Chapter 2
Heavy-Tailed and Long-Tailed Distributions

In this chapter we are interested in (right-) tail properties of distributions, i.e. in
properties of a distribution which, for any x, depend only on the restriction of
the distribution to (x,ec). More generally it is helpful to consider tail properties
of functions.

Recall that for any distribution F on R we define the tail function F by

F(x) =F(x,=), x€R.

We start with characteristic properties of heavy-tailed distributions, i.e., of distribu-
tions all of whose positive exponential moments are infinite. The main result here
concerns lower limits for convolution tails, see Sect. 2.3.

Following this we study different properties of long-tailed distributions, i.e.,
of distributions whose tails are asymptotically self-similar under shifting by a
constant. Of particular interest are convolutions of long-tailed distributions. Our
approach is based on a simple decomposition for such convolutions and on the
concept of “h-insensitivity” for a long-tailed distribution with respect to some
(slowly) increasing function 4. In Sect. 2.8, we present useful characterisations of
h-insensitive distributions.

2.1 Heavy-Tailed Distributions

The usage of the term “heavy-tailed distribution” varies according to the area of
interest but is frequently taken to correspond to an absence of (positive) exponential
moments. In the following definitions—which, for completeness here, repeat some
of those made in the Introduction—we follow this tradition.

Definition 2.1. A distribution F' on R is said to have right-unbounded support if
F(x) >0 forall x.

Definition 2.2. We define a distribution F to be (right-) heavy-tailed if and only if
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8 2 Heavy-Tailed and Long-Tailed Distributions
/ MF(dx) = forall A > 0. 2.1)
R

It will follow from Theorem 2.6 that to be heavy-tailed is indeed a tail property
of a distribution. As a counterpart we give also the following definition.

Definition 2.3. A distribution F is called light-tailed if and only if
/ ¢*F(dx) < e forsome A >0, (2.2)
R

i.e. if and only if it fails to be heavy-tailed.

Clearly, for any light-tailed distribution F on the positive half-line R™ = [0, o),
all moments are finite, i.e., [5”x*F (dx) < o for all k > 0.

We shall say that a non-negative function (usually tending to zero) is heavy-tailed
if it fails to be bounded by a decreasing exponential function. More precisely we
make the following definition.

Definition 2.4. We define a function f > 0 to be heavy-tailed if and only if

limsup f(x)e** =oco  forall A > 0. (2.3)

X—$o0

For a function to be heavy-tailed is clearly a tail-property of that function. Theorem
2.6 shows in particular that a distribution is heavy-tailed if and only if its tail func-
tion is a heavy-tailed function. First we make the following definition.

Definition 2.5. For any distribution F, the function R(x) := —InF (x) is called the
hazard function of the distribution. If the hazard function is differentiable, then its
derivative r(x) = R'(x) is called the hazard rate.

The hazard rate, when it exists, has the usual interpretation discussed in the Intro-
duction.

Theorem 2.6. For any distribution F the following assertions are equivalent:
(i) F is a heavy-tailed distribution.
(ii) The function F is heavy-tailed.
(iii) The corresponding hazard function R satisfies iminfy_,. R(x)/x = 0.
(iv) For some (any) fixed T > 0, the function F (x,x+ T] is heavy-tailed.

Proof. (i)=-(iv). Suppose that the function F (x,x 4 T] is not heavy-tailed. Then

¢:=supF(x,x+T]e** <o forsome A’ >0,
xeR

and, therefore, for all A < A’

oo

/ ¢MF (dx) < D AV (0T 0T +T)
J0 n=0

oo

<c 2 e)L(nH)Tef)VnT _ ce)LT z e()Lf)L’)nT < oo,
n=0 n=0
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It follows that the integral defined in (2.1) is finite for all A € (0,A'), which implies
that the distribution F' cannot be heavy-tailed. The required implication now follows.

(iv)=>(ii). This implication follows from the inequality F (x) > F (x,x+ T].

(il)=>(iii). Suppose that, on the contrary, “liminf” in (iii) is (strictly) positive.
Then there exist xo > 0 and € > 0 such that R(x) > &x for all x > xo which implies
that F (x) < e in contradiction of (ii).

(iii)=>(i). Suppose that, on the contrary, F is light-tailed. It then follows from
(2.2) (e.g., by the exponential Chebyshev inequality) that, for some A >0andc>0,
we have F(x) < ce** for all x. This implies that liminf, ... R(x)/x > A which
contradicts (iii). O

Lemma 2.7. Let the distribution F be absolutely continuous with density function f.
Suppose that the distribution F is heavy-tailed. Then the function f(x) is heavy-
tailed also.

Proof. Suppose that f(x) is not heavy-tailed; then there exist A’ > 0 and xo such
that

= sup f(x)e™™ < oo,

X>X(

and, therefore, for all 1 € (0,1")

/ MF (dx) < et —|—c/ e My < oo,
R

J X0

It follows that the integral defined in (2.1) is finite for all A such that 0 < A < A/,
which contradicts heavy-tailedness of the distribution F'. a

We give an example to show that the converse assertion is not in general true.
Consider the following piecewise continuous density function:

oo

flx)= Z]I{xe [n,n+27"}.

n=1

We have limsup, .. f(x)e** = oo for all A > 0, so that f is heavy-tailed. On the
other hand, for all 4 € (0,In2),

oo

/'°° M f(x)dx < i AT A2
. 0 n:l

n=1
so that F is light-tailed.
For lattice distributions we have the following result.

Lemma 2.8. Let F be a distribution on some lattice {a+hn,n € Z}, a € R, h > 0,
with probabilities F{a+hn} = p,. Then F is heavy-tailed if and only if the sequence
{pn} is heavy-tailed, i.e.,

limsup ppe*” = forall A > 0. (2.4)

n—soo
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Proof. The result follows from Theorem 2.6 with T = h. a

Examples of Heavy-Tailed Distributions

We conclude this section with a number of examples.

o The Pareto distribution on R*. This has tail function F given by

o ()

for some scale parameter ¥ > 0 and shape parameter o > 0. Clearly we have
F(x) ~ (x/K) ™ as x — oo, and for this reason the Pareto distributions are some-
times referred to as the power law distributions. The Pareto distribution has all
moments of order y < « finite, while all moments of order ¥ > o are infinite.

e The Burr distribution on R*. This has tail function F given by

Flo) = (x’ i K) a

for parameters o, k, T > 0. We have F(x) ~ k%x ™ as x — o; thus the Burr
distribution is similar in its tail to the Pareto distribution, of which it is otherwise
a generalisation. All moments of order Y < o.T are finite, while those of order
Y > o7 are infinite.

e The Cauchy distribution on R. This is most easily given by its density function f
where

K

0= Tar e

for some scale parameter kK > 0 and position parameter a € R. All moments of
order y < 1 are finite, while those of order y > 1 are infinite.
e The lognormal distribution on R This is again most easily given by its density

function f, where
1 (logx—u)z)
X) = exp| ————
700 = e (- 15

for parameters ¢ and o > 0. All moments of the lognormal distribution are

finite. Note that a (positive) random variable £ has a lognormal distribution with

parameters i and o if and only if log & has a normal distribution with mean

and variance 6. For this reason the distribution is natural in many applications.
e The Weibull distribution on R, This has tail function F given by

F(x) =e W%
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for some scale parameter k¥ > 0 and shape parameter ¢« > 0. This is a
heavy-tailed distribution if and only if & < 1. Note that in the case o =1 we
have the exponential distribution. All moments of the Weibull distribution are
finite.

Another useful class of heavy-tailed distributions is that of dominated-varying
distributions. We say that F is a dominated-varying distribution (and write F' € D)
if there exists ¢ > 0 such that

F(2x) > cF(x) forallx.

Any intermediate regularly varying distribution (see Sect. 2.8) belongs to D. Other
examples may be constructed using the following scheme. Let G be a distribution
with a regularly varying tail (again see Sect.2.8). Then a distribution F belongs to
the class D, provided ;G (x) < F(x) < ¢2G(x) for some 0 < ¢; < ¢3 < o and for
all sufficiently large x.

2.2 Characterisation of Heavy-Tailed Distributions
in Terms of Generalised Moments

A major objective of this and the succeeding section is to establish the important,
if somewhat analytical, result referred to in the Introduction that for a heavy-tailed
distribution F on R™ we have liminf,_.. F * F(x) /F (x) = 2. This is Theorem 2.12.
As remarked earlier, it will then follow (see Chap. 3) that the subexponentiality of
a distribution F on R is then equivalent to heavy-tailedness plus the reasonable
regularity requirement that the limit as x — o of F x F(x) /F (x) should exist.

