
Chapter 2
Mathematical Tools for Modeling Social
Complex Systems

Abstract This chapter deals with the derivation of mathematical structures suitable
for constructing models of phenomena of interest in social sciences. The reference
framework is the approach of the Kinetic Theory for Active Particles (KTAP), which
uses distribution functions over the microscopic states of the individuals composing
the system under consideration. Modeling includes: the strategic behavior of active
particles from a stochastic game perspective; a Darwinian-like evolution of the
particles, which learn from past experience and evolve their strategy in time; and
hints about small-network dynamics, in particular particle interactions within and
among the nodes of the network. A critical analysis is finally proposed in order
to assess the consistency of the mathematical tools with the main features of
complexity.

2.1 Introduction

This chapter presents the concepts underlying the KTAP approach, which has been
selected as the mathematical tool for deriving specific models of socio-economic
phenomena. The contents of the chapter focus, in particular, on the assumptions
needed for interpreting complexity and deriving consistent mathematical structures,
with the aim of reducing both the actual complexity of the real world systems and
the technical ones of its mathematical description.

The KTAP approach was originally proposed to model biological systems, in
particular competition between immune systems and pathogens [44]. Next it was
revisited in the framework of social cooperation and competition dynamics [48,49],
and afterward extended to include more advanced modeling structures [6–8]. How-
ever, the approach requires further improvements in order to match the complexity
features discussed in Chap. 1. In particular, we recall nonlinear interactions and
network topology, the latter also implying communication and possibly transitions
from node to node of the network. The literature on this topic is constantly growing,
as documented in [10, 13, 28, 74, 148, 158], among other sources.
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12 2 Mathematical Tools for Modeling Social Complex Systems

Additionally, it is worth mentioning that the assumption of a constant total
number of individuals, which usually is tacitly made in the modeling of socio-
economic systems, may be valid only for short time periods. In the long run, birth
and death processes, as well as inlets from the outer environment, have to be taken
into account, which requires a further evolution of modeling structures.

Before tackling technical issues it is worth discussing in some detail the proper
role played by mathematical structures in the derivation of particular models. It is
known [119] that the modeling of living systems cannot take advantage of field
theories, as in the case of inert matter. This concept was well presented in the
celebrated book by Schrödinger [141]. Therefore heuristic approaches are generally
adopted, relying mainly on personal intuitions of the modelers. A more rigorous
approach can be developed by grounding models on the preliminary derivation of
abstract mathematical structures consistent with the complexity features presented
in Chap. 1, which, as a matter of fact, can serve as mathematical/theoretical
guidelines.

The advantage of such an approach over the various heuristic strategies discussed
in the literature is that if, at some point, a sound field theory becomes available
then it can be implemented, at the proper level, in the mathematical structures,
thereby guiding the deduction of more targeted models. In other words, the
mathematical structures provide modelers with a rigorous conceptual framework
virtually independent of (overly) specific heuristic intuitions. As such, they act as
a mathematical theory for the construction of models, which can receive (with due
control) external phenomenological insights while not being forced to pursue them.

In general, a modeling approach aiming at identifying proper background math-
ematical structures for complex systems (such as those treated in this monograph)
should cope with the following issues:

• Understanding the links between system dynamics and their complexity features.
• Deriving a general mathematical structure that offers a conceptual framework for

the derivation of specific models.
• Designing specific models, corresponding to specific classes of systems, by

complementing the mathematical structure with suitable models of individual-
based interactions according to a detailed interpretation of the dynamics at the
microscale.

• Validating models by comparison of their predictions with empirical data.

Apparently, these are standard issues in all fields of applied mathematics.
Nevertheless, it is worth pointing out that in the case of inert matter a background
field theory is available. For instance, Newtonian mechanics establishes balance
equations for mass, momentum, and energy. When physical conditions reveal an
inadequacy of classical mechanical laws, more refined theories, such as relativistic
and quantum mechanics, can improve the aforesaid field theories thereby contribut-
ing to more targeted mathematical models.

More substantial differences arise when dealing with living matter, for no back-
ground theory that generally supports the derivation of models exists yet. Moreover,
the great heterogeneity that characterizes living systems induces stochastic features
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that cannot be neglected, nor simply replaced by noise. Rather, they should be
inserted in the mathematical structures as hallmarks of the modeling approach.

In this context, the so-called Kinetic Theory for Active Particles (KTAP) has been
developed in the last decade to model large systems of interacting entities. Generally
they are living entities; hence they are termed active particles. The conceptual
guidelines that inspire the KTAP approach can be listed in detail as follows:

• The system is separated into functional subsystems constituted by active particles
featuring a microstate called activity, which is collectively expressed in each
subsystem. It may represent a behavioral characteristic of the particles to be
selected according to the specific microscopic dynamics considered in the
system, and particularly within that subsystem.

• The state of each functional subsystem is expressed by a time-dependent
distribution function over the microscopic states of the active particles.

• The time evolution of the distribution function is triggered by microscopic
interactions of active particles within and among subsystems. Interactions are
modeled by stochastic games whose payoffs are probabilistic.

• An equation for the time evolution of the distribution function is obtained by
a balance of particles within elementary volumes of the space of microstates,
inflow and outflow dynamics of particles being related to interactions at the
microscopic scale.

Readers who are more interested in applications should be patient with the cold
language of equations characterizing this chapter. Applications will appear soon,
starting with the next chapter. On the other hand, as the discussion above should
have highlighted, this preliminary path through mathematical tools is a necessary
step toward a more rigorous approach to the interplay between mathematical
sciences and living systems [40].

