Mathematics for the Life Sciences:
Calculus, Modeling, Probability, and Dynamical Systems

Instructor Guide

As described in the preface, this book does not fit into a standard slot in the mathematics
curriculum. The choice of topics is unique, and some of these topics are presented in a way
intended to sacrifice thoroughness for accessibility. There are also a number of topics in
mathematical modeling that have not been given a place in the standard curriculum; hence,
many instructors who venture to use this book will find themselves having to teach topics
that they have not previously seen as students or instructors. The purpose of this guide is to
assist instructors who are new to mathematical modeling or skeptical about the possibility
of teaching some advanced topics at a relatively elementary level.

1 A BRIEF SUMMARY OF CALCULUS

This chapter requires some flexibility on the part of any mathematician who teaches from
it. I have shunned a number of standard practices in the teaching of calculus. Perhaps the
most significant of these are my decisions not to cover limits, except in the most informal
way, and to teach the definite integral without a formal presentation of Riemann sums.!
These choices fly in the face of the way calculus has been taught for longer than anyone
alive today can remember. But that does not mean they lack historical precedent. The first
paper to introduce calculus was published by Leibniz in 1684, but the first paper to use
Riemann sums was only published (by Riemann, of course) in 1854. Definite integrals were
known and used for applications for 170 years before the modern definition. This long delay
indicates two things: 1) the integral concept is easier to understand than its development
via Riemann sums, and 2) a lot of use can be made of the integral by biologists who have
never seen a Riemann sum. The situation with limits is similar. Leibniz and Newton had no
difficulty doing calculus (as opposed to real analysis, about which neither knew anything),
but 133 years passed before Bolzano first defined continuity, with the definition of the limit
by Cauchy following in 1821.

Although it may sound as though I am altogether opposed to rigorous mathematics, this
is not the case. I quote myself in the preface as saying that mathematicians are people who
believe that you should not drive a car until you have built one yourself. To extend the
metaphor, I think biologists will be better drivers if we spend all of our time giving them
driving lessons rather than teaching them to build cars. This does not mean that I believe
in teaching unmotivated mathematical techniques. The text includes informal justifications
and plausibility arguments for almost everything.

The secret to preparing students to do advanced work in linear algebra and dynamical
systems with a minimal calculus background is for that background to focus on concepts and
modeling while deemphasizing rigor and technique. Throughout this chapter, instructors will

'Riemann sums are a much more reasonable topic than the formal definition of the limit; I have included
a development of the definite integral with Riemann sums as Appendix B.



find opportunities for students to practice mathematical modeling in the problem sets. Extra
time should be allowed for these; for example, they can be used as group activities in the
classroom. One possibility is to spend an hour in the classroom to start a group project and
then have the students do the remainder of the work on their own. The extended problems
in some of the exercise sets make it a challenge for instructors to plan the amount of time
needed for each section. It is important to be realistic about what students can do. This
does not mean that we can’t assign challenging problems, but we do need to slow the pace of
the course to accommodate them. We can cover a section each day in lecture, but we can’t
expect students to be able to do both the routine problems and the challenging problems
before the next class.

1.1 Working with Parameters

Rigor, which I have argued against, is not the only characteristic that sets mathematics
apart from other disciplines. The essence of mathematics also includes generalization and
abstraction, and both of these features are as essential in mathematical modeling as they are
in mathematics proper. The standard mathematics curriculum does not give these features
the attention that they deserve, a flaw that this section is intended to partially ameliorate.
One key requirement of mathematical modeling is an understanding of the different roles
symbols play in a given calculation. These roles can change with the context. As an example,
the quantities z and y are variables in the general formula y = b + mx, while m and b
are parameters. We fix the parameters and plot the variables, not the other way around.
However, when we use the least squares method to fit the general formula to data, we do
these calculations with m and b as variables and x; and y; as parameters. It is a mistake
to underestimate the extent to which the distinction between variables and parameters is
confused in most students’ thinking. This is one of the reasons why many students cannot
do even the simplest of word problems.

The purpose of this opening section is to introduce the variable-parameter distinction
and give students lots of practice working with parameters. In both the examples and the
problem sets, one must pay attention to the context in order to determine how a quantity
should be treated, and it is sometimes necessary for a quantity to be treated as both a
variable and a parameter in the same problem. Time spent reaching a solid understanding
of the material in this section will be repaid many times over throughout the rest of the
book. Resist the temptation to complete this section too quickly.

None of the problems require a lot of calculation. Several require extensive reading, and
a number of them require graphs. In some cases, the viewing windows for the graphs are
specified, but in other cases these are left for students to choose. Being able to select an
appropriate viewing window for a graph is a critical modeling skill. If, for example, a variable
can only take nonnegative values, then the interval used for that variable in a graph should
not include negative values. Calculator graphs are centered about the origin unless that
default is overridden, so many students simply do what their calculator seems to require. If
the independent variable is a probability, then the domain used for it in a graph should be
at most [0, 1]. These things are so obvious to mathematicians that it is hard to appreciate
the need to teach them to students. Interestingly, this is not a problem I have with graduate
students in biology, who are generally much better at understanding and using graphs than



undergraduate mathematics students. Another common problem, for both undergraduates
and biology graduate students, is using the range of data to determine the viewing window
in conditions where this is not appropriate. Suppose, for example, the data for y falls in
the interval [5,6]. Using this interval for the viewing window may be appropriate in some
circumstances, but usually it is far more meaningful to use the interval [0, 6], which has the
advantage of providing a visual display of relative differences in values as well as absolute
differences. This first section is the best context in which to teach students the skill of
obtaining a useful graph.

1.2 Rates of Change and the Derivative

This section presents the definition of the derivative in the broader context of rates of change.
In practice, we can define averages rates of change for functions of discrete time and both
average and continuous rates of change for functions of continuous time. While the former
is merely a review of basic algebra, it is included here partly to help students understand
difference quotients for functions given via formulas and partly because discrete rates of
change are important for the study of discrete dynamical systems that comes in Chapter 5.