In this section we therefore consider an important (and again quite analytical)
characterisation of heavy-tailed distributions on R™, which is both of interest in
itself and essential to the consideration of convolutions in the following section.
In very approximate terms, for any such distribution we seek the existence of a
monotone concave function / such that the function e "() characterises the tail of
the distribution.

If a distribution F on the positive half-line R™ is such that not all of its moments
are finite, i.e., [;°x*F(dx) = oo for some k, then F is heavy-tailed. In this case we
can find such k > 1 that the kth moment is infinite, while the (k — 1)th moment is
finite. That is

/mxe(k*mn)fF(dx) =oco and /we““l)l“xndx) < oo, (2.5)
JO 0

Note that here the power of the exponent is a concave function. This observation
can be generalised onto the whole class of heavy-tailed distributions as follows.
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Theorem 2.9. Let & > 0 be a random variable with a heavy-tailed distribution. Let
the function g(x) be such that g(x) — oo as x — oo. Then there exists a monotone

concave function h: Rt — R* such that h(x) = o(x) as x — oo, Ee"5) < oo, and
Eeh(6)+8(8) — oo,

Now (2.5) is a particular example of the latter theorem with g(x) = Inx. In this
case, if not all moments of & are finite, the concave function /(x) may be taken as
(k—1)Inx for k as defined above. However, Theorem 2.9 is considerably sharper:
it guarantees the existence of a concave function 4 for any function g (such that
g(x) — o0 as x — o), which may be taken as slowly increasing as we please.

As a further example, note that if & has a Weibull distribution with tail function
F(x)=e*", o€ (0,1), and if g(x) = Inx, then one can choose (x) = (x+¢)* —
In(x+ ¢), with ¢ > 0 sufficiently large.

Note also that Theorem 2.9 provides a characteristic property of heavy-tailed dis-
tributions; it fails for any light-tailed distribution. Indeed, consider any non-negative
random variable & having a light-tailed distribution, i.e., Ee*é < oo for some A > 0.
Take g(x) = Inx. If A(x) = 0(x) as x — oo, then (x) < ¢+ Ax/2 for some ¢ < oo and,
hence,

Eeh(©)+8(6) < R HER < oo

Proof (of Theorem 2.9). We will construct a piecewise linear function /(x). To do
S0 we construct two positive sequences x, T e and g, | 0 as n — oo and let

h(x) =h(x,—1) +&(x—xp—1) ifx € (xy—1,%,], n > 1.

This function is monotone, since &, > 0. Moreover, this function is concave, due to
the monotonicity of &,.

Put xp = 0 and A(0) = 0. Since & is heavy-tailed and g(x) — oo, we can choose
x| sufficiently large that e$®) > 2 for all x > x; and

E{e®:& € (xo,x1]} 4+ € F(x1) > F(xo) + 1.
Choose €; > 0 so that
E{e1%:E € (x0,x1]} + M F (x)) = F(0)+1/2,
which is equivalent to
E{e"®): € € (x0,x1]} + " F (x)) = OF(0)+1)2.

By induction we construct an increasing sequence x,, and a decreasing sequence
&, > 0 such that e @) > 27 for all x > X, and

B8 € (1]} + 0P () = MoV () +1/27
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for any n > 2. For n = 1 this is already done. Make the induction hypothesis for
some n > 2. Due to the heavy-tailedness of & and to the convergence g(x) — oo,
there exists x,, 1 so large that e8 @) > 271 for all x > Xp+1 and

E{e(6): & € (xp,241]} + &1 =0 F (x, 1) > 2.
As a function of &, 1, the sum
E{efr1E=): & & (x,,2,11]} + eSO =0 F ()

is continuously decreasing to f(x,,) as &,+1 4 0. Therefore, we can choose €, €
(0,&,) so that

E{ee"“(é*x”;& € (Xn,Xnp1]+ eg"“(x"*“x”)F(x,,H) =F(x,)+ 1/(2”“8"()“")).
By the definition of A(x) this is equivalent to the following equality:
E{e"©):& € (xp,x011]} + " VF (x,41) = " F (x,) 4+ 1/2F1,

Our induction hypothesis now holds with n+ 1 in place of n as required.
Next, for any N,

N
E{"®):& <xyi1} = 3 E{D:E € (va,x0i1]}
n=0

— i)(eh(xn)f(xn) M F () + 1/2n+1)
< "OF(xg) + 1.
Hence, Ee"(%) is finite. On the other hand, since &8 (x) > 2" for all x > x,,,
E{eh(iﬂg(é);é > x> an{eh(i);g > x}
> o (E{eh@%g € (xn,x,,ﬂ]}+eh(x”“)F(x,,+1))
= on (eh(x")f(x,,) +1 /2"“) .
Then E{e"($)+8(8); & > x,} > 1/2 for any n, which implies Ee"(5)78(6) = o Note

also that necessarily lim,,—,.. &, = 0; otherwise lini infh(x)/x > 0and & is light tailed.
X—>oo
O

The latter theorem can be strengthened in the following way (for a proof see [20]):

Theorem 2.10. Let & > 0 be a random variable with a heavy-tailed distribution. Let
f:RT — R be a concave function such that Ee/(€) = oo, Let the functiong : RT™ — R
be such that g(x) — o as x — oo, Then there exists a concave function h: Rt — Rt
such that h < f, Ee"®) < oo, and Ee(8)+8(8) = oo,
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2.3 Lower Limit for Tails of Convolutions

Recall that the convolution F x G of any two distributions F' and G is given by, for
any Borel set B,

(F*G)(B /FB y)G(dy) = / G(B—y)F(dy),

where B—y = {x —y : x € B}. If, on some probability space with probability
measure P, £ and 1 are independent random variables with respective distribu-
tions F and G, then (F *G)(B) =P{& 4 n € B}. The tail function of the convolution,
the convolution tail, of F and G is then given by, for any x € R,

FiGx) =P{e+n>x) = [ Fla=»Gdy) = [ Glx—y)F(dy)

Now let F be a distribution on R™. In this section we discuss the following lower
limit:

FxF
liminf (x)

S F )

3

in the case where F is heavy-tailed. We start with the following result, which gen-
eralises an observation in the Introduction.

Theorem 2.11. Let Fi,...,F, be distributions on R with unbounded supports.

Then
Fix...xF
liminf — L *Fl0)
xoe Fr(x) 4 ...+ Fu(x)
Proof. Let&, ..., &, be independent random variables with respective distributions

Fi, ..., F,. Since the events {& > x,&; € [0,x] for all j # k} are disjoint for different
k, the convolution tail can be bounded from below in the following way:

=

Fix. xFy(x) > Y P{& >x,& € [0,x] forall j # k}
=

I
M= T
|
=
=
>
=

~
Il
.
=

~.

S
s

¢
M-

~|
-
=
g

=

1

8

which implies the desired statement. a

Note that in the above proof we have heavily used the condition Fi(R™) = 1; for
distributions on the whole real line R Theorem 2.11 in general fails.
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It follows in particular that, for any distribution F on R* with unbounded support
and for any n > 2,

F*Vl
imint ) s (2.6)
X—ro0 (_x)
In particular,
F+F
fimint W) S o 2.7)
X—ro0 (_x)

As already discussed in the Introduction, in the light-tailed case the limit given
by the left side of (2.7) is typically greater than 2. For example, for an exponential
distribution it equals infinity. Thus we may ask under what conditions do we have
equality in (2.7). We show that heavy-tailedness of F is sufficient.

Theorem 2.12. Let F be a heavy-tailed distribution on R*. Then

FxF
liminf ()

=W

=2. (2.8)
Proof. By the lower bound (2.7), it remains to prove the upper bound only, i.e.,

F+F
fiming ) o
TR

Assume the contrary, i.e. there exist 6 > 0 and x( such that
FxF(x)>(2+68)F(x) forallx> xo. (2.9)

Applying Theorem 2.9 with g(x) = Inx, we can choose an increasing concave
function & : R* — R™ such that Ee"(®) < co and EEeM8) = oo, For any positive
b > 0, consider the concave function

hp(x) := min(h(x), bx).

