Chapter 2
Tools and Setup

Abstract Chapter 1 provided a gentle introduction to Rcpp and some of its key
features. In this chapter, we look more closely at the required toolchain of compil-
ers and related R packages needed to deploy the Repp package. In particular, on
Windows, the Rtools collection is used and non-gcc compilers are not supported.
On Unix-alike systems such as Linux and OS X, gcc/g++ is the default.

2.1 Overall Setup

The Repp package provides a C++ Application Programming Interface (API) as
an extension to the R system. Because of these very close ties to R itself, it is both
bound by the choices made by the R build system and influenced by how R is
configured.

Some of the requirements for working with Repp and R are:

e The development environment has to comprise a suitable compiler (which is dis-
cussed more in the next section), as well as header files and libraries for a number
of required components (R Development Core Team 2012a).

e R should be built in a way that permits both dynamic linking and embedding; on
Unix-alike systems this is typically ensured by the - -enable-shared-1ib
option to configure (R Development Core Team 2012d, Chapter 8) and most
binary distributions of R are built this way.

e Common development tools such as make are needed which should be standard
on Unix-alike systems (though OS X requires installation of developer tools)
whereas Windows users will have to install the Rtools suite provided via the
CRAN mirror network (R Development Core Team 2012a, Appendix D).

In general, the standard environment for building a CRAN package from source
is required. The (even stronger) requirement of being able to build R itself is a
possible guideline as is documented in R Development Core Team (2012a,d).

D. Eddelbuettel, Seamless R and C++ Integration with Repp, Use R! 64, 19
DOI 10.1007/978-1-4614-6868-4 _2, © The Author 2013

20 2 Tools and Setup

There are a few additional CRAN packages that are very useful along with Repp,
and which the package itself depends upon. These are:

inline which is invaluable for direct compilation, linking and loading of short
code snippets, and used throughout this book too.

rbenchmark which is used to run simple timing comparisons and benchmarks; it
is also recommended by Repp but not required.

RUnit which is used for unit testing; the package is recommended and will only
be needed to rerun these tests but it is not strictly required.

We already saw two of these packages in use in the preceding chapter.

Lastly, users who want to build Repp from the repository source (rather than the
distributed tarfile) also need the highlight binary by André Simon which is used to
provide colored source code in several of the vignettes.

2.2 Compilers

2.2.1 General Setup

A basic requirement for extending a program with suitable loadable binary modules
relates to the compiler being used. But exactly what is suitable can depend on a
number of factors.

The choice of compilers generally matters, and more so for some languages than
for others. The C language has a simpler interface for callable functions which
makes it possible to have a program compiled with one compiler load a module built
with another compiler. In general, this is not an option for C++ due to a much more
complicated interface reflecting some of the richer structures in the C++ language.
For example, how function names, and member function names inside classes, are
represented is not standardized between compiler makers, and this generally pre-
vents mixing of object code between different compilers.

As Repp is of course a C++ application, this last restriction applies and we need
to stick with the compilers used to build R on the different platforms. The CRAN
repository generally employs the same approach of using one main compiler per
platform, and this approach is the one supported by the CRAN maintainers and the
R Core team.

In practice, this means that on almost all platforms, the GNU Compiler Collec-
tion (or gcc, which is also the name of its C language compiler) has to be used along
with the corresponding g++ compiler for the C++ language. One notable excep-
tion is Solaris where the Sun compiler can be used as well; however, this platform is
not as widely available and used, and we will not discuss its particular aspects any
further. Also, on Windows, the prescribed way to access the suitable compiler is via
the Rtools package contributed by the Windows R maintainers (R Development
Core Team 2012a, Appendix D). OS X is an exception as Apple will not ship gcc

2.2 Compilers 21

versions past 4.2.1. Its transition to the clang++ compiler of the LLVM project is
not yet complete as this book is being written. Users on the OS X platform may have
to download tools provided by Simon Urbanek, the R Core maintainer supporting
OS X.