1.3 Computing Derivatives

My treatment of derivative computation is essentially the same as that found in calculus
books, but with a few differences. In keeping with the emphasis on using calculus rather
than deriving results, the derivative formulas for elementary functions are presented with very
little fanfare. The main focus of the section is on the product, quotient, and chain rules, which
provide a means to reduce derivative computations for complicated functions to elementary
derivative formulas. Where the typical calculus book has the better part of a chapter for
differentiation techniques, the topic occupies just one section of this book. Students should
know the basic derivative formulas so that they can work problems without getting stuck on
the minor details, but they do not need to be experts at differentiation. None of the modeling
problems in the remainder of the text require differentiation of anything more complicated
than the examples in this section. The one unusual feature of my treatment of differentiation
is that I introduce partial derivatives along with ordinary derivatives. Multivariable calculus
is beyond the scope of this book; however, stability analysis in Chapter 7 requires students to
be able to compute Jacobian matrices, which consist of partial derivatives. While the partial
derivative concept is more advanced than the ordinary derivative concept, the computation
of partial derivatives merely requires variables to be treated as parameters. The calculation
in Example 1.3.9 is no more difficult than that of Example 1.3.5.

1.4 Local Behavior and Linear Approximation

Tangent lines, local extrema, and linear approximation are combined in this section. I
link these topics by thinking of local behavior as whatever one sees when zooming in on a
point on a graph, which will be the first non-constant term in the Taylor series. Of course
a full discussion of this point is beyond the scope of this book; however, it does provide
a conceptual framework broad enough to incorporate concavity when the tangent line is



horizontal while ignoring it in other cases. Local extrema is a topic that is important on
its own, but its use in the rest of the book is limited; in contrast, linear approximation is
not particularly important on its own while being essential for analytical study of dynamical
systems. Instructors will want to emphasize local extrema for courses that emphasize calculus
and linear approximation for courses that will continue with dynamical systems. (Of course
these are not mutually exclusive.)

1.5 Optimization

The amount of time spent on this section should depend strongly on the overall purpose of
the course. For courses that emphasize calculus with modeling, it is worth spending some
time on some of the more challenging word problems. Problems 1.5.4, 1.5.5, 1.5.8, and 1.5.9
are particularly difficult; instructors are cautioned not to assign very many of these. Each
one could stand alone as a group project. Courses that emphasize probability or dynamical
systems and are only doing calculus to prepare for those subjects should treat this section
sparingly.

1.6 Related Rates

This section differs in significant ways from any section with the same name in a standard
calculus book. It treats two related topics, neither including the usual geometric problems
about sliding ladders and the like, but both of which are critical for mathematical modeling.
The first deals with differentiation of equations that include more than one function, such as
equations that relate time-dependent volume to time-dependent length. Many mathematical
models are constructed in a similar fashion to the one in Example 1.6.3. There is a differential
equation that describes the rate of change of one variable in terms of a different variable,
augmented by an algebraic relation between the two variables. These can sometimes be
combined by simple substitution, but it is often easier to differentiate the algebraic relation
first.

The second topic is one that I use whenever I teach basic calculus, including standard
courses for physical scientists and engineers. As it is generally presented, the chain rule
is merely a mechanical exercise of differentiating a composition of functions. While that is
certainly important, it misses the conceptual sense of the chain rule, which is critical for some
applications. This conceptual sense is brought out by the insect-on-a-heated-rod scenario
presented in Subsection 1.6.2. In this scenario and the following discussion, I have tried
to supplement the mathematician’s perspective of formulas-as-functions with an alternative
perspective of formulas as relationships between variables. This is helpful in contexts where
it is not clear which variable(s) should be independent and which dependent, such as in
chemical thermodynamics, where a gas is characterized by a number of variables indicating
its physical state, and any two of these can be considered as the independent variables for
the rest. There are cases in biology where it is not immediately clear which of two variables
should be taken as independent, particularly in modeling investigations in which the role of
variable is played by model parameters.

Aside from the practical value of a treatment of the chain rule in terms of variables, it is
important to make a connection between the chain rule as correctly written and the chain



rule in the form
du du dﬁ

dt  dx dt
of (1.6.5). The latter version of the chain rule is much easier to remember and much more
intuitive than the more formal version; however, it lacks the essential information that the
derivative du/dx must be evaluated at the particular x(t) corresponding to the second factor.
This is one of the more universal conceptual errors of calculus students, one which I feel needs
to be addressed explicitly.

I particularly like Problem 1.6.7 because of the modeling issues it addresses. Problems
1.6.4 through 1.6.6 are much shorter, but students will find these to be difficult as well.
Problem 1.6.6 anticipates nondimensionalization, a key topic in mathematical modeling that
is treated in some detail in Section 2.6.

1.7 Accumulation and the Definite Integral

This section focuses on the concept of the definite integral, with a particular emphasis
on the ideas of integrals of rates as total accumulation and integrals of gradients as total
aggregation. I emphasize these applications as constituting the meaning of the integral and
the approximation with finite sums as a method for estimating its value rather than the
more mathematical approach of using the definition in terms of sums to confer meaning
and thinking of the applications as consequences of the definition. The traditional geometric
applications such as areas between curves and volumes of revolution are omitted here. These
geometric problems are nice if the goal is to present applications of integration to a general
audience. For biologists, these geometric applications have much less value than applications
in population dynamics and other biological areas. The exercises for this section include some
numerical approximation and some derivation of integrals to calculate specific quantities.

1.8 Properties of the Definite Integral

This section presents the properties of the definite integral and computation of the definite
integral via antiderivatives. It is similar to the treatment that appears in standard calculus
books, with one major exception. Rather than proving the fundamental theorem, I prefer
to derive it by setting the integral of the rate of change equal to the total change. This
derivation is simple and intuitively clear.

