
A.H. Louie, The Reflection of Life, IFSR International Series on Systems Science  
and Engineering 29, DOI 10.1007/978-1-4614-6928-5_2,  
© Springer Science+Business Media New York 2013 

29 

2 
From Points to Sets 
 
 
 
 
 
 
 
 

 
He made loops of blue on the edge of the outermost curtain of 
the first set; likewise he made them on the edge of the outermost 
curtain of the second set; he made fifty loops on the one curtain, 
and he made fifty loops on the edge of the curtain that was in the 
second set; the loops were opposite one another. 
 
 — Exodus 36:11–12 

 
 
Congregatio:  Set-Valued Analysis 
 
2.1  Set-Valued Mapping  From the forms of the ‘point-to-set mappings’ 

:F  in Section 1.26 (cf. (21), (23), (25), and (27) therein), one may 
naturally proceed to define a set-valued mapping thus: 
 
Definition A A set-valued mapping from set X  to set Y  is a relation 
F X Y  (Definition 1.3).  It may be denoted  
 
(1)     :F X –l Y ,  
 
such that for each x X ,  
 
(2)     : ,F x y Y x y F Y . 
 
 Note the point-to-set nature of a set-valued mapping (as opposed to ‘point-to-
point’ for a standard mapping; cf. Section 1.6).  This relaxation of characteristic 
1.24.ii thus includes, when F x  contains more than one element, Hardy’s 
allowance of mappings in which to a point may plurally “correspond values of y .”   
Note, also, the possibility that for some x X , it may happen that  F x .  
This relaxation of characteristic 1.24.i thus includes Hardy’s allowance of 
mappings in which values may correspond to only “some values of x ”. 
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 Note the special ‘forked arrow’  –l  that I have chosen to denote set-valued 
mappings, in distinction from  for a standard (single-valued) mapping.  In this 
chapter when I introduce the concept of set-valued mapping and its properties, I 
shall also use capital letters to denote set-valued mappings, e.g., :F X –l Y, while 
use lowercase letters to denote standard mappings, e.g., :f X Y .  This  F–
versus–f  distinction may not, however, necessarily continue in later chapters, but 
the two different arrows will remain as the characterizing form. 
 In a set-valued mapping’s element-chasing form, one may write 
 
(3)     :F x F x . 
 
The ‘source’ of F  is still a point x X , but now the value of the mapping F  at 
the element x  is a set F x Y .  The source (material cause) and the value 
(final cause) of a set-valued mapping are thus different in kind from each other, 
they belonging to different hierarchical levels (‘point’ versus ‘set’).  (For a review 
of the identification of Aristotle’s four causes with components of a mapping, see 
ML: Chapter 5.) 
 A standard (single-valued) mapping (as defined in 1.4) :f X Y  may be 
considered a very specialized set-valued mapping :F X –l Y  such that, for each 
x X , the value  
 
(4)     F x f x  
 
is a singleton set.  Indeed, one can make the formal definition: a set-valued 
mapping :F X –l Y  is called single-valued  if for each x X , F x  is a 
singleton set.  A ‘single-valued set-valued mapping’ :F X –l Y  therefore defines 
a ‘standard’ mapping :f X Y  by :f x  the single element in F x .  Thus 
‘single-valued set-valued mapping’ and ‘mapping’ are equivalent terms. 
 Since a set-valued mapping :F X –l Y  takes its values in the family of 
subsets of Y  (i.e., the power set Y  of Y ), one may alternatively consider  
 
Definition B A set-valued mapping from set X  to set Y  is a (single-valued) 
mapping :F X Y . 
 
 In algebraic terms, the two definitions are equivalent.  In topological terms (cf. 
Hadamard’s property iii in 1.25), however, because of the complicated power-set 
topology of Y  induced by the topology of Y , it is often advantageous to use 
Definition A. 
 
2.2  Definition Let :F X –l Y  be a set-valued mapping.  The graph of F  is 
defined as F  in its relational form; i.e., 
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(5)  , : , : ,F x y X Y y F x x y X Y x y F X Y . 
 
(Compare this with the ‘graph of f ’ in Section 1.6.) 
 
