grizzle (1966) and
Grizzle and Allen (1969) formulated some innovative statistical analysis of growth
and dose response curves. Geisser (1970, 1981) annexed Bayesian methodology
in GCMs. Khatri (1966) elaborated the connection of GCM and MANO(CO)VA.
Timm (1981) and Zerbe and Walker (1977) studied further MANO(CO)VA of
repeated measurement designs incorporating the basics of parametric GCM. This
also laid down the foundation of random-effects and mixed-effects models in
MANOCOVA. In some medical (and dental) research problems, often, area under
the curve (AUC) has been used. It is also possible to relate AUC to GCM and obtain
better performance of statistical tests and estimates (Preisser et al. 2011).

In most of these developments, as has been systematically accounted in Gnanade-
sikan et al. (1971), it has been tacitly assumed that (i) the underlying response
variables are continuous, (ii) additivity of the effects hold, and (iii) the under-
lying probability distributions are all multivariate normal. The latter assumption
is accompanied by the homogeneity of their dispersion matrices, the so-called,
homoscedasticity condition in a general multivariate setup. Both the linearity of
the model and multinormality of the errors have been critically appraised in the
past 50 years, raising concern of the scope of adaptability of normal MANOCOVA
models in various applications. Nonparametric (mostly based on marginal ranks)
MANO(CO)VA evolved during the 1960s and reported in Puri and Sen (1971,
1985). For GCM, such nonparametrics have been incorporated by Ghosh et al.
(1973) and Sen (1973, 1985), among others. The past three decades have witnessed
the development of semi-parametric GCM and longitudinal data models. Both
spatial and temporal variations are accounted in such models.

In epidemiology, epidemic models are earlier examples of growth models. The
growth of a disease or disorder (in a population) follows another track of discrete
GCM where typically the response variable is the number of infected people or
their proportion in the target population. In population dynamics, such discrete
GCM are commonly perceived wherein various demographic features account for
explanatory or design variables. For example, for the HIV afflicted population in a
spatiotemporal setups, discrete GCM are quite appealing, albeit the multi-normality
or the linearity of effects assumption may not be reasonable. In system biology,
for example, the growth of a tumor or spread of cancerous cells, growth (curve)
models are very appealing, albeit they come under high-dimensional or functional
data clouds. The classical fMRI models also pertain to growth models, although
the commonly assumed multi-normality condition may not be generally tenable in
such contexts. In many stochastic models, such as the diffusion process, birth and
death process, and morbidity (illness) process, such GCM may appear, not only with
some longitudinal or temporal features of the expectation parameters but also with
subtle change in the shape or dispersion parameters. For example, the drift versus
dispersion in generalized random walk models. From white noise to signal detection
in high dimension (as related to chaos theory) is another example of this sort.
Markov processes have also been atuned to GCM with appropriate growth condition
on the failure rate or reliability functions. Nonhomogeneous Poisson processes and
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their natural extension to doubly stochastic Poisson processes bear growth features
in a stochastic mode. Also, GCM in HIV (AIDS) models come in a completely
different setup. It is therefore perceived that conventional MANO(CO)VA-related
GCM may not be universally adaptable in many other fields of applications. Beyond
parametrics in GCM is therefore a natural avenue to traverse.

There is a class of scenarios of growth (or decay) models which are characterized
by evolutionary growth or decay but subject to extraneous restraints. For example,
in a branching process model the outcome variable may lead to an extinction if
it reaches the absorbing state (0). On the other hand it can explode to an infinite
state under plausible conditions on the branching parameters. In some toxicological
models, such growth patterns may have similarity with GCMs but are subject to
suitable upper bounds due to experimental constraints. For example, when the
output variable attains an upper threshold level, the system moves to a different
stage, and a new process model comes in the picture. This may be regarded as
a GCM annexation to the classical change-point model which typically relates to
either a change in location (regression) or scale parameter at an unknown time-
point. The problems is much more complex in this general growth model. A
typical example is the growth of HIV-AIDS afflicted population following some
break-through medical intervention. For growth models with a finite upper bound,
the classical Gompertz (1825) model, motivated by a distribution function to fit
mortality tables is a precursor to other models such as the logistic model and its
ramifications (Johnson and Kotz 1970). With this genesis, logistic regression models
pertain to stochastic growth curves in more general formulations. Likewise, Poisson
regression models pertain to such GCM (Sen et al. 2010).