Since F is heavy-tailed, h(x) = o(x) as x — oo; therefore, for any fixed b there exists
x1 such that A, (x) = h(x) for all x > x;. Hence, Ee/*(5) < oo and EEe(5) = oo,

For any x, we have the convergence A (x) | 0 as b ] 0. Then Eehw(&1) l1lasb 0.
Thus there exists b such that

Ee (&) <148 /4. (2.10)
For any real ¢ and ¢, put /) = min(a, 7). Then

E(gl[’] +§2[’])ehb(§1+52 2E§ eEite) < 215& (&)%)
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by the concavity of the function 4. Hence,
1] 1l (E1+&2) 1 ho (&) oo (&2)
E(g] +§ Je _ E& e CURe
Eé e (81) Eé ew(&r)
= 2Ee™(&) <248/2, 2.11)

by (2.10). On the other hand, since (& + &) < ‘51 + 52 ,

E(," +§ N Gte) > @r+§) lefnlGrte)
Eé ehn(&1) - IE& el (&)

X F*F)(dx
_ Jox f"" ehb( i d)x() ). (2.12)

The right side, after integration by parts, is equal to
Jo FxF(x )d( )
Jo F(x)d(xlleh )

Since ]Eélehb(il) = oo, in the latter fraction both the integrals in the numerator and
the denominator tend to infinity as t — . For the increasing function hy(x), together
with the assumption (2.9) this implies that

“F 7 (0)d (] o)
liming JOF X FLId(T ™)
t—oo fO F(x)d(xmehb(x))

Substituting this into (2.12) we get a contradiction to (2.11) for sufficiently large 7.
O

>2+40.

It turns out that the “liminf” given by the left side of (2.7) is equal to 2 not only
for heavy-tailed but also for some light-tailed, distributions. Here is an example.
Let F be an atomic distribution at the points x,, n =0, 1, ..., with masses p;, i.e.,
F{x,} = pu. Suppose that xo = 1 and that x,,, | > 2x, for every n. Then the tail of
the convolution F x F at the point x,, — 1 is equal to

FaF(xy— 1) = (FxF)([xn,50) X RY) 4 (FxF) ([0, %01] X [n, o))
~2F(x,—1) asn—soo.

Hence,
FxF(x,—1)

im ————>=2.
n—eo F(x,—1)

From this equality and from (2.7),

liminf
=R

=2. (2.13)
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Take now x, =3",n=0,1,...,and p, = ce’y’, where c is the normalising constant.
Then F is a light-tailed distribution satisfying the relation (2.13).

We conclude this section with the following result for convolutions of non-
identical distributions.

Theorem 2.13. Let F| and F> be two distributions on R™ and let the distribution F
be heavy-tailed. Then

Proof. By Theorem 2.11, the left side of (2.14) is at least 1. Assume now that it is
strictly greater than 1. Then there exists € > 0 such that, for all sufficiently large x,

F % F>(x)

7 > 142¢. 2.1
Fio) 1 Fa(r) — T2 215

Consider the distribution G = (F; + F2)/2. This distribution is heavy-tailed.
By Theorem 2.12 we get

liminf Gi—G(x) =2.
=G

(2.16)

On the other hand, (2.15) and Theorem 2.11 imply that, for all sufficiently large x,
Fi < Fy (x) +F *Fz(x) +2F *Fz(x)

G*G(x) = )
< 2(1 — S)Fl (x) +2(1— E)Fz(x) +2(1+ 28)(?1 (X) +F2(x))
- 4
=2(1+¢/2)G(x),
which contradicts (2.16). a

2.4 Long-Tailed Functions and Their Properties

Our plan is to introduce and to study the subclass of heavy-tailed distributions which
are long-tailed. Later on we will study also long-tailedness properties of other char-
acteristics of distributions. Therefore, we find it reasonable to start with a discussion
of some generic properties of long-tailed functions.

Definition 2.14. An ultimately positive function f is long-tailed if and only if

S +y)
L)

Clearly if f is long-tailed, then we may also replace y by —y in (2.17).

=1, forally>0. (2.17)
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The following result makes a useful connection.

Lemma 2.15. The function f is long-tailed if and only if g(x) := f(logx) (defined
for positive x) is slowly varying at infinity, i.e., for any fixed a > 0,

g(ﬂ—ﬂ as x — oo,

8(x)
Proof. The proof is immediate from the definition of g since

glax) _ f(ogx+loga)
g(x) f(logx)

If f is long-tailed, then we also have uniform convergence in (2.17) over y in
compact intervals. This is obvious for monotone functions, but in the general case
the result follows from the Uniform Convergence Theorem for functions slowly
varying at infinity, see Theorem 1.2.1 in [9]. Thus, for any a > 0, we have

sup |f(x) — f(x+y)| =o(f(x)) asx—> oo. (2.18)

ly|<a

We give some quite basic closure properties for the class of long-tailed functions.
We shall make frequent use of these—usually without further comment.

Lemma 2.16. Suppose that the functions fi, ..., fn are all long-tailed. Then
(i) For constants ¢| and c; where ¢y > 0, the function fi(c1 + cpx) is long-tailed.
(i) If f ~ X}_ | ckfi where cy, ..., ¢, > 0, then f is long-tailed.
(iii) The product function fi - -- f, is long-tailed.
(iv) The function min(fy,..., f,) is long-tailed.
(V) The function max(f,..., fu) is long-tailed.

Proof. The proofs of (i)—(iii) are routine from the definition of long-tailedness.
For (iv) observe that, for any a > 0 and any x, we have

min <f1 (x+a) fz(x+a)) o min(fi(x+a), fr(x+a))
hx) 7 fl) min (f;(x), f2(x))
< max <f1 (x+a)7 fz(x+a)> '
Ji(x) f2(x)

Since fi, f> are long-tailed the result now follows for the case n = 2. The result for
general n follows by induction.

For (v) observe that, analogously to the argument for (iv) above, for any a > 0
and any x, we have

. ( filx+a) fr(x+a) max (fi(x+a), f2(x+a))

m‘“( 00 AW )< max (/1 (x), /2(x))
fik+a) falx+a)

fma"( A AR )

and the result now follows as before. O
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We now have the following result.

Lemma 2.17. Let f be a long-tailed function. Then f is heavy-tailed and, moreover,
satisfies the following relation: for every A >0,

: Ax o
)}grolof(x)e = oo,

Proof. Fix A > 0. Since f is long-tailed, f(x+y) ~ f(x) as x — oo uniformly in
y € [0,1]. Hence, there exists xq such that, for all x > xp and y € [0, 1],

fle+y) = flx)e 2,
Then f(xo +n+y) > f(xo)e ***/2 forall n > 1 and y € [0, 1], and, therefore,

liminf £ (x)e* > f(xo) lim e *("T1/2A0 — oo
X—ro0 Nn—yo0

so that the lemma now follows. O

However, it is not difficult to construct a heavy-tailed function f which fails to
be sufficiently smooth so as to be long-tailed. Put

flo) =Y 272" T <x <2}
n=1
Then, for any A > 0,

limsup f(x)e** > limsup2 "e*?" = oo,

X—poo n—soo

so that f is heavy-tailed. On the other hand,

which shows that f is not long-tailed.

h-Insensitivity

We now introduce a very important concept of which we shall make frequent sub-
sequent use.

Definition 2.18. Given a strictly positive non-decreasing function 4, an ultimately
positive function f is called h-insensitive (or h-flat) if

sup |f(x+y)—f(x)|=0(f(x)) asx— oo, uniformly in [y| <h(x). (2.19)
Iyl<h(x)



20 2 Heavy-Tailed and Long-Tailed Distributions

It is clear that the relation (2.19) implies that the function f is long-tailed and con-
versely that any long-tailed function is h-insensitive for any constant function 4.
The following lemma gives a strong converse result, which we shall use repeatedly
in Sect. 2.7 and subsequently throughout the monograph.

Lemma 2.19. Suppose that the function f is long-tailed. Then there exists a function
h such that h(x) — e as x — o and [ is h-insensitive.

Proof. For any integer n > 1, by (2.18), we can choose x;, such that

sup |[f(x+y)— f(x)] < f(x)/n  forall x > x,.
lyl<n

Without loss of generality we may assume that the sequence {x,} is increasing to
infinity. Put A(x) = n for x € [x,,x,41]. Since x,, — oo as n — oo, we have h(x) — oo
as x — oo. By the construction we have

sup |f(x+y) —f(x)] < f(x)/n

[y|<h(x)
for all x > x,,, which completes the proof. a

One important use of A-insensitivity is the following. The “natural” definition of
long-tailedness of a function f is that of h-insensitivity with respect to any constant
function A(x) = a for all x and some a > 0. The use of this property in this form
would then require that both the statements and the proofs of many results would
involve a double limiting operation in which first x was allowed to tend to infin-
ity, with the use of the relation (2.18), and following which a was allowed to tend
to infinity. The replacement of the constant a by a function 4 itself increasing to
infinity, but sufficiently slowly that the long-tailed function f is h-insensitive, not
only enables two limiting operations to be replaced with a single one in proofs, but
also permits simpler, cleaner, and more insightful presentations of many results (a
typical example is the all-important Lemma 2.34 in Sect. 2.7).

Now observe that if a long-tailed function f is h-insensitive for some function &
and if a further positive non-decreasing function /1 is such that i (x) < h(x) for all x,
then (by definition) f is also h-insensitive. Two trivial, but important (and frequently
used), consequences of the combination of this observation with Lemma 2.19 are
given by the following proposition.