The ideas just outlined are organized in the chapter’s following sections. In detail,
Sect. 2.2 deals with introductory issues concerning the representation of socio-
economic systems, which possibly also apply to the inner structure of each node of a
small social network. Section 2.3 then yields the mathematical structures at the core
of the KTAP approach, focusing on closed systems; i.e., systems that do not interact
with the outer environment. Subsequently, the structures are extended in Sect. 2.4 to
open systems, confining attention to the modeling of known external actions. Sec-
tion 2.5 concerns a technical modification of the mathematical structures, however
relevant for modeling purposes, oriented to systems with discrete microscopic states
(viz., activity). Section 2.6 proposes a general analysis and various hints toward
the modeling of interactions at the microscale. The contents also include detailed
insight into different sources of nonlinearity that might characterize the interaction
dynamics. Section 2.7 outlines some general ideas about the search for solutions to
the mathematical models previously derived, also from an approximate numerical
point of view, and shows how numerical solutions can provide useful feedback for a
deeper understanding of the phenomenology of complex systems. Finally, Sect. 2.8
presents a critical analysis centered around both the ability of the mathematical tools
to capture the complexity features presented in Chap. 1 and the general problem of
reducing and handling the real world complexity via mathematical approaches.
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2.2 Complexity Reduction and Mathematical Representation

As already mentioned, socio-economic systems are understood as ensembles of
interacting active particles, which can be either individuals or aggregates clustered
by common organization and aims and are, in any case, the atomic (viz., minimal)
entities of the system. Their microscopic state (the activity) which also identifies
the behavioral strategy to be used in game-type interactions, will be denoted by a
variable u belonging to a domain Du.

Let us consider, at first, particles at a specific node of a social network. That is,
we focus on the inner representation of a single node, without explicitly considering
links with other nodes. Therefore, in the following discussion, expressions such
as “the (global) system” will refer to the node as the universe. In general, it is
reasonable to assume that the system is composed of different types of active
particles, which express different activities. Aiming at a complexity reduction, it
is then convenient to decompose the system into functional subsystems composed
of active particles that collectively express the same activity.

In principle, the activity therefore identifies a different microscopic feature of
active particles in each subsystem, although it is always denoted by the same letter u.
Nevertheless, the above decomposition can also be applied if the activity is the same
but each subsystem has a different way to express it.

As we will see in the following chapters, u can usually be considered to be a
scalar variable. As an example, it may be (an indicator of) the wealth of the active
particles. For this reason, it is convenient to think of its domain as a subset of the
real line; Du ⊆ R. More precisely, if we agree to use the letter p to label the various
functional subsystems, then in view of the above discussion, we need to distinguish
among different domains Dp

u ⊆ R, where p runs from 1 to the total number of
functional subsystems, say m ≥ 1.

The expression of the activity is, in general, heterogeneously distributed within
the functional subsystems. Accordingly, the large scale (viz., collective) representa-
tion of each of the latter is provided by a distribution function:

f p = f p(t, u) : [0, Tmax]×Dp
u → [0,+∞), p = 1, . . . , m,

Tmax > 0 being a certain final time, possibly +∞. The meaning of the distribution
function is that f p(t, u)du is the (infinitesimal) number of active particles of the p-
th subsystem which, at time t, are expressing an activity located in the infinitesimal
volume du centered at u. Under suitable integrability assumptions, the number of
active particles of the p-th subsystem at time t is therefore given by:

N p[ f p](t) :=
∫

Dp
u

f p(t, u)du,

where square brackets are used, henceforth throughout the monograph, when it is
necessary to stress that there is a functional dependence of some quantities on the
distribution function f p (here, for instance, N p is a linear operator over f p).
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If the N p’s are constant in time then each f p can be normalized with respect to
the corresponding N p at t = 0 and understood as a probability density:

∫
Dp

u

f p(t, u)du = 1, ∀ p = 1, . . . , m, ∀t ∈ [0, Tmax].

In this case, �-th order moments of the probability distribution f p can be defined as
follows:

E
p
� [ f

p](t) :=
∫

Dp
u

u� f p(t, u)du, �= 0, 1, 2, . . . ;

notice in particular that N p(t) = E
p
0(t).

The variance of the distribution is:

Varp[ f p](t) :=
∫

Dp
u

|u−E
p
1 [ f

p](t)|2 f p(t, u)du,

which provides a measure of the local microscopic oscillations of the system with
respect to an average macroscopic description.

Alternatively, if particle transitions among functional subsystems occur, then
each f p is no longer a probability distribution. Nonetheless, due to the hypothesis
that the system is closed, which entails that birth/death processes are disregarded,
we have:

m

∑
p=1

∫
Dp

u

f p(t, u)du = constant in t,

hence the normalization can be performed with respect to the total number of active
particles of the system. The expression for the moments of each distribution function
is technically modified as follows:

E
p
� [ f

p](t) :=
1

N p[ f p](t)

∫
Dp

u

u� f p(t, u)du,

which also applies when N p varies in time because of birth/death events within the
p-th subsystem.

It is worth mentioning that this representation does not include any variable
related to space among those charged to describe the microscopic state of the active
particles. This is because we consider either spatially homogeneous systems or
systems in which active particles communicate independently of their localization;
e.g., via media. However, when a node is embedded in a social network structure of,
say, M ≥ 2 nodes, additional notation is needed for representing the global system,
which now coincides with the network. For instance, the distribution functions of
each node can be labeled with two indices:

f pq = f pq(t, u) : [0, Tmax]×Dpq
u → [0,+∞),
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where q = 1, . . . , M identifies the node. In principle, the number of functional
subsystems may vary from node to node: m = m(q). Also notice that the domain
of the activity has been doubly labeled, in order to account for the fact that the
variable u may identify different microscopic characteristics of the active particles
in each node and each subsystem of a node.

At this point, it is useful to consider a few examples which show how the above
representation works in practice. The same examples will be used later on to show
the application of the approach at a more practical level.

