
Chapter 2
Networked Control Systems as Stochastic Team
Decision Problems: A General Introduction

2.1 Introduction

Networked control systems can be viewed as stochastic decision problems with
dynamic decentralized information structures or as stochastic dynamic teams, with
each subcontroller viewed as an agent in a dynamic team. The goal of this
introductory chapter is accordingly to introduce the reader to a general mathematical
formulation of stochastic teams, first with static and then with dynamic information
structures, and to discuss some salient features of these decision problems and
associated solution concepts through some simple but illustrative examples.

The chapter discusses both static stochastic teams (i.e., team decision problems
where the information signals received by the decision makers are not affected by
actions) and dynamic stochastic teams (where the information of at least one deci-
sion maker is affected by action). Sections 2.2, 2.3, and 2.6 deal with static teams,
whereas Sects. 2.4 and 2.5 discuss dynamic teams. Section 2.2 provides a general
formulation for static teams, which is followed by a complete analysis of a finite
stochastic team problem under various information patterns, in Sect. 2.3. Section 2.6
provides some general explicit results on existence, uniqueness, and characterization
of optimal solutions first for general static teams and then for special classes of
teams with Gaussian statistics: those with quadratic and exponentiated quadratic
costs.

Sections 2.4 and 2.5 can be viewed as the counterparts of Sects. 2.2 and 2.3
for dynamic teams. First a precise mathematical formulation for dynamic team
decision problems is given, in Sect. 2.4, along with various dynamic information
structures and appropriate solution concepts, and then an illustrative example of
a finite dynamic team is provided in Sect. 2.5, within the framework of which
some important features of optimal solutions in teams are discussed. The chapter
concludes with Sect. 2.7 which provides some bibliographical notes and guidelines
for further reading on the topics covered herein.
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12 2 Networked Control Systems as Stochastic Team Decision Problems. . .

2.2 A Mathematical Framework For Static
Decision Problems

Multiple person stochastic decision problems could be formulated with varying
degrees of generality, abstraction, and rigor, depending on the types of problems to
be solved (i.e., the scope of coverage) and the level of mathematical sophistication
to be expected from the reader. Common to all possible formulations, however, is
the specification of five basic ingredients which are essential for a well-founded
mathematical treatment of decision making under uncertainty. These are:

1. The number of decision makers (synonymously, agents or controllers) and the
sets of alternative actions (synonymously, decisions or controls) available to
them

2. The uncertainty and its probabilistic description
3. The information acquired by each decision maker on the uncertainty and the

previous actions
4. The payoff (or loss) that accrues to each decision maker as a result of joint actions

(over the decision period) and realization of uncertainty
5. A solution concept whereby “best” or “satisfactory” decision rules can be

chosen

Before going into further specification of these entities, let us pause to introduce
some terminology and notation which will be needed in the sequel. We will refer
to a decision problem as static if the information available to each decision maker
is independent of the actions of other decision makers (this statement will be made
precise later in the section as well as in Sect. 3.8); otherwise, the decision problem
is said to be dynamic. We will refer to decision makers interchangeably as agents
or controllers, with the ith one denoted Ai, where i takes values in the set N :=
{1, . . . , N} which is called the agent (decision maker) set. The variable under the
control of each decision maker will be called the action (synonymously, decision
or control) variable and will be denoted by ui for Ai. Each ui will take values in
a given action set to be denoted by U i. Finally, the N -tuple (u1, . . . , uN) will be
denoted by u and the product action space U1 × · · · × UN by U.

Basic Ingredients of Static Decision Problems

In the static framework we will initially study the class of problems where the action
sets, U i, i ∈ N , are either (finitely or infinitely) countable or uncountable but finite
dimensional. In the latter case, we take the action set (space) to be isomorphic to the
Euclidean1 space R

mi , for some integer mi, i ∈ N ; furthermore, if there are any

1Some background material on sets and topological notions can be found in Appendix A.
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constraints imposed on the action variable ui, we introduce the action constraint set
Si, for Ai, as a proper subset of U i.

The uncertainty in the decision problem is captured in the so-called random state
of nature, ξ, which is a random variable (or vector) defined on a given probability
space (Ω,F , PΩ)2 and taking values in the Borel space (Ξ,B(Ξ)) where eitherΞ ≡
R

m for some positive integer m or Ξ is a countable set. Let P be the probability
measure induced by ξ on (Ξ,B(Ξ)), corresponding to PΩ . To save from notation,
the corresponding probability distribution function will also be denoted by P .

The decision makers do not, in general, have direct access to the true state of na-
ture but instead observe the value of some other variable, known as the measurement
(or information) signal. To define this quantity in precise mathematical terms, let us
first introduce, for each i ∈ N , the information field, Yi, for agent Ai as a given
sub σ-field of B(Ξ), generated by a measurable function ηi mapping (Ξ,B(Ξ))
onto (Y i,Bi). This is known as the information function for Ai, and the N -tuple
η := (η1, . . . , ηN ) is called the information structure (or information pattern) of the
decision problem. The information function ηi induces a σ-field, Yi, of Ξ , and the
information (measurement) signal yi of Ai (which lies in the measurement set Y i)
is generated according to ηi, which is symbolically written as

yi = ηi(ξ) ≡ η̃i(ω) , (2.1)

where the latter relates the measurement signal directly to the original probability
space Ω, with elements ω. This is sometimes a more convenient representation to
work with, especially ifΩ is finite or countable. In that case one can considerΩ and
Ξ to be essentially the same set and thereby view Yi also as a partition of Ω, which
is a convention we henceforth adopt. In the case of finite probability spaces we will
also adopt the convention, perhaps by a slight abuse of notation and terminology,
that the measurement signal yi can be considered as an element of the partition
set Yi.

The decision makers determine their actions using the measurement signals that
they receive, under the strategies that they adopt for transforming measurements into
actions. The strategy (synonymously, decision rule (function) or control law) of Ai
will be denoted by γi and is formally defined as a measurable mapping from (Ξ,Yi)
into the space (U i,BUi). This can also be written as a measurable mapping from
(Y i,Bi) to (U i,BUi), as we state explicitly below. We denote the set of all such
mappings, which also satisfy the additional constraints that may have been imposed
on ui, by Γ i, to be called the strategy space of Ai, and note the relationship

ui = γi(yi) = γi(ηi[ξ]),

2Necessary background material on probability theory, along with an explanation of the terminol-
ogy and notation used here, can be found in Appendix B.
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where the latter relates the action variable to the state of nature, ξ. We will denote the
N -tuple (γ1, . . . , γN ) by γ, and the product strategy space Γ 1×· · ·×ΓN by Γ. The
individual strategy spaces Γ i may also include the additional structural constraints
that may have been imposed on the policies, such as linearity. What is not allowed
in general, however, is for Γ to be nonrectangular, that is, for the choice out of Γ i

(for some i) to restrict the choice out of Γ j(j 	= i). For example, our formulation
(at this point) does not cover “cross-constraints” of the type f(ui, uj) ≤ 0, i 	= j,
for some functional f .

Given an (N+1)-tuple (ξ,u) ∈ Ξ ×U, the loss incurred to the decision makers
viewed collectively as a team will be denoted by L(ξ,u), where the function
L : Ξ × U → R is known as the loss function for the team. Its negative,
−L(ξ,u) =: U(ξ,u), is known as the payoff function, which all agents collectively
want to “maximize,” in a sense to be defined shortly. Implicit here is the assumption
that for the team there exists a unique (up to equivalence) utility function which
numerically orders different outcomes corresponding to joint actions and realization
of the state of nature, in a way consistent with the team’s preference ordering among
different alternatives.

The loss incurred is generally a random quantity, the randomness appearing
through both ξ and u, where the latter depends on ξ through the measurement
signals and the strategies adopted by the decision makers. Therefore, one rather
works with the expected value of this quantity, which we will be referring to as the
cost function.3 Other possible terminology would be expected loss function, average
risk, or expected cost, all of which have been used in the literature, which we will
also use interchangeably. The cost function, J : Γ → R, is defined on the product
strategy space Γ as4

J(γ) =

∫
Ξ

L(ξ, γ(η[ξ]))P (dξ) = E[L(ξ, γ(η[ξ]))] =: EξL(ξ, γ(η[ξ])), (2.2)

where
γ(η[ξ]) := (γ1(η1[ξ]), . . . , γN(ηN [ξ])) (2.3)

and Eξ is the operator that takes the expected value of the quantity it precedes, over
ξ. To show the explicit dependence of J on also the information structure η, we
will sometimes use the notation J(γ, η) and occasionally use J(γ, η;L, P ) to also
indicate the dependence on the loss function L and the probability distribution P .

The specification of J , along with the product strategy space Γ, provides a
complete characterization (aside from the solution concept) of a stochastic multiple
person decision problem and is known as the normal form description. Note that in

3There would be other ways of making the objective function deterministic, such as defining the
cost function as the probability of the loss exceeding a given ceiling or taking it as the supremum
of the loss function over ω ∈ Ω. We will not be devoting much discussion to such formulations in
the book.
4See Appendix B for an explanation of the notation used here.
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this description, the information structure is suppressed and it enters the problem
formulation only through the strategy spaces Γ i, i ∈ N . The description which
lays out explicitly the dependence of the measurement signals on the unknown
state of nature is known as the extensive form description of the underlying (static)
stochastic decision problem. The distinction between these two forms should be
more transparent when we introduce dynamic decision problems, later in this
chapter. We should note, however, that the two forms are in fact equivalent in the
sense that they both uniquely characterize a given stochastic decision problem; the
essential difference is that sometimes it is more convenient to work with one form
than the other.

Notion of Optimality

In the framework laid out above, it would have been possible to endow each
decision maker (agent) with a different loss function and also possibly a different
subjective probability measure regarding the unknown state of nature. Either of
these departures would take us outside the realm of team problems and necessitate
consideration of the more general framework of stochastic (zero-sum or nonzero-
sum) games, with associated solution concepts, such as saddle-point equilibrium
or Nash equilibrium [32]. Covering this more general framework is outside the
scope and the goals of this book, as here our interest is in problems originating
in networked control systems, where decision makers have common objectives and
act as a team, even though the information may not be centralized. More precisely:

A team is a collection of individual decision makers who strive for the same goal, using the
same (probabilistic) model of the underlying decision process, but not necessarily sharing
the same online information (such as measurements) on the uncertainty.

For anN -person stochastic team problem, since all agents will be striving toward
the same goal, with team preferences quantified in the given loss functional, the only
reasonable solution that leads to optimal behavior is the global minimization of the
team cost over the product strategy space. Hence, we have

Definition 2.2.1. For a given stochastic team problem with a fixed information
structure, {J ;Γ i, i ∈ N}, a strategy N -tuple γ∗ := (γ1

∗
, . . . , γN

∗
) ∈ Γ is an

optimal team decision rule (synonymously, team-optimal decision rule or simply
team-optimal solution) if

J(γ∗) = inf
γ∈Γ

J(γ) =: J∗, (2.4)

provided that such a strategy exists. The cost level achieved by this strategy, J∗, is
the minimum (or optimal ) team cost. �

In the above definition of “optimality in a team,” we have taken the information
structure as fixed and given a priori. Even though the class of systems one typically
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encounters are primarily of this type, it is worth mentioning that it is possible
to consider the information structure of the problem as a variable, alongside the
strategies of the agents. In fact, in the theory of organizations (as well as to a large
extent in the design of networked systems), the prime goal is to obtain an optimal
design for the pair (γ; η) which is known as the organizational form (Marschak
and Radner [255]). Of course, to make the problem meaningful, we have to impose
some restrictions on η (such as belonging to some prescribed class of comparable
information structures, say N ) or attach some cost to it which would be directly
proportional with its value.5 In the absence of such realistic restraints on η, the
problem will admit the trivial solution where η∗ (the optimal η) allows the agents
to acquire perfect information on the state of nature, ξ, and thereby γ∗ to depend
directly on ξ. Under realistic organizational constraints, however, say with η ∈ N,
an optimal design (γ∗; η∗) ∈ Γ× N will have the property that there exists no η ∈ N
such that

inf
γ∈Γ

J(γ; η) < J(γ∗; η∗) (2.5)

where the cost function J may also include some additional (possibly additive)
terms reflecting the costs associated with various η’s. Furthermore, the policy
space Γ implicitly depends on the choice out of N, so that the product Γ × N
is actually not rectangular. Note that a natural way of obtaining an optimal
organizational form would be to minimize the function J(γ∗

η
; η) over η ∈ N, where

γ∗
η

is the team-optimal solution corresponding to the fixed information structure η.

We use a subscript on γ∗ here to explicitly point out the fact that the team-optimal
solution depends on η structurally and in general in a fairly complicated manner,
which makes the further optimization of J , as η varies over N, a rather complex
problem (not of the standard type), unless the cardinality of N is finite.

One important feature of the team-optimal solution that is worth mentioning
at this point (perhaps as a cautionary remark) is that multiple solutions are not
necessarily interchangeable. For a two-person team problem, for example, if the
pairs of policies (γ1, γ2) and (β1, β2) are two team-optimal policy pairs, then it
is not necessarily true that the pair (γ1, β2) will also constitute a team-optimal
solution. Hence, in case of nonuniqueness of the solution, the agents need to have
a common consistent rule as to which one of the possible solutions to adopt, in
order to arrive at the optimum. This may require some pre-communication and pre-
commitment to some protocols among the agents.

A weaker solution concept than that of team-optimality introduced in
Definition 2.2.1 is that of person-by-person optimality, equivalently Nash equilib-
rium, introduced next.

5At this point this is a rather imprecise statement. The precise meaning of value of a given
information structure and the notion of one information structure being more valuable (or better)
than another one will be introduced and studied in the next chapter, particularly Sect. 3.2.
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Definition 2.2.2. For a given N -person stochastic team with a fixed information
structure, {J ;Γ i, i ∈ N}, an N -tuple of strategies γ∗ := (γ1

∗
, . . . , γN

∗
) consti-

tutes a Nash equilibrium (synonymously, a person-by-person optimal
(pbp optimal) solution) if, for all β ∈ Γ i and all i ∈ N , the following inequalities
hold:

J∗ := J(γ∗) ≤ J(γ−i∗, β), (2.6)

where we have adopted the notation

(γ−i∗, β) := (γ1∗, . . . , γi−1∗, β, γi+1∗, . . . , γN∗). (2.7)

�

Remark 2.2.1. Nash equilibrium is a weaker solution concept than team-optimality
(cf. Definition 2.2.1), since satisfaction of the N inequalities (2.6) is clearly
necessary but not sufficient for γ∗ to be an optimal team decision rule. But, since
every team-optimal solution is necessarily a pbp optimal solution, the latter plays an
important role in the derivation of the former, as we will see later in the book, with
the first demonstration being in Sect. 2.6. �

In the next section, we depart from the abstract formulation of the present section
and provide an illustrative example which will aid in better understanding of the
concepts introduced above.

2.3 An Illustrative Example of a Finite Stochastic Team

A stochastic team problem is said to be finite if both the action and the uncertainty
sets are finite. In this case (as we have indicated earlier) there is no need to make
any distinction between Ω and Ξ ,6 and one may as well work in the original
probability space (Ω,F , PΩ) where the probability measure will be replaced with
the probability masses {pj = PΩ({ωj})}#j=1 where ωj is an element of Ω with
positive probability, and # := |Ω|, the cardinality of Ω, with those elements of
Ω receiving zero probability from PΩ being irrelevant to the decision problem and
therefore deleted. By a possible abuse of terminology, we will call the # elements
of Ω the states of nature. We note that F is a collection of all subsets of Ω (hence it
has 2# elements), and Yi can be taken, without any loss of generality, as a partition
of Ω, for each i ∈ N .

Every two-person finite stochastic static team can be represented by a family of
matrices, each matrix (and there will be# of them) corresponding to a different state
of nature, ω. The rows of these matrices would correspond to action choices of one
agent, say A1, the columns would correspond to action choices of the other agent,
A2, and each entry would be the corresponding loss to the team for that particular ω.

6Actually here the only requirement is that the uncertainty set be finite.
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This, together with a specification of the class of all possible information signals,
(Y1,Y2), would constitute the extensive form description for the team. Such a
set-up can also naturally be extended to N -person finite static teams, where now
the matrices are replaced by N -dimensional hypercubes.

One approach (and a universally applicable one) toward obtaining the team-
optimal solution(s) of such finite static teams is to convert the above extensive form
into a normal form by relating the strategies of the agents directly to the (expected)
costs that accrue to the team. As we have indicated earlier, such a formulation
would suppress the information signals as well as the role of nature in the decision
problem, and it would involve only a single finite, albeit larger dimensional, matrix
(or hypercube, if there are more than two agents) whose columns and rows are
strategy choices of the agents and whose lowest entry (or entries) would yield
the team-optimal solution. Note that for Ai the number of alternative strategies
(i.e., |Γ i|) would be |U i||Yi|, and hence a derivation based solely on the normal
form could easily get intractable if either the number of information signals or the
cardinality of the action set for at least one agent is large. It is therefore necessary
to look for alternative ways of obtaining the solution, by also exploiting the nature
of the information available to the agents. Note that the solution to a finite static
stochastic team problem always exists (but it may be nonunique), since it involves
optimization over a finite set.

With this prelude, we consider in this section a two-person static stochastic
team problem where U1 = {U(up), D(down)}, U2 = {L(left), R(right)},
Ω = {ω1, ω2, ω3}, p1 = p2 = 0.3, p3 = 0.4, and the loss matrices are given by

A2

L R
A1 U 1 0

D 3 1
ω : ω1 ↔ 0.3

A2

L R
U 2 3
D 2 1
ω2 ↔ 0.3

A2

L R
U 1 2
D 0 2
ω3 ↔ 0.4

Under various information structures for the team, we now study the derivation of
team-optimal decision rules and some of their properties.

1. Perfect measurements

Here both agents have access to the true state of nature, and hence Y1 = Y2 =
σ({{ω1}, {ω2}, {ω3}}), the σ−field generated by the singletons. The cardinality
of the strategy spaces (Γ 1 and Γ 2) is 23 = 8 each, and hence the normal form
is an 8 × 8 matrix, requiring a comparison of 64 entries. The normal form of a
decision problem could also be called a pre-commitment model, since the strategies
of the agents tell them what to do under all possible realizations of the information
signal, even before the actual state of nature is realized. If, however, the agents
wait to make their decisions until after they receive the measurements (which we
may call the post-commitment scenario), then the dimension of the problem could
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be reduced significantly. This is particularly true when the agents’ measurements
are identical, as in the present case, where intuition tells us that we may, without
any loss of generality, obtain the minimum value of L(ω;u1, u2) for each ω ∈ Ω
and then construct the optimal decision rules from the solutions of these individual
(deterministic) teams. A mathematical justification for this intuitively appealing
approach follows from the identity

J∗ := min
γ1,γ2

J(γ1, γ2) = min
γ1,γ2

EωL(ω; γ
1(ω), γ2(ω))

≡ Eω{min
u1,u2

L(ω;u1, u2)}, (2.8)

which is true since the agents have perfect measurements on ω. Note that the
inner minimization in (2.8) involves the minimization of 3 loss matrices with four
elements each, while the normal form required the minimization of a cost matrix
with 64 elements.