1.9 Computing Antiderivatives and Definite Integrals

This section combines substitution with the part of the fundamental theorem that addresses
differentiation of integrals. The substitution method is necessary if any integrals are going to
be done by hand. Given the audience for this book, I have chosen not to include integration
by parts or other integration techniques. In today’s world, biologists can use Maple or
Mathematica for these tasks. I feel that it is important to understand the ideas of definite
integrals and to be able to do the elementary calculations, but not the more complicated
calculations. Time saved by not studying these topics is then available to do more modeling.
In this section, as elsewhere in this chapter, technical topics have been deemphasized to



make room for modeling topics. One example of this is Problem 1.9.12; which consists of an
optimization problem with an embedded definite integral and concludes with questions about
the biological claims inherent in the results. This exercise uses a result from Problem 1.9.11,
but that result is included in the statement of Problem 1.9.12; hence, it is not necessary to
assign the former in order to be able to do the latter.

2 Mathematical Modeling

This chapter presents a broad overview of the modeling process along with specific topics
in mechanistic and empirical modeling. There is a tendency among modelers to focus on
just one of these two types, but I have tried to present a balanced view. As far as I am
aware, the treatment here is the only comprehensive presentation of mathematical modeling
in print. This actually represents a deviation from my personal proclivities, which come
down hard on the mechanistic side. I recognize, however, that students get a much more
useful and complete view of modeling from a serious study of both. Mechanistic modeling,
particularly Section 2.6, is necessary as background for the dynamical systems portion of the
book. Empirical modeling is the only alternative for settings in which we do not know enough
to construct a mechanistic model. One reason why mechanistic and empirical modeling are
not generally considered together is that they lie on opposite sides of a standard boundary
in the mathematical sciences, that between mathematics and statistics. Empirical modeling
topics, such as least squares analysis, appear primarily in statistics books. In my view, it is
an error for mathematicians to allow empirical modeling to be classified as statistics rather
than mathematics. Indeed, one can sometimes find a fully mathematical treatment of least
squares in linear algebra books. Additionally, statisticians do not give parameterization
and selection of models much emphasis in their courses. At the University of Nebraska,
the introductory statistics course barely touches least squares analysis; parameterization of
nonlinear models and AIC for selecting among models are not found at all. Nor have I seen
AIC in any elementary statistics books, for that matter. For the most part, statistics is
concerned with the limited goal of identifying relationships rather than the more ambitious
goal of quantifying relationships. My view is that the statisticians are right about this
emphasis, and that we mathematicians should take on the quantification of relationships as
part of our job.

2.1 Mathematics in Biology

This introductory section presents readers with the central problem of modeling in biology:
the difficulty of finding trends that are largely obscured by scatter in data. The combination
of demographic stochasticity with limited sample sizes means that biological data is almost
always problematic. Some areas in biology, such as ecology, are also subject to significant
measurement error, but even areas such as medicine, where measurement error is small,
are significantly affected by demographic stochasticity. It is difficult to understand the full
importance of this principle. For me, there are two ways of seeing its significance. One is to
compare the subjects of biology, which are living organisms, with the subjects of chemistry,
which are molecules. If we measure radioactivity using a sample size of atoms that is as small



as the sample size for a medical study, we can see the effect of stochasticity in a case where
there is no systematic variation among individuals. The systematic individual variation of
biological organisms only magnifies the effect. We don’t see the problem of stochasticity
in radioactivity, however, because the sample sizes are unimaginably large. One microgram
of any type of atom consists of more than 2 x 10'® individual atoms. Thus, macroscopic
levels of demographic stochasticity are unknown in laboratory physical science. Advanced
biology students and practicing biologists are already fully aware of this issue, but most
introductory biology students have little experience in collecting biological data. It is easy
for them to take accurate biological measurements too seriously, giving them a degree of
respect that should be reserved for accurate physical measurements. The only real way
to engender a proper mistrust of numerical data is to collect some, and it is particularly
helpful to do so in a setting in which measurement error is eliminated. This is the point
of the BUGBOX software. These applications are platforms for biological experiments in a
virtual world that is so simple as to allow for exact measurement and so quick that full data
sets can be collected in an hour, as compared to the time scales of days, weeks, months,
and years needed for collecting real biological data. The data collected from a BUGBOX
experiment can be used for modeling activities later in the chapter, but the primary reason
for doing these experiments is to see that exact measurement does not yield a perfect data
set. As the students are collecting this data, the instructor should frequently remind them
that the conclusions that can be drawn from data are no more reliable than the individual
data points.

Given the limitations of biological data, it makes sense to ask whether there is any value
at all in mathematical modeling. Historically, most biologists have believed that modeling
has no value beyond statistical analysis of data. This has changed to the point where most
biologists will probably agree that mathematical modeling has some value and regret lacking
the background needed for it. This background is supplied in the rest of this chapter and put
to use in Chapters 5 through 7. In the present section, I indicate two goals for mathematics
in biology. The first of these is the determination of patterns, which is the program of
descriptive statistics. While not mathematical modeling, descriptive statistics does at least
count as an application of mathematics to biology. The other goal is the determination
of relationships, by which I mean the search for deterministic patterns that underly some
stochastic data sets. This is the topic of both empirical modeling, in which we try to quantify
deterministic patterns in data, and mechanistic modeling, in which we try to explain and
predict such patterns. Two distinct issues raised by data sets from the BUGBOX-predator
experiments are addressed later in the chapter:

e How can we quantify deterministic patterns that are partly obscured by scatter in
data?

e How can we use biological principles to explain and predict systematic differences such
as those between the predation data sets shown in Figure 2.1.17

It is important to raise these questions in the context of this section and to identify the
purpose of the empirical modeling section of the chapter as providing some answers.