Example 2.1 (Secessionist trends rising up on a regional basis in a given coun-
try [7, 8] ). Proceeding from the outermost to the innermost level of description:

• the country can be viewed as a network of M regions;
• each region can be understood as a node q of the network;
• within each region, two functional subsystems p = 1, 2 can be identified,

corresponding to individuals (viz., active particles) in favor of secession, or
against secession, respectively;

• the activity u of the former individuals can represent their inclination for seces-
sion, and can be conventionally assumed to be positive. Hence D1q

u = [0,+∞) for
all q = 1, . . . , M;

• the activity, still denoted by u, of the latter individuals can represent instead their
aversion to secession, and can be conventionally assumed to be negative. Hence
D2q

u = (−∞, 0] for all q = 1, . . . , M.

It can be questioned whether partitioning each node into two functional subsys-
tems is really useful. In fact, a single distribution function, defined over Du = R,
may be sufficient to capture the population opinion in each region, by agreeing
that the more positive (respectively, negative) the value of u, the more in favor
of (respectively, against) secession the population is. However, this simplification
cannot be adopted as a general rule, because the detail of representation needed also
depends on the specific interaction rules that are established within and among the
nodes.

Example 2.2 (Process of democratization of a dictatorship in a given country [3,11,
146]). In this case, a possible representation of the system is as follows:

• the country itself can be viewed as a network of M = 4 components of the society;
• the components of the society, namely the dictator (q = 1), the ministers (q = 2),

the parliament (q = 3), and the citizens (q = 4), are the nodes of the network;
• each node is not further subdivided into functional subsystems; thus, for each of

them, a single distribution function defined over Du = R is sufficient to describe
the trends of the corresponding component of the society. In particular, it can be
decided that u > 0 corresponds to support for the dictatorship, whereas u < 0
corresponds to dissent.
Different representations are possible, some of which are actually equivalent

to the proposed one. For instance, the country can also be viewed as an isolated
node and the various social components as its functional subsystems, thereby not
emphasizing the network structure.
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Fig. 2.1 Wealth distribution functions corresponding to various possible social profiles. (a)
Society with a balanced welfare where middle classes (about u = 0) dominate. (b) Society strongly
radicalized into poor (about u = −1) and wealthy (about u = 1) classes. (c) Asymmetric social
profile indicating that most of the population is distributed in the poor classes (−1 ≤ u < 0) with
however a non-negligible presence of very wealthy ones (about u = 1)

It is worth stressing that the use of a distribution function over the activity
variable improves the representation of the global state of the system with respect to
a purely deterministic average representation. In fact, the use of random dependent
variables not only allows one to compute moments, but also to detail more
precisely how active particles are distributed over the possible microscopic states.
For instance, in problems in which the activity represents the wealth status of the
particles, such a representation can provide both mean and variance, as deterministic
representations might also do, and also additional descriptions such as clustering on
certain social states.

Let us be more precise about this issue. Looking ahead at the contents of
the next chapter, let us consider dynamics of wealth redistribution assuming that
u ∈ Du = [−1, 1] is the wealth variable. Negative values close to −1 correspond
to poor social classes, and positive values close to 1 correspond to wealthy social
classes. Middle classes are located about u = 0. Moreover, let us suppose that
a certain mathematical model can provide the asymptotic distribution function
f∞ = f∞(u) representing the stationary wealth distribution reached for large times
(ideally, t → +∞). Several configurations are possible, such as those shown in
Fig. 2.1a, b. Both distributions are symmetric with respect to u = 0, and thus they
have the same zero mean. However, the former depicts a society with a significant
presence of the middle class whereas the latter depicts a society radicalized into
poor and wealthy classes, with a very limited presence of middle classes. Such a
detail would not be caught by purely average deterministic representations.

The symmetry of these asymptotic distributions can be broken, for instance, by
either political choices (to be regarded as external actions on the system) or by
asymmetric initial conditions; see Fig. 2.1c.
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2.3 Mathematical Structures Toward Modeling

In this section we consider the derivation of the evolution equations for the
distribution functions introduced in Sect. 2.2. From this section on, to fix the ideas,
we disregard a possible network structure of the system; i.e., we concentrate on the
equations valid for each isolated node. The extension to networks is worth being
developed with reference to specific applications, which can allow the cumbersome
notation required in the general case to be conveniently reduced. We feel confident
that readers will be able to draw inspiration from the contents of the following
sections to also model interactions among active particles belonging to different
interconnected nodes.

As already stressed, the approach is based on the assumption that the evolution
of the activity distribution depends on interactions among the active particles taking
place at the microscopic scale, the effects of which are specified probabilistically
(stochastic games). The evolution equation for the distribution function of the p-
th functional subsystem is obtained by a balance of particles playing games in the
space of microscopic states. It can be expressed in the following general form:

∂ f p

∂ t
= J p[f], (2.1)

where f = ( f 1, . . . , f m) and J p is the p-th interaction operator, which depends in
principle on all distribution functions because interactions can involve particles of
both the same and of different functional subsystems.

The operator J p will include, in general, both conservative and non-conservative
interactions. The former do not change the total number of particles of the system,
whereas the latter account for possible birth/death of particles in the various
subsystems. Accordingly:

J p[f](t, u) =Cp[f](t, u)+Pp[f](t, u), (2.2)

C standing for conservative and P for proliferative (agreeing that one may also have
negative proliferation). Let us now detail the two types of interactions.

2.3.1 Conservative Interactions

Roughly speaking, Eq. (2.1) describes the evolution in time of the distribution of the
microscopic state u. Reasoning microscopically, imagine freezing u and asking for
the net number of active particles per unit time that reach state u. Such a number is
determined by two concomitant facts:

• It is increased whenever an active particle, approaching a game-type interaction
with a strategy different from u, changes the latter to u in consequence of the
interaction.
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• It is decreased whenever an active particle, approaching a game-type interaction
with strategy u, obtains as a payoff a new strategy different from u.