The individual minima of L(ω;u1, u2) are

minL(ω1;u
1, u2) = L(ω1;U,R) = 0,

minL(ω2;u
1, u2) = L(ω2;D,R) = 1,

minL(ω3;u
1, u2) = L(ω3;D,L) = 0,

which lead [from (2.8)] to J∗ = 0.3 and the unique team-optimal decision rules:

γ1
∗
(ω) =

{
U, ω = ω1,

D, else,
γ2

∗
(ω) =

{
L, ω = ω3,

R, else,

which we rewrite symbolically as

γ∗ = (UDD,RRL),

a convention we adopt (and will henceforth use) for representing strategies in finite
spaces.

As a final note we point to the observation that even though the policy pair
(UDD,RRL) is unique as a team-optimal solution (which is also, by defini-
tion, pbp optimal), it is not the unique pbp optimal solution. The policy pair
(UUD,RLL) is also pbp optimal, but it carries the unfavorable cost of 0.6 which
is significantly higher than J∗.

2. Imperfect identical measurements

Here we consider the situation where the agents can distinguish only between
the pair (ω1, ω2) and the singleton ω3, and hence Y1 = Y2 =: Y =
σ({{ω1, ω2}, {ω3}}). The strategy spaces have four elements each, leading to a 4×4
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matrix as the normal form. We write out this matrix, for instructional purposes, with
the notation γi(yi) = (a, b) (with a, b denoting the possible actions of the agents)
standing for

γi(yi) =

{
a, yi = {ω1, ω2},
b, else,

A2

LL LR RL RR
UU 1.3 1.7 1.3 1.7

A1 UD 0.9 1.7 0.9 1.7
DU 1.9 2.3 1.0 1.4
DD 1.5 2.3 0.6* 1.4

The matrix has a unique minimum entry, as indicated, and hence the team
problem under the given information pattern admits the unique optimal solution
γ∗ = (DD,RL), yielding a cost level of J∗ = 0.6. Note that this is twice the
optimal cost level attained under the perfect state measurements, and we can refer
to the difference between the two (informally) as the “value” of the additional
measurement which enables the agents to distinguish between the two states ω1 and
ω2. Note also that in addition to the team-optimal solution given above, the problem
admits one other pbp optimal solution, which is (UD,LL), with a corresponding
(unfavorable) cost level of 0.9.

An alternative derivation for the team-optimal solution, which would involve
lower-dimensional matrices, follows from a reasoning similar to the one used for
the perfect information case. Here the counterpart of (2.8) would be

J∗ := min
γ1,γ2

J(γ1, γ2) = min
γ1,γ2

EωL(ω; γ
1(y), γ2(y))

≡ Ey{min
u1,u2

Eω|yL(ω;u
1, u2)}, (2.9)

where we have used the “iterated property” of the conditional expectation: Eω =
EyEω|y where Eω|y is the conditional expectation of the random variable it
precedes, given that y ∈ Y has been observed.7 Also, since we are operating in
finite spaces, expression (2.9) is well defined and thus we are allowed to interchange
the operations of outer expectation (over y ∈ Y) and minimization (over γ ∈ Γ ).
Now, the inner minimization in (2.9) involves two matrices, corresponding to two
different (and exhaustive) choices for y : y1 = {ω1, ω2} and y2 = {ω3}. These

7For this and other properties of conditional expectation the reader is referred to Appendix B.
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matrices, which we may call conditional cost matrices, are as follows, with the
unique optimal solution indicated in each case8:

A2

L R
A1 U 1.5 1.5

D 2.5 1.0*
y : y1 ↔ 0.6

A2

L R
U 1 2
D 0* 2
y2 ↔ 0.4

Since y1 occurs with probability 0.6 and y2 with probability 0.4, the (average)
optimal team cost is J∗ = (0.6)(1) + (0.4)(0) = 0.6, attained by the unique pair
of decision rules (DD,RL). Note that the first matrix admits one other pbp optimal
solution (U,L) which, together with the team-optimal solution of the second matrix,
leads to a pbp optimal solution for the original team, (UD,LL), which is the one
found earlier using the 4× 4 normal form.

3. No measurements

When neither agent makes any measurements, Y1 and Y2 are trivial σ−fields
{∅, Ω}, and hence all permissible decision rules are constant maps. The normal
form is the 2× 2 matrix

A2
L R

A1 U 1.3* 1.7
D 1.5 1.4

from which we immediately read: J∗ = 1.3 and γ∗ = (U,L).

4. Nonidentical measurements: Perfect for A2 and none for A1

This is the first nonsymmetric information structure that we will be studying. The
information sets are Y2 = σ({{ω1}, {ω2}, {ω3}}), Y1 = σ({ω1, ω2, ω3}), leading
to eight elements for Γ 2 and two for Γ 1. The normal form is given by the two-by-
eight matrix

A2
LLL LLR LRL LRR RLL RLR RRL RRR

A1 U 1.3 1.7 1.6 2.0 1.0 1.4 1.3 1.7
D 1.5 2.3 1.2 2.0 0.9 1.7 0.6* 1.4

8The entries of the first matrix are obtained from the relationship Eω|y1L(ω; u
1, u2) =

L(ω; u1, u2)p1|1 + L(ω; u1, u2)p2|1, where p1|1 and p2|1 are the conditional probabilities, each
equal to 1/2.
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and the unique team-optimal solution is, as indicated, γ∗ = (D,RRL), and the
value is J∗ = 0.6. Note that the optimal cost is the same here as in case 2, even
though the information structures are incomparable. (As compared with case 2,
here A1 has worse and A2 has better information, in the sense that Y1

(4) ⊂ Y1
(2)

and Y2
(4) ⊃ Y2

(2), where the subscripts on Y refer to the two different cases and

inclusion is a strict one.9)
The question arises now as to whether a procedure similar to those used in cases 1

and 2 could also be used here to simplify the derivation (i.e., to avoid working
with a large dimensional matrix, each entry of which has to be computed). Clearly,
an identity such as (2.9) cannot be used since the agents do not make identical
measurements. However, for each fixed decision rule γ1 of A1 (and there are only
two), one can obtain the best response (minimizing solution) T (γ1) for A2 by using
the original matrices, since A2 has perfect information:

γ1 = U ⇒ γ2 = T (U) = (RLL) ⇒ J(U, T (U)) = 1.0,

γ1 = D ⇒ γ2 = T (D) = (RRL) ⇒ J(D,T (U)) = 0.6.

The best choice for A1, then, is γ1
∗
= D, and the corresponding best response for

A2 is γ2
∗
= T (D) = (RRL), thus agreeing with what we had obtained earlier.

The above is yet another procedure for obtaining the team-optimal solution in
two-person stochastic teams: Fix the policies of one of the agents (preferably the
one whose strategy space has fewer elements), obtain the best response of the other
agent to each such policy, and compute the corresponding (average) team cost in
each case. The lowest such cost is the optimal team cost, and the corresponding
policies are the team-optimal decision rules. Such a procedure is always justified
because of the following sequence of identities (where we have taken A1 as the
starting agent):

J∗ = min
γ1

min
γ2

EωL(ω; γ
1(y1), γ2(y2))

≡ min
γ1

Ey2

{
min
u2

Eω|y2L(ω; γ1(y1), u2)

}

≡ min
γ1

EωL(ω; γ
1(y1), T (γ1)(y2)).

This would be applicable even if Y1 and Y2 do not satisfy an inclusion relationship
(in the particular case above we had Y1 ⊂ Y2), but then one has to construct new
conditional cost matrices (|Y2| of them, each of dimension |Γ 1|-by-|U2|) in order
to obtain the optimal response of A2. [See the next case for an information structure
of the type where the inclusion does not hold.]

9An equivalent statement would be Γ 1
(4)

⊂ Γ 1
(2)

and Γ 2
(4)

⊃ Γ 2
(2)

. A more formal treatment of
comparison of two information structures will be done in the next chapter, in Sect. 3.2.
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5. Nonidentical imperfect measurements

This case will serve to illustrate a point which is sometimes very useful in the
derivation of team-optimal solutions. Consider the information structure given by
Y1 = σ({{ω1}, {ω2, ω3}}) and Y2 = σ({{ω1, ω2}, {ω3}}), where an inclusion
property does not hold between Y1 and Y2. This, therefore, does not fall into any
of the categories of information structures considered so far in this section (for the
specific example). The two methods of derivation here would be:

(a) The direct solution based on the normal form (which is a 4× 4 matrix)
(b) The sequential approach (which involves two 4×2 matrices and hence does not

offer any savings (and thereby advantage) over the normal form)

These are the two general methods which would be applicable to this class of
problems; however, in the present case a simple (but useful) observation yields the
solution immediately: The team-optimal decision rules γ1

∗
and γ2

∗
for case 1 (i.e.,

under perfect measurements) are also well-defined functions on the signal spaces
Y1 and Y2 above, and hence under the right kind of interpretation, they belong to
the strategy spaces Γ 1 and Γ 2 of the present problem. The information structure in
case 1 being richer (in fact, the richest possible),10 this observation directly implies
that the pair {γ1∗ = UD, γ2

∗
= RL} is the unique team-optimal solution of

the new problem with “coarser” information. Note that the pair (UD,RL) here
is indeed the pair (UDD,RRL) of case 1, simply rewritten using the adopted
convention, on the restricted information space. If we write them out, they both
correspond to

γ1
∗
(y1) =

⎧⎨
⎩
U, y1 = {ω1},

D, else,
γ2

∗
(y2) =

⎧⎨
⎩
R, y2 = {ω1, ω2},

L, else.

A mathematically precise statement of the property (of the team-optimal solution)
used here will be given later in the chapter.

6. “Noisy” measurements

For reasons which will become clear later, it is useful to distinguish between
“imperfect” and “noisy” measurements. The information signals of cases 2 and
5, studied above, belong to the former category because they do not bring in
additional uncertainty into the problem formulation, other than what exists already
in the complete description of the cost matrices. In a sense, an imperfect measure-
ment brings in a refinement on the information available to an agent under the

10At this point, this statement should be interpreted as saying “there is no other information
structure which provides the agents with more information on the state of nature.” The underlying
notion will be made precise later.
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no-measurement scenario (such as case 3) without bringing in additional elements
of uncertainty. In the “noisy measurement” case, however, the sample space has
some additional elements which are not needed in the complete description of the
loss (payoff) functions. To further elaborate on this point, consider the scenario
depicted below, which uses essentially the same team problem as before, but with a
different type of information.

Agent A2 makes no measurements, while A1 observes the value of a random
variable z, taking two possible (distinct) values, y1 and y2. The loss matrices are
the same as before, where we now adopt a different symbol, x, to replace ω, with
xi = ωi. To complete the description of the team problem, we now specify, in the
following table, the joint probability mass function (pmf ) of the pair (x, z), which
has to be consistent with the marginal pmf of x:

x1 x2 x3
y1 0.12 0.21 0.12
y2 0.18 0.09 0.28

Note that

Prob(xi | y1) =
{
4/15, i = 1, 3,

7/15, i = 2,
Prob(xi | y2) =

⎧⎨
⎩

18/55, i = 1,

9/55, i = 2,

28/55, i = 3,

and hence after observing y1 or y2 it is not possible for A1 to tell, with certainty, the
true value of x. We refer to the measurement signal as “noisy” because

(a) It does not transmit the true value of x (which, along with the action variables,
completely determines the loss).

(b) It introduces additional elements of uncertainty into the problem.

The problem can now be cast in the framework of the general formulation of
Sect. 2.2 by constructing an appropriate sample space. Toward this end, let Ω be a
set of cardinality 6, with elements ωij (i = 1, 2, 3; j = 1, 2), where ωij corresponds
to the pair (xi, yj) and hence Prob(ω = ωij) = Prob(x = xi, y = yj). The
two possible measurement signals of A1 are y11 = {ω11, ω21, ω31} and y12 =
{ω12, ω22, ω32} which together determine the partition Y1 introduced in Sect. 2.2.11

We thus have a team problem of the standard type, for which the normal form is

A1

UU UD DU DD
A2 L 1.30* 1.38 1.42 1.50

R 1.70 1.70 1.40 1.40

11Here, since we have a finite decision problem, we do not distinguish between Ω and Ξ, and
hence consider Y1 as a partition of the sample space Ω.
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which admits the unique team-optimal solution γ∗ = (UU,L), with a corresponding
value of J∗ = 1.30. An immediate observation here is that this is the same value
as that obtained in case 3, and hence the additional (noisy) information to A1 is
of no value to the team. We leave it to the reader to verify that if, instead, agent
A2 had received this measurement signal, then the team-optimal solution would
again be unique and be given by γ∗ = (D,RL), yielding this time a value of
J∗ = 1.29. Hence the same measurement is of some (positive) value to the team,
if received by the second agent. As a final scenario, let us consider the information
structure under which both agents have access to the realization of z (i.e., they have
a complete sharing of information, which makes the problem essentially no different
from a single agent stochastic decision problem). In view of the discussion for
case 2, and especially the relation (2.9), we first form the conditional cost matrices
corresponding to the two realizations of the measurement signal, y1 and y2:

A2

L R
A1 U 22/15 29/15

D 26/15 19/15*
z : y1 ↔ 0.45

A2

L R
U 64/55* 83/55
D 72/55 83/55

y2 ↔ 0.55

Then we can readily read, from the above matrices, the unique team-optimal
strategy pair: (DU,RL), with a corresponding cost value of 1.21. Note that here,
to determine the optimal strategies, all we need are the six conditional probabilities,
Prob(xi | yj), i = 1, 2, 3; j = 1, 2, and not the individual probabilities for y1 and
y2.12 The latter are, of course, needed in the computation of the corresponding cost
value.

It is worth noting that the main feature of this last case, which distinguishes it
from the earlier ones, is that the random quantity ω (or, equivalently here, the state
of nature ξ) has two identifiable components: the “payoff relevant” part, x, and the
information signal, y, with some correlation between them. The role of y is to carry
information regarding the true value of x, and it affects the value of the loss function
only through the strategy of the agent who receives this information. The advantage
of splitting ξ into two components, as above, may not be that obvious at this point,
but we will later observe the versatility of such a formulation, especially in the
context of infinite decision problems.

12This would not have been true if the agents had made nonidentical measurements.
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2.4 A Mathematical Framework for Dynamic Decision
Problems

As mentioned earlier in Sect. 2.2, a decision problem is said to be dynamic if the
measurements of at least one of the agents involve past actions (of that particular
agent or some other agent(s)). In the literature, the connotation “dynamic” is also
used to characterize decision problems where an agent acts more than once, even if
the measurements do not depend on past actions (the case of open-loop information
structure). In principle such problems can be converted into static decision problems
by essentially working in higher-dimensional spaces, but it is generally found
convenient to treat them also in the context of truly dynamic problems because of
the similarities in the derivation of the optimal solutions. We will have occasions to
use both approaches in this book. We describe below an appropriate setup for the
study of truly dynamic decision problems, restricting the exposition to discrete time.

For a truly dynamic problem, we follow the formulation of Sect. 2.2, prior to
(2.1) but now replace the static relationship (2.1) with the dynamic equation

yi = ηi(ξ;u), i ∈ N , (2.10)

where the dependence on u is assumed to be strictly causal, which means that
under a given fixed clock the information received by each agent can depend only
on actions taken in the past. To give this statement a more precise mathematical
meaning, let us consider a discrete-time framework where actions are taken at
discrete instants of time, 1, 2, . . . , T . Let t stand for the generic time variable and T
denote the (discrete) time set

T := {1, . . . , T }. (2.11)

Let uit and yit denote, respectively, the action (decision) variable and the information
variable of agent Ai at the time instant t ∈ T . Furthermore, introduce the notation:

ut := {u1t , . . . , uNt }, yt := {y1t , . . . , yNt }, (2.12)

u[t0,t1) ≡ u[t0,t1−1] := {ut0 ,ut0+1, . . . ,ut1−1} ≡ {u1[t0,t1), . . . , u
N
[t0,t1)

}. (2.13)

Then, under the strict causality assumption, (2.10) becomes equivalent to

yit = ηit(ξ;u[1,t)), t ∈ T , i ∈ N (2.14)

for some “information functions” ηit, t ∈ T , i ∈ N . The stochastic variable yit,
taking values in Y i

t , is the online information available to Ai which he can use in
the construction of the decision uit at time t, through an appropriate policy variable
γit : Y

i
t → U i

t

uit = γit(y
i
t) ≡ γit(η

i
t[ξ;u[1,t)]), t ∈ T , i ∈ N . (2.15)
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A permissible policy γit is one under which uit becomes a well-defined random
variable, defined on the original probability space, and taking values in Si

t ⊂ U i
t ,

where Si
t is the action constraint set for Ai at time t. Let us denote the set of all

such maps by Γ i
t , which is the policy space of Ai at time t. The construction of such

a policy space will depend on the problem at hand, and we will see several such
constructions throughout the book. At this point let us simply assume that such a
construction is given, and rewrite (2.15) in the following compact form:

u = γ(η[ξ;u]), γ ∈ Γ := Γ 1 × · · · × ΓN , (2.16)

where Γ i is the composite (over-time) policy space of Ai:

Γ i := (Γ i
1, Γ

i
2, . . . , Γ

i
T ), i ∈ N .

Note that the right-hand side of (2.16) also depends on u, which is what makes
dynamic decision problems intrinsically different from the static ones introduced in
Sect. 2.2. Equation (2.16) is called a loop equation, and a dynamic decision problem
is well defined only if this loop equation has a unique solution for every ξ, that is,
for some γ̃ : Ξ → U,

u = γ̃(ξ) (2.17)

uniquely solves (2.16). The strict causality condition, or equivalently the structural
assumption (2.15), is precisely the condition that guarantees this.