Proposition 2.20. (i) Given a finite collection of long-tailed functions fi, ..., fu,
we may choose a single function h, increasing to infinity, with respect to which
each of the functions f; is h-insensitive.

(i1) Given any long-tailed function f and any positive non-decreasing function h, we
may choose a function h such that h(x) < fz(x) for all x and f is h-insensitive.

Proof. For (i), note that for each i we may choose a function 4;, increasing to infin-
ity, such that f; is h-insensitive, and then define / by h(x) = min; /;(x).

For (ii), note that we may take /(x) = min(/(x),(x)) where & is such that f is
h-insensitive. ad
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Finally we note that a further important use of i-insensitivity is the following.
For any given positive function £, increasing to infinity, we may consider the class
of those distributions whose (necessarily long-tailed) tail functions are s-insensitive.
For varying h, this gives a powerful method for the classification of such distribu-
tions, which we explore in detail in Sect. 2.8.

2.5 Long-Tailed Distributions

As discussed in the Introduction, all heavy-tailed distributions likely to be encoun-
tered in practical applications are sufficiently regular as to be long-tailed, and it is
the latter property, as applied to distributions, which we study in this section.

First, for any distribution F' on R, recall that we denote by R the hazard function
R(x) := —InF(x). By definition, R is always a non-decreasing function and

B F(x+1)
R(x+1)—R(x) = —IHW.

Definition 2.21. A distribution F on R is called long-tailed if F (x) > 0 for all x and,
for any fixed y > 0,
F(x+y)~F(x) asx— oo (2.20)

That is, the distribution F is long-tailed if and only if its tail function F is a long-
tailed function. Note that in (2.20) we may again replace y by —y. Further, for a
distribution F to be long-tailed it is sufficient to require (2.20) to hold for any one
non-zero value of y. Note also that the convergence in (2.20) is again uniform over
y in compact intervals.

We shall write £ for the class of long-tailed distributions on R. Clearly F € £
is a tail property of the distribution F, since it depends only on {F(x) : x > x} for
any finite x¢. Further, it follows from Lemma 2.17 that if the distribution F is long-
tailed (F € £) then F is a heavy-tailed function, and so, by Theorem 2.6, F is also a
heavy-tailed distribution. However, as the example following Lemma 2.17 shows, a
heavy-tailed distribution need not be long-tailed.

The following lemma gives some readily verified equivalent characterisations of
long-tailedness.

Lemma 2.22. Let F be a distribution on R with right-unbounded support, and let &
be a random variable with distribution F. Then the following are equivalent:
(i) The distribution F is long-tailed (F € L).
(ii) For any fixed y > 0, F(x,x+y] = o(F (x)) as x — .
(iii) For any fixedy > 0, P{€ > x+y|E >x} = 1 asx — oo,
(iv) The hazard function R(x) satisfies R(x+ 1) — R(x) — 0 as x — co.

Analogously to Lemma 2.16 we further have the following result.
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Lemma 2.23. Suppose that the distributions Fi, ..., F, are all long-tailed (i.e. be-
long to the class L) and that &,. .. ,E, are independent random variables with dis-
tributions Fy, ..., F,, respectively. Then

(1) For any constants c¢| and c; > 0, the distribution of c;&1 + ¢ is long-tailed.
(i) If F(x) ~ X}_, ckFr(x) where cy, ..., ¢, > 0, then F is long-tailed.
(i) If F (x) = min(F| (x),...,Fy(x)), then F is long-tailed.
(iv) If F(x) = max(F| (x),...,Fy(x)), then F is long-tailed.

(V) The distribution of min(&,,...,&,) is long-tailed.
(vi) The distribution of max (&, ...,&,) is long-tailed.

Proof. The proofs follow from the application of Lemma 2.16 to the corresponding
tail functions. In particular (v) and (vi) follow from (i) and (iii) of Lemma 2.16. O

2.6 Long-Tailed Distributions and Integrated Tails

In the study of random walks in particular, a key role is played by the integrated tail
distribution, the fundamental properties of which we introduce in this section.

Definition 2.24. For any distribution ' on R such that
| Fordy <= (221)
Jo

(and hence [°F (y)dy < o for any finite x) we define the integrated tail distribution
Fj via its tail function by

F1(x) = min (1, / F(y)dy> . (2.22)
X
Note that if £ is a random variable with distribution F, then

| FOy = B{E:E > —aP(E > =B{E-xE >0} @23)

An associated concept (in renewal theory and in queueing) is the residual distri-
bution F, which is defined for any distribution F on R with finite mean a by:

FB) = [Fo)dy, BeBR)

The integrated tail and residual distributions satisfy the equality F,(x) = F;(x)/a
for all sufficiently large x.
The following characterisation will frequently be useful.

Lemma 2.25. Suppose that the distribution F is such that (2.21) holds. Then Fy is
long-tailed if and only if F (x) = o(F(x)) as x — .
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Proof. The integrated tail distribution F; is long-tailed (F; € £) if and only if
Fi(x) = Fi(x+1) = o(F(x)), or, equivalently, F;(x) — F;(x+ 1) = o(F;(x+ 1)).
The required result now follows from the inequalities

F(x+1)<F(x)—Fr(x+1) < F(x),
valid for all sufficiently large x. a

Lemma 2.26. Suppose that the distribution F is long-tailed (F € L) and such that
(2.21) holds. Then Fy is long-tailed as well (F; € £) and F (x) = o(F(x)) as x — oo.

Proof. The long-tailedness of F; follows from the relations, as x — oo,
Fi(x+1t)= / F(x+t+y)dy ~ / F(x+y)dy=F;(x),
JX X

for any fixed ¢. That F(x) = o(F(x)) as x — o now follows from Lemma 2.25. O

The converse assertion, i.e., that long-tailedness of F; implies long-tailedness of
F is not in general true. This is illustrated by the following example.

Example 2.27. Let the distribution F be such that F(x) = 22" for x € [2",2"F1).
Then F is not long-tailed since F(2" — 1)/F(2") = 4 for any n, so that F(x —
1)/F(x) /£ 1 as x — co. But we have x> < F(x) < 4x2 for any x > 0. In par-
ticular, F;(x) > x~! and thus F (x) = o(F(x)) as x — 0. Thus, by Lemma 2.25, Fy
is long-tailed.

We now formulate a more general result which will be needed in the theory of
random walks with heavy-tailed increments and is also of some interest in its own
right. Let F be a distribution on R and g a non-negative measure on R such that

/O TF()u(dr) < oe. (2.24)

We may then define the distribution F, on R™ given by

Falx) = min(l,/(if(x—i—t)u(dt)), x>0. (2.25)

If u is Lebesgue measure, then F, is the integrated tail distribution. We can formu-
late the same question as for F;: what type of conditions on F imply long-tailedness
of F},? The answer is given by the following theorem.

Theorem 2.28. Let F be a long-tailed distribution. Then F), is a long-tailed distri-
bution and, for any fixed y > 0,

Fu(x+y) ~Fpu(x)
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as x — oo uniformly in all | satisfying (2.24), i.e.,

F
infinf T e (2.26)
wox>xo Fp(x)

If, in addition, F(x+ h(x)) ~ F(x) as x — oo, for some positive function h, then
(2.26) holds with h(x) in place of y.

Proof. Fix € > 0. Since F(x+y+u) ~ F(x+u) as x — o uniformly in u > 0, there
exists xqo such that (2.24),

F(x+y+u)> (1—¢€)F(x+u) forall x> xo.

Then, for all x > xp and U,

Fulety) = [ Flty+uwu(dy) = (1-e) [ Flesuuln = (1 -e)Fu.

Letting € — 0 we obtain the desired result. The same argument holds when y is
replaced by h(x). O

2.7 Convolutions of Long-Tailed Distributions

We know from Theorem 2.11 that for any distributions F and G on the positive
half-line R*
* G(x)

liminf =

ey (2.27)
v F(x) + G(x)

In order to get an analogous result for distributions on the entire real line R, we
assume some of those involved to be long-tailed. The assumption of the theorem
below seems to be the weakest possible in the absence of conditions on left tails.

Theorem 2.29. Let the distributions Fi, ..., F, on R be such that the function
Fi(x)+ ...+ Fy(x) is long-tailed. Then,

(2.28)

In particular (2.28) holds whenever each of the distributions F; is long-tailed.

Proof (cf Theorem 2.11). Let &, ..., &, be independent random variables with
respective distributions Fi, ..., F,. For any fixed a > 0, we have the following lower
bound:
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Fix. xFy(x) > Y P{&>x+ (n—1)a,&; € (—a,x] forall j # k}
k=1
= Y Filx+(n—1a)[]Fi(—- (2.29)
k=1 ik

For every € > 0 there exists a such that Fj(—a,a] > 1 — ¢ for all j. Thus, for all
x>a,

Fi(x+(n—1)a).

