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The Poisson Approximation
for the Binomial Distribution

The derivation of the error formula for the Poisson approximation to the binomial dis-
tribution (given without justification in Problem 3.7.15) is an application of asymptotic
expansion, a topic well beyond the scope of the book. The idea is to partition the factors
in the binomial distribution formula, along with the extra factors eµ and e−µ, into the Pois-
son distribution formula along with three additional factors that approach 1 in the limits
p → 0 and n → ∞. Asymptotic expansion of the additional factors yields a first-order
approximation for the relative error in the Poisson formula.

Using the property µ = np of the binomial distribution, we can rewrite the factor pk as
µk/nk. This change, along with the introduction of factors eµ and e−µ allows us to identify
the Poisson formula as a factor of the binomial formula. We also rewrite (1 − p)n−k as
(1− p)n/(1− p)k. With these changes, we can factor the binomial distribution formula as

bn,p(k) =
n!

nk(n− k)!
· eµ(1− p)n · 1

(1− p)k
· µ

k

k!
e−µ. (1)

The third factor is easily approximated as a geometric expansion about p→ 0:

1

(1− p)k
∼ 1

1− kp
∼ 1 + kp = 1 +

kµ

n
,

where the symbol ∼ is used to indicate equality up to and including the O(p) terms. The
second factor requires expansion in both the limits p → 0 and n → ∞. Using expansion as
p→ 0, we have

ln[eµ(1− p)n] = µ+ n ln(1− p) ∼ µ+ n
(
−p− 1

2
p2
)

= −np
2

2
= −µ

2

2n
.

Thus,
eµ(1− p)n ∼ e−µ

2/2n.

From here, expansion as n→∞ yields

eµ(1− p)n ∼ 1− µ2

2n
.

The first factor can be written as

n

n
· n− 1

n
· · · n− k + 1

n
= 1 ·

(
1− 1

n

)
· · ·

(
1− k − 1

n

)

∼ 1− 1 + 2 + · · ·+ (k − 1)

n
= 1− k(k − 1)

2n
.
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Multiplying these factors yields

bn,p(k) ∼
(

1 +
−k2 + k + 2kµ− µ2

2n

)
fµ(k) =

(
1 +

k − (k − µ)2

2n

)
fµ(k). (2)

Equation (2) identifies the asymptotic approximation for the relative error. Another version
of the error formula is given in terms of p rather than n:

bn,p(k) ∼
(

1 +
p

2

[
k − (k − µ)2

µ

])
fµ(k). (3)

It is also possible to estimate the largest error in using the approximation for given n and
p. By straightforward computation, the maximum error is for k = 1 if µ ≤ 1 and k = 0 for
1 < µ ≤ 2. For larger µ, we can obtain an approximate formula by considering the quantities

m(k) ≡ k − (k − µ)2

µ

µk

k!
,

which represent the absolute error without the additional factors p/2 and e−µ. Suppose
µ = n + r, where n is any integer greater than 1 and 0 < r < 1. A few experiments show
that the largest error occurs for either k = n or k = n + 1. The equality point between
them seems to be roughly at r = 1/3, but we can determine this analytically for arbitrary
n. Substituting µ = n+ r into m(n) = m(n+ 1) yields

[n2 + (1− r2)n− r2] µn−1

(n+ 1)!
= [n2 + (3r − r2)n+ (2r2 − r3)] µn−1

(n+ 1)!
,

which reduces to
(1− 3r)n = 3r − r3.

We find the cutoffs to be roughly r = 0.29 for n = 2, r = 0.31 for n = 3, and r → 1/3 as
n→∞. We are not far off to simply take r = 1/3 for all n; hence, the largest absolute error
is approximately

max(|bn,p − fnp|) ≈
p

2
fnp(km), (4)

where km is the integer part of np+ 2
3
.
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