It is possible to relax the strict causality condition and the fixed clock assumption
and replace them by some other conditions under which the loop equations (2.16)
still admit a unique solution. A precise study of these conditions is beyond the
level of our treatment here; for this more general treatment the reader is referred to
Witsenhausen [393] and Teneketzis [360] (see also Sect. 3.7 for further discussions).
To just provide a flavor of these extensions here, let us note that in (2.15) we
can allow uit to depend on ujt , j 	= i, provided that ujt is not allowed to depend
on uit either directly or through the actions of other agents. In Fig. 2.1 we have
depicted two such scenarios for a four-agent problem with time step t isolated. A
pointed arrow indicates that information flows at this stage in the direction of the
arrow. The first (upper) configuration of Fig. 2.1 does not lead to a well-defined
(physically realizable) decision problem because u4t depends on u1t while at the
same time u1t depends on u4t ; hence there is a deadlock. (Clearly closed directed
graphs should not be allowed for unique solvability of the loop equations.) The
second (lower) configuration of Fig. 2.1, on the other hand, depicts an acceptable
information exchange13 since it does not contain any closed direct graph. Hence,

13Here, and throughout, we are using a finer partition of the time interval in between the two
(discrete) time points t and t + 1, so that agents can select ui

t, i ∈ N , in a (partially) sequential
order. A possible strict time order of the configuration of Fig. 2.1 (lower) is (u1

t , u
4
t , u

2
t , u

3
t ), but

not all configurations have to have a strict time order.
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A1 A2 A3 A4

A1 A2 A3 A4

Fig. 2.1 Two scenarios on
available action information
at stage t

the strictly causal relation (2.15) can accommodate such permissible informational
relationships among the uit’s, and the configuration could be different for each t.

In such a team, if there is a prespecified order in which the agents act, then such
a team is said to be a sequential team. However, one can allow these “permissible
configurations” to be sample-path dependent (i.e., dependent on ξ), provided that
certain measurability conditions are satisfied. This is the situation where the order
in which the agents act is determined (partially) by a chance mechanism. Such a
dynamic team model is said to be a nonsequential team.

Sequential Dynamic Teams in State-Space Form

Now, coming back to (2.14) and (2.15), it is generally convenient to introduce an
intermediate variable, called the state variable, recursively defined by

xt+1 = ft(xt, u
1
t , . . . , u

N
t ;w0

t ) , t ∈ T , (2.18)

where x1 and w0 := {w0
1 , . . . , w

0
T } are random exogenous variables with given

probability distributions (with the latter being the system noise); furthermore, xt+1

takes values in a given topological space Xt+1. We further introduce the equation

yit = git(xt, u
1
t−1, . . . , u

N
t−1;w

i
t), i ∈ N , t ∈ T , (2.19)

where yit is again the measurement of Ai at stage t and {wi
t, t ∈ T } is known as

the measurement noise of Ai, which has a given probability distribution, possibly
different for different agents as to be elucidated below. Note that for t = 1, git would
have as argument only xt and wt, as controls have not yet been applied. Further
note that the state variable xt, t ∈ T , can easily be eliminated (for t > 1) in (2.19)
by recursive substitution, so that yit can be expressed solely in terms of the action
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variables and the primitive random variables:

yit = g̃it(x1, w
0
[1,t−1],u[1,t−1], w

i
t). (2.20)

Here, the primitive random variables, or the “states of nature,” are

ξ := {x1, w0
[1,T ],w[1,T ]} , (2.21)

where w[1,T ] is defined similar to u[1,T ], with w replacing u.
Now, the operation of a decision process described by (2.18) and (2.19) would

proceed chronologically as follows:

• Generation of an initial random state x1 with distribution Px1

• Observation of measurements y1 := {y11 , . . . , yN1 }, where the composite
measurement noise w1 has a given conditional distribution Pw1|x1

, i ∈ N
• Application of controls u1

• Generation of the “system noise” w0
1 , with conditional distribution Pw0

1|x1,u1
,

and transition to the next state x2

· · · · · · · · · · · · · · · · · · · · ·

• · · · transition to state xt
• Observation of measurements yt, with wt ∼ Pwt|xt

, ut−1

• Application of controls ut

• Generation of the “system noise” w0
t ∼ Pw0

t |xt,ut

· · · · · · · · · · · · · · · · · · · · ·

• · · · transition to state xT+1

The above evolution does not completely describe the dynamic decision process,
because the construction of the controls and the allowable dependence of the con-
trols on the past measurements and/or actions have not yet been specified. Toward
this end, let ỹit denote some prespecified subset of the collection {y[1,t],u[1,t−1]},
possibly a different subcollection for different i ∈ N . Note that it is possible to find
an ηit, so that

ỹit = ηit(ξ;u[1,t−1]), t ∈ T , i ∈ N ,

where ξ was introduced earlier by (2.21). The ỹit defined above can definitely
be viewed as a (high-dimensional) vector, and it is precisely the information
variable (2.14) where we have not used tilde on y simply not to clutter the notation.
But the distinction should be clear from context. In static decision problems, there
is, of course, no difference between the information and measurement variables, and
indeed in Sect. 2.2 we have called yi as both measurement variable and information
variable. In dynamic problems, however, there is a distinction between the two, and
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this has to be recognized in the derivation of optimal solutions to dynamic teams, as
we will see later.

The collection of individual information functions {ηit, t ∈ T , i ∈ N} constitutes
the information structure of the dynamic decision problem. Perhaps by a slight
abuse of notation and terminology, we introduce, for each t ∈ T and i ∈ N ,
a finite set Ii

t which specifies precisely which elements of the set of vectors
{y[1,t],u[1,t−1]} will be used in the construction of the control uit, and we call the
collection I := {Ii

t , i ∈ N , t ∈ T } again as the information structure of the
decision problem.

We list below some important information structures which will be used through-
out the book.

1. Sole prior information (SPI): Ai is said to have SP information if she makes no
measurements and the only information she works with is the prior statistics on
the random variables. A decision problem has SP information if all agents have
SP information.

2. Open-loop (OL) information: Ai is said to have OL information if Ii
t = Ii

1 for
all t ∈ T . A decision problem has OL information structure if all agents have
OL information (which are not necessarily the same). Note that OL information
is different from SPI.

3. Complete information sharing (CIS):

Ii
t = {y[1,t],u[1,t−1]}, i ∈ N , t ∈ T .

Here there is a complete exchange of present and past measurements as well as
past actions.

4. Complete measurement sharing (CMS):

Ii
t = {y[1,t]}, i ∈ N .

Here the past actions are not shared.
5. n-step delayed information sharing (nDIS):

Ii
t =

⎧⎪⎨
⎪⎩

{yi[t−n+1,t],y[1,t−n],u[1,t−n]}, t > n,

{yi[1,t]}, t ≤ n,

i ∈ N .

6. n-step delayed measurement sharing (nDMS):

Ii
t =

⎧⎪⎨
⎪⎩

{yi[t−n+1,t],y[1,t−n]}, t > n,

{yi[1,t]}, t ≤ n,

i ∈ N .
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7. n-step delayed control sharing (nDCS):

Ii
t =

⎧⎪⎨
⎪⎩

{yi[1,t],u[1,t−n]}, t > n,

{yi[1,t]}, t ≤ n,

i ∈ N .

8. k-step periodic information sharing (kPIS):

Ii
t =

⎧⎪⎨
⎪⎩

{yi[�t/k�k,t],y[1,�t/k�k],u[1,�t/k�k]}, t ≥ k,

{yi[1,t]}, t < k,

i ∈ N .

9. Completely decentralized information (CDI):

Ii
t = {yi[1,t]}, i ∈ N , t ∈ T .

Note that this corresponds to nDMS with n = T .

All the information structures given above are of the perfect recall (PR) type,
in the sense that the agents have full memory of their information in the past. An
example of an information structure (IS) which is not of the PR type is

Ii
t = {yit}, i ∈ N , t ∈ T .

Stochastic decision problems whose ISs are not of the PR type are relatively more
difficult to analyze than those with PR type IS, as we shall see later. Another class
of challenging decision problems are those with so-called nonclassical ISs. Under
such ISs an agent sees the action variable of another agent in her information set,
or her information is indirectly affected by it, but she does not have access to the
measurements/information based on which that action was taken; nDCS introduced
above is one such IS, so could nDMS, CDI, or information structures which are
not PR. We will say more on such nonclassical ISs in the next chapter, Sect. 3.2.
Furthermore, we will observe that not all nonclassical information structures lead to
computational difficulties. Examples will be considered further in the next chapter,
as well as in Chap. 12.

Now, fixing the IS of a dynamic decision problem also fixes the strategy (policy)
spaces of the agents, as in (2.16). To complete the description as a team problem,
we have to specify the cost structure, which we do as follows:

Adopting the description (2.18) and (2.19), also known as the state-space model,
we associate with the team the loss function14

L(x[1,T+1],u[1,T ]) =
∑
t∈T

ct(xt+1,ut), (2.22)

14Here, an alternative form can be L(x[1,T+1],u[1,T ]) =
∑

t∈T ct(xt,ut) + cT+1(xT+1).
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where each term in the summation is known as the incremental (stagewise) loss.
Since x[1,t+1] can be expressed in terms of the primitive random variables and the
action variables, replacing uit in (2.22) by γit(y

i
t), γ

i
t ∈ Γ i

t , constructed under the
given IS, L becomes a function of only ξ (for each fixed γ ∈ Γ), whose expectation
with respect to the subjective probability distribution function of ξ leads as in (2.2)
to the cost function:

J(γ) = EξL(ξ, γ(η[ξ])) . (2.23)

Here L is given by (2.22), with the intermediate variables eliminated by using (2.18)
and (2.19).

The function J , along with the product strategy space Γ, constitutes the normal
(strategic) form of the dynamic decision problem, and as such is no different (in
abstract form) from the normal form introduced in Sect. 2.2 for static multiple
person decision problems. Hence, all the solution concepts introduced there, viz.,
team-optimality and person-by-person optimality (or Nash equilibrium), are equally
valid (and relevant) here, which we do not give to avoid repetition. In addition,
however, some new features emerge due to the dynamic nature of the information
pattern, which use particularly the sequential (extensive form) description of the
decision problem. We introduce below two such general features associated with
the team-optimal or pbp optimal solutions of dynamic team problems.

Definition 2.4.1. Let D := {J,Γ, T } be a dynamic team problem which admits a
solution γ∗ ∈ Γ. Let t > 1 be an arbitrary point in T and consider the decision

problem Dβ
[t,T ] which is derived from D by setting γ

[1,t−1]
= β

[1,t−1]
, for an

arbitrary β
[1,t−1]

∈ Γ[1,t−1]. Then:

(i) The solution γ∗ ∈ Γ is strongly time consistent (STC) if the subpolicy γ∗
[t,T ]

constitutes a solution to the dynamic team Dβ
[t,T ], this being so for every t ∈

T , t > 1, and every permissible β
[1,t−1]

∈ Γ[1,t−1].

(ii) The solution γ∗ ∈ Γ is weakly time consistent (WTC) if the subpolicy γ∗
[t,T ]

constitutes a solution to the dynamic team Dβ
[t,T ] when β

[1,t−1]
= γ∗

[1,t−1]
.

�

Note that if an equilibrium solution is STC, then the past actions do not rein in
the present and future actions of the agents under the same solution concept, i.e.,
the agents have no reason to renege (and deviate from the equilibrium policy or the
course of action) even if some inadvertent deviations have taken place in the past.
With the WTC solution, however, there is no incentive to renege only if the declared
course of action has been followed in the past.

The Intrinsic Model and the Markov Transition Model

Before concluding this section, we should mention that in our general formulation
of a dynamic team decision problem, we have allowed an agent to act multiple
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times, at different time instants, using possibly different information, that is, Ai has
ui[1,T ] as her action variable. An alternative (but equivalent) formulation would be
to have an agent Ai be split into T agents, with Ai(t) (t’th agent in this split, where
t = 1, . . . , T ) controlling only uit. This would then transform the original N -agent
team to anNT -agent team problem, but other than a difference in semantics, the two
formulations are essentially the same. More details on these different viewpoints to
dynamic decision problems can be found in Witsenhausen [399–401] (see Sect. 3.7,
where Witsenhausen’s intrinsic model as well as other models for dynamic teams
are reviewed).

Another point worth mentioning is that an alternative to the state-space model
(2.18) and (2.19) exists, especially if the probability and action spaces are finite. This
so-called Markov transition model involves N + 1 conditional probability laws at
each stage t ∈ T , to replace (2.18) and (2.19). The state equation (2.18) is replaced
by a controlled probability transition:

Px
t+1|xt,w

0
t

(ut), i ∈ N , t ∈ T .

If all the variables belong to finite spaces, then the model is completely described
by a finite number of finite-dimensional (probability) matrices.

2.5 An Illustrative Example of a Finite Dynamic Team

To illustrate some salient aspects of the formulation of dynamic decision problems,
we consider in this section a finite dynamic team problem with two agents and
two stages and with the agents having the same subjective prior probabilities on
the random variables. We will study the derivation of the team-optimal solution
under several different ISs of the type introduced in the previous section. Since the
underlying team is finite (with a finite probability space), a team-optimal solution
will exist under all ISs.

Now, the description of the stochastic dynamic team follows: At each stage, the
control (decision) spaces of the agents have two elements, as in the static team of
Sect. 2.3.

U1
1 = U1

2 = {U(up), D(down)}, U2
1 = U2

2 = {L(left, )R(right )}.

The initial state, x1, is a discrete random variable, taking two values, x11 and x12,
with respective probabilities 0.4 and 0.6. If x1 = x1i and u11 = U orD, and u21 = L
or R, the loss to the team (i.e., the stagewise loss, c1(x1, u11, u

2
1)) is given by the

“loss matrices”

A2

L R
A1 U 1 0

D 3 1
x1 = x11

A2

L R
U 1 2
D 0 2
x1 = x12
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We denote the first matrix above by LM1 and the second matrix by LM2. The
transition to the second stage and the associated cost is now described as follows:
Let x2 take three distinct values, x21, x22 and x23, with the rule

x2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x21, if (u11, u
2
1) = (U,L) and x1 = x11,

x22, if (u11, u
2
1) = (U,L) and x1 = x12,

x23, otherwise.

The corresponding cost is determined by x2, u12, u22, and an independent random
variable, in terms of the loss matrices LM1 and LM2 at stage 1, according to the
following table.

x2 Loss at stage 2 (c2)
x21 LM1 w.p. 0.4, LM2 w.p. 0.6
x22 LM1 w.p. 0.5, LM2 w.p. 0.5
x23 LM1 w.p. 0.3, LM2 w.p. 0.7

All random mechanisms are assumed to be independent and the total loss to the
team is the arithmetic sum of the stagewise losses, as in (2.22). Note that here we
basically have two random variables, x1 and w2, say, with the statistics of the latter
governing the loss structure in the table above, i.e.,

Prob(w2 = w21 | x2) = 1− Prob (w2 = w22 | x2) =

⎧⎨
⎩

0.4, x2 = x21,

0.5, x2 = x22,

0.3, x2 = x23,

where w21 corresponds to LM1 and w22 to LM2.
Now we specify the measurements available to the agents: It is assumed that

A1 knows exactly the value of x1 at stage 1, and does not make any further
measurements (at stage 2).A2, on the other hand, makes no measurements at stage 1
but knows precisely the value of w2 at stage 2; hence

y11 = x1, y12 : void; y21 : void, y22 = w2.

For any given permissible policy, the (expected) cost to the team is given by (2.23),
and with ξ := (x1, w2). The precise form, of course, will depend on the IS to be
adopted, as delineated below:

1. SPI. This will lead to the worst performance for the team, because both agents
work under only the given prior information. The policy spaces of the agents are

Γ 1 = {Uu,Ud,Du,Dd}; Γ 2 = {Ll, Lr,Rl, Rr}
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where we have used “lower case letters” for the second-stage decisions. The only
way to solve this team problem is to convert it to normal form, which is a 4 × 4
matrix

A2

Ll Lr Rl Rr
Uu 2 2.08 2.2 1.8

A1 Ud 2.38 3.5 3.3 2.5
Du 2.2 2.2 2.6 2.2
Dd 3.3 2.9 3.7 3.2

The unique team-optimal solution is (Uu,Rr), with a cost level of JSP = 1.8.
2. CMS. This is the other extreme case, when the agents know exactly what loss

matrix is being optimized at each stage. Since the lowest entries of LM1 and
LM2 are both zero, the optimal team cost is JCMS = 0. The solution would have
been the same if, instead, we had the CIS IS.

3. 1-step-delayed measurement sharing (1DMS). Here the information available to
the agents at each stage are

I1
2 = I1

1 = {x1}, I2
1 = φ, I2

2 = {x1, w2},

and hence |Γ 1
1 | = |Γ 1

2 | = 4, |Γ 2
1 | = 2, and |Γ 2

2 | = 8. The cardinality of the
composite policy spaces are |Γ 1| = 8,15 |Γ 2| = 16, which means that the
normal form would be an 8 × 16 dimensional matrix. One possible approach
to the problem would be to compute the entries of this matrix and choose the
smallest one as the solution. An alternative approach is a sequential derivation,
which makes use of the fact that measurements are shared with a delay of one
time unit, which is what we discuss below.

Suppose that the actions at stage 1 have been taken, and the agents are facing
the decision problem (at the second stage) where the value of x1 is now common
knowledge. A1 has no other information, and hence his possible actions (policies)
are u and d. A2, on the other hand, has the additional information, the precise
value of w2, and hence he has four possible policies: ll, lr, rl, and rr, where lr
stands for u21 = l, if w2 = w21, and u21 = r, otherwise. Now, conditioned on the
value of x1 (which is common knowledge) and the actions taken by the agents
at stage 1 (which can also be considered to be common knowledge since we
have a (cooperative) team problem and the information based on which these
actions were taken is common knowledge), we have the following eight total
cost matrices.