M=

Fix.. xFy(x) > (1—g)"!

k=1

Since the function Fy + ...+ F, is long-tailed,

Fi®...x Fy(x)

liminf = L > (1—¢)" L.
xoeo Fr(x) 4 ...+ Fu(x) > )
The required result (2.28) now follows by letting € — 0. O

For identical distributions, Theorem 2.29 yields the following corollary.

Corollary 2.30. Let the distribution F on R be long-tailed (F € L). Then, for any
n>2,

Fn
liming ) >n
)

We also have the following result for the convolution of a long-tailed distribu-
tion F with an arbitrary distribution G, the proof of which is similar in spirit to that
of Theorem 2.29.

Theorem 2.31. Let the distributions F and G on R be such that F is long-tailed
(F € L). Then,

Jiming /2 6W)

ST )

> 1. (2.30)

Proof. Let £ and n be independent random variables with respective distributions
F and G. For any fixed a,

FxG(x) >P{&>x—a,n >a}
=F(x—a)G(a). (2.31)

For every € > 0 there exists a such that E(a) > | — &. Thus, for all x,

FxG(x) > (1—¢)F(x—a).
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Since the distribution F is long-tailed, it now follows that

G
liminf 2200 5 ¢
=R
and the required result (2.30) once more followed by letting € — 0. a

We now have the following corollary.

Corollary 2.32. Let the distribution F on R be such that F is long-tailed (F € L)
and let the distribution G be such that G(a) = 0 for some a. Then F x G(x) ~ F (x)
as x — oo,

Proof. Since G(a) = 0, we have F * G(x) < F(x — a). Thus since F is long-tailed
we have

FxG
lim sup * Glx)

X—oo (X)

<l1.

Combining this result with the lower bound of Theorem 2.31, we obtain the desired
equivalence. a

In order to further study the convolutions of long-tailed distributions, we make
repeated use of two fundamental decompositions. Let 4 > 0 and let & and 1 be
independent random variables with distributions F and G, respectively. Then the
tail function of the convolution of F' and G possesses the following decomposition:
forx >0,

F+Gx)=P{E+n>x,E <h}+P{E+n>x,E>h}. (2.32)

If in addition 2 < x/2, then

F+G(x)
=P{E+n>x& <h}+P{E+n>x,n <h}+P{E+1>x,E > hn > hi,
(2.33)
sinceif E <handn <hthen&+n <2h<x.
Note that
h —
PE+n>xE <h) = [ Glx-y)F(ay). (2.34)

while the probability of the event {E+1>x, & >h, 11>h} is symmetric in F and G, and

PE+n>xE>hn>h) = /hwf(max(h,x—y))G(dy)

= /hwf}(max(h,x—y))F(dy). (2.35)
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Definition 2.33. Given a strictly positive non-decreasing function /, a distribution ¥
on R is called h-insensitive(or h-flat) if its tail function F is an h-insensitive function
(see Definition 2.18). Since F is monotone, this reduces to the requirement that
F(x4h(x)) ~ F(x) as x — oo

Recall from the results for A-insensitive functions that a distribution F is long-
tailed if and only if there exists a function & as above with respect to which F is
h-insensitive.

For long-tailed distributions F and G we shall now make particular use of the
decomposition (2.33) in which the constant /4 is replaced by a function & increasing
to infinity (with i(x) < x/2 for all x) and such that both F and G are h-insensitive.

The following three lemmas are the keys to everything that follows later in this
section.

Lemma 2.34. Suppose that the distribution G on R is long-tailed (G € £) and that
the positive function h is such that h(x) — o as x — o and G is h-insensitive. Then,
for any distribution F, as x — oo,

h(x) _ —
|G- yray ~ G,

—oo

| PGy ~ G,
x—h(x)

Proof. The existence of the function 4 is guaranteed by Lemma 2.19. We now have

h(x) _ —
| G yF @) <G i)

On the other hand we also have,

hx) _ h(x) _
/7 . G(x—y)F(dy) > / G(x—y)F(dy)

(=h(x), ()]G (x+h(x))
(x+h(x)) asx— oo,

where the last equivalence follows since /(x) — oo as x — oo. The first result
now follows from the choice of the function /4. The second result follows simi-
larly: the integral is again bounded from above by G(x — h(x)) and from below by
F(—h(x))G(x+ h(x)) and the result follows as previously. O

Remark 2.35. Note the crucial role played by the monotonicity of the tail function G
in the proof of Lemma 2.34—something which is not available to us in considering,
e.g., densities in Chap. 4.

We now prove a version of Lemma 2.34 which is symmetric in the distributions
F and G, and which allows us to get many important results for convolutions—see
the further discussion below.
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Lemma 2.36. Suppose that the distributions F and G on R are such that the sum
F + G of their tail functions is a long-tailed function (equivalently the measure
F + G is long-tailed in the obvious sense) and that the positive function h is such
that h(x) — oo as x — oo and F + G is h-insensitive. Then

h(x) h(x) _ _ —
/ G(x—y)F(dy)+ .[m F(x—y)G(dy) ~ G(x)+F(x) asx— oo

—oo

Proof. The proof is simply a two-sided version of that for the first assertion of
Lemma 2.34. The existence of the function # is again guaranteed by Lemma 2.19.
Now note first that, as in the earlier proof,
h(x) _ h(x) _ —
G(x—y)F(dy)+ |  F(x—y)G(dy) < G(x—h(x)) +F(x—h(x)),

—oo —oo

and second that

) _ 0 _
> /h G(x—y)F(dy)+ ./};(X)F(x—y)G(dy)

—h(x),h(x)]G(x + h(x)) + G(—h(x),h(x)]F (x + h(x))
x+h(x))+F(x+h(x)) asx—oco,

—

where the last equivalence follows since h(x) — e as x — oo. The required result
now follows from the choice of the function 4. ad

Note that special cases under which F + G is long-tailed are (a) F and G are both
long-tailed—in which case Lemma 2.36 (almost) follows from 2.34, and (b) F is
long-tailed and G(x) = o(F (x)) as x — o.

In various calculations we need to estimate the “internal” part of the convolution.
The following result will be useful.

Lemma 2.37. Let h be any increasing function on R such that h(x) — . Then, for
any distributions Fy, F»>, Gy, and G on R,
P h h F G,
limsup {81 +m > x,61 > h(x),m > (x)} < limsup _(x) -limsup _1(x)7
v P{E4+M >8> h(x),m > h(x)} T s F(x) 15w Ga(x)

where &1, &, N, and M, are independent random variables with respective distri-
butions F|, F», G| and G».

In particular, in the case where the limits of the ratios Fy(x)/Fy(x) and
G1(x)/Ga(x) exist, we have

P{Ci+ M >x,81 > h(x),m >h(x)} . Fi(x) i Gi(x)
xoee P{E 4+ 1My > x,8 > h(x),m > h(x)}  xoe Fy(x) x==Gy(x)
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Proof. It follows from (2.35) that

P{& +m1 > x, & > h(x),n > h(x)}

: o) % 2 / Fa(max(h(x),x—y))G1(dy)
Fi(z) _
z>h Fz(z)/ Gi(max(h(x),x —y)) F2(dy).
Similarly,
o Gy (max(h(x),x—y))Fa(dy)
Jh(x)

< sup 28 17 Gy (max(h(x) x— y)) Fa(dy)
h(x) G2(2) Jhix)

Gi(z)
= sup
n(x) G2(2)

P{& +m2>x,& > h(x),m > h(x)}.

Combining these results and recalling that /(x) — oo as x — oo, we obtain the desired
conclusion. O

Definition 2.38. Two distributions F and G with right-unbounded supports are said
to be tail-equivalent if F(x) ~ G(x) as x — oo (i.e. limy . F (x)/G(x) = 1).

In the next two theorems we provide conditions under which a random shifting
preserves tail equivalence.