So on Windows, OS X and Linux, the compiler of choice for Repp generally
is the g++ compiler. A minimum suitable version is a final 4.2.* release; releases
earlier than 4.2.* were lacking some C++ features used by Repp. Later versions
are preferred as version 4.2.1 has some known bugs. But generally speaking, as of
2013 the (current) default compilers on all the common platforms are suitable. As
of R version 2.12.0, the Windows platform has switched to version 4.5.1 of g++ in
order to support both 32- and 64-bit builds.

More advanced C++ features from the next C++ standard, C++11, which has
recently been approved by the standards committee will become available once the
compilers support them by default.

2.2.2 Platform-Specific Notes

Windows

Windows is both the most common platform for R use—yet quite possibly the hard-
est to develop on. The reason for this difficulty with R development on Windows
is that the build environment and tools do not come standard with the operating
system. However, due to the popularity of the platform, good support exists in the
form of a third-party package kindly provided by some of the R Core developers
who focus on Windows, namely Brian Ripley and Duncan Murdoch. The Rtools
package, initially distributed via a site maintained by Duncan Murdoch but now
available via the CRAN network, contains all the required tools in a single package.
Complete instructions specific to Windows are available in the “R Administration”
manual (R Development Core Team 2012a, Appendix D).

To stress again what was hinted at above: other compilers are not supported on
Windows. In particular, the popular series of compilers produced by Microsoft can-
not be used to build R from source (for reasons that are beyond the scope of this
discussion) as these compilers are simply not supported by R Core. While it may be
possible to compile some C++ extensions for R using these compilers, the Repp
package follows the recommendation of the R Core team and sticks to the officially
supported compilers. So for the last few years, and presumably for the next few
years too, this limits the choice on Windows to the version of g++ in the Rtools
bundle.

22 2 Tools and Setup

OS X

OS X has become a popular choice of operating system among developers. As
noted in the “R Administration” manual (R Development Core Team 2012a, Ap-
pendix C.4), the Apple Developer Tools (e.g., Xcode) have to be installed (as well
as gfortran if R or Fortran-using packages are to be built). Some older versions
of OS X do not have a C++ compiler that is recent enough for some of the template
code in the Repp; releases starting from “Snow Leopard” should be sufficient.

Unfortunately, Apple and the Free Software Foundation (the organization back-
ing all the GNU software) are at an impasse over licensing. The GNU Compiler
Collection now uses version 3 of GNU General Public License which Apple deems
unsuitable for its operating system. As became cleat in 2011, it seems that g++
version 4.2.1 will be the last version available from Apple, which is unfortunate as
more current g++ releases have made great strides towards adding new features of
the upcoming C++ language standard. However, the c1lang++ compiler from the
LLVM should eventually provide a full-featured replacement.

Linux

On Linux, developers need to install the standard development packages. Some
distributions provide helper packages which pull in all the required packages; the
r-base-dev package on Debian and Ubuntu is an example.

In general, whatever tools are needed to build R itself will be sufficient to build
Repp from source, and to build packages utilizing Repp.

Other Platforms

Few other platforms appear to be in widespread use. The CRAN archive runs re-
gression tests against Solaris and its Sun compiler. However, as we do not have
direct access to the platform, development and debugging of Repp is somewhat
cumbersome on this platform. Moreover, we have not yet detected measurable in-
terest among the population of possible users. That said, Repp plugs into general R
facilities for building packages, and the clear intent is to have Repp install and work
on every platform supported by R itself.

2.3 The R Application Programming Interface

The R language and environment supports an application programming interface,
or API for short. The API is described in the “Writing R Extensions” manual
(R Development Core Team 2012d), and defined in the header files provided with
every R installation. The R Core group usually stresses that only the public API
should be used as other (undocumented) functions could change without notice.

2.4 A First Compilation with Repp 23

Several books describe the API and its use. Venables and Ripley (2000) is an
important early source. Gentleman (2009) and Matloff (2011) are more recent addi-
tions, while Chambers (2008) is authoritative in the context of “Programming with
Data.”

There are two fundamental extension functions provided: .C () and .Call ().
The first, . C () first appeared in an earlier version of the R language and is much
more restrictive. It only supports pointers to basic C types which is a very severe
restriction. More current code uses the richer . Call () interface exclusively. It can
operate on the so-called SEXP objects, which stands for pointers to S expression
objects. Essentially everything inside R is represented as such a SEXP object, and
by permitting exchange of such objects between the C and C++ languages on the
one hand, and R on the other hand, programmers have the ability to operate directly
on R objects. This is key for Repp as well—and the principal reason why Repp
works exclusively with . Call ().