15This one is not 16 because for each value of x1, A1 has four choices, which makes the total 8.
Hence, one can replace Γ 1 := Γ 1

1 × Γ 1
2 with a smaller set, without any loss in performance.
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x1 = x11 :

(u11, u
2
1) = (U,L)

ll lr rl rr
u 2 2.6 1.6 2.2
d 2.2 3.4 1.4* 2.6

(u11, u
2
1) = (U,R)

ll lr rl rr
u 1 1.3 0.3* 0.6
d 2.1 3.3 0.7 1.3

(u11, u
2
1) = (D,L)

ll lr rl rr
u 4 4.3 3.3* 3.6
d 5.1 6.3 3.7 4.3

(u11, u
2
1) = (D,R)

ll lr rl rr
u 2 2.3 1.3* 1.6
d 3.1 4.3 1.7 2.3

x1 = x12 :

(u11, u
2
1) = (U,L)

ll lr rl rr
u 2 2.5 1.5* 2
d 2.5 3.5 1.5* 2.5

(u11, u
2
1) = (U,R)

ll lr rl rr
u 3 3.3 2.3* 2.6
d 4.1 5.3 2.7 3.3

(u11, u
2
1) = (U,L)

ll lr rl rr
u 1 1.3 0.3* 0.6
d 2.1 3.3 0.7 1.3

(u11, u
2
1) = (U,R)

ll lr rl rr
u 3 3.3 2.3* 2.6
d 4.1 5.3 2.7 3.3

In each case, the “starred” entry(ies) denotes the minimum entries of the
corresponding matrices, which will be carried over to the first stage to determine
the optimal policies there. Now, at stage 1 A1 knows the value of x1, but A2
does not, so that possible policies for A1 are UU, UD, DU, and DD, while the
permissible policies for A2 are L and R. Using the optimum entries above, we can
construct an equivalent cost matrix at stage 1 through an appropriate averaging
process:

A2

L R
UU 1.46 1.5

A1 UD 0.74* 1.5
DU 2.22 1.9
DD 1.5 1.9

This is known as the optimum cost-to-go matrix at stage 1, because of the
following interpretation that the entries admit. Consider, for example, the entry
with the numerical value 2.22: If A1 chooses D when x1 = x11 and U when
x1 = x12, and A2 chooses L, all at stage 1, then whatever choices are made at
stage 2 (under the given information) the total (expected) cost can never be lower



2.5 An Illustrative Example of a Finite Dynamic Team 37

than 2.22. To arrive at this numerical value, we note that if x1 = x11, u11 = D
and u21 = L, the cost resulting from an optimum choice of policies at stage 2
would be 3.3 (the lowest entry of the third conditional total cost matrix), whereas
if x1 = x12, u11 = U , u21 = L, the optimum total cost would be 1.5 (the lowest
entry of the fifth matrix). Since the value of x1 is not available to A2 at stage 1,
we average these values of x1 to obtain

(0.4)(3.3) + (0.6)(1.5) = 2.22.

All other entries of the 4× 2 cost-to-go matrix can be computed analogously.
Clearly, the minimum cost is J1DMS = 0.74, with the unique team-optimal

policy being

(γ1∗1 (x1), γ
1∗
2 (x1)) =

{
Ud, x1 = x11,

Du, x1 = x12,

γ2∗1 = L, γ2∗2 (x1, w2) =

{
r, w2 = w21,

l, w1 = w22,

Note that γ2∗2 is actually independent of the value of x1 (which means that even
if the measurement y11 had not been shared, the team-optimal solution would still
be the same) and that γ1∗2 does depend on x1 (which means that if A1 were not
allowed to recall the value of x1 at stage 2, the optimal team cost would have
been higher—see the next case).

4. No sharing, no recall (NSR). Here we have

I1
1 = {x1}, I1

2 = φ = I2
1 , I2

2 = {w2}.
If we had allowed perfect recall (i.e., I1

2 = I1
1 ), then the solution would be the

one obtained in case 3, as discussed there16; however, without perfect recall the
solution does not follow from the one in case 3. This information structure is
nonclassical and hence a recursive derivation as in case 3 is also not possible.
The only possibility is to construct the normal form for the team, which is
characterized by the 8× 8 matrix given below.

A2

Lll Llr Lrl Lrr Rll Rlr Rrl Rrr
UUu 2 2.54 1.54 2.08 2.2 2.5 1.5 1.8
UDu 1.4 1.82 0.82* 1.24 2.2 2.5 1.5 1.8
DUu 2.8 3.22 2.22 2.64 2.6 2.9 1.9 2.2

A1 DDu 2.2 2.5 1.5 1.8 2.6 2.9 1.9 2.2
UUd 2.38 3.46 1.46 2.54 2.86 3.44 1.9 2.5
UDd 2.14 3.34 0.98 1.82 3.3 4.5 1.9 2.5
DUd 3.54 4.62 2.38 3.22 3.7 4.9 2.3 2.9
DDd 3.3 4.5 1.9 2.50 3.7 4.9 2.3 2.9

16We should note that this is specific to the problem at hand and is not a general rule. In general,
optimal team cost in case 4 and with perfect recall will be higher than the one at case 3 where some
sharing of measurements is allowed.
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The unique solution is (UDu, Lrl), with a cost level of JNSR = 0.82. Note that
UDu stands for

γ1∗1 (x1) =

{
U, x1 = x11,

D, x1 = x12,
γ1∗2 = u,

and Lrl denotes the policy

γ2∗1 = L, γ2∗2 (w2)

{
r, w1 = w21,

l, w1 = w22,

5. Open-loop information (OLI). Here the agents use only the measurements they
have obtained at stage 1, which is x1 for A1 and no measurement for A2. The
normal form here is, in fact, a submatrix that can be obtained from the 8 × 8
matrix of case 4. For A1 the permissible policies are still the same. For A2,
however, the permissible ones are Ll, Lr, Rl, Rr, which correspond in case 4 to
Lll, Lrr, Rll, Rrr. Hence, we retain only the first, fourth, fifth, and eighth columns
of the matrix of case 4, and the result is the unique team-optimal solution (UDu,
Lr), with a cost level of JOL = 1.24. We should note in passing that the normal
form of case 1 can also be recovered from the normal form of case 4, this time by
also eliminating the second, third, sixth, and seventh rows of the matrix of case 4.

Cost Comparisons

Clearly, more information to any one agent in a team will never result in higher
optimal team cost and in fact could lead to a strictly lower value. In the latter case,
we say that the extra information is useful (or worth receiving). In the context of this
specific example, we have the optimum cost comparisons

JSP = 1.8 > JOL = 1.24 > JNSR = 0.82 > J1DMS = J1DIS = 0.74

> JCMS = JCIS = 0,

and hence in each case the extra information to one or more agents has been worth
receiving (with the exception of pure action information in the cases of CIS and
1DIS ISs). The equalities J1DIS = J1DMS , JCMS = JCIS hold not only for this
specific example but also for the general stochastic team problems.
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2.6 Team-Optimal Solutions for Static Teams

We present, in this section, a theory for static N -person stochastic teams, by
focusing on fundamental issues such as the existence, uniqueness and derivation
of team-optimal solutions, establishing conditions under which person-by-person
(pbp) optimal solutions are also team-optimal, and studying the relationships
between achievable optimal team costs and information structures in static teams.

Using the terminology and notation introduced in Sect. 2.2, we represent a
general team by the (N + 1)-tuple {J ;Γ i, i ∈ N}, where the cost J is derived
from a loss function, using a probability measure P on the states of nature, common
to all agents. We consider the cases where the action spaces (U i, i ∈ N ) are either
finite or infinite but finite dimensional, and for the latter class we also include the
possibility that some hard constraints may be imposed on the decision variables, in
which case the action constraint sets (Si, i ∈ N ) are taken as appropriate closed
subsets of the corresponding action spaces.

In the first subsection (Sect. 2.6.1), we consider the class of teams which are
either finite or have finite measurement spaces for all agents. For this class, we
provide general existence and uniqueness results for team-optimality and discuss
the relationship with pbp optimality and the notion of stationarity (which is to
be defined shortly). In Sect. 2.6.2, we extend this study to teams where the mea-
surement spaces are infinite (but finite dimensional) and develop conditions under
which stationarity implies team-optimality. Section 2.6.3 discusses two special, but
important, classes of teams: (1) those with quadratic loss functions, first under
general probability distributions and then under the Gaussian distribution, and (2)
static teams with exponentiated quadratic loss functions. We also discuss recursive
algorithms for the computation of the team-optimal solution in each case.

2.6.1 Teams with Finite Measurement Spaces

We have already identified, in Sect. 2.3, one class of team problems for which an
optimal solution always exists, namely, static finite teams, i.e., teams where both the
action and the measurement spaces are finite or, equivalently, the product strategy
space (Γ) is finite. This conclusion would also be valid for dynamic teams where the
product strategy space (Γ) is finite, since we would be doing a comparison among
only a finite number of choices. It would be appropriate first to present this trivial,
but useful, result as a fact.

Fact 2.6.1. Every finite stochastic team admits at least one team-optimal
solution. �

Two other key observations we made in Sect. 2.3 were that multiple team-optimal
solutions are not necessarily interchangeable (respecting the order) and that a pbp
optimal solution is not necessarily team-optimal, both of which we summarize
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below for future reference. These two facts are naturally valid not only for finite
teams but for infinite teams as well and further not only for static teams but also for
dynamic teams in normal (strategic) form.

Fact 2.6.2. Neither multiple team-optimal solutions nor multiple pbp optimal
solutions are necessarily interchangeable. �

Fact 2.6.3. Every team-optimal solution is pbp optimal, but not vice versa. �

If a team problem is not finite, then one has to bring additional structure into
the formulation in order to guarantee the existence, as well as the uniqueness, of
the solution. Viewing a stochastic team in normal form as one of minimization17 of
a functional, J , over a set, Γ, an optimum may fail to exist (in infinite teams) for
basically one of two reasons:

1. The (cost) functional J is unbounded below.
2. There exists an infimizing sequence in Γ, without any limit in Γ.

The former basically says that J∗, defined by the RHS of (2.4), is −∞, implying
that a sequence can be found in Γ which makes the value of J arbitrarily small
(negative). The only way to avoid this difficulty is to formulate, from the beginning,
a well-defined team problem whose cost is bounded away from −∞. The latter
reason, however, cannot be dispensed with that easily since it places some nontrivial
restrictions on the topology of the product policy space Γ as well as on the structure
of J . In this case J∗, defined by the RHS of (2.4), is a finite quantity, but one can
only achieve values arbitrarily close to (but larger than) J∗, and never equal to it.
This could arise if, for example, the function J has some discontinuities on Γ or
Γ has some “holes” in it so that the infimizing sequence cannot have a limit in Γ.
The most general condition that ensures that these two things do not happen is the
celebrated Weierstrass theorem (see Appendix A, Sect. A.5), rephrased below as a
fact using the team framework.

Fact 2.6.4. The team problem {J ;Γ i, i ∈ N} admits a team-optimal solution if the
product policy space Γ is a compact subset of a normed linear vector space, and
the cost function J is lower semicontinuous (lsc) on Γ. �

As one useful application of the above result, consider the class of stochastic
team problems which satisfy the following four hypotheses:

(c.1) Each action constraint set Si (i ∈ N ) is a closed and bounded subset of the
action space U i (i ∈ N ) which is itself a finite-dimensional vector space.

(c.2) L(ξ;u1, . . . , uN) is almost surely (a.s.) jointly lsc in (u1, . . . , uN) =: u, on
U := U1 × · · · × UN .

(c.3) Each measurement set Y i (i ∈ N ) is finite, with no element receiving zero
probability from the probability measure P , or equivalently, for each i ∈ N , the

17For some background material on the optimization of functionals, see Sect. A.5 of Appendix A.
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partition set Yi has a finite number of elements, with each element receiving
positive probability from P .

(c.4) Eξ|yiL(ξ;u1, . . . , uN ) is finite for every yi ∈ Y i, uj ∈ U j , i, j ∈ N .

Then we have the following theorem:

Theorem 2.6.1. For an N -agent static stochastic team problem satisfying (c.1)–
(c.4) above, there exists at least one team-optimal solution. �

Proof. The result follows from Fact 2.6.4, once we observe that, under the given
specifications, the normal form has a lsc cost function J on a compact policy space
Γ. We first show the latter, which is equivalent to showing that, for each i ∈ N ,
Γ i is a closed and bounded subset of a finite-dimensional space. Toward this end,
let Y i be generated (without any loss of generality) by the ni-tuple {yi1, . . . , yini

},
where ni := |Y i| is finite by (c.3). Then, every permissible strategy γi for Ai (i.e.,
every element of Γ i) can be written as

γi(yi) = uij , if yi = yij , j = 1, . . . , ni,

where each uij lies in Si. Hence, each strategy can be viewed as an ni-tuple of
vectors (ui1, . . . , u

i
ni
) belonging to

Si := Si × · · · × Si︸ ︷︷ ︸
nitimes

⊂ U i × · · · × U i︸ ︷︷ ︸
nitimes

=: Ui,

which makes Γ i isomorphic to Si which is closed and bounded, and finite
dimensional, since it is a finite product of Si which itself is closed and bounded
[by (c.1)].

We now show that J is lsc on U := U1 × · · · ×UN . To obtain a description of
J on U, let us first introduce the notation y to denote an N -tuple of scalars

y := (y1t1 , . . . , y
N
tN ), ti ∈ {1, . . . , ni}, i ∈ N ,

where yiti denotes one possible (generic) measurement of Ai. By a possible abuse
of terminology, we will consider y as a random quantity, which has N :=

∏
i∈N ni

different realizations. Then, we have the following sequence of equalities:

J(γ) = EξL(ξ; γ
1(η1(ξ)), . . . , γN (ηN (ξ)))

= Ey Eξ|yL(ξ;u
1
t1 , . . . , u

N
tN )︸ ︷︷ ︸

Lav(y;u1
t1

,...,uN
tN

)

≡
∑

ti∈{1,...,ni},i∈N
Lav(y;u

1
t1 , . . . , u

N
tN )Prob(y),

(
)
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where the second line follows from the “iterated property” of conditional
expectations (see Appendix B) and the adopted convention that γi(yi) = uiti , when
yi = yiti .

Now, under (c.2) and (c.4), Lav(yt;u
1
t1 , . . . , u

N
tN ) is a lsc function on u

(as well as on U) for each yt, since it is the integral of a lsc function (L) under
the conditional measure Prob(ξ|y), which is finite by (c.4). In view of this, the last
line of (
) (which is a finite weighted sum of individual lsc functions) provides
a representation for J on U, which is lsc. This then completes the proof of the
theorem. It is worth noting at this point that the result would be true even if condition
(c.2) is relaxed somewhat, requiring instead that the functionLav(y;u) be lsc on u,
where Lav(y;u) := Eξ|y,uL(ξ;u). ��

For the general result of Theorem 2.6.1 to be valid, conditions (c.2) and (c.3)
cannot be relaxed any further, because the relaxation of (c.2) (with the provision
above) would lead to violation of the lsc part of Fact 2.6.4, and the relaxation of (c.3)
(meaning that some of the Y i’s might be infinite sets) leads to policy spaces that are
no longer finite dimensional, in which case (c.1) does not imply the compactness
of Γ. Relaxation of (c.4), on the other hand, would lead to a J that is not lsc at
those points of u where it is unbounded. Of course, this condition is automatically
satisfied if the underlying probability space is finite. The only condition that can be
relaxed, without affecting the basic result of the theorem is (c.1). To accommodate
in our formulation the situation where some (or all) of the decision variables do not
have hard constraints imposed on them, we have the following substitute condition:

(c.1′) Let Nh and Ns be two complementary subsets of N (i.e., Nh ∪ Ns = N ,
and Nh ∩ Ns = ∅) such that Si is compact for all i ∈ Nh, and Sj ≡ U j for
all j ∈ Ns. Then, as

∑
j∈Ns

|uj | → ∞, L(ξ;u1, . . . , uN ) → ∞ a.s., for every
fixed ui ∈ Si, i ∈ Nh.

This condition ensures that uj , j ∈ Ns, can be restricted to a (possibly
sufficiently large) compact set, thus making the result of Theorem 2.6.1 still valid.
Hence we have

Corollary 2.6.1. An N -agent static stochastic team problem satisfying (c.1′),
(c.2), (c.3), and (c.4) admits at least one team-optimal solution. �

Uniqueness

In view of Fact 2.6.2, it may be important to determine the conditions under which a
team-optimal solution is unique, since as we have discussed earlier in Sect. 2.3,
multiple optima may lead to an inferior outcome if the agents do not have a
consistent protocol to resolve the dilemma. Once the existence of an optimum has
been established, there would be two ways to verify uniqueness of the solution. One
would be to write down a set of necessary conditions to be satisfied by the team-
optimal solution and show that these conditions admit at most one solution—as to
be discussed later in this subsection. A second way to verify unicity would be to
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use the normal form for the team and show strict convexity18 of J over the product
policy space Γ, which has to be a convex set. The following theorem now does
precisely that, by relating the (strict) convexity of L to the convexity of J under the
hypotheses of Theorem 2.6.1.

Theorem 2.6.2. In addition to the four hypotheses of Theorem 2.6.1 or of
Corollary 2.6.1, let Si be a convex set for each i ∈ N and L(ξ; ·) be strictly
convex on U a.s.19 Then, the stochastic team problem admits a unique team-optimal
solution. �

Proof of Theorem 2.6.2. First note that for X a finite-dimensional vector space and
I a finite index set, if fi, i ∈ I , is a convex (respectively, strictly convex) functional
defined on X , then the functional f : f =

∑
i∈I fi is also convex (respectively,

strictly convex) on X . Now, the construction given for J , in the proof of Theo-
rem 2.6.1, satisfies the hypotheses of this result with ft(·) = Lav(yt; ·)Prob(yt),
since for each yt, Lav(yt; ·) is strictly convex on u (being the conditional average
of an a.s. strictly convex functional), and every uiti , ti ∈ {1, . . . , ni}, i ∈ N ,
appears in at least one of the additive terms in the representation (
) for J . Note, in
passing, that Prob(yt) may not be positive for every possible N -tuple (t1, . . . , tN ),
ti ∈ {1, . . . , ni}, i ∈ N , but for any j ∈ N, and tj ∈ {1, . . . , nj}, yjtj will receive
positive probability in at least one such sequence, since otherwise this would imply
that Prob(yj = yjtj ) = 0, a contradiction to our initial hypothesis. ��

The following example serves to illustrate some of the fine points of the results
of Theorems 2.6.1 and 2.6.2 and the analyses that led to these results, including the
construction (
) used in the proof of Theorem 2.6.1.

Example 2.6.1. Let N = 2, Ξ = U1 = U2 ≡ R, ξ be a (continuous) random
variable uniformly distributed on the open interval (0, 2), and the loss functional L
be given by

L(ξ;u1, u2) = (u1)
2
+ (u2)

2
+ ξu1u2 − u1 − 2u2.

Suppose that A1 can tell (through his measurements and with certainty) whether the
realized value of ξ belongs to the open interval (0, 1) or not and A2 can similarly
tell whether it belongs to the subinterval (12 ,

3
2 ) or not. The question is whether this

(static) stochastic team problem admits a team-optimal solution or not and, if it does,
whether it is unique and how it can be computed.