Theorem 2.39. Suppose that Fi, F> and G are distributions on R such that F (x) ~
F>(x) as x — oo. Suppose further that G is long-tailed. Then F * G(x) ~ F, * G(x)
as x — oo,

Proof. By Lemma 2.19 we can find a function 4 such that (x) — e and
G(x£h(x)) ~G(x) asx— oo,

i.e. G is h-insensitive. We use the following decomposition: for k = 1, 2,

FrGx) = ( /HM)+ i )E(x—y)G(dy). (2.36)

—oo0 Jx—h(x)

It follows from the tail equivalence of Fj and F; that Fj(x —y) ~ Fa(x—y) as x — oo
uniformly in y < x — A(x). Thus,

x—h(x) _ x—h(x) _
/ Fi(x—y)G(dy) ~ / Fa(x—y)G(dy) (2.37)

—oo J —oo
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as x — oo, Next, by Lemma 2.34, for k =1, 2,
/ Felx—y)G(dy) ~ G(x) asx— oo. (2.38)
x—h(x)

Substituting (2.37) and (2.38) into (2.36) we obtain the required equivalence
F % G(x) ~ Fpx G(x) O

Theorem 2.40. Suppose that F\, F,, G| and G, are distributions on R such that
Fi(x) ~ Fa(x) and G\(x) ~ Ga(x) as x — oo. Suppose further that the function
F| + G, is long-tailed. Then F * G| (x) ~ F * G3(x) as x — oo,

Proof. The conditions of the theorem imply that the function F + G, is similarly
long-tailed. By Lemma 2.19 and the following remark we can choose a function &
such that 2(x) — e as x — o, h(x) < x/2 and, fork =1, 2,

Fr(x£h(x))+Gr(x £ h(x)) ~ Fi(x) + Gi(x) asx — oo,
i.e. Fy + Gy is h-insensitive. We use the following decomposition which follows
from (2.33) to (2.35):

- h(x) _ h(x)
ArGis) = [ Fue=)Gudy) + [ Galx=y)f(ay)

—oo —oo

+ /h; Fy(max(h(x),x —y))Gi(dy). (2.39)

Since F] and F; are tail equivalent and G and G, are tail equivalent, it follows from
Lemma 2.37 that, as x — oo,

o Frmax(nx=)Gr@) ~ || Palmax(h(2),x—)Ga(ay).~ 240)
Further, by Lemma 2.36, for k = 1,2 and as x — oo,
h(x) _

/ Felr—)Geldy)+ [ Gelx—y)Fildy) ~ Fi(x) + Gelx).  (2.41)

—oo

Substituting (2.40) and (2.41) into (2.39) we obtain the required equivalence
Fl*Gl(x)sz*Gz(x). O

‘We now use Theorem 2.40 to show that the class £ is closed under convolutions.
This is a corollary of the following result.

Theorem 2.41. Suppose that the distributions F and G are such that F is long-tailed
and the measure F + G is also long-tailed (i.e. the sum F + G of the tail functions of
the two distributions is long-tailed). Then the convolution F x G is also long-tailed.

Proof. Fixy > 0. Take F; = F and F> to be equal to F shifted by —y, i.e., Fa(x) =
F(x+Yy). Then F, G is equal to F * G shifted by —y. Since F is long-tailed, F (x) ~
F>(x). Since also F| + G is long-tailed, it follows from Theorem 2.40 with G| =
Gy = G that F; * G(x) ~ F, * G(x). Hence F * G(x) ~ F x G(x +y) as x — oo. |
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Both the following corollaries are now immediate from Theorem 2.41 since in
each case the measure F' + G is long-tailed.

Corollary 2.42. Let the distributions F and G be long-tailed. Then the convolution
F x G is also long-tailed.

Corollary 2.43. Suppose that F and G are distributions and that F is long-tailed.
Suppose also that G(x) = o(F (x)) as x — oo. Then F x G is long-tailed.

Finally in this section we have the following converse result.

Lemma 2.44. Let F and G be two distributions on Ri such that F has unbounded
support and G is non-degenerate at 0. Suppose that G(x) < cF(x) for some ¢ < oo
and

<1. (2.42)

Then F is long-tailed.

Proof. Take any a such that G(a, ) > 0 which is possible because G is not concen-
trated at 0. Since for any two distributions on Rt

F+G(x /Fx ¥)G(dy) + G(x),

it follows from the condition (2.42) that

| Fe=36lay) < Fw+o(F(x) +Gw)

=F(x)+o(F(x)) asx— oo,

due to the condition G(x) < c¢F (x). This implies that

/Fx v,x]G(dy) = /(F(x y) —F(x))G(dy)
=o(F(x)) asx—oo.

For x > a, the left side is not less than F (x —a,x|G(a, x], hence F (x — a,x] = o(F (x))
as x — 0. The latter relation is equivalent to F (x — a) ~ F(x) which completes the
proof. a

2.8 h-Insensitive Distributions

Let F be a long-tailed distribution (F € £), i.e. a distribution whose tail function
F is such that for some (and hence for all) non-zero y, we have F(x+y) ~ F(x)
as x — oo, We saw in Lemma 2.19 that we can then find a non-decreasing positive
function & such that (x) — oo as x — oo and
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F(x+y)~F(x) uniformly in |y| <h(x), (2.43)

i.e. such that the distribution F is h-insensitive (see Definition 2.33).

In this section we turn this process around: we fix a positive function # which is
increasing to infinity and seek to identify those long-tailed distributions which are
h-insensitive. By varying the choice of /, we then have an important technique for
classifying long-tailed distributions according to the heaviness of their tails and for
establishing characteristic properties of various classes of these distributions.

Slowly Varying Distributions

As a first example, consider the function & given by h(x) = ex for some € > 0;
then the class of A-insensitive distributions coincides with the class of distributions
whose tails are slowly varying at infinity, i.e., for any € > 0,

F((1+e
LGl ) N (2.44)
F(x)
These distributions are extremely heavy; in particular they do not possess any fi-
nite positive moments, i.e., [xYF(dx) = o for any y > 0. Examples are given by
distributions F* with the following tail functions:

F(x) ~1/In"x, F(x) ~1/(Inlnx)" asx —, y>0.

Regularly Varying Distributions

We introduce here the well-known class of regularly varying distributions and con-
sider their insensitivity properties.

Recall that an ultimately positive function f is called regularly varying at infinity
with index o € R if, for any fixed ¢ > 0,

flex) ~c®f(x) asx— oo. (2.45)

A distribution F on R is called regularly varying at infinity with index —o < 0 if
F(cx) ~ ¢ %F(x) as x — oo, i.e., F(x) is regularly varying at infinity with index
-0 <0.

Particular examples of regularly varying distributions which were introduced in
Sect. 2.1 are the Pareto, Burr and Cauchy distributions.

If a distribution F on R is regularly varying at infinity with index — o < 0, then
all moments of order y < ¢ are finite, while all moments of order y > ¢ are infinite.
The moment of order Yy = & may be finite or infinite depending on the particular
behaviour of the corresponding slowly varying function (see below).

If a function f is regularly varying at infinity with index o, then we have f(x) =
x%1(x) for some slowly varying function /. Hence it follows from the discussion
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of Sect.2.4 that, for any positive function A such that i(x) = o(x) as x — o, we
have f(x+y) ~ f(x) as x — oo uniformly in |y| < /(x); we shall then say that f is
o(x)-insensitive. Similarly we shall say that a distribution F is o(x)-insensitive if its
tail function F is o(x)-insensitive. Thus distributions which are regularly varying at
infinity are o(x)-insensitive.

It turns out that integration preserves regular variation of distribution; this result
is formulated next and is known as Karamata’s theorem for distribution functions.

Theorem 2.45. A distribution F is regularly varying with index —o < —1 if and
only if the integrated tail distribution Fy is regularly varying with index —oc+1 < 0.
If any holds, then F(x) ~ (ot — 1)Fj(x) /x as x — oo.

Proof. Due to monotonicity of f(y), forany c; > 1,

Fi(x) — F(cwx) = / T FO)dy < (crx—x)F () (2.46)

and, for any ¢; < 1,
Fi(cax) — Fi(x) > (x — cox)F (x). (2.47)

Assume that Fj is regularly varying with index —ca + 1. Then, from (2.46) and
by regular variation of Fy, for any ¢ > 1,

T 1 _ l1—o
fiminf ) S Lz ©
X—roo F}(X) Cl —_ 1
Letting ¢; | 1, we get
F
limint 2 &) S o 1. (2.48)
X—ro0 Fl(x)

Similarly, from (2.47) we get, for any ¢ < 1,

F |
limsupx_(x) <&
e Fr(x -0
Letting ¢, T 1, we get
=
lim sup = ) o1, (2.49)
P )

Then (2.48) and (2.49) lead to xF (x) ~ (ot — 1) Fy(x) as x — oo, which implies regular
variation of F with index —or.

Assume now that F' is a regularly varying distribution with index —o. Then, for
every ¢ > 0,
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which means the regular variation of F7 with index 1 — o. a

Intermediate Regularly Varying Distributions

It turns out that the property of o(x)-insensitivity characterises a slightly wider class
of distributions than that of distributions whose tails are regularly varying, and we
now discuss this.