Repp essentially sits on top of this API offered by R itself and provides a com-
plementary interface to those aiming to extend R. By leveraging facilities available
to C++ programmers (but not in plain C), Repp can offer what we think is an eas-
ier to use and possibly even more consistent interface that is closer to the way R
programmers work with their data.

2.4 A First Compilation with Repp

Having discussed the required compiler and toolkit setup, and having seen introduc-
tory examples in Chap. 1, it is now appropriate to address how to use these tools on
an actual source file. In doing so, we will use the explicit commands to illustrate the
different steps required. Shorter and more convenient alternatives will be discussed
later.

We consider the first example from the introductory chapter and assume that both
the fibonacci function and the wrapper have been saved in a file fibonacci . cpp.
Then, on a 64-bit Linux computer with Repp installed in a standard location, we can
compile it via the example shown in Listing 2. 1.

sh> PKG CXXFLAGS="-I/usr/local/lib/R/site-library/Rcpp/include" \
PKG LIBS="-L/usr/local/lib/R/site-library/Rcpp/lib -1Rcpp" \
R CMD SHLIB fibonacci.cpp

g++ -I/usr/share/R/include -DNDEBUG \
-I/usr/local/lib/R/site-library/Rcpp/include \
-fpic -g -03 -Wall -c fibonacci.cpp -o fibonacci.o

g++ -shared -o fibonacci.so fibonacci.o \
-L/usr/local/lib/R/site-library/Rcpp/lib -1Rcpp
-Wl,-rpath, /usr/local/lib/R/site-library/Rcpp/lib \
-L/usr/1lib/R/1lib -1R

Listing 2.1 A first manual compilation with Repp

w

24 2 Tools and Setup

Execution of R CMD SHLIB triggers two distinct g++ invocations. The first
command (on line four) corresponds to R CMD COMPILE to turn a given source
file into an object file. The second command (on line eight) corresponds to R CMD
LINK and uses the g++ compiler a second time to link the object file into a shared
library. This creates the file fibonacci . so which we can load into R. Also note
how two environment variables are defined on lines 1 and 2 to let R know where to
find the header files and libraries required for use with Repp.

But before we get to that step, let us review a few of the issues with the approach
described here:

1. On line one, we have to set two environment variables, one each for the header
file location (via PKG_CXXFLAGS) and one for the library location and name
(via PKG_LIBS).

2. Both these variables use explicit path settings which are not portable across com-
puters, let alone operating systems.

3. File extensions are operating-system dependent, the shared library ends on . so
on Linux but . dy1lib under OS X.

To address some of these concerns, Repp offers two helper functions which can
be invoked using the scripting front-end Rscript.

sh> PKG CXXFLAGS=‘Rscript -e ’'Rcpp:::CxxFlags ()’ \
PKG LIBS=‘Rscript -e 'Rcpp:::LdFlags ()’ \
R CMD SHLIB fibonacci.cpp

Listing 2.2 A first manual compilation with Repp using Rscript

Running the example in Listing 2.2 results in the same two commands as above.
But this approach improves over the previous one:

1. By using commands to request information which is returned in a portable fash-
ion freeing the user from having to specify these details.

2. The helper functions are part of the Repp package and can therefore impute the
relevant locations in a portable manner.

3. Moreover, the helper functions also know the operating system details and there-
fore are able to supply the required per-operating system details such as file
extensions.

The end result is that we have a single command that works across platforms,’

including portably in a Makefile. So we can now use this file in R.

R> dyn.load ("fibonacci.so")
R> .Call ("fibWrapper", 10)
[1] 55

Listing 2.3 Using the first manual compilation from R

1 Well, Windows user may have to set the two environment variables differently but that is a shell
limitation in Windows and not an issue with Repp.

2.5 The Inline Package 25

We can load the shared library via the dyn.load () function. It uses the full
filename, including the explicit platform-dependent extension which is .so on
Unix, .d11 on Windows, and . dy1lib on OS X. Once the shared library is loaded
into the R session, we can then call the function £ ibWrapper using the standard
.Call () interface. We supply the argument n to compute the corresponding Fi-
bonacci number and obtain the requested result.