Summarizing, the conservative operator Cp includes both a gain and a loss
contribution of active particles with state u. For this reason, it is technically
written as:

Cp[f](t, u) =
m

∑
p∗, p∗=1

∫
Dp∗

u ×Dp∗
u

η p∗p∗(u∗, u∗)C p∗p∗(u∗ → u; p|u∗, u∗)

× f p∗(t, u∗) f p∗(t, u∗)du∗ du∗

− f p(t, u)
m

∑
p∗=1

∫
Dp∗

u

η pp∗(u, u∗) f p∗(t, u∗)du∗, (2.3)

where:

• η p∗p∗(u∗, u∗) is the interaction rate, namely the frequency of the interactions
(or encounters) among particles of the p∗-th subsystem with state u∗ ∈ Dp∗

u and
particles of the p∗-th subsystem with state u∗ ∈ Dp∗

u .
• C p∗p∗(u∗ → u; p|u∗, u∗) is the probability density that a particle of the p∗-

th subsystem, playing a game with strategy u∗ ∈ Dp∗
u against a particle of

the p∗-th subsystem with strategy u∗, shifts to the p-th subsystem getting
simultaneously the new strategy u ∈ Dp

u . The collection {C p∗p∗} of all such
transition probabilities is called the table of games.

• The following probability density property holds true:

m

∑
p=1

∫
Dp

u

C p∗p∗(u∗ → u; p|u∗, u∗)du = 1, ∀u∗ ∈ Dp∗
u , u∗ ∈ Dp∗

u

∀ p∗, p∗ = 1, . . . , m,
(2.4)

which basically means that every game event produces a payoff within the set Dp
u

of admissible strategies for the subsystem p.

The structure (2.3) of the conservative interaction operator takes into account
possible transitions of particles across the subsystems. In the particular case that
they are not allowed, the same expression of the operator is still formally valid with:

C p∗p∗(u∗ → u; p|u∗, u∗) = C pp∗(u∗ → u|u∗, u∗)δp∗p,

where: C pp∗(u∗ → u|u∗, u∗) is now the probability that a particle already belonging
to the target subsystem p, with pre-interaction strategy u∗ ∈ Dp

u , changes its state to
u ∈ Dp

u because of an interaction with a particle of the p∗-th subsystem playing with
strategy u∗ ∈ Dp∗

u ; and δp∗p = 1 if p∗ = p, δp∗p = 0 otherwise is the Kronecker’s
delta.

A straightforward calculation shows that property (2.4) is the one ensuring the
conservation of the total number of particles of the system under the interactions
described by the operators Cp. Indeed, it follows from Eq. (2.3) that:
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m

∑
p=1

∫
Dp

u

Cp[f](t, u)du = 0, ∀t ∈ [0, Tmax],

whence Eq. (2.1), in the absence of the operator Pp in J p, yields:

d
dt

m

∑
p=1

∫
Dp

u

f p(t, u)du =
d
dt

m

∑
p=1

N p(t) = 0.

If, moreover, particle transitions among subsystems are not possible, then a
similar calculation shows that the operators Cp keep the number of particles within
each subsystem constant.

Before concluding the discussion about conservative interactions, it is worth
recalling the following terminology, which is very customary in the KTAP approach:

• A particle possessing the target state u is called a test particle, and is taken to be
representative of a generic entity of the system.

• A particle with pre-interaction strategy u∗, which may obtain the target state after
a game event, is called a candidate particle.

• A particle with strategy u∗, which triggers the interaction, is called a field particle.

Hence the structure of conservative interactions can be rephrased by saying that a
candidate particle can obtain, with a certain probability, the state of a test particle,
whereas the latter can lose it with a certain probability, because of stochastic games
with field particles.

2.3.2 Non-conservative Interactions

The non-conservative operator Pp of the p-th subsystem is written following
reasoning formally similar to that which led to the gain term of the conservative
operator:

Pp[f](t, u) =
m

∑
p∗, p∗=1

∫
Dp∗

u ×Dp∗
u

η p∗p∗(u∗, u∗)P p∗p∗(u∗, u∗; u, p)

× f p∗(t, u∗) f p∗(t, u∗)du∗ du∗, (2.5)

where:

• P p∗p∗(u∗, u∗; u, p) is the net birth/death rate of a test particle in the p-
th subsystem due to an interaction between a candidate particle in the p∗-
th subsystem and a field particle in the p∗-th subsystem. In particular, a
birth event occurs when P p∗p∗(u∗, u∗; u, p)> 0 while a death event occurs when
P p∗p∗(u∗, u∗; u, p)< 0
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The birth/death rate is required to satisfy

P p∗p∗(u∗, u∗; u, p)≥ 0 ∀ p∗ 	= p, ∀u∗ 	= u,

so that death events can at most take place in the same functional subsystem and
state of the candidate particle.

The framework depicted by Eqs. (2.1)–(2.3), and (2.5) offers the mathematical
environment for the derivation of models of socio-economic systems. Specific
ones are obtained by particularization of the terms η , C , and P , which describe
particle dynamics at the microscopic scale. This is indeed the purpose of the
following chapters, which will further clarify the concepts just introduced by
referring specifically to the modeling of welfare distribution dynamics.

Before concluding this section, we further discuss the table of games C .
It is worth stressing that this term of the equations models the game that active
particles play at each interaction. As observed in [66], the table of games can be
inspired by classical game theory applied to socio-economic systems [122] but
it can also include more recent developments addressing evolutionary features of
games [79, 88, 100, 123, 126, 138]. In addition, it can account for qualitative and
quantitative differences of game rules in different functional subsystems.

A final definition, heuristically anticipated in Chap. 1, which can now be made
more precise, is that of linearly vs. nonlinearly additive interactions concerning
the terms η , C , and P . As Eqs. (2.3), (2.5) clearly show, pairwise interaction
events among candidate and field particles add up to give rise to a variation of the
distribution of active particles over the values of the activity. This is indeed the
meaning of the integrations over Dp∗

u ×Dp∗
u in the previous equations. However, if

the interaction rate, the table of games, and the birth/death rates depend only on the
pre-interaction states of the particles, so that each interaction event is not affected by
the presence of field particles other than the one the candidate particle is interacting
with, then the final output is the linear superposition of the actions individually
applied by the field particles. In this case, hence, interactions are said to be linearly
additive.