2.3  Domain The domain of the set-valued mapping :F X –l Y  is the set X , 
denoted by dom F . 
 
 The word ‘domain’ is from the Latin domus, ‘house, home’.  Thus the domain 
of a mapping is the set of values for which the mapping ‘feels at home’ (in the 
idyllic and idealistic sense of the set of values that ‘do not cause the mapping any 
trouble’).  In addition, the related Latin word dominus means ‘lord, master’ 
literally ‘one who rules the home’, or ‘one who owns the domain’. Thus the 
domain of a mapping is the set of values that the mapping ‘owns’ or ‘has control 
of’.   
 There is a subtle difference in the definitions of ‘domain’ of a set-valued 
mapping and a (single-valued) mapping, as respectively given in 2.3 and 1.5.  
When a mapping is considered as a relation f X Y , one has dom f X .  
But, as I mentioned in Section 1.24, in the notation :f X Y  for a standard 
mapping, the convention is that one implicitly takes dom f X  (whence for 

every x X , f x  is defined and it is a single element in Y ).  Contrariwise, for 
a set-valued mapping :F X –l Y, F  is still defined at those x X  for which 
F x .  One has dom F X  in both interpretations of F , as the relation 

F X Y  and as the point-to-set mapping :F x F x  from X  to Y .   
 
2.4  Definition The projections of the graph of F  onto its first and second 
components are, respectively, the corange and the range of F ,  
 
(6)     cor :F x X F x , 
 
(7)    ran : for someF y Y y F x x X . 
 
Thus cor F X  and ran F Y , and both inclusions may be proper.  
 
 cor dom corX F F F   is the subset of X  that contains all those 

x X  at which F x .  Note that some authors, however, define the domain 

of F  as :x X F x  instead of X  itself.  But there are category-

theoretic advantages in allowing F x  for domx F .  (I shall return to 
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this point when I presently introduce the category Rel of sets and relations.)  The 
range of F  may also be expressed as 
 
(8)     ran

x X

F F x Y . 

 
 F  (as a relation in X Y ) is thus a subset of the product cor ranF F .  

corx F  means there exists rany F  such that ,x y F ; dually, 

rany F  means there exists corx F  such that ,x y F . 

 If there exists a subset C  of Y  such that F x C  for all x X , then F  is 
called a constant set-valued mapping.  As a relation in X Y , F  is the subset 
X C .  The constant mapping :f x c  (where c Y ) thus defines the constant 

set-valued mapping :F x c .  The universal relation U X Y  from X  to 
Y  (cf. Section 1.3) is the constant set-valued mapping :U X –l Y  that sends 
everything to the set Y , i.e., such that F x Y  for all x X . 
 
2.5  The Constant Empty-Set-Valued Mapping The constant set-valued 
mapping :F X –l Y  that sends everything to the empty set, i.e., such that  
 
(9)     F x    for all x X ,  
 
has  
 
(10)     cor :F x X F x , 
 
(11)     ran F ,  
 
and  
 
(12)   
 
As a relation in X Y , F  is thus the ‘empty relation’  (cf. Section 1.3).   
 Note that the ‘empty relation’  is a legitimate set-valued mapping from set 
X  to set Y , for all sets X  and Y .  This is in contrast to standard mappings, 

when the ‘empty mapping’ : X Y  is only a mapping when X .  Recall 
(ML: A.4) that by convention Y ; thus the ‘empty mapping’  is the only 

mapping from the empty set to any set Y .  If X , however, then f X  

for any mapping f  with dom f X , whence ran f ; so one has 
X  whence X . 

: corx X F x X F X . 
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 It is interesting to note that for any two sets X  and Y , whatever their nature, 
the constant empty-set-valued mapping : X –l Y  is the same one.  There is 
only one constant empty-set-valued mapping because there is only one empty set.  
Suppose 1  and 2  are two empty sets.  Then 1x   2x , since there is 
no 1x  to contradict this statement; thus 1 2 .  Likewise, 2 1 .  
Therefore, 1 2 .   
 The map that is a ‘perfect and absolute blank’ of Lewis Carroll’s Bellman is 
an example of a constant empty-set-valued mapping (indeed, a manifestation of 
the empty set) .  As a material system, a blank sheet of paper is, of course, 
structurally nonempty, but, as a map, it functions as the empty set. 
 