So this example proves the point we were trying to make in this section: we can
extend R with simple C++ functions, even though the process of doing so may
seem somewhat involved and intimidating at first. The inline package discussed in
the next section and the Repp attributes extension discussed in the following section
make the build process a lot more seamless to use.

2.5 The Inline Package

We saw in the previous chapter how to compile, link, and load a new function for use
by R. We will now look more closely at a tool first mentioned in that introductory
chapter which greatly simplifies this process.

2.5.1 Overview

Extending R with compiled code requires a mechanism for reliably compiling, link-
ing, and loading the code. Doing this in the context of a package is preferable in
the long run, but it may well be too involved for quick explorations. Undertaking
the compilation manually is certainly possible. But, as the previous section showed,
also somewhat laborious.

A better alternative is provided by the inline package (Sklyar et al. 2012) which
compiles, links, and loads a C, C++ , or Fortran function—directly from the R
prompt using simple functions cfunction and ecxxfunction. The latter pro-
vides an extension which works particularly well with Repp via the so-called plug-
ins which provide information about additional header file and library locations; and
a third function, rcpp, which defaults to selecting that plugin for use with Repp.

The use of inline is possible as Repp itself can be installed and updated just like
any other R package using, for example, the install.packages () function for
initial installation as well as update . packages () forupgrades. So even though
R / C++ interfacing would otherwise require source code, the Repp library is
always provided ready for use as a pre-built library through the CRAN package
mechanism.?

2 This presumes a platform for which pre-built binaries are provided. Repp is available in binary
form for Windows and OS X users from CRAN, and as a . deb package for Debian and Ubuntu
users. For other systems, the Repp library is automatically built from source during installation or
upgrades.

26 2 Tools and Setup

The library and header files provided by Repp for use by other packages are in-
stalled along with the Repp package. When building a package, the LinkingTo:
Rcpp directive in the DESCRIPTION file lets R properly reference the header
files automatically. That makes usage easier than for direct compilation via R
CMD COMPILE or R CMD SHLIB (as in the previous section) where the func-
tion Rcpp: : : CxxFlags () can be used to export the header file location and the
appropriate -I switch. The Repp package also provides appropriate information
for the -L switch needed for linking via the function Rcpp: : :LdFlags (). It
can be used by Makevars files of other packages, or to directly set the variables
PKG CXXFLAGS and PKG_LIBS, respectively.

The inline package makes use of both these facilities. All of this is done behind
the scenes without the need for explicitly setting compiler or linker options. More-
over, by specifying the desired outcome rather to explicitly encode it, we provide a
suitable level of indirection that permits the Repp package to completely abstract
away the operating system-specific components. Usage of Repp via inline is there-
fore as portable as R itself: the same code will run on Windows, OS X, and Linux
(provided the required tools are present as discussed earlier).

A standard example for a function extending R is a convolution of two vectors;
this example is used throughout the “Writing R Extensions” manual (R Develop-
ment Core Team 2012d). This convolution example can also be rewritten for use by
inline as shown below. The function body is provided by the R character variable
src, the function header (and its variables and their names) is defined by the ar-
gument signature, and we only need to enable plugin=="Rcpp" to obtain a
new R function fun based on the C++ code in src:

R> src <- '

+ Repp: :NumericVector xa(a) ;

+ Rcpp: :NumericVector xb (b) ;

+ int n xa = xa.size(), n xb = xb.size();
+

+ Rcpp: :NumericVector xab(n xa + n xb - 1);
+ for (int 1 = 0; i < n_xa; i++)

+ for (int j = 0; j < n_xb; j++)

+ xab[i + j] += xalil » xb[j];

+ return xab;

o, 0

R> fun <- cxxfunction (signature (a="numeric", b="numeric"),
+ src, plugin="Rcpp")

R> fun(1:4, 2:5)

[1] 2 7 16 30 34 31 20

Listing 2.4 Convolution example using inline

With one assignment—albeit spanning lines one to eleven—to the R variable
src, and one call of the R function cxxfunction (provided by the inline pack-
age), we have created a new R function fun that uses the C++ code we assigned
to src—and all this functionality can be used directly from the R prompt making
prototyping with C++ functions straightforward.