If, on the contrary, each interaction event also depends on field particles other
than the one the candidate is interacting with, possibly in an aggregate manner,
then the final output is not the linear superposition of the individual actions applied
by the field particles. Interactions are therefore said to be nonlinearly additive.
In practice, in the nonlinearly additive case the terms η , C , and P do not only
depend on the state of the interacting pairs but also on the distribution functions.
Recent papers [39] suggest, for instance, using low order moments. This amounts
to assuming that each individual does not only feel the state of the interacting
companion but also an aggregate effect induced by suitable moments of the particle
distribution. This topic will be further discussed in Sect. 2.6.



22 2 Mathematical Tools for Modeling Social Complex Systems

2.4 Open Systems

We now generalize the mathematical structures presented in Sect. 2.3 to the
case of open systems; that is, systems whose particles interact also with the
outer environment. More specifically, the latter are understood as members of an
additional category of active particles, called field agents, that express an activity
w ∈ Dw ⊆ R by which they can affect the expression of the activity u in the inner
system. For the sake of generality, it is convenient to assume that field agents are
also organized in a certain number A ≥ 1 of functional subsystems labeled by
α = 1, . . . , A. The activity distribution of the field agents in the α-th functional
subsystem is given by the distribution function:

gα = gα(t, w) : [0, Tmax]×Dα
w → [0,+∞), (2.6)

which can be thought of as normalized to a probability density if the number of field
agents does not change in time. In the following we assume that the gα’s are known
functions, which means that the state of the outer system is prescribed a priori.

When applying their action on the inner system, field agents are assumed to
trigger conservative interactions with active particles. Consequently, the evolution
equation (2.1) for the f p’s can be rewritten as follows:

∂ f p

∂ t
= J p[f]+Qp[f, g], (2.7)

where g = (g1, . . . , gA) and Qp is the p-th inner–outer conservative operator. The
formal expression of the latter recalls that of the conservative component Cp of J p:

Qp[f, g](t, u) =
A

∑
α=1

m

∑
p∗=1

∫
Dp∗

u ×Dα
w

η̂ p∗α(u∗, w)Qp∗α(u∗ → u; p|u∗, w)

× f p∗(t, u∗)gα(t, w)du∗ dw

− f p(t, u)
A

∑
α=1

∫
Dα

w

η̂ pα(u, w)gα(t, w)dw, (2.8)

where:

• η̂ p∗α(u∗, w) is the inner–outer interaction rate; that is, the frequency at which
candidate particles of the inner system interact with field agents of the outer
environment.

• Qp∗α(u∗ → u; p|u∗, w) is the probability that candidate particles get the test state,
shifting simultaneously to the p-th test functional subsystem, upon playing games
with field agents. The collection {Qp∗α} of all such transition probabilities is the
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inner–outer table of games, which is required to satisfy the probability density
property:

m

∑
p=1

∫
Dp

u

Qp∗α(u∗ → u; p|u∗, w)du = 1,
∀u∗ ∈ Dp∗

u , w ∈ Dα
w

∀ p∗ = 1, . . . , m,

∀α = 1, . . . A,

whence:

m

∑
p=1

∫
Dp

u

Qp[f, g](t, u)du = 0, ∀t ∈ [0, Tmax],

which expresses conservation of inner–outer interactions. Generalizing to the
non-conservative case is straightforward, based on properties of the operator Pp

discussed earlier; hence this is left as an exercise for the reader.

The mathematical framework (2.7) and (2.8) is derived under the assumption that
the action of the outer environment on the inner system is applied through stochastic
games. However, deterministic actions applied directly to the test particle can also
be considered, which produce a stream effect in the space of the microscopic states.
The mathematical translation of this idea is a conservative advection term in the
evolution equation for f p:

∂ f p

∂ t
+

∂
∂u

(K p[g] f p) = J p[f], (2.9)

where K p[g] is the global microscopic action applied by field agents on the test
particle. Usually, it takes the form of a mean field action:

K p[g](t, u) =
A

∑
α=1

∫
Dα

w

K pα(u, w)gα(t, w)dw, (2.10)

K pα : Dp
u ×Dα

w → R being the interaction kernel for pairs of test particles and
field agents belonging to the p-th and α-th inner and outer functional subsystem,
respectively. Notice that, in this case, individuals do not adopt any stochastic game
strategy for deciding the output of their interaction. The latter is indeed given
deterministically by the interaction kernel, once the states of the interacting subjects
are known.

In principle, both stochastic and deterministic inner–outer interactions can be
taken into account. The corresponding mathematical structure is then:

∂ f p

∂ t
+

∂
∂u

(K p[g] f p) = J p[f]+Qp[f, g]. (2.11)
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2.5 Systems with Discrete States

In applications to living complex systems, it is not always practical, or even possible,
to identify a continuous distribution of microscopic states of the active particles.
Indeed, the activity variable often refers to originally non-numerical and qualitative
characteristics, such as e.g., individual opinions, political preferences, wealth status,
which need to be transformed to quantitative information in the mathematical
approach. In these cases, it might be convenient to reason in terms of activity
classes roughly representative of the social structure of the system. Technically,
this amounts to assuming that u is, in each functional subsystem, a discrete variable
with only a finite number of possible values in a lattice:

I p
u = {up

1 , up
2 , . . . , up

n} ⊂ Dp
u , p = 1, . . . , m.

Each up
i is called an activity class of the p-th functional subsystem. As in the

continuous case set forth in the preceding sections, it identifies a possible strategy
by which active particles can approach game-type interaction events. The difference
is that now the number of admissible strategies is finite, as is usually the case in
classical game theory.