2.2 Basic Concepts of Modeling

An algebraist colleague of mine once introduced me as a mathematician who worked in
“modeling theory.” I appreciated that this error in terminology was an attempt to show
respect—surely an intellectual endeavor is more worthy if it is supported by some theory!

In spite of the fact that modeling is almost entirely based on practice, there actually is
a small amount of theory that is worth examining. These theoretical aspects of modeling
are not much considered, and it has taken me a large part of a career to identify them and
write them in the form that appears in this section. Nevertheless, I am confident that most
mathematical modelers who read this section will say, “This is really right, although I've
never thought about it like this myself.”

The key concepts of mathematical modeling are encapsulated in the two figures of this
section, and classroom discussion with students should focus on these figures. Figure 2.2.1
shows the relationships between the real world and the mathematical model for the two types
of modeling, along with the various processes that comprise mathematical modeling. Figure
2.2.2 illustrates the two types of thinking that mathematical modelers need to balance.

Mechanistic and empirical modeling share some common features, as can be seen in
Figure 2.2.1. In both, we have a mathematical model that corresponds to a conceptual model
rather than the real world. Whatever we learn from a study of the mathematical model is
unerringly true for the corresponding conceptual model and may or may not be true for
the real world that the conceptual model is trying to represent. It is this recognition of the
correspondence between mathematical model and conceptual model, rather than real world,
that determines how we think of models. This recognition is absent from the “applications”
of mathematics that usually appear in mathematics books. This conceptual error has two
unfortunate results: standard applications can give mathematics students a belief in false
biological facts; more importantly, they go a long way toward creating the common view
among biologists that mathematics is useless. What good is mathematics to a biologist
when it claims to prove, as one sees in some differential equations books, that hunting of
coyotes cannot cause their local extinction? The only way to salvage mathematical modeling
from this debacle is to recognize that mathematical results from models are true only for
the corresponding conceptual model. Not only does the competent mathematical modeler
refrain from claiming mathematical results to be biologically true; (s)he also identifies flaws
in the conceptual model, replaces it with a better one, provides more meaningful modeling
results, and suggests further experiments that could be used to confirm new predictions.

Mechanistic models have explanatory and predictive value that empirical models lack. In
empirical modeling, we merely use mathematical methods to analyze data. In mechanistic
modeling, we use scientific principles to create a conceptual model, derive a mathematical
model from the conceptual model, and tie the results of analysis to the assumptions in
the conceptual model. When the results are valid, we gain additional explanatory value
as compared to empirical models, and we gain predictive value because we can apply the
models to scenarios for which no data is yet available. When the results are not valid, we can
sometimes identify and correct flaws in a conceptual model, leading to a better mathematical
model and an improved biological understanding.

Figure 2.2.2 illustrates what I call the narrow and broad views of mathematical models.
This distinction ties in with the material of Section 1.1 on parameters in models. Application



problems typically work only on the narrow view. The essence of modeling, however, lies
in the broad view, where we examine the effects of parameters on features of solutions. A
discussion of the broad view would be enhanced by references to topics in Section 1.1.

Problem 2.2.1 is essential, as it is the only simple example I know of where an extremely
elementary mathematical analysis can quickly identify the flaw in a conceptual model.? The
crucial point here is that the erroneous prediction made by the model is a direct result
of a flaw that should have been immediately obvious. When a careful study of the Lotka-
Volterra model results in a startling prediction, this should not be a surprise if we understand
that the most elementary preliminary analysis shows that no other prediction was possible.
While this may seem like an obscure case, the actual fact is that a surefire way to find
undergraduate research projects in mathematical biology is to identify a recently published
paper that makes a startling biological claim based on a mathematical model. Such papers
almost always have a concealed conceptual flaw that would easily have been determined had
the authors done an elementary analysis such as the one in this problem.

Problems 2.2.3 through 2.2.8 are intended to get students to examine models with the
broad view of modeling. It is difficult to find good problems for students with minimal
modeling background, and I hope at least some of these will serve this purpose. Problem
2.2.7 requires quite a bit of calculus and algebra and should only be used with students who
have brought a significant knowledge of calculus to the course.

2.3 Empirical Modeling I: Fitting Linear Models to Data

All of the treatments of linear regression that I have seen begin with the full linear model
y = b+ max. This seems to be the logical approach on mathematical grounds—why not
do the most general linear model? From a modeling perspective, however, starting with
the full linear model is not the logical approach. In Section 2.7 on model selection, we will
invoke a modern interpretation of the scientific principle known as Occam’s Razor, which is
generally used to argue that simple explanations should be preferred over complex ones. The
original statement of the principle translates directly into English as “Entities must not be
multiplied beyond necessity,” a version that translates very nicely to mathematical modeling
as “Parameters should not be added to models unless the increased accuracy justifies the
increase in complexity (measured as the number of parameters).” This principle suggests
that we should assume a linear model of the form y = ma unless the extra complexity of
the full linear model is justified by increased accuracy. The final arbiter of the inclusion or
exclusion of the parameter b is the Akaike Information Criterion (AIC) for model selection,
which quantifies Occam’s Razor. For many linear data sets, it is obvious that the y intercept
should be non-zero, but there are also a significant number of cases where the data suggests
the plausibility of a zero y intercept. In most of these cases, there are mechanistic reasons
why the y intercept should be zero, and generally the data supports this choice through
application of AIC. This section is not the right place to address the idea that optimal
accuracy does not mean optimal choice of model, so the issue is best left unmentioned here.

2Given the ubiquity of this model and the simplicity of the analysis, it is very telling that the analysis
given in this problem does not appear in any mathematics books to my knowledge. This is strong evidence
for my contention that instruction in mathematical modeling is almost completely absent from standard
academic practice.



We do not need to explain to students our reason for starting with a one-parameter model
because they have no expectation that we should do otherwise.