2.6  Definition For a set-valued mapping :F X –l Y, the set Y  is called the 
codomain of F , denoted by cod F . 
 
 Thus one has the dual relations 
 
(13)   ran codF F Y , cor domF F X . 
 
2.7  Definition A set-valued mapping :F X –l Y   is: 
 
  i. Surjective  if 
 
(14)     ran codF F Y  
  
 ii. Semi-single-valued  if   
 
(15)    1 2 1 2F x F x F x F x  
 
iii. Injective  if 
 
(16)     1 2 1 2x x F x F x  
 
 (which is contrapositively equivalent to  
 
(17)     1 2 1 2F x F x x x ) 
 
 A semi-single-valued mapping :F X –l Y  defines a partition of its range 
ran F ; its distinct values are pairwise disjoint subsets of Y , forming the blocks 
of the partition.  It also defines a partition of its domain X :  one block is 

corX F  (which contains all those x X  for which F x ), and then 
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cor F  is partitioned into blocks that are in one-to-one correspondence with the 

blocks of ran F .   
 A single-valued mapping :f X Y  is clearly also a semi-single-valued 
mapping, and the blocks of the partition of its range f X  are the singleton sets 

f x .  The mapping f  induces an equivalence relation fR  on X  ( 1 2fx R x  iff 

1 2f x f x ), whence defines the single-valued natural mapping, the 
projection :f fX X R , which sends x X  to its fR -equivalence class 

f
fR

x X R  (cf. ML: 2.19–2.21).  The single-valued natural mapping 

:
f

f R
x x  may alternatively be formulated as the set-valued mapping 

:f X –l X  defined by :
f

f R
x x , which sends x X  to 

fR
x X .  f  

is semi-single-valued, since equivalence classes are mutually exclusive. 
 It is also evident that an injective set-valued mapping is semi-single-valued.  
Each block of the partition of the corange of an injective set-valued mapping is a 
singleton set.  An injective single-valued mapping is an injective set-valued 
mapping. 
 
2.8  Embedding For A X , the injective set-valued mapping :i A –l X  
defined by i x x  for all x A  is called the inclusion map  (or the embedding) 
of A  in X .  The inclusion map of X  in X  is called the identity map on X , 
denoted 1X  (whence 1 :X x x ).  These match their definitions as (single-
valued) mappings (cf. Section 1.13).   
 As relations, the inclusion map :i A –l X  is the set , :i x x x A  

A X X X , and the identity map 1 :X X –l X  is the set 1X  

, :x x x X X X .  Thus each is a member of X X  that consists of 
all the ‘diagonal elements’ corresponding to the embedded set. 
 
 
From Sets to Sets  
 
2.9  Definition Let F  be a set-valued mapping from X  to Y .  If E X , the 
image of E  under F  is defined as the set 
 
(18)     

x E

F E F x Y . 

 
 This is the natural extension of Definition 1.8 of image of a (single-valued) 
mapping, whence the mapping in (18) is in fact the ‘power-set map’ 

:F X Y .  It is also evident that 
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(19)     ranF X F , 
 
whence, in particular, that surjective means Y F X . 
 While the definition of a ‘set-to-set’ mapping :f X Y  from a ‘point-
to-point’ mapping :f X Y  only goes one way (as explained in Section 1.18), 
the definition of a ‘set-to-set’ mapping :F X Y  from a ‘point-to-set’ 
mapping :F X –l Y  is reversible.  Given a mapping :g X Y  of power sets, 

the assignment, for x X , F x g x  naturally defines a set-valued 

mapping :F X –l Y  for which g f . 
 The ‘set-to-set’ mapping :F X Y  has the following properties (cf. 
Theorem 1.19): 
 
2.10  Theorem Let :F X –l Y  be a set-valued mapping and ,A B X .  Then: 
 

  i. A F A . 

 ii. A B F A F B . 

iii. F A B F A F B . 

iv. F A B F A F B . 

 v. F B A F B F A . 
 
 Since a (single-valued) mapping is a specialized set-valued mapping through 
the correspondence (4), whatever properties that set-valued mappings have cannot 
be contradictory to (but may be weaker than) their analogs for mappings.  
Properties 2.10.ii–v are identical to their counterparts in Theorem 1.19.  But since 
F x  is allowed, the implication in property 2.10.i now only goes one way. 
 