2.5 The Inline Package 27

Note that with version 0.3.10 or later of inline, a convenience wrapper rcpp
is available which automatically adds the plugin="Rcpp" argument so that the
invocation in Listing 2.4 could also have been written as

fun <- rcpp(signature (a="numeric", b="numeric"), src)

but we will generally use the cxxfunction () form.

A few further options are noteworthy at this stage. Adding verbose=TRUE
shows both the temporary file created by cxxfunction () and the invocations by
R CMD SHLIB. This can be useful for debugging if needed. Listing 2.5 shows
the generated file. Noteworthy aspects include the function declaration with the
randomized function name, and the signature with the two variable names implied
from the signature () argumentto cxxfunction. Also shown are the macros
BEGIN RCPP and END_RCPP discussed in Sect. 2.7.

Other options permit us to set additional compiler flags as well as additional
include directories as shown in the next section.

2.5.2 Using Includes

As mentioned in the previous section, cxxfunction offers a number of other
options. One aspect that we would like to focus on now is includes. As seen
in Sect. 1.2.7, it allows us to include another block of code to, say, define a new
struct or class type.

An example is provided by the following code sample from the Rcpp FAQ which
was created after a user question on the Repp mailing list. A simple templated class
which squares its argument is created in a code snippet supplied via include. The
main function then uses this templated class on two different types:

R> inc <- '

+ template <typename T>

+ class square : public std::unary function<T,T> {
+ public:

+ T operator () (T t) const { return t*t ;}

+)i

R> src <- '

+ double x = Rcpp::as<doubles>(xs) ;

+ int i = Rcpp::as<int>(is);

+ square<double> sqdbl;

+ square<int> sqgint;

+ Rcpp: :DataFrame df =

+ Rcpp: :DataFrame: :create (Rcpp: :Named ("x", sqdbl (x)),

+ Rcpp: :Named ("i", sqgint(i)));

+ return df;

R> fun <- cxxfunction (signature (xs="numeric", is="integer"),
+ body=src, include=inc, plugin="Rcpp")

R> fun(2.2, 3L)

21

23

25

27

29

31

33

35

37

39

41

43

45

28

2 Tools and Setup

>> Program source

W J 0 Ul b W N

o}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// includes from the plugin

#include <Rcpp.h>

#ifndef BEGIN RCPP
#define BEGIN_ RCPP
#endif

#ifndef END RCPP
#define END RCPP
#endif

using namespace Rcpp;

// user includes

// declarations
extern "C" {
SEXP file2370678f8cfe (SEXP a, SEXP b) ;

}
// definition

SEXP file2370678f8cfe(SEXP a, SEXP b) {
BEGIN_RCPP

Rcpp: :NumericVector xa(a);
Rcpp: :NumericVector xb(b) ;

int n xa = xa.size(), n xb = xb.size();
Rcpp: :NumericVector xab(n xa + n_xb - 1);
for (int 1 = 0; i < n_xa; i++)

for (int j = 0; j < n_xb; j++)

xab[i + j] += xali]l * xb[j];
return xab;

END_ RCPP

}

Listing 2.5 Program source from convolution example using inline in verbose mode

21

2.5 The Inline Package 29

x i
1 4.84 9

Listing 2.6 Using inline with include=

This code example uses a few Rcpp items we have not yet encountered such as
the DataFrame class or the static create method (and these will be discussed
later). We again see the explicit converter Rcpp: :as<> () used to access scalar
types integer and double passed to C++ from R.

More important is the definition of the sample helper class square. It derives
from a public class std: :unary function templated to the same argument
and return type. It also defines just one operator () which, unsurprisingly for a
class called square, returns its argument squared.

The example demonstrates that while cxxfunction may be of primary use for
short and simple test applications, it can also be used to test in more complicated
setups. In fact, the plugin structure discussed in the next section allows for even
more customization, should it be needed. The ReppArmadillo, ReppEigen, and
ReppGSL packages discussed in the final part of the book all use this facility via a
plugin generator.