Starting with the one-parameter model ¥y = max has many pedagogical advantages. Con-
ceptually, having just one parameter allows us to demonstrate as in Figure 2.3.1 that there
is clearly an optimal value of the slope, which we can estimate by visual inspection. Math-
ematically, having just one parameter allows us to set up a one-variable calculus problem
to determine the optimum value for that parameter. Decoupling the problem of finding the
best slope from that of finding the best intercept makes the second problem one-dimensional
as well. My approach to data sets requiring a full linear model is to shift the coordinate
system so that the mean data point is the origin and then fit the model y = maz. Clearly the
shift of coordinate system does not affect the optimal slope, so we can approach the prob-
lem of finding the optimal intercept after the optimal slope is already known. This overall
approach is an example of my efforts to use the most elementary mathematics possible when
developing new results. Whereas the standard approach to parameterizing the full linear
model requires multivariable calculus to derive the correct formulas, my approach requires
only one-variable calculus.

Because the emphasis on this book is modeling, we cannot simply assume that the optimal
m should be the one that minimizes the sum of squares of vertical discrepancies. Instead, we
must think about how to assign a quantitative value to the discrepancy between a function
y = mx and a set of data points. It is important to explicitly connect the standard choice
with the assumption that the x values are known exactly and all the uncertainty is in the y
values. A full treatment of this issue is far beyond the scope of this book, but a recognition
of it is necessary for good modeling practice.

I see little value in simply doing linear least squares with a computer and writing down
the results. For this reasons, all the problems ask the reader to do more than that. Problem
2.3.3 examines the question of how much of a difference an error in the data makes on the
result, showing that the results are more sensitive to values at the edges of the data than
values in the interior. Problems 2.3.4 and 2.3.5, which should be done with no computational
aids other than a calculator to compute squares, products, and sums, show the importance
of having some measure of accuracy for the overall fit and leaves open the question of
whether a better function might give a better fit for some data sets. Problem 2.3.8 uses a
parameterization problem as a setting in which to consider the sort of modeling issues that
are addressed in Section 2.2. This problem is worth the extra time required to have students
work it in detail, particularly if modeling is a major emphasis of the course.

2.4 Empirical Modeling II: Fitting Semilinear Models to Data

Most books that discuss the problem of fitting a nonlinear function to a data set operate
under the tacit assumption that it is always good to transform the model into a linear form so
as to be able to use linear least squares. Spreadsheets and software such as Maple have built-
in routines for doing this with common functions such as exponential and power functions.
From a mathematical point of view, it is interesting to see how to do this. From a modeling
point of view, this practice raises the important question of whether the results are useful.
The central issue is that any least squares procedure will find the parameters that minimize
the total discrepancy on the graph of the variables used for the computation. When fitting a
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power function, for example, there is a difference between minimizing the total discrepancy
on a graph of y = Az? and minimizing the total discrepancy on a graph of Iny = In A+plnz.
Given scattered data, the parameter values that solve these two problems are not the same.
Which is better is a modeling question rather than a mathematical question. Since the
chapter is about modeling, I take a nuanced approach to the problem of fitting nonlinear
models to data.

The first part of Section 2.4 develops the standard methods of converting exponential
and power function models into a linear form so as to use linear least squares. The standard
practice for fitting data directly to a nonlinear model is to use a fully numerical method. In
keeping with my overall philosophy of preferring methods that are simple enough for readers
of the book to fully understand, I instead present what I call the “semilinear” method. This
method does not work for all models, but it does work for any two-parameter models in which
one of the parameters is merely a scaling parameter. This applies to exponential functions,
power functions, and Briggs-Haldane/Holling functions, which are among the most common
nonlinear models in biology. The idea is simple enough to present to students at the level
of this book, and it provides an illustration of an important problem-solving technique, that
of iteration. The materials provided along with this book include a simple program in R
that uses built-in one-variable optimization routines to implement the semilinear method.
Since the optimization problem has just one parameter, it is also possible for students to
solve it by graphing the objective function, thereby confirming that the computer program
is giving the right answer. I consider this to be far superior to the alternative of using the
fully nonlinear method on a computer and having no way to confirm that the results are
correct.

For a course that emphasizes modeling, it is worth spending a class period in a computer
laboratory writing the program for semilinear regression from scratch. I generally work with
the students to write out a generic algorithm that is independent of the specific syntax for
any programming language. Then I present the appropriate programming statements for
each step in the algorithm. Students acquire some facility with programming by the simple
expedient of starting with a program that they have written with this kind of guidance
and then making the minor modifications needed to adapt the program to work on similar
problems. For example, it takes much less programming skill to modify a program that
already works for a different nonlinear model than it does to write a program from scratch.
Program statements that deal with the inner workings of the algorithm are unchanged, so
the students do not need to master the syntax for these statements, although they should
have a general idea of what these statements do. Similarly, I do not expect students to
learn the details of producing good plots in R; I provide them with examples of plotting
commands and a little information about how to modify line thickness, color, axis limits,
and other relevant minor details.

The Lineweaver-Burk method, which fits parameters for the Briggs-Haldane equation for
Michaelis-Menten reaction rates using a particular linearized form of the model, consistently
produces terrible results with real data. Nevertheless, a simple Google search attests to its
continuing popularity among biochemists; as of this writing, only one of the top 30 hits
is about the woeful inaccuracy of the method, while the rest are about how to apply it.
This is a great example of the institutionalization of bad quantitative techniques. Other
linearizations have been proposed; some of these are better, but still not very good. Before
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modern computers, there was justification for wanting to find a model linearization that
could approximate the best fit. In the modern world, these model linearizations make no
more sense than the “qwerty” computer keyboard, which was originally designed to make
people type slowly and yet remains in use because of institutional inertia.