This volume has a primary emphasis on GCM in conventional agricultural
setups with emphasis on the elephant foot yam. In modern interdisciplinary
research, typically, high-dimensional data models are encountered where some
times the sample size may be relatively smaller, thus giving rise to the so-called
high dimension low sample size (HDLSS) models. This is particularly the case
with bioinformatics and toxico-genomics studies. Even in many socioeconomic
investigations, HDLSS models are encountered in very nonstandard setups. The
scope for traditional MANOCOVA tools in HDLSS has been critically appraised
in the recent past (Sen 2006, 2008). In this context, the dimension reduction can
be effectively done with appropriate GCM in beyond parametrics setups (Sen et al.
2007). Nevertheless, conventional statistical tools are of very limited utility in such
HDLSS-related GCM setups. This study focuses on some high-dimensional models
arising in some socioeconomic research problems where GCM may have a natural
appeal. The nest section is devoted to the preliminary notion on the evolution of
GCM from simple parametric to beyond parametric setups, encompassing HDLSS
models as well. Some of these beyond parametrics perspectives are elaborated in
Sect. 2.3. The main results on GCM approach on some general socioeconomic
models are disseminated in Sect. 2.4. The concluding section is devoted to some
general observations and remarks.
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2.2 Preliminary Notion

Typically, GCM relates to some multi-sample or blocked design models where (in a
general setup), there are n observations, each observation has p characteristics
and observed at q time points. For example, in an environmental health hazard
study for identifying environmental dioxin pollution (Chen et al. 2012), finger-
print analysis comparing the polychlorinated dibenzo-p-dioxin and dibenzofuran
(PCDD/F) congener profile patterns of collected samples with those of potential
dioxin emission source(s), has been advocated as an important tool. There are
p (= 17) PCDD/F congeners comprising a fingerprint and data collected in a
longitudinal setup. This typically relate to a MANOVA model, albeit the sample
sizes are small, and moreover, the underlying distributions are distinctly not
multivariate normal; multivariate gamma distributions appear to be more reasonable
in this setup for which the dispersion matrix depends on the mean levels and shape
parameters, and hence, the homogeneity of the dispersion matrices may not hold.
For a stochastic p-vector X following a multivariate normal distribution with mean
vector � and dispersion matrix †, in a conventional setup, it is tacitly assumed that
the dispersion matrix does not depend on the mean vector. This basic assumption
may not generally hold in GCM where heteroscedasticity, possible collinearity and
nonlinear relationship of dispersion matrix and mean vectors may mar the simplicity
of the standard GCM analysis schemes. In the above cited PCDD/F model, we
have nonnegative component variables which brings the relevance of compositional
data models. If the p coordinate variables of X are independent gamma variables
with shape parameters ˛1; � � � ; ˛p respectively (all positive), and a scale parameter
�.> 0/, and if we define the proportion vector as Y D .X01/�1X, then Y has
the Dirichlet distribution whose mean vector and the (singular) covariance matrix
depend on the scale as well as shape parameters. This particular feature not only
renders a singular covariance matrix but also invalidates the routine adaption of
the so-called principal component model PCM) or canonical correlation analysis.
Bearing in mind such examples, we first consider a simple GCM and motivate more
general ones arising thereof.

Let ti1; � � � ; tiq be the time points for the i th subject and let

Yi D ..Yijk//j D1;��� ;pIkD1;��� ;q ; i D 1; � � � ; n; (2.1)

where Yijk D Yij .tik/; k D 1; � � � ; q. In a balanced design, tik D tk; 8i D
1; � � � ; nI k D 1; � � � ; q. In a conventional parametric setup, it is typically assumed
that Yi has a matrix-valued multi-normal distribution with unknown mean (matrix)
‚i and unknown dispersion matrix � (of order pq � pq), for i D 1; � � � ; n. It is
thus tacitly assumed that the dispersion matrix � is common for all observations;
this condition as noted earlier is violated for multivariate gamma and other non-
normal distributions. In a conventional GCM setup,