2.5.3 Using Plugins

We have seen the use of the options plugin="Rcpp" in the previous examples.
Plugins provide a general mechanism for packages using Repp to supply additional
information which may be needed to compile and link the particular package. Ex-
amples may include additional header files and directories, as well as additional
library names to link against as well as their locations.

Without going into too much detail about how to write a plugin, we can eas-
ily illustrate the use of a plugin. Below is a example which shows the code un-
derlying the fastLm () example from ReppArmadillo. We will rebuild it using
cxxfunction from inline:

R> src <- '

+ Rcpp::NumericVector yr(ys);

+ Rcpp::NumericMatrix Xr (Xs) ;

+ int n = Xr.nrow(), k = Xr.ncol();

+

+ arma::mat X(Xr.begin(), n, k, false);

+ arma::colvec y(yr.begin(), yr.size(), false);

+

+ arma::colvec coef = arma::solve(X, vy); // fit yv 7 X
+ arma::colvec res = y - Xxcoef; // residuals
+

+ double s2 = std::inner product (res.begin(),res.end(),
+ res.begin () ,double())
+ / (n - k);

+ arma::colvec se = arma::sqgrt(s2 =*

16

20

22

24

6

16

20

2!

[N

30 2 Tools and Setup

+ arma::diagvec (arma: :inv (arma::trans (X) *X))) ;

+

+ return Rcpp::List::create (Rcpp::Named ("coef")= coef,

+ Rcpp: :Named ("se") = se,

+ Rcpp: :Named ("df") = n-k);

.

R> fun <- cxxfunction (signature (ys="numeric", Xs="numeric"),
+ src, plugin="RcppArmadillo")

R> ## could now run fun(y, X) to regress y ~ X

Listing 2.7 A first ReppArmadillo example for inline

This illustrates nicely how inline can be used to compile, link, and load packages
on the fly, even when these packages depend on several other R packages. In the case
of ReppArmadillo, which integrates the Armadillo C++- library, the dependency is
on both ReppArmadillo and Repp. The plugin provides the necessary information
to compile and link this example.

2.5.4 Creating Plugins

A simple example of how to modify a plugin is provided in the Rcpp-FAQ vignette.
This example is centered around using the GNU Scientific Library (or GNU GSL,
or just GSL for short) along with R. The GSL is described in Galassi et al. (2010).
The example here illustrates how to set a fixed header location. A more compre-
hensive example might also attempt to determine the location, possibly by query-
ing the gs1-config helper script as done in the ReppGSL package discusses in
Chap. 11.

R> gslrng <- '/

int seed = Rcpp::as<ints>(par) ;

gsl rng env_setup() ;

gsl rng *r = gsl rng alloc (gsl rng default);
gsl rng set (r, (unsigned long) seed) ;

double v = gsl rng get (r);

gsl rng free(r);

return Rcpp::wrap (v) ;

o+ o+ o+ o+ o+ o+ o+

R> plug <- Rcpp:::Rcpp.plugin.maker (

+ include.before = "#include <gsl/gsl rng.h>",

+ libs = paste("-L/usr/local/lib/R/site-library/Rcpp/lib "
+ "-1Rcpp -W1l,-rpath,"

+ "/usr/local/lib/R/site-library/Rcpp/lib ",
s "-L/usr/lib -1gsl -1lgslcblas -1lm", sep=""))
R> registerPlugin ("gslDemo", plug)

R> fun <- cxxfunction (signature (par="numeric"),

+ gslrng, plugin="gslDemo")
R> fun(0)

[1] 4293858116

R> fun(42)

[1] 1608637542

R>

Listing 2.8 Creating a plugin for use with inline

2.6 Rcpp Attributes 31

Here the Repp function Recpp.plugin.maker is used to create a plugin
named plug. We specify the inclusion of the GSL header file declaring the ran-
dom number generator functions. We also specify the required libraries for linking
against the GSL (with values suitable for a Linux system). Subsequently, the plugin
is registered and deployed in a call to cxxfunction (). Finally, we test the new
function and generate two random draws for two different initial seeds.

2.6 Rcpp Attributes

A recent addition to Repp provides an even more direct connection between C++
and R. This feature is called “attributes” as it is inspired by a C++ extension of
the same name in the new C++11 standard (which will be available to R users only
when CRAN permits use of these extension, which may be years away).