While my diatribes about the unjustifiable use of model linearizations might carry some
weight as an expert opinion, Problem 2.4.8 allows students to see for themselves just how
bad Lineweaver-Burk is. The data provided in this problem is measured data reported in
the literature. Although not recent, the data is very good in the sense that the model fits it
very well with optimal parameter values. The Lineweaver-Burk method fails to come close to
the optimal parameter values, however, and a graph that shows its results compared to the
semilinear method is dramatic. There is nothing special about this data set; the same general
features are found in any real data set that comes close to fitting the Briggs-Haldane/Holling
model. The only way to get good results with Lineweaver-Burk is to use simulated data based
on assumed values of the parameters with very little added noise. Independent of the specific
lesson this problem teaches about a particular method, it also serves to point out that not
everything found in standard practice is correct. Mathematical modelers need to do their
own thinking and not just copy what others have done before.

2.5 Mechanistic Modeling I: Creating Models From Biological
Principles

This is a long and difficult section, but it need not be fully mastered by students. The
point of the section is to show students how mathematical models arise from experiment
and observation and how faulty models can be improved by a critique of the conceptual
model. It is unrealistic to expect students at the level of this book to be able to construct
mathematical models. A more appropriate goal is for them to learn to interpret mathematical
models. In terms of Figure 2.2.1, the goal is to understand the derivation process that links
the conceptual model and the mathematical model. In particular, being able to reconstruct
the conceptual model from a mathematical model is an essential skill for anyone who wants
to be able to read biology papers that feature mathematical models. There are too many
instances of poorly designed or poorly chosen models in biology papers to allow a reader
to accept a model uncritically.> The primary focus of the problems for this section is on
describing the conceptual model implied by a mathematical model; a secondary focus is on
making small modifications to existing mathematical models to account for changes in the
conceptual model.

3In saying that there are many instances of poorly designed or poorly chosen models, I do not mean
that the conceptual models are unrealistic. Almost all conceptual models, radioactive decay being a rare
exception, are necessarily unrealistic. The Holling type 2 model only accounts for the most elementary
features that can be observed in consumer-resource or predator-prey interactions. What I mean is that the
conceptual model is so bad that the results cannot even be considered approximately valid. The Lotka-
Volterra model of Problem 2.2.1 is the most obvious example. I have also seen a structured model for a
cannibalistic population in which the growth of juveniles through eating some other species was absent. Most
errors are more subtle than this, but many are easily caught by careful reading of the differential equations.
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2.6 Mechanistic Modeling II: Equivalent Forms

Most students find nondimensionalization to be difficult. Because of this difficulty, instruc-
tors will no doubt be tempted to skip this section. This would be a serious error.

Nondimensionalization is essential in mechanistic modeling for two reasons. One is that
having fewer parameters makes the analysis easier. The model analyses that appear in
Chapters 5 and 7 would not be possible without first scaling the models, by which I mean
nondimensionalizing them using reference quantities that represent meaningful or convenient
values. The mechanics of nondimensionalization is developed in this section, while the choice
of reference quantities is done only in the context of specific models. The other reason is that
careful attention to nondimensionalization can identify flaws in a conceptual model. I have
pointed out in several places that modeling errors are disturbingly common in mathematical
biology, but they are far less common in models that have been properly scaled. Readers of
mathematical biology will encounter nondimensionalization in good modeling papers, and it
is important that they be able to make sense of what is really a rather simple idea.

I have put a lot of thought into the question of how to teach nondimensionalization to
students who are at or just beyond the level of one-variable calculus. The key is to understand
why students find the topic to be difficult. There are two reasons: weak algebra skills and
a lack of understanding of how symbols are used in mathematics. Given that the algebra of
nondimensionalization is trivial, I believe that lack of understanding of symbol use is the key
problem. This is the reason for the opening section of the book that focuses on parameters.
It is also why this section embeds nondimensionalization in the broader context of algebraic
equivalence of models.

To those of us with a good understanding of how symbols work, it is hard to see why
students cannot immediately identify models that differ only in the choice of symbols. We
know that the meaning of a symbol is contextual and we have the ability to absorb the
context of a symbol when it is presented in a model. Naive students take symbols literally
and are uncomfortable with, for example, defining a dependent variable x as a function of an
independent variable y. This section takes students very gently from examples where only the
symbols are different to examples where some algebra is needed to establish equivalence, and
finally to examples of nondimensionalization. This topic is developed in two stages, beginning
with the detailed development via graphs leading up to Figure 2.6.2b and proceeding to the
algebraic techniques.

Readers not planning to study the dynamical systems part of this book can manage
without nondimensionalization; however, they should not skip this section altogether. The
material through Subsection 2.6.3 is important in empirical modeling and probability as well.

2.7 Empirical Modeling I1I: Choosing Among Models

This is not a section for mathematicians who believe that we should only present mathe-
matical methods that we can prove. The Akaike Information Criterion is a valuable tool
that has caught on in ecology. It is based on the simple idea that model selection should
be based on simplicity as well as accuracy of fit. It is easy to quantify each of these aspects
individually: residual sum of squares quantifies accuracy and number of model parameters
quantifies complexity. How these should be weighted is by no means obvious. At the level
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of this book, we can explain this basic idea of AIC, but we can’t justify the specific formula.
This is an example of what one of the reviewers of the book referred as a “gray box” method,
a phrase that makes an appealing comparison with black box methods.

Some AIC practitioners advocate the practice of model weighting, in which models are
averaged using AIC values to determine weight factors. I do not address this issue in the
book, but instructors may want to address it briefly in class. Shane Richards, who I consider
to be the leading expert on AIC, dislikes model averaging because it does not tend to produce
better results than the best model identified by AIC. My argument against model averaging
is theoretical. If I average a model with two parameters and a model with three parameters,
then I am really using a model with six parameters, counting the weight factors as one
additional parameter. Accordingly, it seems wrong to me to use AIC values for the separate
models. If we compute an AIC for the averaged model, the resulting value will be much higher
than the AIC values for either of the individual models. In other words, a model created by
averaging two models together ought to have a much larger complexity penalty than either of
the models used in the average. I also dislike model averaging because it explicitly devalues
the contribution of mechanistic justification to model selection. Even empirical models often
have some mechanistic justification, which averaged models necessarily lack.