‚i D �Ai C BCi ; i D 1; � � � ; n; (2.2)
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where � is a p � k matrix of unknown (intercept) parameters, Ai are matrices of
known design variables (constants), Ci is a r � q matrix of known constants, and
B D ..ˇjl // is a p�r matrix of unknown parameters. In the k sample model, the j th
column of Ai is equal to 1 and other columns are 0, according the i th observation
belongs to the j th sample or not. In more complex designs, the choice of the known
Ai and k depends on the design matrix. Typically, r < q (to facilitate dimension
reduction in a GCM setup). In the balanced design case, the Ci are all equal. By
(2.1) and (2.2), we have

Yi D �Ai C BCi C Ei ; i D 1; � � � ; n; (2.3)

where the Ei are independent and identically distributed random matrices with null
mean and dispersion matrix � . One may use the vec notation to convert these Yi into
pq-vectors and then apply the usual MANOVA tools to draw statistical conclusions
on B. Typically, r is much smaller than q, and hence, the GCM approach works out
well in having a more powerful statistical analysis when the postulated model in
(2.2) holds. We refer to Rao (1965) and Gnanadesikan et al. (1971) for a systematic
account of these developments.

In most of the fields of application, be it in biometry or clinical trials, system
biology or bioinformatics, or the vast area of modern interdisciplinary research,
usual MANOVA model assumptions are mostly untenable. In multivariate normal
models, the covariance matrix is functionally independent of the mean vector,
but this is not generally true for other multivariate distributions. We may refer to
the fingerprint analysis problem where not only multi-normality assumption may
be dubious but also homogeneity of the dispersion matrices is untenable. In the
univariate setup, the Box and Cox (1964) transformation has been widely used to
achieve approximate linearity of the model and improve normality approximation
of such transformed variables. However, such nonlinear transformations while im-
proving the normality approximation may adversely affect the underlying additivity
structures as well as the homoscedasticity assumption. In some simple univariate
models, Bartlett variance stabilizing transformations work out well. But such trans-
formations are of not much help in stabilizing the dispersion matrices. For example,
in multivariate gamma distributions, the dispersion matrix may functionally depend
on the mean vector and hence the homoscedasticity condition may not hold. Because
of these impasses, in multivariate GCM, in beyond parametrics approaches, some
alternative analysis schemes are advocated; these are to be considered in the
next section.

2.3 Beyond Parametrics Formulations

Whereas in parametric GCM, conventionally, it is assumed that the error distri-
butions are (multi-)normal, in beyond parametrics, not only this multi-normality
assumption is deemphasized but also other robustness issues are appropriately
appraised. In this perspective, first consider the conventional parametric models.
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In the balanced design case, all the Ci are the same, and without loss of generality
it may be assumed that they are of rank r.�q/. We make a similar assumption for
the general unbalanced case as well. Let us then consider a set of q � q matrices Li

and partition it as

Li D .Li1; Li2/; i D 1; � � � ; n; (2.4)

where

Li1 D C
0

i .Ci C
0

i /
�1 (2.5)

is of order q � r and Li2 is of order q � .q � r/ for i D 1; � � � ; n. Let then

Zi D Yi Li D .Zi1; Zi2/; (2.6)

for i D 1; � � � ; n. As in Potthoff and Roy (1964) and Rao (1965), we note that the
BCi Li1 D B while we choose the Li2 in such a way that Ci Li2 D 0 are null matrices
of order r � .q � r/. By (2.3) and (2.6), we have on writing E�

i D Ei Li D .E�
i1; E�

i2/

and A�
i D Ai Li ,

Zi D �A�
i C B.Ir ; 0/ C .E�

i1; E�
i2/; (2.7)

for i D 1; � � � ; n. This perfectly fits in to a MANOCOVA model which under the
multi-normality condition has been thoroughly studied in the literature (Rao 1965,
and others).