The corresponding formal expression of the distribution function is

f p(t, u) =
n

∑
i=1

f p
i (t)δup

i
(u), (2.12)

where δup
i

is the Dirac distribution centered at up
i and f p

i (t) = f p(t, up
i ) in the sense

of distributions. The function f p
i : [0, Tmax] → [0,+∞), for i = 1, . . . , n and p =

1, . . . , m, is the distribution function of the i-th activity class in the p-th functional
subsystem.

Using the representation (2.12), the formulas given in Sect. 2.2 for the moments
of the distribution can be straightforwardly restated in the discrete activity case. For
instance, the number of particles of the p-th subsystem (zeroth-order moment) is
given by:

N p[fp](t) =
n

∑
i=1

f p
i (t),

whereas �-th order moments, �≥ 1, are computed as:

E
p
� [f

p](t) =
n

∑
i=1

(
up

i

)�
f p
i (t).

Analogously, the evolution equations for the f p
i ’s are technically deduced by

substituting the representation (2.12) into Eqs. (2.2), (2.3), (2.5), (2.7), (2.8), after
reinterpreting the latter in the sense of distributions. This yields:
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d f p
i

dt
= J p

i [F]+Qp
i [F, G] =Cp

i [F]+Pp
i [F]+Qp

i [F, G], (2.13)

where now

F = { f p
i } i=1, ...,n

p=1, ...,m
, and G = {gα

i } i=1, ...,ν
α=1, ...,A

,

and the operators on the right side of Eq. 2.13 are:

Cp
i [F] =

m

∑
p∗, p∗=1

n

∑
h,k=1

η p∗p∗
hk C p∗p∗

hk (i, p) f p∗
h f p∗

k − f p
i

m

∑
p∗=1

n

∑
k=1

η pp∗
ik f p∗

k

Pp
i [F] =

m

∑
p∗, p∗=1

n

∑
h,k=1

η p∗p∗
hk P p∗p∗

hk (i, p) f p∗
h f p∗

k

Qp
i [F, G] =

A

∑
α=1

m

∑
p∗=1

n

∑
h=1

ν

∑
j=1

η̂ p∗α
h j Qp∗α

h j (i, p) f p∗
h gα

j − f p
i

A

∑
α=1

ν

∑
j=1

η̂ pα
i j gα

j ,

The symbols above have an intuitive meaning, that we explicitly detail, however, for
the sake of clarity:

• η p∗p∗
hk is the interaction rate between a candidate particle in the h-th activity class

of the p∗-th subsystem and a field particle in the k-th activity class of the p∗-th
subsystem. An analogous interpretation holds for η̂ pα

i j , which refers to inner-
outer interactions among candidate particles and field agents.

• C p∗p∗
hk (i, p) is the probability that a candidate particle in the h-th activity class

of the p∗-th subsystem shifts to the test activity class i of the test subsystem p
after playing a game with a field particle in the k-th activity class of the p∗-th
subsystem. The set of all such transition probabilities forms the table of games
{C p∗p∗

hk (i, p)}, which models the game played by active particles. It satisfies the
probability density property:

m

∑
p=1

n

∑
i=1

C p∗p∗
hk (i, p) = 1, ∀h, k = 1, . . . , n, ∀ p∗, p∗ = 1, . . . , m,

which guarantees the conservation of inner interactions described by the operator
Cp

i .

• P p∗p∗
hk (i, p) is the net birth/death rate of active particles for proliferative inner

interactions. In order for deaths to occur only in the functional subsystem and
activity class of candidate particles, the following assumption is made:

P p∗p∗
hk (i, p)≥ 0 ∀h 	= i, ∀ p∗ 	= p.
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• Qp∗α
h j (i, p) is the probability that a candidate particle in the h-th activity class

of the p∗-th functional subsystem shifts to the test activity class i of the test
subsystem p when playing a game with a field agent in the j-th activity class
of the α-th outer functional subsystem. It is also assumed that field agents are
grouped into a finite number ν ≥ 1 of activity classes over the lattice

Iα
w = {wα

1 , wα
2 , . . . , wα

ν } ⊂ Dα
w

and represented by a set of A × ν known distribution functions gα
j = gα

j (t) :
[0, Tmax]→ [0,+∞) such that the distribution function (2.6) is recovered, for each
α = 1, . . . , A, as:

gα(t, w) =
ν

∑
j=1

gα
j (t)δwα

j
(w),

with gα
j (t) = gα(t, wα

j ) in the sense of distributions. The set of all of the above
inner-outer transition probabilities constitutes the inner-outer table of games
{Qp∗α

h j (i, p)}, which is required to satisfy the probability density property:

m

∑
p=1

n

∑
i=1

Qp∗α
h j (i, p) = 1,

∀h = 1, . . . , n, ∀ j = 1, . . . , ν

∀ p∗ = 1, . . . , m, ∀α = 1, . . . , A
(2.14)

in order for the interactions described by the operator Qp
i to be conservative.

2.6 Microscopic Interactions and Sources of Nonlinearity

Mathematical models can be derived from the mathematical structures presented
in Sects. 2.3–2.5 by devising descriptions of the interactions at the microscale, for
instance at the levels of the interaction rate and of the table of games.

As already mentioned, theoretical tools from game theory can be used. However,
the literature does not yet offer a unified systematic approach. Hence, heuristic
methods are generally applied for each specific case. Actually, recent contribu-
tions [38, 43] give some hints that will be revisited in this section.

An important issue is nonlinear interactions, when particles are not simply
subject to the superposition of binary actions but are also affected by the aggregate
state of neighboring individuals. In this case, the interaction terms have to be
viewed as operators over the distribution function, whereby further nonlinearities
are introduced in the right-hand sides of the relevant equations.