2.11  Theorem Let :F X –l Y  be a set-valued mapping.  The following are 
equivalent: 
 

  i. F  is injective. 
 ii. For all ,A B X , A B F A F B . 

iii. For all ,A B X , F A B F A F B . 

iv. For all ,A B X , F B A F B F A .  

 v. For all A X , F X A Y F A . 
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2.12  Theorem Let :F X –l Y  be a set-valued mapping.  The following are 
equivalent: 
 

  i. F  is surjective. 
 ii. For all A X , Y F A F X A .    
 
 
Inverse Mapping 
 
2.13  Definition Given a set-valued mapping :F X –l Y, its inverse is the set-
valued mapping 1 :F Y –l X  (equivalently, the relation 1F Y X ) defined by 
interchanging the ordered components in the graph (5) of F : 
 
(20)  1 , : , : ,F y x Y X y F x y x Y X x y F Y X . 
 
 A (single-valued) mapping is not necessarily injective, and so its inverse is 
not necessarily single-valued and hence not (well defined as) a mapping.  But the 
inverse of a set-valued mapping is always a set-valued mapping.  Note, however, 
that 1F  is itself a point-to-set mapping (not a ‘set-to-point mapping’, as a direct 
reversal-of-roles ‘inverse’ of a point-to-set mapping would have been), with its 
value at the point y Y  defined as the set 
 
(21)     1 : ,F y x X x y F X . 
 
Indeed, since both F x  and  1F y  are defined by the membership ,x y F  
(cf. (2) and (21)), one trivially has 
 
2.14  Lemma Let :F X –l Y, x X , and y Y .  Then 
 
(22)     y F x   iff  1x F y . 
 
 While F  maps points in X  to subsets of Y , the inverse 1F  maps points in 
Y  to subsets of X ; so the involvements of the sets X  and Y in F  and 1F  are 
asymmetric.  The situation is more evident if one considers the maps in terms of 
Definition 2.1B: 
 
(23)     :F X Y ,  1 :F Y X . 
 
There is, however, symmetry in corange and range: 
 
(24)   1 1cor ranF F F Y , 1ran corF X F F . 
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Note also that 
 
(25)   1dom codF F X , 1cod domY F F . 
 
And that 
 
(26)     

11F F . 
 
 For :F X –l Y, all the x X  for which F x  are not members of 

cor F  and, therefore, not members of 1ran F .  In other words, when 

corX F , 1F  is not surjective.  If rany Y F , then 1F y .  

Consider the simple example of : 1, 2F –l ,p q  with 1 ,F p q  and 

2F q ; then 1 1F p  and 1 1,2F q .  This 1F  is not semi-
single-valued and (hence) not injective.  Thus, in contrast to an inverse mapping 

1f  (which is only defined from ran f  to X  but is both injective and surjective 

thence, cf. Section 1.15), an inverse set-valued mapping 1F  is defined from Y  to 
X , but is not necessarily either injective or surjective. 

 
2.15  Theorem Let :F X –l Y  and 1 :F Y –l  X   be its inverse.  Then: 
 

  i. If F  is single-valued, 1F  is injective. 
 ii. If F  is injective, 1F  is single-valued. 
iii. If F  is semi-single-valued, 1F  is semi-single-valued. 
 
 
Inverse Images 
 
 If :f X Y  is a mapping and E Y , the inverse image of E  under f , the 

set 1 :f E x X f x E , may be considered in two equivalent ways: 
 

  i. As the set  :x X f x E  

 ii. As the set  :x X f x E  

 
When these two sets are interpreted in set-valued mapping terms (recalling that f  

defines the special singleton-set-valued mapping x f x ), they give two 
different notions of the inverse image of a set E Y : 
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2.16  Definition For a set-valued mapping :F X –l Y  and E Y , 
 

  i.  The inverse image of E  by F  is the set  
 

(27)   1 : if  
if  

x X F x E E
F E

E
. 

 
 ii. The core of E  by F  is the set  
 
(28)     1 :F E x X F x E . 
 