In a simple nonparametric approach (Puri and Sen 1971), it is assumed that the
E�

i have jointly a pq variate continuous distribution, for all i D 1; � � � ; n. Then
linear rank statistics are constructed for each of the pq coordinates of the Zi ; 1 �
i � n of which pr statistics relate to the case where B is present in addition to the
partitioned part of �A�

i , while the remaining p.q � r/ linear rank statistics relate to
the part where B does not appear but the complementary part of �A�

i appears. If the
null hypothesis of relates to H0 W B D 0, i.e., no regression on the time points, then
we can proceed in two ways. From the first part, we use the R-estimators of B as in
Jurečková and Sen (1996) and use a Wald-type test statistic. Alternatively, assuming
B D 0, we estimate � from the entire set of linear rank statistics. In the second place,
we align the Zi by using these R-estimators of �, and on the aligned linear rank
statistics for the p � r sub-matrix, we construct an aligned rank MANOCOVA test
statistic as in Puri and Sen (1971, 1985) wherein the p.q�r/ linear rank statistics are
treated as covariate statistics. Such tests are based on the Chatterjee and Sen (1964)
rank permutation principle and are conditionally distribution-free under hypotheses
of invariance. For large sample sizes, under these hypotheses of invariance, they
have approximately chi-square distribution with appropriate degrees of freedom.
Being based on the marginal ranks of the Zi ; i D 1; � � � ; n, these tests are robust
against plausible model departures.
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A second approach is based on rank (or R-) estimators of �; B from individual
observations. Note that by (2.7), for each i.D 1; � � � ; n/, we can obtain linear
estimates of � and B from Zi . Given these n independent estimators of B, it may be
possible to use the weighted least squares methodology to obtain a combined sample
estimator of B and also, to estimate its dispersion matrix (of order pr�pr). Tests for
suitable hypotheses on B can be based on these estimates using the classical Wald
statistics. Such tests are, however, generally not robust due to the poor robustness
properties of the estimated dispersion matrix. On the other hand, based on these
OBi ; i D 1; � � � ; n (all of the order p � r), the general theory of R-estimators
developed in detail in Jurečková and Sen (1996) can be incorporated to obtain robust
estimators of B and also to test for suitable hypotheses on B.

We illustrate this methodology with a simple situation where the n observations
can be regarded as the composite of k.� 2/ samples of sizes n1; � � � ; nk , respec-
tively, so that n D Pk

sD1 ns . For an observation from the sth sample, referred to
(2.2), the Ai are equal to some As , for s D 1; � � � ; k. In this setup, t D p C k where
the additional k relates to the individual population effects (vectors). As such, we
may proceed to test for the null hypothesis that the k columns of � are the same,
treating B as a nuisance parameter (matrix). Thus, using R-estimators of B, we may
use aligned rank test based on the k � q linear rank statistics. We refer to Puri and
Sen (1985) and omit the details. Alternatively, if the null hypothesis relates to B D 0
(i.e., no regression over time), treating � as nuisance, then one can use aligned rank
statistics. The dimension reduction (from pq to pr when r << q) generally leads
to increased statistical precision.

A further source of concern is the very basic assumption of linear models in
GCM. It is not uncommon in toxicology and physiologically based pharmaco-
kinetics (PBPK) models to have distinct nonlinear GCM where even if normality
assumption can be approximately justified, the homogeneity of the error variances
may not be tenable. Further, in PBPK and certain systems models, often (stochastic)
differential equations (SPDE) are incorporated to explain better the underlying
kinetics. In such a case, typically, the response pattern is nonlinear and multidi-
mensional (viz., Mandal et al. 2012). Though such nonlinear systems are often
approximated by linear ones (under the usual delta method), the reliability and
validity of such linearization may be open to questions. In PBPK modeling, the
composite response is the synergic and chain body resistance and metabolic changes
through a number of organs along with their impact on the blood circulation system.
As such, a multicomponent model is usually advocated, though in most of the
mathematical modeling, for drawing statistical conclusions a simplistic approach
is considered. A suitable growth model connecting the impact of these organs in
relation to the body reaction to external stimulus will certainly be a better solution.
The GCM approach has therefore a natural appeal in this context.