Let us first check the conditions of Theorem 2.6.1 and Corollary 2.6.1. Clearly
(c.2) and (c.3) are satisfied, where in the latter we choose y1 = {(0, 1), [1, 2)},
y2 = {(12 ,

3
2 ), (0,

1
2 ] ∪ [ 32 , 2)}}. We associate the measurement yi1 with the first

subinterval (in each corresponding partition) and the measurement yi2 with the

18See Appendix A, Sect. A.4, for a definition.
19A random function L(ξ;u) is a.s. strictly convex in u if the set of ξ for which L is not strictly
convex in u is of Pξ-measure zero.
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complement (i.e., the second) set. Condition (c.1) is not satisfied, but (c.1′) is (with
Ns = N ), because, for each ξ ∈ (0, 2), the Hessian matrix of L (see Appendix A,
Sect. A.4),

�2L(ξ,u) =

(
2 ξ

ξ 2

)
,

is positive definite (p.d.), implying that L(ξ,u) → ∞ as |u1| + |u2| → ∞, for
every fixed ξ ∈ (0, 2). Note that even if the open interval (0, 2) is replaced with
the closed interval [0, 2] (the distribution still being the same), (c.1′) would still be
satisfied because, even though �2L(ξ,u) is no longer p.d. at ξ = 2 (in fact, then
choosing u1 = −u2 and letting u2 → ∞, one can drive L to −∞), the singleton
event {ξ = 2} receives zero probability under the given continuous distribution,
and hence the condition holds in the a.s. sense. If, however, we had a probability
distribution with a jump at the point ξ = 2, assigning, say, a weight of 1

3 to that
single value, then (c.1′) would have been violated.

Now, in the course of the discussion above, we have also established the validity
of the two additional hypotheses of Theorem 2.6.2 (the first one trivially and the
second one because of the reason that the Hessian matrix of L is p.d. a.s.), from
which it follows that the problem indeed admits a unique team-optimal solution.

To obtain a characterization of the solution, let us first construct the normal
form, following the steps outlined in the proof of Theorem 2.6.1. Noting that the
summation in (
) has four terms, with Prob((y1i , y

2
j )) =

1
4 , i, j = 1, 2, some algebra

leads to the expression

J(γ) =
1

2

2∑
i,j=1

(uij)
2 − 1

2

2∑
j=1

u1j −
2∑

j=1

u2j +
1

16
[u11u

2
2 +3u11u

2
1 +5u12u

2
1 +7u12u

2
2],

which is to be minimized with respect to (u11, u
1
2, u

2
1, u

2
2) over R4. This is a strictly

convex functional and is differentiable, which means that the unique solution should
satisfy (uniquely) the stationarity conditions:

∂J/∂uij = 0, i, j = 1, 2.

These conditions reduce to the set of four linear equations:

16u11 + 3u21 + u22 = 8,

16u12 + 5u21 + 7u22 = 8,

3u11 + 5u12 + 16u21 = 16,

u11 + 7u12 + 16u22 = 16,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(◦)
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which admits the unique solution (to the nearest 6 decimal places):

u1∗ := (u11
∗
, u12

∗
) = (0.231214,−0.323699),

u2
∗
:= (u21

∗
, u22

∗
) = (1.057803, 1.127168),

with the minimum value being

J∗ ≈ −1.141618.

It would be instructive to compare this value for the team cost with what would
have been achieved if the agents had not made any measurements (i.e., operated in
an “open-loop” fashion with no measurements). In such a case, the normal form for
the team would be given by the cost functional JOL (where the subscript OL stands
for “open-loop”);

JOL = (u1)
2
+ (u2)

2 − u1 − 2u2 + u1u2,

since E[ξ] = 1. A straightforward minimization of this quadratic (and strictly
convex) functional leads to the unique solution

u1
∗
= 0, u2

∗
= 1 ⇒ J∗

OL = −1.

Hence, we observe that the presence of the measurements (which bring the
uncertainty in the true value of ξ to intervals of length 1, instead of the original
interval of length 2) leads to an improvement of (approximately) 14% in the
performance attained by the team.

Another extreme case to consider would be the information structure that
provides the agents with the “maximum” information regarding the true value of
ξ, which, unquestionably, is the measurement signal yi = ξ, i = 1, 2 (i.e., perfect
measurement), unless some restrictions are imposed on the information structure.
Our results, so far, as embodied in Theorems 2.6.1 and 2.6.2 and Corollary 2.6.1, are
not (strictly speaking) applicable to problems of this type, since the measurements
belong to infinite sets—this is the topic of the next subsection. However, because
of the fact that both agents make perfect measurements here, the problem would be
easy to analyze, since it is no different from a deterministic (quadratic) optimization
problem. As such, this particular (team) problem is not well defined, since the
objective functional is not strictly convex at ξ = 2, meaning (in this case) that for
ξ = 2 the loss functional can be driven to −∞, which in turn implies (in that case)
that under the uniform distribution on (0, 2) the cost (average loss) can be made
arbitrarily small (negative).20 The message here is that not only the characterization

20One can determine the optimal decision rules for each value of ξ ∈ (0, 2) (this can be done
analytically), substitute these unique rules into the given loss functional, and see that its integral
over the interval (0, 2) does not exist—which shows that J∗ is unbounded under the perfect
measurement information structure.
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but also the existence of a solution in a stochastic team problem could very much
depend on the underlying information structure. �

We have thus seen, in the preceding example, a constructive procedure for
obtaining closed-form solutions to a stochastic static team problem with finite
measurement spaces. The question now is whether there are other (alternative) ways
of obtaining the solution and also of verifying team-optimality of a given candidate
solution without going through the derivation. Such tools would be provided by
the necessary conditions satisfied by a team-optimal solution, one of which is
person-by-person (pbp) optimality, the necessity of which has already been given in
Fact 2.6.3. Recalling Remark 2.2.1, and particularly inequality (2.7), a pbp solution
γ∗ ∈ Γ for a static team problem (J,Γ) would be given by

min
β∈Γ i

J(γ−i∗, β) = J(γ∗), i ∈ N , (2.24)

which can equivalently be written as

min
u∈Si

Eξ|yiL(ξ; γ−i ∗ (y−i), u) = Eξ|yiL(ξ; γ ∗ (y)), i ∈ N . (2.25)

In other words, we have N separate optimization problems, one for each agent, and
in each case the remaining agents’ policies frozen at their pbp optimal choices. Note
that (2.24) is an optimization (of total expectation) in the policy space, whereas (2)
is optimization (of conditional expectation) in the action space, for every value of the
conditioning variable. If (2.25) admits a unique solution and if the original problem
is known to have a team-optimal solution (as in the case of Theorem 2.6.1 or
Corollary 2.6.1), then (2.25) provides an alternative way of obtaining that solution.
If, however, (2.25) admits more than one solution, then one would like to determine
whether all or some of these are team-optimal. Hence, derivation of conditions under
which pbp optimality implies team-optimality is of natural interest. At the outset,
one would expect a.s. convexity of L(ξ;u) over u ∈ U to play a role here. This is
indeed the case, but convexity in itself is not a sufficient condition, as the following
example demonstrates:

Consider the purely deterministic loss function L : R2 → R defined by

L(u1, u2) =

⎧⎨
⎩

(u1)2 + (1 − u2)2, u1 ≥ u2,

(u2)2 + (1 − u1)2, u1 < u2,

which is strictly convex on R
2. For any fixed u2 ∈ R, argminu1 L(u1, u2) =

u2, and likewise for fixed u1 ∈ R, argminu2 L(u1, u2) = u1. Hence, there exist
infinitely many pbp optimal solutions (u1 = u2 = u, u ∈ R), but only one of these,
namely, (u1 = u2 = 1

2 ) is team-optimal.
The function L above is nondifferentiable at the pbp optimal points (u1 = u2),

and in view of this observation one might wonder whether a similar “negative” result
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can be obtained if the loss function were continuously differentiable. The following
lemma outrules this possibility for deterministic problems and provides a set of
(tight) sufficient conditions for a pbp optimal solution to be globally optimal.

Lemma 2.6.1. Let L : Rm1 × · · · × R
mN → R be a convex (deterministic) loss

function, with a pbp optimal solution u◦ := (u1
◦
, . . . , uN

◦
). If L is continuously

differentiable21 at u◦, then u◦ is globally (team) optimal. �

Proof. From the definition of convexity, we have the inequality

L(αv + (1 − α)u◦) ≤ αL(v) + (1− α)L(u◦)

for any v = (v1, . . . , vN ) ∈ R
m1 × · · · × R

mN and every α ∈ [0, 1]. Rearranging
this inequality, we obtain, for 0 < α ≤ 1,

1

α
[L(u◦ + α(v − u◦))− L(u◦)] ≤ L(v)− L(u◦),

and letting α ↓ 0, we arrive at

N∑
i=1

∇uiL(u◦)(vi − uoi) ≤ L(v)− L(u◦), ∀v ∈ R
m1 × · · · × R

mN ,

where the required derivatives exist and the chain rule applies since L is continu-
ously differentiable at the given point. Furthermore, by the pbp optimality of u◦, all
these partial derivatives vanish, leading to

L(u◦) ≤ L(v), ∀v ∈ R
m1 × · · · × R

mN ,

which proves global optimality of u◦. ��

This lemma now finds a natural generalization to static stochastic team problems
with finite measurement spaces. First, we formally introduce the notion of a
“stationary policy.”

Definition 2.6.1. Given a static stochastic team problem {J ;Γ i, i ∈ N}, a policy
N -tuple γ ∈ Γ is stationary if (i) J(γ) is finite, (ii) the N partial derivatives in the
following equations are well defined (locally), and (iii) γ satisfies these equations:

[
∇uiEξ|yiL(ξ; γ−i(y−i), ui)

]
|ui=γi(yi) = 0, a.s. i ∈ N . (2.26)

�

21 Here, if one is to generalize the space on which L is defined, such as an infinite-dimensional
space, Fréchet differentiability would be a sufficient condition. In fact continuous differentiability,
and thus continuity of partial derivatives for a finite-dimensional function (see Appendix A.4),
implies Fréchet differentiability [140]. The key aspect required is that the chain rule in differentia-
tion applies, which is the case for Fréchet differentiable functions, and not necessarily the case for
weaker forms of differentiability. See also Radner [316] for a related discussion.
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Clearly, the stationarity condition (2.26) is a necessary condition for (2.25) if
L(ξ;u) is continuously differentiable in each agent’s action variable (not necessarily
jointly) for every ξ ∈ Ξ , and Si, i ∈ N , are open subsets of finite-dimensional
vector spaces. It is equivalent to (2.25) if furthermore Si, i ∈ N , are convex sets,
and L(ξ;u) is convex in ui, i ∈ N , for every ξ ∈ Ξ . The following theorem now
basically says that if the convexity and continuous differentiability of L is jointly in
all the agents’ action variables, then a stationary policy is necessarily team-optimal.

Theorem 2.6.3. For an N -agent static stochastic team problem, let the hypotheses
(c.3) and (c.4) be satisfied, Si be an open convex subset of a finite-dimensional
vector space, for each i ∈ N , and L(ξ, ·) be convex and continuously differentiable
on S := S1 × · · · × SN . Under these conditions, if the policy γ◦, taking values in
S, is stationary, it is team-optimal. �

Proof. Using the construction given in the proof of Theorem 2.6.2, J admits a
representation on the space U, which is convex and continuously differentiable
(this last property follows because by (c.4) the function Lav(yt; ·) is continuously
differentiable, and the representation for J is a finite weighted sum of such
functions). Then, the result follows by a direct application of Lemma 2.6.1. ��

Example 2.6.1. continued. Returning to the static team of Example 2.6.1, so as to
apply Theorem 2.6.3, first by the “monotone convergence theorem” (see the proof
of Theorem 2.6.4), the conditional expectation and differentiation in (2.26) can be
interchanged, leading to the equivalent stationarity conditions

Eξ|yi{(∂/∂ui)L(ξ; γj(yj), ui)}|ui=γi(yi) = 0, i 	= j, i, j = 1, 2

⇔
2γ1(y1) + E[ξγ2(y2)|y1]− 1 = 0,

2γ2(y2) + E[ξγ1(y1)|y2]− 2 = 0.

Since y1 and y2 each take two different values, this pair of equations is in fact a set
of four linear equations, identical with the equations (◦) encountered earlier—as we
would have expected. Note that to further simplify the pair of equations above, we
can substitute for γ2 from the second into the first, to arrive at a single equation in
terms of γ1,

4γ1(y1) + 2E[ξ|y1]− 1− E[ξE[γ1(y1)|y2]|y1] = 0,

which can be solved uniquely for u11 = γ1(y11) and u12 = γ1(y12), to yield u11
∗
=

0.231214, u12
∗
= −0.323699. The stationary policies of agent 2 can likewise be

obtained. Since the loss function L satisfies all the hypotheses of Theorem 2.6.3,
these stationary policies are indeed team-optimal. �
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2.6.2 Teams on Finite-Dimensional Spaces

We now extend the theory of the previous subsection from finite spaces to a
class of uncountable (but finite-dimensional) measurement spaces, with the action
spaces again taken as finite-dimensional vector spaces. Given such a team problem
{J ;Γ i, i ∈ N}, at least one of the policy spaces (Γ i) will be infinite dimensional,
which means that condition (c.1) will no longer imply that the policy space Γ is
compact. Hence, even though Fact 2.6.1 would still be applicable in this case, a
counterpart of Theorem 2.6.1 (on the existence of a team solution) will not follow
from the given conditions. If γ∗ ∈ Γ is a team-optimal solution, then it will
necessarily satisfy the pbp optimality condition (2.25) where now Y i = R

ri , i ∈ N .
If furthermore, the action constraint sets are open, and the function to be minimized
in (2.25) is continuously differentiable in the minimizing argument, this being so for
all i ∈ N , then the team solution should satisfy the stationarity conditions (2.26).
The question now is whether there exists a counterpart of Theorem 2.6.3, to ensure
that every stationary solution is also team-optimal. We first have the following
theorem which provides a set of sufficient conditions for a policy N -tuple to be
team-optimal.

Theorem 2.6.4. Let {J ;Γ i, i ∈ N} be a static stochastic team problem where
U i ≡ R

mi , i ∈ N , the loss function L(ξ,u) is convex and continuously
differentiable in u a.s., and J(γ) is bounded from below on Γ. Let γ∗ ∈ Γ be a
policy N -tuple with a finite cost (J(γ∗) < ∞), and suppose that for every γ ∈ Γ
such that J(γ) <∞, the following N inequalities hold:

E{∇uiL(ξ; γ∗(y))[γi(yi)− γi∗(yi)]} ≥ 0, i ∈ N , (2.27)

where E{·} denotes the total expectation. Then, γ∗ is a team-optimal policy, and it
is unique if L is strictly convex in u. �

Proof. First, by the convexity of L, we obtain (as in the proof of Lemma 2.6.1)

1

α

[
L(ξ; γ∗(y) + α[γ(y) − γ∗(y)]) − L(ξ; γ∗(y))

]
≤ L(ξ; γ(y)) − L(ξ; γ∗(y)),

for all α ∈ (0, 1]. Using the definition of J , this inequality can equivalently be
written as (by taking the total expectation):

h(α) :=
1

α
[E{L(ξ; γ∗(y) + α[γ(y)− γ∗(y)])} − J(γ∗)] ≤ J(γ)− J(γ∗),

where α ∈ (0, 1]. Note that both J(γ) and J(γ∗) are finite, by hypothesis, and the
first random variable (i.e., the first loss function) also has a finite expectation for
every α ∈ (0, 1] because of the bound provided by the inequality. Now, due to the
convexity of L, its finite integral,E{L(ξ; γ∗(y)+α[γ(y)−γ∗(y)])} is also convex
in α. This leads to the conclusion that (by a property of convex functionals, given
in Appendix A, Sect. A.4) h(α) is a monotonically nonincreasing function as α ↓ 0,
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and furthermore h(1) ≡ J(γ) − J(γ∗) is bounded (by hypothesis). It then follows
from the monotone convergence theorem (see Appendix B) that limα↓0 h(α) exists,
and the limit and expectation operations can be interchanged. As a consequence of
continuous differentiability, this then leads to the inequality

N∑
i=1

E{∇uiL(ξ; γ∗(y))[γi(yi)− γi
∗
(yi)]} ≤ J(γ)− J(γ∗)

from which team-optimality of γ∗ follows, since the left-hand side is nonnegative,
by (2.27).

If L were strictly convex in u, a.s., then all the inequalities above would be strict,
for γ 	= γ∗, thus leading to

J(γ∗) < J(γ),

which says that γ∗ is the unique team-optimal solution. ��

Note that the conditions of Theorem 2.6.4 above do not include the stationarity
of γ∗, and furthermore inequalities (2.27) may not generally be easy to check, since
they involve all permissible policies γ (with finite cost)—generally an uncountable
set. It is therefore important to obtain more readily checkable conditions to re-
place (2.27) and to relate team-optimality to stationarity. Either one of the following
two conditions will accomplish this goal:

(c.5) For all γ ∈ Γ such that J(γ) < ∞, the following random variables have
well-defined (finite) expectations (i.e., mean values):

∇uiL(ξ; γ∗(y))[γi(yi)− γi∗(yi)], i ∈ N

(c.6) Γ i is a Hilbert space for each i ∈ N and J(γ) < ∞ for all γ ∈ Γ .
Furthermore,

Eξ|yi{∇uiL(ξ; γ∗(y)} ∈ Γ i, i ∈ N .

Of course, (c.6) can be obtained from (c.5) if Γ i, i ∈ N , are taken as Hilbert spaces.
Here we give it as a separate condition because in some problems (such as linear
quadratic—as we shall see shortly) (c.6) follows quite readily from the problem
formulations.

Theorem 2.6.5. Let {J ;Γ i, i ∈ N} be a static stochastic team problem which
satisfies all the hypotheses of Theorem 2.6.4, with the exception of the set of
inequalities (2.27). Instead of (2.27), let either (c.5) or (c.6) be satisfied. Then, if
γ∗ ∈ Γ is a stationary policy, it is also team-optimal. Such a policy is unique if
L(ξ;u) is strictly convex in u, a.s. �

Proof. We prove the result under condition (c.6) and leave its verification under
(c.5) as an exercise. Clearly, what we need to show is that stationarity of γ∗ implies
[under (c.6)] the set of inequalities (2.27). Firstly note that since Γ i is a vector space,
γi − γi∗ ∈ Γ i for every γi ∈ Γ i, and for every βi ∈ Γ i, there exists a γi ∈ Γ i
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such that βi = γi − γi∗. Since βi ∈ Γ i ⇒ −βi ∈ Γ i, the set of inequalities (2.27)
become equivalent to

E{∇uiL(ξ; γ∗(y))βi(yi)} = 0, ∀βi ∈ Γ i, i ∈ N
⇔

Eyi{Eξ|yi [∇uiL(ξ; γ∗(y))]βi(yi)} = 0, ∀βi ∈ Γ i, i ∈ N ,

where the second line follows from the iterated property of conditional expectation,
under condition (c.6). Since both product terms above belong to Γ i which is a
Hilbert space, and the equality is required to hold for every element of Γ i, i ∈ N ,
the last line becomes equivalent to

Eξ|yi [∇uiL(ξ; γ∗(y))] = 0, a.s. yi, i ∈ N .