3 Probability Distributions

Instructors who have taught a course in elementary statistics will find my treatment of
probability to be very different from that in statistics books. This is not due to sudden
inspiration on my part but grew out of my experience in trying to teach the material to
biology students. Probability and statistics are difficult subjects. This is partly because
some of the ideas run counter to normal intuition, but it is also because of the way these
topics are usually taught. Some books use an axiomatic approach to probability, which is far
too formal and sophisticated for beginning students while also being unnecessary for applied
students. Other books present an ad hoc approach to statistics that makes the subject
appear as a collection of enshrined rules for obtaining results that the student is incapable of
converting into meaningful verbal statements. In my experience, relatively few papers that
use statistics for analysis also include a thoughtful discussion of what the analysis means.

My coverage, approach, and organization is based on discussions with biologists. In
particular, my colleague Drew Tyre told me that he finds it to be a relatively easy matter
to teach statistics to students who understand probability distributions. At the same time,
I had learned from teaching experience that students have a difficult time with the standard
combinatoric calculations of probability with uniform distributions, such as probabilities of
poker hands. Since combinatorial probability is of limited importance in biology, I have
omitted it entirely. I do include conditional probability, but I have placed it at the end of
the two chapters on probability so as not to distract from the principal goal of teaching
probability distributions.

Chapter 3 begins with a section on descriptive statistics. The rest of the chapter is
based on the overall theme of probability distributions as models for populations of data.
In keeping with the general theme of modeling, a model population should be infinite, so
that its characteristics do not change when individuals are removed, and simple, so that
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probabilities can be calculated from basic formulas.

I characterize statistics as the use of arbitrary rules of thumb to draw conclusions from
probability results. This should be interpreted less as a criticism of statistics than as an
argument for why a mathematics book should omit many standard statistics topics while
including significant coverage of probability. I am happy to appropriate those topics in
statistics that are arguably mathematical while leaving those that are not, such as hypoth-
esis testing, to the statisticians. There is also the matter of what questions modelers should
address. Questions about whether a hypothesis should be rejected do not fit with a mathe-
matical modeling theme. Questions about which model should be chosen for a relationship,
which distribution should be used for a data set, and how likely it is that a hypothesis is
true do fit within an overall modeling theme.

3.1 Characterizing Data

This section provides a basic introduction to descriptive statistics, focusing on the use of
histograms to display data and the mean and standard deviation to characterize it.

3.2 Concepts of Probability

This section provides a basic introduction to probability, focusing on the key terminology,
concepts, and properties of probability and the basic rules for sequences and complementary
events. Two minor features distinguish my presentation from that found in a typical prob-
ability and statistics book. One is that I do not use an axiomatic approach to probability.
Only a mathematician would define probability as a function with certain properties and
make no reference to what probability is supposed to do. To everyone else, probability is a
measure of how likely something is believed to be. The properties used by mathematicians
to define probability are necessary because of what probability is supposed to do. Defining
a vector space as a set of objects with certain properties makes sense because that defini-
tion generalizes the familiar concept of vectors to other settings; the axiomatic definition of
probability does not do this. The second feature is that I use a biological setting in which
to introduce probability. One of the important problems of bioinformatics is to distinguish
between DNA sequences that are used by an organism and those that are merely artifacts of
evolutionary history. Identifying meaningful sequences can in principle be based on proba-
bility because certain words in the genetic code cannot occur in the middle of a meaningful
sequence; hence, long stretches that lack these words are almost certainly meaningful. In
practice, this is not as good as it sounds because genes do not always consist of a single
sequence. Just as programs on a hard drive can consist of portions stored in more than one
location, genes can have fragments that are isolated from other fragments. Nevertheless, the
limited occasions where gene identification can be based on an absence of stop codons make
this example ideal for showing students how important conclusions can sometimes be drawn
from simple probability results.

The problem set is short and simple, in keeping with a section whose purpose is to provide
background for later material.

15



3.3 Discrete Probability Distributions

With the preliminaries out of the way, this section begins the study of probability distribu-
tions by introducing the basic concept and some simple examples with finite sample spaces,
including the uniform distribution and distributions that are easy to define without a com-
plicated formula. It makes sense to look at these simple distributions before working on the
more complicated ones that play a central role in biology. As with the first two sections, this
one should be relatively quick reading and the problem set is limited. Problems 3.3.4, 3.3.5,
and 3.3.7 are best done with the aid of trees.

3.4 The Binomial Distribution

The binomial distribution is introduced using Mendel’s famous genetics experiments to pro-
vide context. We start with an example having just three Bernoulli trials, worked out using
sequence arguments. Details in the exposition, such as a histogram for Mendel’s actual sam-
ple size of 24, are intended to build intuition. In particular, some of the discussion anticipates
the study of sample distributions that occupies the first half of Chapter 4. It is well worth
noting the high probability that one out of twenty biologists repeating Mendel’s experiments
will get results that do not suggest Mendelian genetics; this is not through any experimental
error, but merely because of demographic stochasticity. There is a tendency to think that a
random sample must be representative, and we need to take every opportunity to find ways
to illustrate that this is not correct. This theme will be central in Section 4.1.

Problem 3.4.8 has students define a negative binomial distribution on their own, program
a formula for it, and use the program to determine the mean and standard deviation. I do
not identify the distribution as a negative binomial because I want the focus to be on the
ideas of probability distributions rather than the mathematical formulas for them. Simply
reading about probability distributions and doing individual calculations is not sufficient for
good conceptual understanding. Rather than looking up the formulas for mean and standard
deviation of the negative binomial distribution, it is much more meaningful to compute these
quantities by writing a computer program. This example returns in Chapter 4 as a source
population for sampling experiments.