In HDLSS models, though it may be tempting to use projection pursuit for
dimension reduction, its scope may be limited to distributions admitting linear
structure so that the classical principal component model (PCM)-based statistical
methodology is appropriate. In many contexts, this linear manifold is not tenable
and hence this approach may not be adaptable either. In some simple models, this
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approach was elaborated by Sen (1973). There is scope for expansion in more
general GCM (viz., Preisser et al. 2011). They treated the Gingivitis problem
resulting from absenting from brushing or flossing of tooth. It had 7 time points
consisting of the induction and resolution phases and 31 biomarkers on 22 subjects.
Although the area under the individual subject and biomarker data were initially
considered, the number of subjects (22) being smaller than the number of data
points (186), conventional MANOVA tools were not adaptable. Moreover, the
assumption of multinormality was difficult to justify. First, in the usual way in
GCM, a dimension reduction was suggested, resulting in 4 response variables for
each biomarker. Second, signed-rank tests were used in the univariate as well as
multivariate setups (viz., Sen and Puri 1967), resulting in more robust procedures.
Further, the Chen–Stein theorem (Chen 1975) was adapted to control Type I error
and related measures. This produced a better inferential procedure.

In the environmental pollution problem (Chen et al. 2012), the GCM appeal was
overwhelming. However, in that fingerprint analysis comparing the poly-chlorinated
dibenzo-p-dioxin and dibenzofuran (PCDD/F) congener profile patterns of collected
samples with those of potential dioxin emission sources, there were 17 PCDD/F
congeners comprising a fingerprint which did not look like to have multi-normal
distribution. They differ in their emission rate and exposure pattern, and hence,
it was decided to have the proportion of these 17 compounds relative to their
sum. This has of course given rise to a response vector on a 16-simplex (in a
compositional data model) for which the variance-covariance matrix is intricately
dependent on the mean vector and a multi-normal distribution is far from being
tenable. Based on plausible assumptions, multivariate gamma-type distributions
were thought to be more appropriate. That led to the so-called Dirichlet type
distribution. A discouraging feature is that the dispersion matrix for this multivariate
random vector depends not only on the mean vector but also on the shape parameters
of the underlying gamma distributions. As such, conventional growth curve model-
based analysis was not pursued. It turned out that the usual procedure based on
multivariate ranks (Puri and Sen 1971) have much more robustness perspectives,
thus performing better than the multi-normality-based likelihood ratio type tests.
Thus, beyond parametrics seems to have a better appeal.

A third illustration relates to rank analysis of covariance (R-ANOCOVA) in
some nonstandard data models (Sen et al. 2013). There, the R-ANOCOVA has
been extended to a more general class of linear or nonlinear models (including
measurement errors or misspecified models). This would make GCM for such more
nonstandard cases manageable under beyond parametric schemes.

2.4 GCM in Health Care Studies

The development and management of a health care plan is a global problem, albeit
drastically different from one country to another, or even within a country, from
one region to another. A health care plan may either pertain to a general (overall)



2 Some Statistical Perspectives of Growth Models in Health Care Plans 43

population or certain subclass, termed a target population, demarcated by various
socioeconomic or demographic features. Some of these features are qualitative or
categorical while some others are quantitative. A health care plan is designed to
assess the need for welfare or financial support for the target population for needy
people when inflicted with certain type of disease or disorder. Of course, to run
that, it needs sustainable funding through health insurance, government support,
and other resources. Therefore, it is needed to have a complete inventory of diseases
and disorders which are to be covered under the health care plan. It also needs
to assess the available resources to cover the cost of providing health care for the
target population. Such resources not only include the financial aspects but also
the availability of ambulatory care personnel and facility, medical and paramedical
personnel, general awareness of the population for some of the pertinent health
hazards, lifestyle of the population concerned, and a thousand and one other
associated factors, some of which may not even be properly ascribable. In this
respect, the quality of life (QoL) and general attitude towards life have an important
bearing too. There is naturally a temporal factor that relates to the adequacy or
deterioration of a health care plan over time as is commonly perceived in many
countries (Sen 2012). The growth of population susceptible to various diseases
and disorders, by sector, spatial and temporal factors, the temporal change in the
enrolment and compliance to a health care plan, growth of various burdens of
disease (including virus mutations which may alter the nature of some of these
diseases), (mal-)nutrition, poverty and affluence and other factors have significant
bearing on such health care plans.