To complete the proof, we now have to show that the stationarity condition (2.26)
implies the above, which would be true if we were able to interchange the derivative
(which is a limit) and conditional expectation operations. This however is justified
(using again the monotone convergence theorem, as in the proof of Theorem 2.6.4),
since J(γ) is finite for all γ ∈ Γ and the conditional expectation above is well
defined (as an element of a Hilbert space). ��

Theorem 2.6.5 above thus provides an extension of the result of Theorem 2.6.3
from finite to infinite measurement sets. To appreciate some of the fine points of
Theorems 2.6.4 and 2.6.5, let us now consider the following example, which was
discussed by Radner [316] and Krainak et al. [218].

Example 2.6.2. Let N = 2, Ξ = U1 = U2 = R, ξ = x be a Gaussian random
variable with zero mean and unit variance (∼ N(0, 1)), and the loss functional be
given by

L(x;u1, u2) = (u1 − u2)2ex
2

+ 2u1u2.

Note that L is strictly convex and continuously differentiable in (u1, u2) for every
value of x. Hence, if the true value of x were known to both agents, the problem
would admit a unique team-optimal solution: u1 = u2 = 0, which is also
stationary. Since this team-optimal solution does not use the precise value of x,
it is certainly optimal also under “no-measurement” information (the other extreme
scenario). Note, however, that in this case the only pairs that make J(γ) finite are
u1 = u2 = u ∈ R, since

E[ex
2

] =
1√
2π

∫ ∞

−∞
e+

x2

2 dx = ∞.

With the set of permissible policies not being an open set, clearly we cannot talk
about stationarity in this case. Theorem 2.6.4 (which does not involve stationarity)
is applicable here, where inequality (2.27) is satisfied trivially. Note also that for
every u ∈ R, u1 = u2 = u is a pbp optimal solution, but only one of these is
team-optimal.
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Now, as a more interesting case, consider the measurement scheme:

y1 = x+ w1; y2 = x+ w2,

where w1 and w2 are independent random variables uniformly distributed on the
interval [−1, 1], which are also independent of x.22 Clearly, u1 = u2 = 0 is team-
optimal for this case also, but it is not obvious at the outset whether it is stationary
or not. Toward this end, let us evaluate (2.26) for i = 1 and with γ2(y2) = 0:

(∂/∂u1)Ex,y2|y1{(u1)2eξ2} = (∂/∂u1)[(u1)2Ex|y1{eξ2}] = 2u1Ex|y1{eξ2}

where the last step follows because the conditional probability density of x given y1

is nonzero only in a finite interval (thus making the conditional expectation finite).
By symmetry, it follows that both derivatives in (2.26) vanish at u1 = u2 = 0, and
hence the team-optimal solution is stationary. It is not difficult to see that in fact this
is the only pair of stationary policies. Note that all the hypotheses of Theorem 2.6.5
are satisfied here, under condition (c.5). �

2.6.3 Two Special Cost Structures

We now specialize the above general result to two classes of teams with special cost
structures, namely, quadratic and exponentiated quadratic loss functions. In both
cases the team loss function will be strictly convex and continuously differentiable,
so that (2.27) provides a sufficient condition for a policy γ∗ ∈ Γ to be team-optimal.
We will further observe that the conditions of Theorem 2.6.5 are satisfied, so that
stationary policies are also team-optimal.

Static Teams with Quadratic Loss

Given a probability space (Ω,F, PΩ), and an associated vector-valued random
variable ξ, let {J ;Γ i, i ∈ N} be a static stochastic team problem with the following
specifications:

(i) U i ≡ R
mi , i ∈ N , i.e., the action spaces are unconstrained Euclidean spaces.

(ii) The loss function is a quadratic function of u for every ξ:

L(ξ;u) =
∑

i,j∈N
ui

′
Rij(ξ)u

j + 2
∑
i∈N

ui
′
ri(ξ) + c(ξ), (2.28)

22Note that here the random state of nature, ξ, is chosen as (x,w1, w2)′.
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where Rij(ξ) is a matrix-valued random variable (with Rij ≡ R′
ji), ri(ξ) is

a vector-valued random variable, and c(ξ) is a random variable, all generated
by measurable mappings on the random state of nature, ξ.

(iii) L(ξ;u) is strictly (and uniformly) convex in u a.s., i.e., there exists a positive
scalar α such that, withR(ξ) defined as a matrix comprised ofN blocks, with
the ij ’th block given by Rij(ξ), the matrix R(ξ)−αI is positive definite a.s.,
where I is the appropriate dimensional identity matrix.

(iv) R(ξ) is uniformly bounded above, i.e., there exists a positive scalar β such
that the matrix βI −R(ξ) is positive definite a.s.

(v) Y i ≡ R
ri , i ∈ N , i.e., the measurement spaces are unconstrained Euclidean

spaces.
(vi) yi= ηi(ξ), i∈N , for some appropriate Borel measurable functions ηi, i ∈ N .

(vii) Γ i is the (Hilbert) space of all Borel measurable mappings of γi : Rri →
R

mi , which have bounded second moments, i.e., Eyi{γi′(yi)γi(yi)} <∞.
(viii) Eξ[r

′
i(ξ)ri(ξ)] <∞, i ∈ N ; Eξ[c(ξ)] <∞.

Definition 2.6.2. A static stochastic team is quadratic if it satisfies (i)–(viii) above.
It is a standard quadratic team if furthermore the matrix R is constant for all
ξ (i.e., it is deterministic). If, in addition, ξ is a Gaussian distributed random
vector, and ri(ξ) = Qiξ, η

i(ξ) = Hiξ, i ∈ N , for some deterministic matrices
Qi, H

i, i ∈ N , the decision problem is a quadratic-Gaussian team (more widely
known as a linear-quadratic-Gaussian (LQG) team under some further structure on
Qi and Hi). �

We now first show that the cost function of a quadratic team is bounded and
strictly convex on Γ.

Proposition 2.6.1. For a quadratic team,

(i) |J(γ)| <∞ for all γ ∈ Γ.
(ii) J(γ) is strictly convex on Γ. �

Proof. For each γ ∈ Γ, each component of ui = γi(yi) is a random variable
on (Ω,F , PΩ) with a bounded second moment (i.e., it is a second-order random
variable), this being true for all i ∈ N . Now using the fact that the product of any
two second-order random variables defined on the same probability space is a well-
defined random variable (on the same probability space) with a finite mean value
(see Appendix B), it follows that the expected value of the second term of (2.28) is
finite. Furthermore, since R(ξ) is uniformly bounded, the expected value of the first
term satisfies the bound

0 ≤ E{
∑
i,j

ui
′
Rij(ξ)u

j} ≡ E{u′R(ξ)u} ≤ βE{u′u},

whereE{u′u} is finite by the same reasoning as above. Then, it readily follows that
L(ξ;u), with ui = γi(yi), i ∈ N , is a well-defined random variable with a finite
expectation. Now, since L(ξ,u) is strictly convex in u for every ξ, we have the strict
inequality

L(ξ; α̃γ(y) + (1− α̃)γ̂(y)) < α̃L(ξ; γ(y)) + (1− α̃)L(ξ; γ̂(y))
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for all α̃ ∈ (0, 1), and every γ, γ̂ ∈ Γ, γ 	= γ̂. Taking the expected values of both
sides, which are finite as shown above, we arrive at

J(α̃γ + (1− α̃)γ̂) < α̃J(γ) + (1 − α̃)J(γ̂),

which shows that J is strictly convex. ��

Now, the stationarity conditions (2.26) associated with the loss functional (2.28)
can be evaluated:

[∇ui

⎧⎨
⎩Eξ|yi

∑
k,j∈N

uk
′
Rkj(ξ)u

j + 2ui
′
Eξ|yiri(ξ) + 2Eξ|yi

∑
j∈N ,j 
=i

uj
′
rj(ξ)

+Eξ|yic(ξ)

⎫⎬
⎭]|ui=γi(yi) = 0, i ∈ N

⇔ [Eξ|yi [Rii(ξ)]u
i +

∑
j∈N ,j 
=i

Eξ|yiRij(ξ)u
j + Eξ|yiri(ξ)]|ui=γi(yi) = 0, i ∈ N

⇔ Eξ|yi [Rii(ξ)]γ
i(yi)+

∑
j∈N ,j 
=i

Eξ|yi [Rij(ξ)γ
j(yj)]+Eξ|yiri(ξ) = 0, i ∈ N ,

(2.29)
where in going from the first to the second line of the equation we have simply
performed vector differentiation with respect to ui which is outside the conditional
expectation and have also used the fact that Rij ≡ R′

ji.
Hence, (2.29) constitutes the set of stationarity conditions for the quadratic team.

The following theorem, due to Radner [316], now says that the solution is unique
and is team-optimal.

Theorem 2.6.6. A quadratic static team (á la Definition 2.6.2) admits a unique
team-optimal solution γ∗ ∈ Γ, which is also the unique stationary solution
satisfying (2.29). �

Proof. Assuming that there exists a stationary solution [i.e., a solution to (2.29)], the
uniqueness and team-optimality follow from Theorem 2.6.5, since all its hypotheses
are satisfied along with condition (c.6). Hence the proof will be completed if we can
show that there exists at least one solution γ∗ ∈ Γ to (2.29). Here the verification
is somewhat technical and requires some results from functional analysis and
particularly Hilbert spaces (which are summarized in Appendix A, Sect. A.2). We
outline here the crucial steps in this verification; the approach is essentially due to
Radner [316].

Let us first note that the quadratic loss function (2.28) can equivalently be
written as

L(ξ;u) = u′R(ξ)u+ 2u′r(ξ) + c(ξ)

≡ [u+R−1(ξ)r(ξ)]′R(ξ)[u+R−1(ξ)r(ξ)] + c(ξ)− r(ξ)′R−1(ξ)r(ξ),
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whereR(ξ) is the matrix whose ij th block is Rij(ξ), and has an inverse (pointwise)
by the a.s. strict convexity of L. Hence, if all agents had perfect access to the precise
value of ξ, the minimum value of J would be given by the expected value of the
last two terms above. Since this is not the case, the actual minimum value of J
will be higher, the difference being due to the error in “approximating the vector
−R−1(ξ)r(ξ) using policies out of Γ.” An equivalent problem, therefore, is

min
γ∈Γ

J̃(γ), J̃(γ) := E{‖γ(y) +R−1(ξ)r(ξ)‖2R(ξ)}, (2.30)

and the statement just made (in “inverted commas”) can be given a precise
mathematical meaning as follows.

First note that the policy space Γ is the product space Γ 1×· · ·×ΓN , where each
Γ i is in fact a Hilbert space, with the inner product

〈αi, βi〉i := E[αi(yi)′βi(yi)]

(see Appendix A, Sect. A.2, and Appendix B, Sect. B.1). This makesΓ also a Hilbert
space, with the inner product

〈α, β〉 := E

{∑
i∈N

αi(yi)′βi(yi)

}
≡ E[α(y)′β(y)]. (◦)

Note the important restriction that α and β are not allowed to depend on all
components of y, because different agents do not have access to the same set of
measurements. Now, in order to be able to use (2.30) as a norm compatible with the
given inner product, we have to change the (◦) somewhat by weighting it with R(ξ):

〈α, β〉 = E[α(y)′R(ξ)β(y)]. (◦◦)

This actually changes Γ, the space where α and β belong, but because of the given
properties of R(ξ), we have an isometry between the two spaces and therefore can
denote the one under the new inner product (◦◦) also by Γ. If every component
of γ were allowed to depend on the entire measurement vector y (which would
be the case if all the agents were to share their measurements), then the set of all
permissible γ′s bounded under the norm induced by (◦◦) would be a much larger
(than Γ) space. Let us denote this space by H, and note that it is also a Hilbert space,
under the inner product (◦◦). An important observation now is that Γ is a closed
linear subspace of H, closed because every convergent sequence in Γ with a limit
point will have the limit point in Γ. Hence, the team-minimization problem (2.30) is
in fact an orthogonal projection problem, one of orthogonally projecting the random
vector x(ξ) := R−1(ξ)r(ξ) from H onto Γ. The conditions of the orthogonal
projection theorem given in Appendix A, Sect. A.2, are satisfied, and therefore there
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exists a unique element of Γ that solves (2.30). Furthermore, this unique element,
say γ∗, has the property that

γ∗ + x ⊥ γ, ∀γ ∈ Γ

(see Appendix A, Sect. A.2, for notation and terminology). Using the inner product
(◦◦), this orthogonality relationship can be written as

〈γ∗ + x, γ〉 = E
{
[γ∗(y) + x(ξ)]′R(ξ)γ(y)

}
= 0

⇔

E

⎧⎨
⎩
∑
i∈N

γi(yi)′

⎡
⎣∑
j∈N

Rij(ξ)γ
∗j(yj) + ri(ξ)

⎤
⎦
⎫⎬
⎭ = 0

⇔

E

{∑
i∈N

γi(yi)′

[
Eξ|yi{Rii(ξ)}γ∗i(yi) +

∑
j∈N ,j 
=i

Eξ|yi

{
Rij(ξ)γ

∗j(yj)
}

+Eξ|yiri(ξ)

]}
= 0,

where in arriving at the last line we have used the iterative property of conditional
expectations. Now, since this equality has to hold for all γ ∈ Γ and since Γ is
a Hilbert space, it follows that the expression in brackets should vanish for every
i ∈ N 23 which is precisely (2.29). ��

The proof of the theorem, as presented above, provides us with a new in-
terpretation to the stationarity conditions (2.29). Note that they can be rewritten
(compactly) as

PRγ + Pr = 0, (2.31)

where P is a linear operator, block diagonal, with the ii ’th block defined through

Piiβ
i(ξ) = Eξ|yiβi(ξ), i ∈ N ,

where βi(ξ) is anmi-dimensional measurable function of ξ, satisfying the bounded-
ness condition E{βi(ξ)′βi(ξ)} <∞. As such, the linear operator P is a projection
operator defined on a Hilbert space, whose operator norm is one (see Appendix A,
Sect. A.2). Note that if the agents had full access to the value of ξ, then the
stationarity condition would be

R(ξ)γ(ξ) + r(ξ) = 0, (2.32)

23Here we have used the following property of Hilbert spaces: if 〈α, β〉 = 0 for all β ∈ H, then
α ≡ 0.
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which of course admits a unique solution since the matrix R(ξ) is invertible for
all ξ. Hence, the stationarity equation in the decentralized measurement case is a
“projected” version of the one in the centralized full information case, but note,
however, that the unique (decentralized) team-optimal solution is not a projected
version of the centralized one (−R−1r).

The unique team-optimal solution can be obtained using some approximation
schemes. Viewing (2.29) (or equivalently (2.31) as a fixed-point equation (see
Appendix A, Sect. A.6, for details), one approach would be to use successive
approximations:

⎧⎪⎪⎨
⎪⎪⎩
γi(k+1)(y

i) = −[Eξ|yiRii(ξ)]
−1

⎧⎨
⎩

∑
j∈N ,j 
=i

Eξ|yi [Rij(ξ)γ
j
(k)(y

j)] + Eξ|yiri(ξ)

⎫⎬
⎭,

γi(0)(y
i) ≡ 0, i ∈ N , k = 0, 1, . . .

(2.33)
which is called the parallel update scheme, where we have taken the starting points
of the iteration as the zero function, as an arbitrary choice. This iteration models a
dynamic decision process where the agents exchange policy information at every
(discrete) point in time, and at the k + 1’th instant agent i solves the (stochastic)
optimization problem

minγi∈Γ i J(γ1(k), . . . , γ
i−1
(k) , γ

i, γi+1
(k) , . . . , γ

N
(k))

= J(γ1(k), . . . , γ
i−1
(k) , γ

i
(k+1), γ

i+1
(k) , . . . , γ

N
(k)), i ∈ N .

Clearly, if the parallel scheme converges, it will yield the (unique) team-optimal
solution in the limit. However, there is generally no guarantee that it will converge,
unless some conditions are imposed on the matrix R and the probabilistic structure
of the problem. To state two such conditions, let us first write (2.33) in compact
form:

γ
(k+1)

= Fγ
(k)

+ r̂, (2.34)

where F is a linear operator mapping Γ into itself and composed of block operators
with the diagonal blocks being zero and off-diagonal blocks given by

[Fijγ
j](yi) = −[Eξ|yiRii(ξ)]

−1Eξ|yi [Rij(ξ)γ
j(yj)], j 	= i, j ∈ N . (2.35)

Furthermore, r̂ ∈ Γ, with the ith block vector given by

[r̂(y)]i = −[Eξ|yiRii(ξ)]
−1Eξ|yiri(ξ), i ∈ N . (2.36)

Using the notation introduced in Appendix A, Sect. A.2, let " F # denote the
operator norm of F and ρ(F) denote its spectral radius; furthermore, note the
inequality

ρ(F) ≤ " F # .
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The Banach and successive approximation theorems of Appendix A, Sect. A.6, now
readily lead to the following result.

Proposition 2.6.2. Consider the parallel update scheme (2.33) [equivalently (2.34)]
for the general stochastic static team problem:

(i) The iteration converges for all starting points γ
(0)

∈ Γ if, and only if,

ρ(F) < 1. (2.37)

(ii) The iteration converges for all starting points γ
(0)

∈ Γ if

" F # < 1, (2.38)

which is therefore a sufficient condition for (2.37).

�

It is important to note that nonsatisfaction of (2.37) does not necessarily imply
that there is no recursive scheme which would compute γ∗; in fact, there may exist
nonparallel schemes or schemes that use relaxation (i.e., higher-order memory),
which will have better convergence properties. As an example of a nonparallel
scheme consider the so-called sequential scheme where the agents take their turns,
one at a time and in strict order, to re-optimize their policies, i.e., γi(k+1) is
determined through the minimization of

min
γi∈Γ i

J(γ1(k+1), . . . , γ
i−1
(k+1), γ

i, γi+1
(k) , . . . , γ

N
(k)).

This then leads to the following counterpart of (2.33):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γi(k+1) = [Eξ|yiRii(ξ)]
−1

⎧⎨
⎩

∑
j∈N ,j<i

Eξ|yi [Rij(ξ)γ
j
(k+1)(y

i)]

+
∑

j∈N ,j>i

Eξ|yi [Rij(ξ)γ
j
(k)(y

j)]+Eξ|yiri(ξ)

⎫⎬
⎭ , i∈N , k = 0, 1 . . . ,

γi(0) ≡ 0, i ∈ N , i 	= 1.