Definition 2.46. A distribution F on R is called intermediate regularly varying if

F(x(1
limfimint T CU ) (2.50)
£l0 x—oo F(x)

Any regularly varying distribution is intermediate regularly varying. But the latter
class is richer. We provide first a simple example. Take any density function g which
is regularly varying at infinity with index —o < —1. Then, by Karamata’s Theorem,
the corresponding distribution G will be regularly varying with index —oc+ 1 < 0.
Now consider any density function f such that ¢;g(x) < f(x) < c2g(x), for some
0 < ¢1 < 3 < oo and for all x. The corresponding distribution F is intermediate
regularly varying because

F(x,x(1+¢&)] <c2G(x,x(14+¢€)] and F(x) > c1G(x).

On the other hand, F is not necessarily a regularly varying distribution. We now
have the following characterisation result.

Theorem 2.47. A distribution F on R is intermediate regularly varying if and only
if, for any positive function h such that h(x) = o(x) as x — oo,

F(x+h(x)) ~F(x), (2.51)
ie. if and only if F is o(x)-insensitive.

Proof. 1t is straightforward that if F is intermediate regularly varying, then it is
o(x)-insensitive. Hence it only remains to prove the reverse implication. Assume,
on the contrary, that this implication fails. Thus let F' be a distribution which is
o(x)-insensitive but which fails to be intermediate regularly varying. The function

. F(x(1+¢))
l(e) := hgglfw



2.8 h-Insensitive Distributions 35

decreases in € > 0, due to the monotonicity of F. Therefore, the failure of (2.50)
implies that there exists a positive 6 such that I(g) < 1 —20 for any &€ > 0. Hence,
for any positive integer n, we can find x,, such that

F(x,(14+1/n)) < (1—=8)F(x,)

Without loss of generality we may assume the sequence {x, } to be increasing. Now
put i(x) = x/n for x € [x,,x,41). Then h(x) = o(x) as x — . However,
F(x+h F h
liming I ACD) g F O+ )
o2 @) e F(x)

which contradicts the o(x)-insensitivity of F. O

We now give an attractive probabilistic characterisation of intermediate regularly
varying distributions.

Theorem 2.48. A distribution F on R is intermediate regularly varying if and only
if, for any sequence of independent identically distributed random variables &, &,
... with finite positive mean,

—1 asn— oo (2.52)

with probability 1, where S, = &1+ ...+ &,.

Proof. We suppose first that F is intermediate regularly varying; let &, &, ... be any
sequence of independent identically distributed random variables with finite positive
mean, and, for each n, let S, = & + ...+ &,; we show that then the relation (2.52)
holds. Let @ = E&;. Fix any € > 0. It follows from the definition of intermediate
regular variation that there is ng and a 6 > 0 such that

F(n(a+9)) ‘
vl F(na) =°

By the Strong Law of Large Numbers, with probability 1, there exists a random
number N such that |S, — na| < né for all n > N. Then, for n > max{N,no},

—1’§8.

Since € > 0 is arbitrary, this implies the convergence (2.52).
We now prove the converse implication. Assume that the distribution F is not
intermediate regularly varying. It is sufficient to construct a sequence of independent
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identically distributed random variables &, &, . .. with mean 1, such that the relation
(2.52) fails to hold (where again S, = &, + ...+ &,). By Theorem 2.47 F fails to be
o(x)-insensitive, and so there exists an € > 0, an increasing sequence n; and an
increasing function # with i(x) = o(x) such that

F(ng+h(n)) < (1—€)F(ng) forallk. (2.53)

Since h(x)/x — 0, we can choose an increasing subsequence ry,, such that

=
Y ) ., (2.54)
m=1Tm

Since h is increasing it follows also that 3>, nk:nl < oo, and so we can define a
random variable £ taking values on {1 £ h(ny,,),m = 1,2, ...} with probabilities

P{G = 1—h(m,)} =P{C = 1 +h(n,)} = c/m,

(where ¢ is the appropriate normalising constant). It further follows from (2.54)
that the random variable & has a finite mean; moreover, this mean equals 1. Define
the sequence of independent random variables &, &, ...to each have the same
distribution as &. We shall show that

liminfP{S,,, > ny, +h(ny,)} > 0. (2.55)
m—soco

From this and from (2.53), and since also F is non-increasing, it will follow that

liminfP{F (S, ) <(1—¢&)F(n)} >0,

m—oo

so that (2.52) cannot hold.
To show (2.55), fix m and consider the events

Aj= () {&#1£h(m,)},  j=1,...m,.

i<ny,,,i#j

Then the events A; N {§; = 1+ h(ny,,)} are disjoint. Therefore,

P{Sn,, = e, +h(ng,)}
}’Lkm
> Y P{Sy,, =m, +h(ng,)|A), & =1+ h(ng,)}P{A;, §; = 1+ h(ny,)}
=1

g P(Su — 1, > b, )| Ar. & — 1 = h(ng, ) YPIAYBLE = 1+ h(ni, )}
= C]P’{S,,km —ng,, > h(ng, ) |A1, & — 1= h(ng,) }P{A1},
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where the final equality follows from the definition of the distribution of &;. Using
again the independence of the random variables &;, we have

P{S,, — 1k, = h(ng,)|A1,61—1=h(ng,)}
:P{S"km — Ny, — (51 — 1) > 0|A1} > 1/2,

where the final inequality follows from the symmetry about 1 of the common distri-
bution of the random variables &;. In addition,

P{A1} = (P& # 1 £ h(my) )™

= (1=2¢/m,)%n =" — e asm — oo
We thus finally obtain that
liminfP{S,, >m, +h(m,)} > ce */2,
m—yoo m

so that (2.55) follows. O

Other Heavy-Tailed Distributions

We proceed now to heavy-tailed distributions with thinner tails. For the lognormal
distribution, one can take h(x) = o(x/Inx) in order to have h-insensitivity. For the
Weibull distribution with parameter o € (0, 1), one can take h(x) = o(x!~%).

In many practical situations, the class of so-called \/x-insensitive distributions—
those which are h-insensitive for the function A(x) = x!'/2—is of special interest.
Among these are intermediate regularly varying distributions (in particular regularly
varying distributions), lognormal distributions and Weibull distributions with shape
parameter o < 1/2. The reason for interest in this quite broad class is explained by
the following theorem, which should be compared with Theorem 2.48.

Theorem 2.49. For any distribution F on R, the following assertions are equivalent:
(i) F is \/x-insensitive.
(ii) For some (any) sequence of independent identically distributed random vari-

ables &1, &, ... with positive mean and with finite positive variance,
F
_(—Sn)—>1 asn—» oo (2.56)
F(nESr)

in probability, where S, = & + ...+ &,.

Proof. To show (i)=-(ii) suppose that the distribution F is y/x-insensitive and that
the independent identically distributed random variables &;, &, ... have common
mean a > 0 and finite variance. Fix € > 0. By the Central Limit Theorem, there exist
N and A such that P{|S, — na| < Ay/n} > 1—¢ for all n > N. It follows from the
definition of /x-insensitivity that there is ng such that



38 2 Heavy-Tailed and Long-Tailed Distributions

F(nat+A

M—l <e forall n>ng.
F(na)

Then, for n > max{N,ngp},

P E(S”)—l <ep >P{S,—na| <AVn} >1-¢,
{IFw—l=)

which establishes (2.56).

To show (ii)=-(i) assume that the independent identically distributed random
variables &1, &, ... have common mean a > 0 and finite variance o2 > 0, but that,
on the contrary, the distribution F fails to be \/x-insensitive. Then there exists € > 0
and an increasing sequence n; such that, for all &,

F(ma++v/no?) < (1—¢)F(na).

Therefore,
F(S, g~ u?/2
P{’ (Sn) ’>£}>P{S,,k—nka>\/nk62}—>/ du>0
F(nka) 1
which contradicts (2.56). a

We finish this section by observing that the exponential distribution, while itself
light-tailed, is, in an obvious sense, on the boundary of the class of such dis-
tributions. We may construct examples of long-tailed (and hence heavy-tailed)
distributions on R™, say, whose tails are, in a sense, arbitrarily close to that of the
exponential distribution. For example, the distribution with tail function

F(x)= e /M >0, ¢ >0,

is very close to the exponential distribution but is still long-tailed; indeed one can
take the function /& of Lemma 2.19 to be any such that (x) = o(In%x) as x — oo.
Further, if we replace the logarithmic function by the mth iterated logarithm, we
obtain again a long-tailed distribution.

2.9 Comments

The lower bound (2.7) may be found in Chistyakov [13] and in Pakes [44].
Theorem 2.12 was proved by Foss and Korshunov in [27]. For earlier results
see Rudin [48] and Rogozin [46]. Some generalisations may be found in the papers
[19, 20] by Denisov, Foss and Korshunov.
The class of long-tailed distributions (but not the term itself) was introduced by
Chistyakov in [13], in the context of branching processes.
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Theorem 2.40 generalises a result of Cline [16] where the case Fi, F>, G1, G, € £
was considered.