Simply put, “Rcpp attributes” internalizes key features of the inline package
while at the same time reusing some of the infrastructure built for use by inline
such as the plugins.

“Repp attributes” adds new functions sourceCpp to source a C++ function
(similar to how source is used for R code), cppFunction for a similar creation
of a function from a character argument, eval Cpp for a direct evaluation of a C++
expression and more.

Behind the scenes, these functions make use of the existing wrappers as<> and
wrap and do in fact rely heavily on them: any arguments with existing convert-
ers to or from SEXP types can be used. The standard build commands such as R
RMD COMPILEandR CMD SHLIB are executed behind the scenes, and template
programming is used to provide compile-time bindings and conversion.

An example may illustrate this:

cpptxt <- 7
int fibonacci (const int x) {
if (x < 2) return (x);
return (fibonacci(x - 1)) + fibonacci(x - 2);

}r

fibCpp <- cppFunction (cpptxt) # compiles, load, links,

Listing 2.9 Example of new cppFunction

cppFunction returns an R function which calls a wrapper, also created by
cppFunction in a temporary file which it also builds. The wrapper function in
turn calls the C++ function we passed as a character string. The build process
administered by cppFunction uses a caching mechanism which ensures that
only one compilation is needed per session (as long as the source code used is un-
changed).

Alternatively, we could pass the name of a file containing the code to the function
sourceCpp which would compile, link, and load the corresponding C++ code
and assign it to the R function on the left-hand side of the assignment.

32 2 Tools and Setup

These new attributes can also use inline plugins. The following simple exam-
ple uses the plugin for the ReppGSL package (which is discussed more fully in
Chap. 11). The program itself is not that interesting: we merely use the definitions
of five physical constants.

R>code <- '

+ #include <gsl/gsl const mksa.h> // decl of constants
n,

+ std::vector<double> volumes () {

+ std: :vector<double> v (5) ;

+ v[0] = GSI, CONST MKSA US GALLON; // 1 US gallon

+ v[1l] = GSL_CONST MKSA CANADIAN GALLON; // 1 Canadian gallon
+ v[2] = GSI, CONST MKSA UK_GALLON; // 1 UK gallon

+ v[3] = GSL_CONST_MKSA QUART; // 1 quart

+ v[4] = GSI, CONST MKSA PINT; // 1 pint

+ return v;

+ }!

R>

R> gslVolumes <- cppFunction (code, depends="RcppGSL")

R> gslVolumes ()

[1] 0.003785412 0.004546090 0.004546092 0.000946353 0.000473176
R>

Listing 2.10 Example of new cppFunction with plugin

But as inline is very mature and tested, and as the attributes functions are at
this point not of comparable maturity, the remainder of the book will continue to
use inline and its slightly more verbose expression. Going forward more new docu-
mentation will probably be written using the new functions once the interface stabi-
lizes. Transitioning from one system to the other is seamless as the examples above
indicated.

2.7 Exception Handling

C++ has a mechanism for handling exceptions. At a conceptual level, this is sim-
ilar to what R programmers may already be familiar with via the tryCatch ()
function, or its simpler version try ().

In essence, inside a segment of code preceded by the keyword t ry, an exception
can be thrown via the keyword t hrow followed by an appropriately typed exception
object which is typically inherited from the std: : exceptions type.

The following example may illustrate this.

extern "C" SEXP fun(SEXP x) {
try {
int dx = Rcpp::as<int>(x);
if (dx > 10)
throw std::range_error("too big");
return Rcpp::wrap (dx » dx);
} catch(std::exceptions& _ ex_) {

2.7 Exception Handling 33

forward exception to r(ex);

} catch(...) {

::Rf_error("c++ exception (unknown reason)");
}
return R NilValue; // not reached

}

Listing 2.11 C-++ example of throwing and catching an exception

For reasons that will become apparent in a moment, we are showing a complete
function rather than a just short snippet used with cxxfunction () from the in-
line package.