(2.39)
Note that this recursion cannot be written in a compact form as in (2.34). However,
for such convex team problems, sequential schemes have more desirable conver-
gence properties since the sequence of minimizations above leads to a monotone
non-increasing sequence of positive real numbers (associated with the team cost)
which has a limit (unlike the general parallel scheme in (2.33)).
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Standard Quadratic Teams

We now study the class of quadratic teams where the matrix R(ξ) is a constant in
(ξ), i.e., R is deterministic. The basic equation of stationarity, (2.29), simplifies to

γi(yi) +
∑

j∈N ,j 
=i

R̃ijEξ|yi [γj(yj)] + Eξ|yi r̃i(ξ) = 0, i ∈ N , (2.40)

where
R̃ij := R−1

ii Rij ; r̃i(ξ) = R−1
ii ri(ξ). (2.41)

Clearly, by Theorem 2.6.6, this equation admits a unique solution γ∗ ∈ Γ, whenever
the loss function is strictly convex (equivalently, if the constant matrix R is positive
definite). The counterpart of the parallel update scheme (2.33) is

γi(k+1)(y
i) = −

∑
j∈N ,j 
=i

R̃ijEyj |yi [γj(k)(y
j)]− Eξ|yi r̃i(ξ) i ∈ N , k = 0, 1, . . . ,

(2.42)
which we now further study for the case N = 2 (i.e., with only two agents).
Substituting γ2(k+1) obtained from (2.42) into the same for i = 1, we obtain

γ1(k+2)(y
1) = R̃12R̃21Ey2|y1Ey1|y2 [γ1(k)(y

1)] + c1(y1), (2.43)

where
c1(y1) := −Eξ|y1 r̃1(ξ) + R̃12Ey2|y1Eξ|y2 r̃2(ξ). (2.44)

Note that if we instead had the sequential update, (2.39), the resulting equation for
i = 1 would be exactly (2.43) with simply γ1(k) replaced by γ1(k+1). Hence the
parallel and sequential update schemes are essentially identical in the case of a two-
agent team problem. The following proposition states this result, along with two
other useful observations.

Proposition 2.6.3. For the standard quadratic team with N = 2:

(i) The parallel update schemes (2.42) converge (to a limiting policy pair
γ∗ ∈ Γ, which is a team-optimal solution) if, and only if, the single update
scheme (2.43) converges.

(ii) If (2.43) converges to a limiting policy γ1∗ ∈ Γ 1, then γ2∗ is the unique team-
optimal policy of agent A1, and

γ2∗(y2) = −R̃21Ey1|y2 [γ1∗(y1)]− Eξ|y2 r̃2(ξ)

is the unique team-optimal policy of agent A2.
(iii) The parallel and sequential update schemes require the same condition of

convergence, which is

ρ(R̃12R̃21Eξ|y1Eξ|y2) < 1 ,
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where ρ(·) is the spectral radius of its linear operator argument mapping Γ 1

into itself. �

Proof. Parts (i) and (ii) are mere observations and require no proof. Part (iii)
follows from the successive approximation theorem of Appendix A, Sect. A.6, since
in (2.43) R̃12R̃21Ey2|y1Ey1|y2 , which can equivalently be written as
R̃12R̃21Eξ|y1Eξ|y2 is a linear bounded operator mapping Γ 1 (a Hilbert space) into
itself. See also Proposition 2.6.2, and compare (2.43) with (2.31). ��

The following lemma now paves the way toward showing that the condition of
Proposition 2.6.3(iii) is satisfied for all standard quadratic teams.

Lemma 2.6.2. The loss function (2.28), with N = 2 and Rij constant matrices, is
strictly convex if, and only if, R22 is positive definite and

ρ(R̃12R̃21) < 1.

�

Proof. Strict convexity of L is equivalent to the positive definiteness of the matrix

R :=

(
R11 R12

R12 R22

)
,

which is further equivalent to (by definition)

(
x

y

)′(
R11 R12

R′
12 R22

)(
x

y

)
> 0, ∀

(
x

y

)
	= o,

where o is the zero vector in R
m, m := m1 + m2, and x, y have dimensions

compatible with the dimensions of the blocks of R. The above can be rewritten as

x′R11x+ 2x′R12y + y′R22y > 0

from which it follows that R11 > 0, R22 > 0 are necessary conditions for
strict convexity. Now, minimizing this expression with respect to y, we have, by
differentiation,

y = −R−1
22 R21x

as the unique solution, substitution of which into the original expression leads to

min
y

(
x

y

)′

R

(
x

y

)
= x′(R11 −R12R

−1
22 R

′
12)x

≡ (R
1
2
11x)

′(I − (R
1
2
11)

−1R12R
−1
22 R

′
12(R

1
2
11)

−1)(R
1
2
11x) > 0,

for x 	= 0, where R
1
2
11 is the unique square root of R11.
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The strict inequality holds, for all nonzero x, if, and only if, the matrix

I − (R
1
2
11)

−1R12R
−1
22 R

′
12(R

1
2
11)

−1

is positive definite, which is equivalent to all eigenvalues of the second (nonnegative
definite) matrix to be less than one. Hence,

ρ((R
1
2
11)

−1R12R
−1
22 R

′
12(R

1
2
11)

−1) ≡ ρ(R−1
11 R12R

−1
22 R

′
12) < 1,

where we used the fact that for two square matrices A and B, ρ(AB) = ρ(BA).
Since R̃12 = R−1

11 R12, R̃21 = R−1
22 R21 ≡ R−1

22 R
′
12, this completes the proof of the

lemma. ��

This brings us to the following strengthened version of Theorem 2.6.6 for
standard quadratic teams with N = 2.

Theorem 2.6.7. For the two-agent standard quadratic team,

(i) There exists a unique team-optimal solution γ∗ ∈ Γ, which is also the unique
solution of (2.40) with N = 2.

(ii) Both the parallel and sequential update schemes converge for all starting
points in Γ.

(iii) Agent Ai’s optimal policy is given by the infinite sum

γi∗(yi) =
∞∑
k=0

(R̃ijR̃jiEyj |yiEyi|yj )kci(yi), i, j = 1, 2; j 	= i, (2.45)

where c1 is given by (2.44) and c2 is defined by the same with 1’s and 2’s
interchanged. �

Proof. Of course, (i) follows from Theorem 2.6.6, but since (ii) implies (i) in view
of Proposition 2.6.3, the independent proof that we will give for (ii) will also provide
an alternative proof to this special case of Theorem 2.6.6.

To prove part (ii), it will be sufficient to verify the condition of Proposi-
tion 2.6.3(iii). Toward this end, let us first introduce a (Hilbert) space Γ̂ 1 of all
m1-dimensional measurable functions γ̂(y1, y2) with bounded second moments:
Ey{|γ̂(y1, y2)|2} < ∞. Clearly, Γ 1 is a subspace of Γ̂ 1. Now, the conditional
expectation operator Eξ|yi =: P i is a projection operator on Γ̂ 1 (see Appendix B)
and hence has operator norm one, for both i = 1 and i = 2. Since the product P 1P 2

is also a linear bounded operator on Γ̂ 1, its norm is bounded by

" P 1P 2 # ≤ " P 1 #" P 2 #= 1.

An important observation here is that for any γ̂ ∈ Γ̂ ′, P 1P 2γ̂ ∈ Γ 1 ⊂ Γ̂ 1, and
hence we can also view the product operator P 1P 2 as a bounded linear operator
mapping Γ 1 into itself. Since R̃12R̃21 also maps Γ 1 into itself, we have

ρ(R̃12R̃21P
1P 2) ≤ ρ(R̃12R̃21)ρ(P

1P 2),
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which is the spectral radius inequality on Hilbert spaces (see Appendix A, Sect. A.2).
The first product term above is strictly less than one by Lemma 2.6.2, and the second
term is no greater than one, by

ρ(P 1P 2) ≤ " P 1P 2 # ≤ 1.

This completes the proof of (ii), in view of Proposition 2.6.3(iii).
For part (iii) simply note that for i = 1, (2.45) is the infinite summation obtained

from (2.43) by taking γ1(0) ≡ 0, with the limit being a valid (well-defined) element

of Γ 1 by part (ii). Clearly the same result holds for i = 2. ��

Remark 2.6.1. The iteration (2.43), or more generally (2.42), is sometimes called
the infinite second guessing scheme. If the agents had known each other’s (optimal)
policies, then the iteration would halt after one step. Since this knowledge is not
there, they have to estimate (or guess) each other’s actions, which would also involve
the estimates of each other’s estimates, etc., leading in general to an infinite, albeit
convergent, sequence. �

Even though iteration (2.42) converges for N = 2, it does not necessarily
converge for N > 2. This is mainly due to the fact that strict convexity of L
(equivalently, positive definiteness of R) does not imply that24 ρ(R̃) < 1, unless
N = 2.

Also one intuitive explanation for this discrepancy is that for N = 2 the
iteration (2.42) corresponds to the sequence of minimizations

J(γ1(k+1), γ
2
(k)) = min

γ1∈Γ 2
J(γ1, γ2(k)) =: J(k+1),

J(γ1(k+1), γ
2
(k+2)) = min

γ2∈Γ 2
J(γ1(k+1), γ

2) =: J(k+2), k = 0, 1, . . . ,

with the property

J(1) ≥ J(2) ≥ . . . ≥ J(k) ≥ J(k+1) ≥ . . . ,

Hence, at every step of the iteration, the value of J cannot increase, thus generating
a nonincreasing convergent sequence (of costs). This, of course, could also converge
to a pbp-optimal solution, but we know in this case (as already shown) that a pbp-
optimal solution (which is also stationary because of the special quadratic structure
of the loss function) is also team-optimal.

For N > 2, however, the iteration (2.42) does not necessarily generate a
monotonic cost sequence nor a subsequence that is monotonic, which is a reason
for the failure of (2.42) to converge.

24Here R̃ is the (m×m) matrix whose diagonal blocks are zero, and off-diagonal blocks are given
by [R̃]ij = R̃ij , as defined by (2.41).
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In view of the above, a natural question that arises is whether there exists some
other (computational) algorithm that would yield the unique solution of (2.40)
(which is known to exist by Theorem 2.6.6). Toward studying this question, let
us first rewrite (2.40) as follows, using the compact notation of (2.31):

PRγ + Pr = 0. (∗)

Let us add −εγ to both sides (where ε > 0), and divide throughout by ε, to obtain

γ = P (I − 1

ε
R)γ − 1

ε
Pr, (∗∗)

where we have used the fact that the projection operator P and the identity operator
(matrix) I commute. Note that (∗) and (∗∗) are in fact identical equations. Now, we
associate the following iteration with (∗∗):

γ
(k+1)

= P (I − 1

ε
R)γ

(k)
− 1

ε
Pr, k = 0, 1, (2.46)

which, in component form, is, for i ∈ N , k = 0, 1, . . .,

γi(k+1)(y
i) = (I − 1

ε
Rii)γ

i
(k)(y

i)− 1

ε

∑
j∈N ,j 
=i

RijEξ|yiγj(yj)− 1

ε
Eξ|yiri(ξ).

(2.47)
Clearly, if the sequence generated by (2.46) converges to a limit in Γ, this also
solves (∗∗) and equivalently (∗). Furthermore, (2.40) being a linear iteration, we
know from Proposition 2.6.3(i) that the sequence {γ

(k)
} converges if, and only if,

ρ(P (I − 1

ε
R)) < 1.

Since both P and (I − 1
εR) map Γ into itself and since P has operator norm equal

to one, this inequality will be satisfied if

ρ(I − 1

ε
R) < 1.

The matrixR being positive definite, this inequality can always be met by choosing
ε > 0 sufficiently large. If λmax(R) denotes the maximum eigenvalue of R,
choosing ε > 1

2λmax(R) will in fact do the job. The specific choice of ε within this
region may be dictated by other considerations, such as the speed of convergence.
Since the smaller the spectral radium ρ(I − 1

εR) is, the “faster” the algorithm will
(in general) converge, a reasonable choice of ε, with this in mind, is

ε =
1

2
[λmax(R) + λmin(R)], (2.48)
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where λmin(R) denotes the minimum eigenvalue of R. These results are now
summarized in the following proposition.

Proposition 2.6.4. For the standard quadratic team with N agents, the parallel
update scheme (31b) converges to the unique team-optimal solution whenever ε >
1
2λmax(R). A particular value of ε which leads to relatively fast convergence is
given by (2.48). �

Proof. The result has already been verified prior to the statement of the proposition.
Note that this also provides an alternative proof for Theorem 2.6.6 for the special
case of standard quadratic teams. ��

Remark 2.6.2. The algorithm (2.46) should be viewed (at this point) only as a
computational tool, and not carry any significant interpretation in terms of the
original team decision problem. There are also other variations of this algorithm
which lead to convergence, but further discussion is beyond the scope and goal of
this book. �

Quadratic-Gaussian Teams

One class of quadratic teams for which the team-optimal solution can be obtained
in closed form are those where the random state of nature ξ is a Gaussian random
vector. Let us decompose ξ into N + 1 block vectors

ξ = (x′, y1
′
, y2

′
, . . . , yN

′
)′ (2.49)

of dimensions r0, r1, r2, . . . , rN , respectively. Being a Gaussian random vector, ξ
is completely described in terms of its mean value and covariance matrix, which we
specify below:

E[ξ] =: ξ̄ = (x̄′, ȳ1
′
, . . . , ȳN

′
), (2.50)

cov (ξ) =: Σ, with [Σ]ij =: Σij , i, j = 0, 1, . . . , N, (2.51)

[Σ]ij denotes the ijth block of the matrix Σ of dimension ri × rj , which stands for
the cross-variance between the ith and jth block components of ξ. We further assume
(in addition to the natural condition Σ ≥ 0) that Σii > 0 for i ∈ N , which means
that the measurement vectors yi’s have nonsingular distributions. To complete the
description of the quadratic-Gaussian team, we finally take the linear terms ri(ξ)
in the loss function (2.28) to be linear in x, which makes x the “payoff relevant”
part of the state of nature (recall the earlier discussion in Sect. 2.4 on the use of this
terminology):

ri(ξ) = Dix, i ∈ N , (2.52)

where Di is an (ri × r0) dimensional constant matrix. Note that in Definition 2.6.2
we simply have Qi = (Di, 0, 0).
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In the characterization of the team-optimal solution for the quadratic-Gaussian
team we will need the following important result on the conditional distributions of
Gaussian random vectors, which we will have occasion to use also in other chapters
in the book. A proof of this result can be found in any standard text on probability
theory.

Lemma 2.6.3. Let z and y be jointly Gaussian distributed random vectors with
mean values z̄, ȳ, and covariance

cov (z, y) =

(
Σzz Σzy

Σ′
zy Σyy

)
≥ 0, Σyy > 0. (2.53)

Then, the conditional distribution of z given y is Gaussian, with mean

E[z|y] = z̄ +ΣzyΣ
−1
yy (y − ȳ) (2.54)

and covariance
cov(z|y) = Σzz −ΣzyΣ

−1
yy Σ

′
zy (2.55)

�

The complete solution to the quadratic-Gaussian team is now given in the
following theorem:

Theorem 2.6.8. The quadratic-Gaussian team decision problem as formulated
above admits a unique team-optimal solution that is affine in the measurement of
each agent:

γi∗(yi) = Πi(yi − ȳi) +M ix̄, i ∈ N . (2.56)

Here, Πi is an (mi × ri) matrix (i ∈ N ), uniquely solving the set of linear matrix
equations:

RiiΠ
iΣii +

∑
j∈N ,j 
=i

RijΠ
jΣji +DiΣ0i = 0, (2.57)

and M i is an (mi × r0) matrix for each i ∈ N , obtained as the unique solution of
∑
j∈N

RijM
j +Di = 0, i ∈ N . (2.58)

�

Proof. Referring back to iteration (2.47), and initializing it with γi(0) ≡ 0, i ∈ N ,

it follows from repeated application of Lemma 2.6.3 that γi(k)(y
i) that is generated

by (2.47) is necessarily affine in yi, for all k = 1, 2, . . ., with the structure given by

γi(k)(y
i) = Πi

(k)(y
i − ȳi) +M i

(k)x̄.

By Proposition 2.6.4, this sequence converges, and the limiting solution is neces-
sarily in the form (2.56). Further, by Theorem 2.6.6, this limiting policy should
uniquely solve the stationarity equations (2.40). Therefore, all that remains to be
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done is to substitute (2.56) into (2.40), to arrive at (in view of Lemma 2.6.3):

[RiiΠ
i+

∑
j∈N ,j 
=i

RijΠ
jΣjiΣ1

ii+DiΣoiΣ
−1
ii ](yi−ȳi)+[Σj∈NRijM

j+Di]x̄ ≡ 0,

which is an identity for each i ∈ N . Since yi − ȳi and x̄ are independent, (2.57)
and (2.58) readily follow. Clearly, in view of our reasoning above, the solutions
to (2.57) and (2.58) have to be unique. This algebraic result can in fact also be
proven directly. For (2.58), it trivially follows because it can be rewritten as

RM +D = 0,

where M := (M1′ ,M2′ , . . . ,MN ′
)′; D := (D1′ , D2′ , . . . , DN ′

)′ and hence the
unique solution is

M = −R−1D.

��

A quadratic-Gaussian team is known as a LQG team, if furthermore the
measurements have the special structure

yi = Hix+ wi, i ∈ N , (2.59)

where wi, i ∈ N , constitutes an independent sequence of zero-mean Gaussian
random vectors, also independent of x. Let us denote the covariance of wi, known
as the measurement noise for agent Ai, by N i > 0, i ∈ N . Note that in this setup
the state of nature is given as

ξ = (x′, w1′ , . . . , wN ′
)′,

which is again an r :=
∑N

i=0 ri-dimensional Gaussian random vector.
Now, in view of (2.59), and the independence of the noise sequence, we have

ȳi = Hix̄, Σ0i = Σ00H
i′ , Σij = HiΣ00H

j′ , Σii = HiΣ00H
i′ +N i, i ∈ N .

Clearly, by the positive definiteness ofN i’s,Σii’s are positive definite, which means
that all the hypotheses of Theorem 2.6.8 are satisfied. The following corollary then
follows as a special case.

Corollary 2.6.2. The LQG team decision problem as formulated above admits a
unique team-optimal solution given by

γi∗(yi) = Πi(yi −Hix̄) +M ix̄, i ∈ N , (2.60)
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where M i, i ∈ N , is the unique solution of (2.58) and Πi solves uniquely the
following version of (2.57):

RiiΠ
i +

⎛
⎝ ∑

j∈N ,j 
=i

RijΠ
jHjΣ00H

i′ +DiΣ00H
i′

⎞
⎠ (HiΣ00H

i′ +N i)−1 = 0 .