In most of the countries in the Western Europe, the social welfare system
provides a significant support to available health care plans, although such schemes
are difficult to implement in developing countries, especially, the over-populated
ones, including the Indian subcontinent and China. The burden of population and the
vast inequality of wealth and living standards create impasses for a unified health
plan that could suit equally well the people from all walks of life. In capitalistic
countries, USA is no exception, a health care insurance plan is not affordable across
the various sectors of the population, and no wonder, still a big number of people are
deprived of equitable health care insurance and facilities. The prevalence of certain
diseases or disorders can impact a health care plan drastically. For example, diabetes
is a major concern in India, China, and many other countries where consumption of
carbohydrates is significantly higher. In this respect, the familial or genetic effects
are very much noticeable. Breast cancer is more likely for daughters of mothers who
has had such affliction. The fast changing lifestyle of a major sector of population
be it in the West or in the third world countries is having an impactful aftermath on
many cardio-vascular diseases. Hypertension is another big concern. On top of that,
HIV (AIDS) has become a global threat, and all over the world, is having a huge
toll in terms of mortality and morbidity. Arthritis and gout affect a significant part of
any population, especially at golden ages. For cholera, quite prevalent in the coastal
areas of the Indian subcontinent, it has been observed that there has been a mutation
in the microbes which can now fight back many of the drugs (salines) which were
quite effective a few years ago. Arsenic contamination of ground water is a major
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health concern in a vast coastal area in the eastern part of India as well as the entire
southern part of Bangladesh. Most of the working class people have their daily need
of drinking, cooking, washing clothes and dishes too, and even bathing, intake a
perceptible amount of arsenates which may not only have carcinogenic impact on
their skin, hands and feet but also have impactful effect on their ingestion system.
Combined with that improper disposition of human waste adds more misery to this
contamination. Dementia, Parkinson’s disease, and Alzheimer may be occurring at
a higher incidence rate. Smoking and lung cancer may be good relation although
they have not been linked causally. Environmental smoking effect is a significant
health hazard, more so in metropolitan areas where automobile exhausts contribute
liberally to this pollution. In any composite health care plan, the galaxy of diseases
and disorders need to accounted for, although the prevalence pattern and relative
cost for cure could be quite dissimilar.

The models discussed in Sect. 2.3 can be adapted for such health care plans.
However, a much more complex and interacting modeling is necessary. First and
foremost, let D.s; t/ stand for the galaxy of diseases or disorders, at time t; t 2
T; s 2 S, which are to be covered under the plan. Here T stands for the time
domain and S stands for the domain of other spatial as well as explanatory variables.
Secondly, some of the diseases or disorders are chronic and have long-range impact,
while some others are relatively short duration with a (stochastically) much smaller
in-disease period. Therefore, it may be better to include statistical information
on the time under treatment or service of various diseases and disorders. In this
respect, the age at onset, duration of the service and the level (ambulatory, in-house
assistance or hospitalization) distributions are needed to be charted. The prevalence
of various diseases or disorders may vary considerably across the demographic
and economic strata of an overall population. The coverage of health plans may
also depend on such socioeconomic strata. Thus, we will have a multi-dimensional
stochastic vector, say, W.s; t/; t 2 T; s 2 S wherein all the other information are
to be included as covariates. There may be a growth of prevalence of the diseases
or disorders (in some cases the opposite way), and the information on available
(para-)medical or clinical help and the associated cost analysis all are needed for
an in-depth assessment. The (age-specific) life expectancy as further categorized by
sex, ethnicity, and other demographic features can be viewed as a very useful piece
of information in this respect. This needs development of a suitable index of health
status of individuals covered under the health care system that can be incorporated
in the formulation of a general exposure risk measure R.s; t/; t 2 T; s 2 S
whose distribution over the target population constitutes an essential component
of a stochastic modeling of the overall picture. Some other factors like most of the
high-cost surgeries need to be attuned to a possible health plan in such a way that
a complete coverage may push up the cost factor so much that on cost ground such
plans may not be affordable for a greater part of the society. Therefore, sustainability
and afford-ability issues are to be weighed in objectively so as to make a plan
adaptable. That also needs statistical modeling.
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No plans can be sustained without a complete provision of funding through
health insurance, cost sharing by the patients and government or other funding.
An accounting of the relative support, their potential change over time and their
matching the cost of providing the health care service is therefore desirable before
any undertaking can be planned. As such, we have a complex of variable, some
being response variables while others as covariates or explanatory variables, and
statistical appraisal of this picture is a prerequisite. This is needed to model a
composite cost-factor analysis based on a stochastic time-dependent C.s; t/; s 2
S; t 2 T which are to be attuned to the other stochastic matrices described before.