 The two notions i and ii coincide (and are identical to the inverse image in 
Definition 1.12) when the mapping is single-valued, since F x E   iff  

F x E  when F x  is a singleton set.   

 Note that when 1 :F Y –l X  is considered a set-valued mapping itself (as 
opposed to its role as the inverse of another set-valued mapping), for E Y  the 
set 1F E , the image of E  under 1F , has already been defined in 2.9.  It is the 
set 
 
(29)     1 1

y E

F E F y X . 

 
One may verify that this defines the same set as in (27), so the notation is 
consistent.  In particular, for y Y , F x y   iff  y F x   iff  

,x y F , thus 1F y  as defined by (27) when E y  is identical to 
1F y  as defined in (21).   

 The similarity of the word ‘core’ to the symbol ‘ cor ’ for corange may lead to 
confusion, so it is perhaps opportune to clarify here at the outset.  For a set-valued 
mapping :F X –l Y  and E Y , both the corange of F  and the core of E  by F  
are subsets of the domain X  of F : 
 
(30)     cor F X    and   1F E X . 
 
But there are no general inclusion relations between cor F  and 1F E .  Other 
than having the first three letters of their names in common, corange and core are 
very different entities: cor , the corange of , accepts one argument F   that 

is a set-valued mapping, whereas 1 , the core of  by , accepts two 
arguments, the first being a set-valued mapping F  and the second being a subset 
E  of the mapping’s codomain. 



2  From Points to Sets 39 

 The definition of 1F E  implies that 
 
(31)  1 : cor dom corF x X F x X F F F ;  
 
i.e., 1F  is the subset of X  that contains all those x X  at which 

F x , and it is not necessarily the empty set.  Equivalently, (31) says 
 
(32)  1 1cor : domF x X F x X F F F . 
 
Note that for every E Y ,  
 
(33)     1 1F F E , 
 
and  
 
(34)     1 1F E X F . 
 
This last inclusion says that 1 1F E F , which means if 1x F E , 

then F x . 

 Consider the simple example of : 1, 2F –l ,p q  with 1 ,F p q  and 

2F ; then cor 1F , 1 1F p , and 1 2F p .  This 

shows that in general there are no inclusion relations between cor F  and 
1F E  and between 1F E  and 1F E .    

 The same authors who define the domain of F  as :x X F x  (i.e., 

my cor F ) also define their alternate inverse (sometimes called  upper inverse ) 
accordingly, for E Y , as  
 

(35)   1 : and if  
if  

x X F x F x E E
F E

E
. 

 
This puts, for all E Y , 
 
(36)    1 1 corF E X F F . 
 
One sees that 
 
(37)   1 1 1F E F E F   and  1 1F E F  
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(i.e., 1F E  is the union of the disjoint sets 1F E  and 1F ),  and 
 
(38)     1 1F E F E . 
 
Also 
 
(39)     1 1F E F . 
 
In particular, 
 
(40)    1 1 1 corF Y F Y X F F  
 
and 
 
(41)     1F Y X . 
 
2.17  Lemma  For a set-valued mapping :F X –l Y  and E Y ,  
 

(42)     1 1F Y E X F E ; 
 

(43)     1 1F Y E X F E . 
 
With the identities (32) and (37), one has 
 
2.18  Corollary For a set-valued mapping :F X –l Y  and E Y ,  
 

(44)    1 1corF Y E F F E ; 
 

(45)    1 1corF Y E F F E . 
 
 Note that among the three varieties of ‘inverse images’ that I have defined, 
inverse image 1F E , core 1F E , and upper inverse 1F E , only the first is 

associated with an ‘inverse mapping’, viz., 1 :F Y –l X, with  
 
(46)  1 1 : :F y F y x X F x y x X y F x .   
 
While one may similarly define 1F y  and 1F y , 
 

(47)    1 1 :F y F y x X F x y , 
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(48)   1 1 : andF y F y x X F x F x y , 
 
the resulting mappings are not very useful.  The restriction (48) means 1F y  

would contain only those x X  for which F x  is the singleton set y , and 

(47) just means 1F y  would contain all those x X  for which F x  is either 

the empty set  or the singleton set y , i.e., 1 1 1F y F F y . 
 