Corollary 2.42 is well known from Embrechts and Goldie [21].

A comprehensive study of the theory of regularly varying functions may be found
in Seneta [50] and in Bingham, Goldie and Teugels [9].

2.10 Problems

2.1. Let distribution F on R has a regularly varying tail with index ¢, i.e., let
F(x) = L(x)/x* where function L(x) is slowly varying at infinity. Prove that:

(i) Any power moment of distribution F of order y < « is finite.
(i1)) Any power moment of order ¥ > ¢ is infinite.

Show by examples that the moment of order ¥ = o may either exist or not, depend-
ing on the tail behaviour of slowly varying function L(x).

2.2. Let distribution F on R™ have a regularly varying tail with index o > 0.
Prove the distribution of log & is light-tailed.

2.3. Let & > 0 be a random variable. Prove that the distribution of log& is light-
tailed if and only if £ has a finite power moment of order ¢, for some o > 0.

2.4. Let distribution F on R™ have an infinite moment of order y > 0. Prove that
F is heavy-tailed.

2.5. Let random variable & > 0 be such that Eet” = oo for some o < 1. Prove
that the distribution of £ is heavy-tailed.

2.6. Let random variable & has

(i) exponential; (i1) normal
distribution. Prove that the distribution of % is both heavy- and long-tailed, for
every o« > 0.

2.7. Student’s t-distribution. Assume we do not know the exact formula for its
density. By estimating the moments, prove that the distribution of the ratio

S
&+ +EN)/n

is heavy-tailed where the independent random variables &, &, ..., &, are sampled
from the standard normal distribution. Moreover, prove that this distribution is reg-
ularly varying at infinity.

Hint: Show that the denominator has a positive density function in the neighbour-
hood of zero.

2.8. Let ny,..., M, be n positive random variables (we do not assume their inde-
pendence, in general). Prove that the distribution of 1n; 4 ...+ 1, is heavy-tailed if
and only if the distribution of at least one of the summands is heavy-tailed.

2.9.Let ¢ >0and 1 > 0 be two random variables with heavy-tailed distributions.
Can the minimum min(&,n) have a light-tailed distribution?
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2.10. Suppose that &y, ..., &, are independent random variables with a common
distribution F and that

Eny <€y <... <&y
are the order statistics.

(1) For k < n, prove that the distribution of é(k) is heavy-tailed if and only if F is
heavy-tailed.

(ii) For k <n— 1, prove that the distribution of &) — &) is heavy-tailed if and
only if F is heavy-tailed.

(iii) Based on (ii) and on Problem 8, prove that é(k) - 5(,) has a heavy-tailed distri-
bution if and only if F is heavy-tailed.

2.11. Let £ and 7 be two positive independent random variables. Prove that the
distribution of £ — 7 is heavy-tailed if and only if the distribution of £ is heavy-
tailed.

2.12.Let&,,n=1,2,..., be independent identically distributed random variables
on R*. Let v > 1 be an independent counting random variable. Let both & and v
have light-tailed distributions. Prove that the distribution of random sum &; + &, +
...+ &, is light-tailed too.

2.13.Let &, n=1, 2, ..., be independent identically distributed random vari-
ables on R™ such that P{&; >0} > 0. Let v > 1 be an independent counting random
variable. Let v have heavy-tailed distribution. Prove that the distribution of random
sum & + & + ...+ &, is heavy-tailed.

2.14. Find a light-tailed distribution F such that the distribution of the product
£1&, is heavy-tailed where &1 and &, are two independent random variables with
distribution F'.

2.15. Let non-negative random variable & has distribution F. Consider a family
of distributions Fy(B) :=P{§ € x+B|§ > x}, B€ B(R").

(i) Prove F is long-tailed if and only if F, = oo, as x — oo.
(ii) Prove F is h-insensitive if and only if & /h(x) = oo as x — o where &, is a
random variable with distribution F.

2.16. We say that H(x) is a boundary function for a long-tailed distribution F if
the following condition holds: F is h-insensitive if and only if h(x) = o(H(x)) as
x — oo, Find any boundary function for:

(i) A regularly varying distribution with index o > 0.

(i1) A standard log-normal distribution.

(iii) A Weibull distribution with tail F(x) = e where 0 < B <l
(iv) A distribution with tail F(x) = e—/1og1+%) x>0,

2.17. Prove that a distribution whose tail is slowly varying at infinity does not
have a boundary function.
2.18. Let a random variable £ has the standard normal distribution.

(i) Find all values of & > 0 such that the power |£|* has a heavy-tailed distribution.
(ii) Prove the power |£|* has a heavy- and long-tailed distribution for every o < 0.
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2.19. Let independent random variables &, ..., &, have the standard normal dis-
tribution. Find all n such that the product &; - ... - &, is heavy-tailed. For those n, is
the product also long-tailed?

2.20. Let independent non-negative random variables &, ..., &, have Weibull
distribution with the tail F(x) = e”‘ﬁ, B > 0. Find the values of 3, for which the
product &; - ... - &, has a heavy-tailed distribution.

2.21. Perpetuity. Suppose &1, &, ...are independent identically distributed ran-
dom variables with common uniform distribution in the interval [—2,1]. Let So = 0,
Sp=E& +...+&, and

(i) Prove Z is finite with probability 1 and that Z has a heavy-tailed distribution.
Hint: Show that EZ” = e for some y > 0.
(ii) How can the result of (i) be generalised to other distributions of &’s?

2.22.Let F and G be two distributions on R with finite means ar and ag. Prove
that, for all sufficiently large x,

(FxG)(x) = Fy(x) + F % Gy(x) + (ag — 1)F(x)
= Gi(x) + Fi+ G(x) + (ar — 1)G(x).

2.23. Prove the distribution of a random variable £ > 0 is /x-insensitive if and
only if the distribution of \/E is long-tailed. More generally, prove that the distribu-
tion of & > 0 is x*-insensitive with some 0 < o < 1 if and only if the distribution of
&% is long-tailed.

2.24. Suppose X,, is a time-homogeneous Markov chain with state space Z* and
transition probabilities p;;. Let X,, be a skip-free Markov chain, i.e., only the tran-
sition probabilities p;; 1, p;; and p; ;1 are non-zero. Let X,, be positive recurrent
with invariant probabilities ;. Show that

i
Dj-1,j

j=1Pjj-1

=

Further, assume that limsup;_,., p;; < 1.

(i) Prove if limsup,_,..(pii+1 — p,",',l) < 0, then the invariant distribution is light-
tailed.

(i) Prove if limsup,_,,( Pii+1 — Piji—1) =0, then the invariant distribution is heavy-
tailed.

2.25. Suppose X, is a time-homogeneous irreducible aperiodic Markov chain
with state space Z". Let X,, be positive recurrent. Let there exist a state i such that
the distribution of the jump from this state is heavy-tailed, i.e.,

E{e™ | Xo = ig} = oo,
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for every A > 0. Prove that the invariant distribution of the Markov chain is also
heavy-tailed.

2.26. Excess process. Suppose X, is a time-homogeneous irreducible non-periodic
Markov chain with state space {1,2,3,...}. Let P{X; =i— 1| Xo =i} = 1 for ev-
ery i > 2. Denote by F the distribution of the jump from the state 1, i.e., for every
icZ"t,

F{i} =P{X; =i+1|Xy=1}.

(1) Prove this Markov chain is positive recurrent if and only if F has finite mean.
Find the corresponding invariant distribution.

(i) Prove the invariant distribution of this chain is heavy-tailed if and only if F is
heavy-tailed.

(iii) Prove the invariant distribution of this chain is long-tailed if and only if the
integrated tail distribution F; is long-tailed.

2.27. Suppose X, is a time-homogeneous irreducible aperiodic Markov chain
with state space {1,2,3,...}. Let there exist ip > I such that P{X; =i—1|Xp =
i} = 1 for every i > ip + 1. Denote by F; the distribution of the jump from the state
i,i€{l,...,ip}, i.e., forevery j € ZT,

F{j} =P{X| = j+i|Xo=i}.

(i) Prove this Markov chain is positive recurrent if and only if all F},i € {1,...,ip},
have finite mean. Prove that the invariant probabilities {7;} satisfy the equa-
tions, for j > iy + 1,

io
mp = Y, mF[j—i,eo).
i=1

(i1) Prove the invariant distribution of this chain is heavy-tailed if and only if at least
one of Fj, i € {1,...,ip}, is heavy-tailed.

(iii) Prove the invariant distribution of this chain is long-tailed if all the integrated
tail distributions F;; are long-tailed.
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