If this function is compiled and linked (with appropriate flags to find the Repp
headers and library), we can call it as

R> .Call ("fun", 4)

[1] 16

R> .Call ("fun", -4)

[1] 16

R> .Call("fun", 11)

Error in cpp_exception (message = "too big",
class = "std::range error") : too big

R>

Listing 2.12 Using C++ example of throwing and catching an exception

As the code tests only whether the argument is larger than 10, both 4 and —4
are properly squared by this (not very interesting) function. For the argument 11,
however, the exception is triggered via the throw followed by exception of type
std: :range_ error with a short text indicating that the argument is too large
for the assumed parameter limitation.

What happens after the throw is that a suitable catch () segment is identified.
Here, as the exception was typed with a type inherited from the standard exception,
the first branch is the one the code enters. The exception is then passed to an internal
Repp function which converts it into an R error message. And indeed, at the R level,
we see both that an exception was caught and what its type was.

This is a very useful mechanism that permits the programmer to return control to
the calling instance (here the R program) with a clearly defined message.

We can illustrate this last point with a second example. What happens when we
call the function with a non-numeric argument?

R> .Call("fun", "ABC")
Error in cpp_ exception (message = "not compatible with INTSXP",
class = "Rcpp::not_ compatible")
not compatible with INTSXP
R>

Listing 2.13 C-++ example of example from Repp-type checks

Here the function is called with a character variable which cannot be used in the
assignment to the integer variable dx. So an exception is thrown by the templated
Repp function as which is templated to an integer type (written as as<ints>)

o

34 2 Tools and Setup

here. The exception that is thrown is of type Rcpp: :not compatible which
also inherits from the standard exception and a proper R error message is generated.
Similar messages will be shown if the Repp types discussed in the next two chapters
are instantiated with inappropriate types.

If no matching type is found, the default catch branch is executed. Here, it
simply calls the error function of the R API with a constant text message.

Because the framework of the try statement (preceding the actual code block)
and the catch clauses at the end are in fact invariant, they can also be expressed as
a simple unconditional macro. Such macros are provided by Repp. Their definitions
are shown in Listing 2. 14.

#ifndef BEGIN_RCPP
#define BEGIN RCPP tryf{
#endif

#ifndef VOID END_RCPP
#define VOID END RCPP } \

catch (std::exception& ex) { \
forward exception to r(ex); \
P
catch(...) { \
::Rf error ("c++ exception (unknown reason)"); \
}
#endif

#ifndef END_RCPP
#define END_RCPP VOID END RCPP return R _NilValue;
#endif

Listing 2.14 C-+ macros for Repp exception handling

These macros are also used by cxxfunction () so that the following function
is fully equivalent to Listing 2.11.

src <- ’‘int dx = Rcpp::as<ints>(x);

if(dx > 10)

throw std::range_ error ("too big");

return Rcpp::wrap(dx * dx);
")
fun <- cxxfunction (x="integer", body=src, plugin="Rcpp")
fun (3)
[11 o
fun (13)
Error: too big

Listing 2.15 inline version of C++ example of throwing and catching an exception

Thanks to inline, this version is much easier to compile, link, and load. And of
course, an Repp attributes version can be written just as easily:

cppFunction (’
int fun2 (int dx) {
if (dx > 10)

2.7 Exception Handling 35

4 throw std::range_error("too big");
return dx * dx;
6 }

")

s fun2 (3)
[11 o

10 fun2 (13)
Error: too big

Listing 2.16 Rcpp attributes version of C++ example of throwing and catching an exception

The proper exception handling framework by Repp is provided automatically in
both cases by adding the required code to the generated files.

2 Springer
http://www.springer.com/978-1-4614-6867-7

Seamless R and C++ Integration with Rcpp
Eddelbuettel, D.

2013, X0V, 220 p. 7 illus., 4 illus, in color, Softcover
ISBEN: @78-1-4614-6B67-7

	2 Tools and Setup
	2.1 Overall Setup
	2.2 Compilers
	2.2.1 General Setup
	2.2.2 Platform-Specific Notes

	2.3 The R Application Programming Interface
	2.4 A First Compilation with Rcpp
	2.5 The Inline Package
	2.5.1 Overview
	2.5.2 Using Includes
	2.5.3 Using Plugins
	2.5.4 Creating Plugins

	2.6 Rcpp Attributes
	2.7 Exception Handling