Statistically speaking, we need to have the collection of stochastic systems:

.D.s; t/; W.s; t/; R.s; t/; C.s; t//; t 2 T; s 2 S; (2.8)

which are to be incorporated in to a growth model for a composite model. It is
also necessary to account for U.s; t/; t 2 T; s 2 S, the cost for providing health
care contrasted with the resources to match that factor. This is intricately related
to fixation of the health insurance premiums, projection of clinical and medical
personnel cost and revenue sharing from other sources. Even in USA and other
developed countries in the West, the escalating health care cost is a nightmare for
concerned administrations; the problem is undoubtedly much more complex in the
Indian sub-continent and China. This is highly a nonlinear system, and routine
use of standard MANOCOVA or GCM may be grossly inappropriate. It may be
appealing to incorporate some SPDE (as in the PBPK models). However, given the
usual assumptions of white noises following suitable Gaussian laws in such SPDE,
it could be difficult to formulate computationally manageable methodological
justifications of SPDE sans those Gaussian components.

An essential feature of these stochastic processes is that they are not stationary
even in a very broad sense. Time dependence of not only the basic marginal
functions but also their association structures may generally cause tremendous
roadblocks to implement standard GCM models even in a component-wise formu-
lation. Generally, these stochastic processes have some tendency to acquire some
aggregative effects, resulting in usually nonlinear trends. Thus detrending is an
essential task. In the presence of nonlinear trends, usual parametric models may not
only be inadequate but also too irrelevant. Beyond parametrics approaches based on
wave-length methodology and nonparametric smoothing are therefore advocated.
That may invariably need relatively much larger sample size and could run into
cost constraints. It seems that taking into account the basic extraneous factors
a multidimensional, nonstationary, and non-Gaussian process with appropriate
systematic factors (most relevant to the GCM) can only be dome in a more
nonparametric setup with adherence to local (sub- or semi-)martingale features may
lead to more meaningful resolutions. The basic issue may be can there be sufficient
statistical validation and interpretation of data collection and monitoring to induce
the impact of GCM in this largely exploratory field?
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2.5 Concluding Remarks

It is indeed a challenge, especially in the developing countries, to collect reliable
data sets pertaining to the detailed statistical perspective as listed in the preceding
section. In most of the cases, there may be data sets pertaining to marginal morbidity
and mortality rates due to various (competing) causes such as the major diseases
or disorders but not that much of their synergic effects, and on top of that, very
little information on the health care facilities, insurance coverage, actual illness
and disease-free state sojourns, cost of services and individual health insurance
premium, etc. In health care and health services, especially for the senior people,
composite impact of more than one disease or disorder needs to be investigated.
This information can only be obtained through intensive sample surveys. The
sampling frame, cost of sample survey, adequacy of sample size information,
possible adjustment for non-responses, and the need for follow-up sampling, all are
to be formulated in a sound statistical manner. Collecting the relevant information
from census or official publications is likely to be grossly incomplete. In USA and
some other countries, the Bureau of Census, regularly conducts sample surveys to
update the census figures and collect some additional information. Still, they are not
enough to chart out the whole complex of growth models presented in Sect. 2.4.
In the Indian subcontinent, possibly the State Statistical Bureaus and the Central
Statistical Organization can undertake a network of sampling scheme but would
probably require statistical expertise to do it in depth and in a valid way to match the
need of the general objectives of health care plans and health study protocols. There
has been a sustained development of statistical thinking in public health (Sen and
Rao 2000) but their adaption in health care system is one step further that requires
immediate attention. My feeling is that this is a more complex problem beyond
the reach of these organizations present state of activities. On top of that some
other public health enterprises in India may not have the expertise and resources
to undertake such schemes. It is my hope that given such exploratory studies, the
implementation of actual health care plans will be facilitated. A much more detailed
statistical study is indeed needed and intended in the near future.
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