2.19  Theorem Let :F X –l Y   and ,A B Y .  Then: 
 

  i. 1A F A . 

 ii. 1 1A B F A F B .      

iii. 1 1 1F A B F A F B .   

iv. 1 1 1F A B F A F B .   

 v. 1 1 1F B A F B F A .   
 
 Compare this with Theorem 2.10 for the corresponding properties of F .  
Note that the two theorems are in fact the same (with the obvious corresponding 
changes due to the replacement of :F X –l Y  in 2.10 by 1 :F Y –l X  in 2.19).  I 
put Theorem 2.19 here to emphasize the point that 1 :F Y –l X is a ‘general’ set-
valued mapping like any other, without any inherent special properties.  This fact 
is different from the case of (single-valued) mappings, for which 1f  only exists 
when f  is injective, and this specialization of f  gives 1f  stronger properties 
that 1f  is necessarily bijective.  Compare Theorems 2.10 and 2.19 with their 
counterparts for f  and 1f , Theorems 1.19 and 1.20.  
 
 
Iterated Mappings of Sets 
 
 Theorem 1.21 lists three properties of the combination of a mapping 

:f X Y  and its (not-necessarily-a-mapping) inverse 1f  when they map sets.  
I shall examine their counterparts for set-valued mappings.   
 
2.20  First Combination Theorem 1.21.i says that for A X , one has 

1A f f A .  But there is no corresponding property 1A F F A  for a 

set-valued mapping :F X –l Y.  Consider the simple example of : 1, 2F –l 
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,p q  with 1F p  and 2F ; then 1 11, 2F F F p  

1 , so 11, 2 1,2F F .   

 Suppose :F X –l Y  and A X .  Recall ((31) above) 1F  is the subset 

of X  that contains all those x X  at which F x .  It follows from (39) 

above that 1 1F F A F ; i.e., 1 corF F A F .  Now 
1F F A  is the set :x X F x F A , so if x A  and F x , 

then 1x F F A .  Thus 1 1A F F F A .  Stated otherwise, if one 

restricts to subsets 1corA F X F , then one does have 
1A F F A .  Conversely, since 1 corF F A F , if 1A F F A , 

then a fortiori corA F .  Thus 
 
2.21  Lemma Let :F X –l Y  .  Then 1A F F A   iff  corA F . 
 
 For :F X –l Y, 1G x F F x  is a set-valued mapping from X  to X .  

Lemma 2.21 says that if corx F  (i.e., if F x ), then 1x F F x , 

which means the ‘diagonal element’ ,x x G .  Let : cori F –l X be the 

inclusion map of cor F  in X  (Section 2.8).  Then as a relation 

, : cor cori x x x F F X X X , whence i G . 

 Subsets A X  for which 1A F F A  are special: 
 
2.22  Definition Let :F X –l Y.  A subset A X  for which 1A F F A  
is called a stable subset  (of X  under F ). 
 
 It follows from Lemma 2.21 that a stable subset must be a subset of cor F .   
 
2.23  Theorem Let :F X –l Y.  The stable subsets form a complemented 

lattice  (a complemented sublattice of the power-set lattice cor F ). 
 

Proof Note that 1F F  and 1 1cor ranF F F F F  

cor F , so  and cor F  (respectively the least element and the 
greatest element of ).   
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 Let corA F , whence 1A F F A  by Lemma 2.21.  A 

nonempty 1F F A A   means the existence of an element x  
1F F A A .  This element x  must be in cor F A , which means 

corF x F F A .  At the same time, 1x F F A A , so a 

fortiori 1x F F A , which means F x F A .  In other words, 
1A F F A   iff  there is no corx F  such that F x F A  

and corF x F F A .  But this equivalent condition is the same 

when A  is replaced by cor F A , since cor corF F A A , 
whence it also defines the conditions under which 

1cor corF A F F F A .  Thus 1A F F A  iff cor F A  

1 corF F F A , and this says A  iff cor F A .   is 

therefore complemented. 
 Let ,A B .  Then, using Theorem 2.10.iii and Theorem 2.19.iii,  

 
(49)   1 1 1F F A B F F A F F B A B , 
 

so A B .  Since cor cor corF A B F A F B , 

one also has A B .   
 