For instance, the interaction rate may be assumed to decay with the distance
between the states of the interacting particles as well as with the distance between
the distribution functions of the subsystems they belong to. Such an assumption
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would imply a higher interaction frequency for similar particles belonging to
similarly distributed subsystems. In other cases, dissimilar particles carrying out
different functions may be more likely to interact with high frequency, as happens,
for example, in hiding-learning processes [72] such as chasing and/or escaping
dynamics involving criminals and detectives [143].

Another source of nonlinearity in the interaction dynamics can be the actual
activity subdomain where interactions are effective, which may not coincide with
the whole Dp

u . In other words, candidate particles may interact only with some field
particles selected on a distribution-dependent basis (one then speaks of topological
interactions). This idea originates from conjectures made by physicists about the
dynamics of swarms [25], which can be interestingly transferred to social sciences
for addressing swarming behaviors such as those treated in [142, 143, 165].

Finally, a great source of nonlinearities in the evolution equations is definitely
the table of games. Indeed, as already pointed out, candidate particles can also
modify their interaction strategy depending on some (local) aggregate state of the
field particles they interact with, which is duly described by suitable moments of the
distribution function.

Some technical arguments about these topics are presented in the following
paragraphs, without claiming to be exhaustive. For expository purposes the focus
will be on closed systems. Technical generalizations to open systems are left to
interested readers.

2.6.1 Interaction Rate

The frequency of the interactions among candidate and field particles belonging
to the p∗-th and p∗-th functional subsystems, respectively, is modeled by the term
η p∗p∗ . Following [38], the latter can be assumed to decay with the distance between
the interacting particles. In the linear case, such a distance depends only on the
microstates of the interacting pairs, hence it is given by |u∗ − u∗|. Conversely, in
the nonlinear case it can also depend on the distribution functions f p∗ and f p∗ ,
particularly on ‖ f p∗ − f p∗‖. Here, ‖ · ‖ is a suitable norm such as, for example,
the uniform L∞-norm or the mean L1-norm, also depending on the physics of the
system under consideration (which might suggest appropriate ways of measuring
the distance between different configurations of the system). This concept is based
on the idea that two systems with close distributions are affine, hence they tend to
interact with higher frequency.

The interaction rate can also include a dependence on the actual interaction
domain. If particles interact only within a certain distance or with a predefined
number of other particles then η p∗p∗ is zero outside the respective bounds. In turn,
the latter can be linked to the distribution functions f p∗ , f p∗ themselves.
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2.6.2 Table of Games

The table of games C p∗p∗ can be modeled by relating the payoffs of the interac-
tions to:

• Cooperative/competitive games, in which candidate particles try to profit from
the state of field particles in order to consolidate their well-being or to fairly
redistribute wealth.

• Hiding-learning dynamics, in which attempts by candidate particles to improve
their state are balanced by a tendency to reduce social distances thus produced
(learning process).

In general, it may be argued that the occurrence of either type of game depends,
once again, on a microstate-based distance between the interacting particles.
Moreover, if the distance between the configurations of the subsystems that
particles belong to is involved, further nonlinearities are brought into the problem.

2.6.3 Inner Reorganization of Functional Subsystems

Some social systems, for instance political parties, are characterized by a (small)
critical size for survival. That is, if the size N p[ f p] of a certain functional subsystem
falls below a critical threshold then particles may prefer to migrate to other
functional subsystem or to aggregate in brand new ones. Similarly, a (large) critical
size can exist such that, when it is overcome, particles are again induced to migrate
to other subsystems for avoiding a kind of depersonalization due to “overcrowding”
of their original subsystem.

In both cases, the two sizes are generally not constant but depend on the global
state of the system. Therefore disappearance, splitting, or creation of functional
subsystems can be additional sources of nonlinearity in the equations.

The previous arguments drop a hint that interactions at the microscale can be
strongly characterized by various types of nonlinearities. Consequently, in most
cases the evolution equations feature further nonlinearities besides the standard
quadratic one due to the product of the distribution functions in the terms Cp and Pp.

The mathematical structures proposed in the preceding sections are still valid but
the following notations are worth being introduced for stressing such constitutive
nonlinearities:

η p∗p∗ [f](u∗, u∗), C p∗p∗ [f](u∗ → u; p|u∗, u∗), and P p∗p∗ [f](u∗, u∗; u, p).

This notation should also be extended to the domain of interaction, when it depends
on the distribution functions: Du = Du[f]. See [43] for a detailed analysis of the
related convolution problems.
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According to our perspective as advanced in this monograph, the modeling
approach cannot be oversimplified by neglecting nonlinearly additive interactions
with the only aim of pursuing analytical results. On the contrary, no matter how
difficult the analytical treatment of the resulting equations may appear, most of the
existing literature should probably be revisited under this new perspective.

2.7 On the Solution of Mathematical Problems

The application of the mathematical structures presented in the previous sections
to real social phenomena generates mathematical problems. The latter can be of
essentially two types:

• Initial-value problems, namely those generated by Eqs. (2.1), (2.7), and (2.13)
linked to initial conditions:

f p(0, u) = f p
0 (u), u ∈ Dp

u , p = 1, . . . , m for Eqs. (2.1), (2.7)

or

f p
i (0) = f p

0i, i = 1, . . . , n, p = 1, . . . , m for Eq. (2.13),

where f p
0 : Dp

u → [0,+∞), f p
0i ∈ [0,+∞) are, respectively, known functions and

numerical values prescribed for describing the distribution of the active particles
over the activity u or the activity classes up

i at the initial time t = 0.
• Initial/boundary-value problems, namely those generated by Eqs. (2.9) and (2.11)

linked to initial conditions analogous to those discussed above and, in addition,
to conditions at the boundary of Dp

u due to the flux term ∂u(K p[g] f p). These are
of the form:

f p(t, u ∈ ∂Dp
u) = ϕ p(t), p = 1, . . . , m,

ϕ p : [0, Tmax] → [0,+∞) being known functions. These conditions provide the
values of the distribution functions f p on the boundary of Dp

u at all times. They do
not necessarily have to be prescribed on the whole boundary of Dp

u but possibly
only on subsets of ∂Dp

u , depending on the structure of the advection speed K p[g].
If Dp

u is unbounded then boundary conditions are replaced by suitable properties
of decay to zero of the corresponding p-th distribution function at infinity for
ensuring its integrability with respect to u.