(2.61)
�

Example 2.6.3. To illustrate the preceding results, consider the two-agent scalar
LQG team with loss function

L(x,u) = (u1 + u2 + x)2 + (u1)2 + (u2)2

and measurements
y1 = x+ w1, y2 = x+ w2

under the independent statistics

x ∼ N(1, 2), w1 ∼ N(0, 2), w2 ∼ N(0, 1).

Direct application of Corollary 2.6.2 leads to the unique team-optimal solution

γ1∗(y1) = − 2
11 (y

1 − 1)− 1
3 ,

γ2∗(y2) = − 3
11 (y

2 − 1)− 1
3 .

⎫⎬
⎭ (∗)

The corresponding minimum team cost can be computed to be

J∗ := J(γ1∗, γ2∗) $ 1.424.

Note that this is a symmetric team as far as the loss function goes (i.e.,L(u1, u2;x)=
L(u2, u1, x)), but as far as the measurements go agent A1 has “higher” measure-
ment noise than agent A2. This is reflected in the team-optimal policies, with the
measurement of A1 weighted less than the measurement of A2 (compare the gain
2
11 against the gain 3

11 ).
If the agents did not have access to any measurements, and thus optimize in the

class of constant policies, the unique solution can easily be read off from (∗) to be

γ1OL = γ2OL = −1

3

with the corresponding cost being

JOL := J(γ1OL, γ
2
OL) =

7

3
∼= 2.3333.
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Hence, the decentralized measurements lead to about 39% improvement (reduction)
in the team cost, as compared with the no-measurement (open-loop) case.

If, on the other hand, the agents shared their measurements, with the team’s
common measurement now being y = (y1, y2)′, the optimum cost should be lower
than J∗. To study this specific model, we first note that Theorem 2.6.8 is directly
applicable here, with

Σ11 = Σ12 = Σ22 = cov(y) =

(
4 2

2 3

)
;Σ01 = Σ02 = (2, 2).

The unique team-optimal solution can readily be obtained to be

γ1sh(y) = γ2sh(y) = −1

4
[
1

3
(y1 − 1) +

2

3
(y2 − 1)]− 1

3

with the corresponding cost being

Jsh := J(γ1sh, γ
2
sh) =

4

3
∼= 1.3333.

The improvement here, over the open-loop cost, is 43 %, and over the decentralized
case is about 6%.

Finally, if both agents had perfect access to the true value of x (the case of perfect
measurements), the unique optimal solution would be

γ1pr(x) = γ2pr(x) = −1

3
x

with a cost level of

Jpr := J(γ1pr , γ
2
pr) =

1

3
E[x2] = 1,

which is the lowest possible value for J , under any measurement scheme. �

Positively Exponentiated Quadratic Loss

Consider again the formulation of the quadratic-Gaussian team (á la Defini-
tion 2.6.2) but with the loss function being a positively exponentiated quadratic
function, i.e.,

L(ξ;u) = θe
θ
2C(ξ;u), θ > 0, (2.62)

where C is a strictly convex (in u) function:

C(ξ;u) =
∑

i,j∈N
ui

′
Riju

j + 2
∑
i∈N

ui
′
Dix+ x′Qx. (2.63)
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The state of nature, ξ, is a Gaussian vector, as specified earlier by (2.49)–(2.51).
A static team problem with the structure above is known as an exponential-

Gaussian team or a linear-exponential-Gaussian team (LEGT), the latter used
especially if the measurements are given in the form (2.59). An exponential (of a
quadratic) loss function captures phenomena not obtainable from a quadratic loss
function and is preferred in situations where higher (than second) order moments
of the statistical quantities should also be taken into consideration. A team using
an exponential quadratic loss function in the construction of policies is called risk
averse if θ > 0 and risk preferring if θ < 0. Here we will discuss only the case
θ > 0 because it is only in this case that L is convex in u, which will enable us to
apply some of the results of Sect. 2.6.2. The “optimistic” case θ < 0 does not lead
to a convex loss function, and hence it is not possible to obtain a general theory to
cover this case as well. However, this should not be construed as the θ < 0 case
not being well defined or interesting. In fact, the stationarity conditions could hold
in this case also, but one has to study each problem individually before concluding
global (team) optimality.

Returning to the LEGT problem with θ > 0, the first step toward studying its
solution would be to obtain a characterization of the stationarity conditions (2.26).
To avoid some unnecessary complexity in the analysis to follow, let us take the mean
value of ξ to be zero, and furthermore let us restrict ourselves at the outset to linear
decision rules (policies) for the agents—the latter will actually create no loss of
generality as we shall see later.

Accordingly, let the decision rules be given as

γj(yj) = Ajyj , j ∈ N . (2.64)

Let us fix all but one (say ith one) as above, and substitute them into (2.63) to obtain

C(ξ;u, {γj}j 
=i) = u′Riiu+ 2u′T ′
i ξi + ξ′iSiξi =: Ci(ξi, u),

where u stands for ui and Ti, Si are defined as follows:

ξi := (x′, y1
′
. . . yi−1′yi+1′ . . . yN

′
)′,

T ′
iξi = Dix+

∑
j∈N ,j 
=i

RijA
jyj, (2.65)

ξ′iSiξi = x′Qx+
∑

j,k∈N ;j,k 
=i

yj
′
Aj′RjkA

kyk + 2
∑

j∈N ,j 
=i

yj
′
Aj′Djx. (2.66)

The important point here is that Ti and Si are constant matrices (not dependent
on ξ), but they depend on the policy gain matrices Aj , for all j ∈ N , except j = i.

We now evaluate

Eξ|yiL(ξ;u, {γj}j 
=i) =: Ji(u; y),



70 2 Networked Control Systems as Stochastic Team Decision Problems. . .

where, for convenience, we have dropped the superscript from yi. Using Lemma
2.6.3, the distribution of ξ conditioned on yi = y is Gaussian, with mean and
covariance given by

E[ξ|y] = (Σ′
0iΣ

′
1i . . . Σ

′
Ni)

′Σ−1
ii y =: ξ̂i, (2.67)

cov(ξi|y) = Σ(i) − (Σ′
0i . . . Σ

′
Ni)

′Σ−1
ii (Σ′

0i . . . Σ
′
Ni) =: Σ̂i, (2.68)

which we assume to be positive definite. In (2.67) the matrix Σii does not appear
in (. . . ), and likewise in (2.68). Furthermore Σ(i) in (2.68) is the covariance of ξi,
which is the Σ of (2.51) with the (i+ 1)th row and column block deleted.

Now, aside from a pdf normalization constant,

Ji(u; y) =

∫
θe

θ
2Ci(ξi;u)e−

1
2 (ξi−ξ̂i)

′Σ̂−1
i (ξi−ξ̂i)dξi,

where the integration is over the vector ξi belonging to an appropriate dimensional
Euclidean space. This integral will have a finite value if, and only if, the quadratic
term in ξi is negative definite, which brings in the condition

Mi := Σ̂i > 0. (2.69)

Under this condition, the integral can be evaluated (using a property of Gaussian
pdf ’s) to yield (again aside from a positive multiplying constant)

Ji(u; y) = θeC̃i(ξ̂i,u),

where

C̃i(ξ̂i, u) :=
θ

2
u′Riiu+

1

2
(θTiu+ Σ̂−1

i ξ̂i)
′M−1

i (θTiu+ Σ̂−1
i ξ̂i)−

1

2
ξ̂−1
i Σ̂−1

i ξ̂i.

Note that for θ > 0, C̃i is strictly convex in u, which implies that Ji(u; y) is also
strictly convex in u. Minimization of Ji is equivalent to minimization of C̃i which,
being quadratic, immediately leads to

u = γi(yi) = −(Rii + θT ′
iM

−1
i Ti)

−1TiM
−1
i Σ̂−1

i ξ̂i =: Aiyi. (2.70)

Clearly this solution also satisfies the stationarity condition (2.26), with all other
(than ith) agents’ policies fixed as in (2.64).

Note thatAi determined as in (2.70) depends on the fixed gain matricesAj ’s, for
j 	= i, this dependence being throughMi and Ti. Let us denote this relationship by

Ai = f i(Ai, . . . , Ai−1, Ai+1, . . . , AN ) (2.71)
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where f i is a nonlinear but continuous function, determined uniquely by (2.70).
Since agent Ai was selected arbitrarily in the preceding analysis, a similar function
will exist for each agent, so that (2.71) will hold for all i ∈ N . This readily brings
us to the following proposition.

Proposition 2.6.5. The positively exponentiated Gaussian team problem admits a
linear stationary solution if, and only if, there exists a set of matrices Ai, i ∈ N ,
mutually satisfying (2.71), and under which (2.69) holds for all i ∈ N , and J(γ)
remains finite. �

Proof. In view of Definition 2.6.1, the result follows from the analysis that led to
the proposition. ��

Remark 2.6.3. If the random state of nature, ξ, has nonzero mean, as in (2.50), then
the policies (2.64) will have to be replaced by the affine structure

γj(yj) = Aj(yj − ȳj) + bj , i ∈ N .

Within this structure, one can again proceed through the preceding analysis and
arrive at a counterpart of Proposition 2.6.5. �

Remark 2.6.4. The boundedness of the cost corresponding to the linear stationary
solution can be checked by evaluating the quantity

EyiJi(A
iyi; yi), (∗)

where Ji was defined in the analysis leading to the proposition. We first substi-
tute (2.70) in Ci(ξ̂i, u) to obtain

C̃i(ξ̂i, γ
i(yi)) = −1

2
ξ̂′iNiξ̂i,

where

Ni := Σ̂−1
i + Σ̂−1

i M−1
i Ti(

1

θ
Rii + T ′

iM
−1
i Ti)

−1T ′
iM

−1
i Σ̂−1

i − Σ̂−1
i M−1

i Σ̂−1
i .

Then, we observe that (∗) is finite if, and only if, the integral

∫
θe−

1
2 ξ̂

′
iNiξ̂ie−

1
2y

′Σ−1
ii ydy

is finite, where ξ̂i is related to y through (2.67). This condition is equivalent to the
exponent being negative definite, that, is

ξ̂′iNiξ̂i + y′Σ−1
ii y > 0 ∀y ∈ R

mi , y 	= 0. (∗∗)

�
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Proposition 2.6.5 above leaves a number of questions unanswered. First, we
would like to know whether a linear stationary solution, whenever it exists, is
team-optimal and secondly whether there would be other team-optimal solutions
if the linear stationary solution (lss) ceases to exist. Clearly, we would not generally
expect the lss to exist for all (especially arbitrarily large) values of θ, because of
condition (2.69). The theorem below now provides an answer to the first question
raised above; the second question is a most difficult one for which no general answer
is known as yet.

Theorem 2.6.9. Let γ∗ ∈ Γ be the linear stationary solution of Proposition 2.6.5,
and let there exist some other linear policy β ∈ Γ such that J(β) < ∞. Then, γ∗

is the unique team-optimal solution of the (positively) exponentiated-Gaussian team
problem. �

Proof. Here we resort to Theorem 2.6.5, which delineates the conditions under
which stationarity implies team-optimality. Clearly L(ξ;u) is strictly convex and
continuously differentiable (in u), and J(γ) is bounded from below (by zero) for all
γ ∈ Γ. The stationary solution γ∗ has finite cost by hypothesis, and the subset (say,

Γ̂) of Γ on which J is finite is not a singleton, again by hypothesis. Hence, to apply
Theorem 2.6.5, one has to show that condition (c.5) holds for this problem. This is
indeed the case and follows from the fact that the subset Γ̂ referred to above is not
a singleton. The proof of this result is quite technical and will not be given here; it
can be found in [218]. ��

Remark 2.6.5. A sufficient condition for the second hypothesis of Theorem 2.6.9 is
the following: Choose β ≡ 0, which is clearly a linear policy. Then,

J(β) = E{θe θ
2x

′Qx},

which is finite if, and only if,

Σ−1
00 − θQ > 0.

Hence, if θ is chosen to be smaller than 1/[λmax(Σ00)λmax(Q)], the second
hypothesis is satisfied. Of course, this condition (on θ) can be made less stringent
by choosing some other (nonzero) β. �

Remark 2.6.6. For the negatively exponentiated Gaussian team problem, Proposi-
tion 2.6.5 remains equally valid (now in fact condition (2.69) would be satisfied with
a bigger margin on θ), but we do not have the counterpart of Theorem 2.6.9 because
of lack of convexity. �

Example 2.6.4. To illustrate the main result of Theorem 2.6.9 and to study the
restrictions imposed on the parameters of the problem by the various conditions
stated there, let us reconsider the static two-agent team problem of Example 2.6.3,
with two differences: Now, the loss functional is a positive exponential of the one
given there, i.e.,
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L(x, u) = eθC(x,u),

C(x,u) = (u1 + u2 + x)2 + (u1)2 + (u2)2,

and the random variable x has zero mean, i.e.,

x ∼ N(0, 2), w1 ∼ N(0, 2), w2 ∼ N(0, 1).

The measurements are still given by

y1 = x+ w1, y2 = x+ w2.

Writing out the stationarity conditions (2.71), we obtain, after some algebra,

A1 = −1

2
[1+A2−θ(A2)2]/c1(θ, A

2), A2 = −[1+A1−θ(A1)2]/c2(θ, A
1) (∗)

where
c1(θ, A

2) := 2− θ[1 + 2A2 + 6(A2)2] + θ2(A2)2,

c2(θ, A
1) := 3− θ[1 + 12(A1)2 + 2A1] + 2θ2(A1)2.

The matrices M1 and M2, defined by (2.69), are given by

M1 =

(
2− θ −1− θA2

−1− θA2 1− 2θ(A2)2

)
, M2 =

(
2− θ − 1

2 − θA1

− 1
2 − θA1 1

2 − 2θ(A1)2

)
,

so that condition (2.69) reads

0 < θ < 2, c1(θ, A
2) > 0, c2(θ, A

1) > 0. (∗∗)

Trying out two different values of θ, namely, θ = 1 and θ = 1
3 , we find that for

the former there is no solution to (∗) that also satisfies (∗∗); for the latter, however,
there exists a unique solution (∗) that also meets (∗∗), which is

A1∗ = −0.236375, A2∗ = −0.345398 (θ =
1

3
).

This solution and the associated value of θ also satisfy the conditions of Re-
marks 2.6.4 and 2.6.5, and hence by Theorem 2.6.9 there exists a unique
team-optimal solution to the LEGT problem:

γ1∗(y1) = −0.236375y1, γ2∗(y2) = −0.345398y2.

It is important to note that, as θ → 0 in (∗), the nonlinear equations reduce to linear
equations:

A1 = −1

4
(1 +A2), A2 = −1

3
(1 +A1),
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whose unique solution (− 2
11 ,−

3
11 ) is precisely the gain coefficients in the team-

optimal solution of Example 2.6.3. Hence in the limit as θ → 0 we recover the
solution of the corresponding LQG team (with loss function C(x,u)). This is to be
expected because for any positive function C,

lim
θ→0

1

θ
(eθC − 1) = C.

�Remark 2.6.7. A method for solving the set of coupled nonlinear equations (∗) of
Example 2.6.4 for a particular value of θ, or more generally equations (2.71), is
provided by the parallel update scheme

Ai
(k+1) = f i(A1

(k), . . . , A
i−1
(k) , A

i+1
(k) , . . . , A

N
(k)), i ∈ N , k = 0, 1, . . . ,

where the starting point is arbitrary. This set of recursive equations admits exactly
the same interpretation as in the LQ team case, and as was the case there, this
recursion may not converge (even if the LEG team problem admits a solution) for
N ≥ 3. For N = 2, however, the recursion will converge whenever the LEQ team
problem admits a solution; this is because at each step this corresponds to an agent’s
minimization of J by fixing the other agent’s policy at its most recently updated
value. Since one is basically minimizing a strictly convex functional (in the LEGT
problem), the unique minimum, whenever it exists, should be reachable by such a
unilaterally cost-minimizing update scheme. �

2.7 Concluding Remarks

This chapter has provided a general introduction to stochastic team decision
problems and associated solution concepts. Static and dynamic teams have been
identified, and in the context of static teams conditions for existence of team-optimal
solutions and for person-by-person optimality to imply team-optimality have been
obtained. The chapter has also discussed iterative methods for obtaining team-
optimal solutions and illustrated the theory presented with numerical examples.

2.8 Bibliographic Notes

Team decision theory has its roots in both control theory and economics. Jacob
Marschak [254] was perhaps the first to introduce the basic elements of teams
and to provide the first steps toward the development of a team theory. Roy
Radner [316] followed with a precise mathematical formulation and provided
conclusive results to some classes of static teams, establishing precise connections
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between person-by-person optimality, stationarity, and team-optimality. Marschak’s
and Radner’s collaborative work culminated in the publication of their influential
1972 book [255]. At the time when such developments were being made, significant
progress in the theory of statistical decision theory was also taking place: Bahadur’s
characterization of information fields and sufficient statistics [35, 36]; Blackwell’s
sufficient statistics and comparison of experiments results [61]; and Wald’s [383],
Savage’s [333], and Chernoff’s [94] contributions to statistical decision theory,
among other major developments in probability theory, contributed to the rapid
development of team decision theory.

Contributions of Hans Witsenhausen [393, 394, 399–401] on dynamic teams and
characterization of information structures have been crucial in the progress of our
understanding of dynamic teams; see Sect. 3.7, where Witsenhausen’s intrinsic
model as well as other models for dynamic teams are discussed in detail. This
section also includes a brief discussion for nonsequential teams where important
contributions in the literature have been due to Andersland and Teneketzis [9, 10]
and Teneketzis [360], in addition to Witsenhausen [393].

Considerations of risk sensitivity motivated researchers to look into team prob-
lems with exponentiated loss function, with substantial results in this domain
obtained (for teams) by Krainak et al. [219]. De Waal and van Schuppen [114]
considered extensions to discrete action spaces. Bagchi and Başar [34] studied teams
in continuous time as well as non-Gaussian settings.

Başar [24] studied team problems and more general nonzero-sum stochastic
games when agents do not agree on a common a priori probability measure
on the primitive random variable and work under their own subjective views of
the environment, with team models in this context necessarily leading to game
formulations. A more detailed discussion in this context of inconsistent probability
models among a group of decision makers is presented in Chap. 12.

Further discussion on design of information structures in the context of team
theory and economics applications is available in [15,372], among a rich collection
of other contributions.

In the next chapter, Chap. 3, we will see extensions of the static team theory
of this chapter to dynamic teams, where information structures are of paramount
importance. We will also consider Witsenhausen’s intrinsic model more explicitly
in Sect. 3.7. We refer the reader to also Teneketzis [360], in addition to [400], in this
context.

Part of the chapter uses results from [219,316], however, with somewhat different
proofs for some of the key results. The update schemes considered in Sect. 2.6 are
based on [24].
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