 Theorem 1.22 says that a mapping :f X Y  is injective iff 1A f f A  
for all A X .  Correspondingly, one has 
 
2.24  Lemma A set-valued mapping :F X –l Y is injective iff A  

1F F A   for all  corA F . 
 
When a set-valued mapping :F X –l Y is injective, every subset of cor F  is 

stable; the complemented lattice  of stable subsets is thus all of cor F . 
 
 An injective mapping :f X Y  means 1 1Xf f , the identity mapping 
x x  on the domain X .  But an injective set-valued mapping :F X –l Y means  
 

(50)    1 if cor
if

x x F
F F x

F x
, 
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i.e., 1x F F x  is a disjoint union, the concatenation of the inclusion map i  

of cor F  in X  and the constant empty-set-valued mapping  on 
1 corF X F .  So even for an injective F , the combination 

1G x F F x  is still not quite the identity mapping on X  (unless 
1F ).  When i  and G  are considered as subsets of X X , 

, :G i x x x A  (but not necessarily 1 , :XG x x x X ). 
 
2.25  Second Combination   Given a mapping :f X Y  and B Y , one has 

1B f f B  (Theorem 1.21.ii).  But there is no containment relation between 

B  and 1F F B  for a set-valued mapping :F X –l Y.  Consider the example 

: 1, 2F –l , ,p q r  with 1 ,F p q  and 2F ; then 1 ,F F q r  

1 ,F p q .  This time, even a restriction to ranB F  (dual to A  

cor F  in Lemma 2.21) does not help: in the example, p  1F F p  

1 ,F p q .  Neither does the specialization to surjections:  Theorem 1.23 

says that a mapping :f X Y  is surjective iff 1B f f B  for all B Y .  

But the same F  in my example is a surjective set-valued mapping from 1,2  

onto ,p q , and still p  1 1 ,F F p F p q . 

 Since neither 1x F F x  nor 1y F F y  is necessarily the 
identity mapping on its respective domain, one must understand the usage of the 
term ‘inverse set-valued mapping’ with this in mind: it is not the usual algebraic 
definition in connection with a ‘reversal entity for the recovery of the identity’.  
For this reason, some authors call 1 :F Y –l X  the ‘converse’ of :F X –l Y  
instead of the ‘inverse’. 
 
2.26  Third Combination   Given a mapping :f X Y , A X , and B Y , 

one has  1f A f B f A B   (Theorem 1.21.iii). 

 Consider the example : 1, 2F –l ,p q  with 1 ,F p q  and 2F  

q ; then 11 1 1 ,F F p F p q , but 1F p  

,p q p p .  So they are not equal.  But one does have inclusion: 
 
2.27  Theorem Let :F X –l Y, A X , and B Y .  Then 1F A F B  

F A B . 
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Operations on Set-Valued Mappings 
 
2.28  Definition If :F X –l Y  and :G X –l Y  are two set-valued mappings, 
then: 
 

  i. Their union is the mapping :F G X –l Y  defined by 
 F G x F x G x . 
 

 ii. Their intersection is the mapping :F G X –l Y  defined by 
 F G x F x G x . 
 

iii. Their Cartesian product is the mapping :F G X –l Y Y  defined by  
 F G x  F x G x . 
 
2.29  Theorem Let :F X –l Y  and :G X –l Y.  Then, for A X : 
 

  i. F G A F A G A . 
 

 ii. F G A F A G A . 
 

iii. F G A F A G A . 
 
 Recall (Section 2.4) that :F X –l Y  is a constant (set-valued) mapping if 
there exists a subset C  of Y  such that F x C  for all x X .  This implies 

F A C  for all A X . 
 
2.30  Corollary  Let :F X –l Y  be a constant mapping.  Let :G X –l Y  and 
A X .  Then F G A F A G A . 

 
2.31  Theorem If both  :F X –l Y  and  :G X –l Y  are semi-single-valued, 
then the set-valued mappings  :F G X –l Y   and  :F G X –l Y Y  are semi-
single-valued. 
 
2.32  Theorem If one of  :F X –l Y  and  :G X –l Y  is injective, then the 
set-valued mappings  :F G X –l  Y   and  :F G X –l Y Y  are injective. 
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