In all cases, the mathematical problem consists of computing the solution, being
either

{ f p(t, u)}m
p=1, ∀ u ∈ Dp

u , ∀ t ∈ [0, Tmax],
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or

{ f p
i (t)} i=1, ...,n

p=1, ...,m
, ∀ t ∈ [0, Tmax],

starting from the input data required by the model.
The numerical solution of such problems is generally not a difficult task,

at least in the absence of mean-field fluxes K p. In fact, collocation methods
can be used to transform activity-continuous integro-differential equations into
ordinary differential equations in time, which can then be discretized by the most
appropriate computational schemes, with consideration of stability and accuracy.
The technique is described in [41], where it is also shown how boundary conditions
can be implemented directly into the system of ODEs. If the activity variable is
discrete, models immediately take the structure of a system of ordinary differential
equations.

Simulations should be supported by a qualitative analysis of the mathematical
problems. Existence and uniqueness of solutions to initial-value problems in the
absence of non-conservative interactions have been studied in [19] by extending
a previous study about linearly additive interactions [16] to nonlinearly additive
interactions. Proliferative terms require additional studies, as they may even induce
bifurcation phenomena. This issue has been carefully addressed in [44] referring
specifically to models of competition between the immune system and pathogens.
Analogous investigations in the case of social systems are not yet available; see
Chap. 5 for a critical analysis of this issue.

The use of models for simulating real systems also motivates further challenging
analytical investigations not necessarily limited to a qualitative analysis of the
solutions to mathematical problems. Other challenging issues are, for instance,
understanding the links between the KTAP approach and Markov processes [112]
or classical kinetic theories [26]. These aspects are quite well mastered in the case
of models with linearly additive interactions [17], whereas they are still an open
problem in the case of nonlinearly additive interactions.

2.8 Critical Analysis

In this section we analyze how far the mathematical structures proposed in this
chapter are able to capture the complexity features of social systems discussed
in Chap. 1. Readers should be aware that, for the moment, only preliminary
considerations can be made. A more exhaustive analysis has to be deferred to the
next chapters, after seeing specific models in action on well defined applications.
In the following, we proceed by keywords reminiscent of crucial complexity aspects
dealt with so far.

• Emerging behaviors and validation. Mathematical models provide the time
evolution of the distribution function, which in some cases is a probability
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density (when the number of active particles is constant in time), over the activity
variable. This output potentially depicts both microscopic details and average
macroscopic quantities. Validation of models should be based on their ability to
describe actually observed emerging behaviors. A successful model may also be
expected to predict, under special circumstances, events which have never been
observed before.

• Strategy, organization ability, and heterogeneity. All of these features are
variously linked to the activity variable u, which expresses the (non-mechanical)
state of the active particles, namely the behavioral strategy they apply when
interacting in a game-type fashion with other particles or with external agents.
The heterogeneous distribution of such a variable among the active particles is
expressed, within each functional subsystem, by the distribution function f p,
which evolves in time. The activity can be though of, at the microscopic scale,
as a random variable attached to each active particle. The KTAP approach
then studies the evolution in time of its distribution at the mesoscopic scale.
Reference to random variables is necessary in order to model the partly irrational
(viz., stochastic) as opposed to rational (viz., deterministic) behavior of the
active particles, which may not react in the same way even if placed in similar
conditions.

• Interactions by stochastic games. Microscopic interactions among active parti-
cles are modeled by the terms η , C , and P , namely the interaction rate, the table
of games, and the net birth/death rate, respectively. Particularly important is the
table of games, which describes interactions as stochastic games. In more detail,
it encodes, in probabilistic terms, the (conservative) interaction rules, hence the
game played by active particles. The distribution function then changes as a
result of a change in the activity of the particles after the game they play when
interacting.

• Reducing the complexity generated by a large variety of components. Splitting
the whole system into functional subsystems is a way to reduce the technical
complexity induced by a large number of variables. Such a decomposition
can possibly also be viewed as associated with a secondary activity variable,
say v, which takes only m discrete values v1, v2, . . . , vm. According to this
interpretation, the p-th functional subsystem would thus group all active par-
ticles which collectively express the value vp of the activity v. This point of
view is conceptually convenient when the primary activity variable u has the
same meaning in all subsystems but the rules at the basis of the microscopic
interactions depend on the specific function v carried out by different groups of
active particles. Alternatively, the decomposition in functional subsystems can
be thought of as a way to have a scalar activity variable u in each of them rather
than a vector-valued one u = (u1, u2, . . . , um) when the various components up,
p = 1, . . . , m, have different meanings in each subsystem.

• Mutations and selections. These events are respectively related to transitions
across functional subsystems, accounted for by the table of games, and to
proliferative interactions, modeled by the operators Pp. Their modeling requires,
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in general, that the influence of the outer environment on the conservative
interactions be carefully analyzed.

• Multiscale essence. The modeling of aforementioned terms η , C , and P is
generally obtained by a mainly phenomenological approach at the microscopic
scale. Due to the behavioral individuality of the active particles composing
the system, this approach is probably better than trying to directly model the
collective behavior of groups of particles at the macroscopic scale by means of
constitutive relationships. Next, ensemble dynamics are predicted by the model
and can be studied a posteriori, once the evolution of the distribution function
is available at the mesoscopic scale. Phenomenological guidelines for modeling
the terms η , C , and P cannot however be given in full generality. Specific
applications can instead indicate, each time, some reasonable ones, thereby also
suggesting possible technical developments of the mathematical structures.
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