3.5 Continuous Probability Distributions

Continuous probability distributions are usually defined in terms of the probability density
function. This is yet another reason why probability is such a difficult topic for students. The
problem is that it is very difficult to say just what the probability density function means. It
is used in the same way that a mass density function is used to compute mass, but there is a
big conceptual difference. The differential in an integral for mass of a wire is clearly length,
so mass density is mass per unit length. Similarly the differential in a probability integral
is interval width, so probability density is probability per interval width. The difference is
that interval width is much harder to get hold of than physical length.

Continuous probability calculations can be done as either an integral of a probability
density function or as a difference of a cumulative distribution function. The former has the
advantage of generally being easier to write down, as in the normal distribution for which
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the cumulative distribution function is usually given as an integral. This distinction matters
less in the age of modern computers than it did in the past. We could write the cumulative
distribution for the normal distribution as an error function, but it is easier simply to assign
the name N(z) to the integral definition and then write a computer code to evaluate it,
at which point it becomes like other transcendental functions that we understand by their
properties and calculate with a computer. While we may prefer the definition by probability
density function as mathematicians, as modelers we use cumulative distribution functions
to calculate probabilities. Given my preference for working with cumulative distribution
functions, the exponential distribution is the obvious place to start. In keeping with a
section focused on general themes, I do not name this distribution here or describe its use;
these are deferred to Section 3.7.

Preferring to define continuous distributions with a cumulative distribution function does
not mean choosing to ignore the probability density function altogether. Omne of the key
points of this section, and the primary point of the homework, is to explore the connections
between the probability density function of continuous probability and the distribution func-
tion of discrete probability. The key point is that collecting values from a distribution into
bins and creating a histogram is essentially the same for both discrete and continuous dis-
tributions, with the histograms for the latter serving to approximate the probability density
function. The key difference is that the graininess of the data limits the width of bins for
discrete distributions while bin widths for continuous distributions can be made arbitrarily
small. Thus, we can get from histogram to probability density function by taking a limit
of a histogram as bin width goes to zero. The difficulty in this limiting process is that the
frequencies of the intervals also go to zero as the interval width goes to zero. The solution
to this difficulty is, of course, to label the heights of the bars with frequency per interval
width rather than frequency, thus providing a limiting process in which the vertical axis
range converges to some interval and the dimension of the vertical axis matches that of the
probability density function. Figure 3.5.3 illustrates this idea and is the key to the section.
Similarly, Problem 3.5.7 is essential for students to do themselves, even if doing so requires
use of class time.

3.6 The Normal Distribution

I define the normal distribution using parameters g and o without asserting that these
parameters are actually the mean and standard deviation of the distribution. These facts
emerge after the introduction of the standard normal distribution and calculation of its
mean and standard deviation. I do this because I think it is important to make a distinction
between distribution parameters and distribution properties. These may be the same, as
in the normal distribution, but not necessarily so. Symbols can take on any meaning, so
the mere fact that p is used as a distribution parameter begs the question of whether that
parameter is actually the mean of the distribution.

In keeping with the emphasis on modeling, it makes sense to raise the question of how we
can use a normal distribution, which by definition admits all possible outcomes, for a setting
in which negative values are impossible. This is addressed by considering the probability
of negative values arising in a normal distribution, given the numerical values of mean and
standard deviation.
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At the end of the section, I define standard probability intervals, which correspond
roughly to the more common notion of confidence intervals. One has to use the term “confi-
dence interval” carefully, as it properly refers to the question of whether the true mean lies
within a given interval rather than the simpler questions of what fraction of measurements lie
within an interval for a given mean and standard deviation. The use of the term “standard
probability interval” avoids this common confusion.

The problem set includes only a small number of problems for finding probability of a
normally-distributed random variable falling within a given interval. These problems were
once done with tables and required practice, but now they are done trivially with built-in
functions in computer software and calculators. Most of the problems use histograms and
probability density functions to build intuition about normal distributions. Problems 3.6.12
through 3.6.15 address the modeling question of how to tell the difference between data that
represents one normally-distributed variable and data that represents a combination of two
normally-distributed variables with different means. This is a practical matter, as it is often
necessary to decide whether two subsets of data can be combined into one set. Indeed, the
BUTTER.* data file used for several of the problems originally distinguishes two ages of
cattle, but computation of means makes it very clear that this distinction is unnecessary
and I combined them together. Whether distinctions must be made by breed is a more
complicated question addressed in Problems 3.6.12 through 3.6.14. Problem 3.6.15 considers
the same question from a theoretical viewpoint. This problem is very helpful for building
intuition, as it shows a gradual transition from the case where the subpopulations are similar
enough that they can clearly be considered together to the case where they are so different
that the probability density functions show little overlap.

One additional issue is raised in the text and problems but is not addressed here: how
does one decide whether a normal distribution is a good model for a data set? This important
question is largely ignored by elementary statistics books, which focus on theoretical issues
rather than modeling issues. It is addressed in Section 4.2 along with the related question
of how to decide whether to discard outliers in a data set.

3.7 The Poisson and Exponential Distributions

I put the Poisson and exponential distributions together in one section partly because of
their common connection to events occurring over time and partly because neither provided
enough material for a whole section. The focus is on the modeling issue of deciding when these
distributions are appropriate. As with many other topics, the calculations are routine and
largely done by computers, but the results are meaningless without a proper interpretation.

Several of the problems involve characterization of a data set and qualitative examination
of the fit to a distribution. Some of these sets fit a distribution beautifully, while others do
not fit at all well. Problem 3.7.14 develops the idea of using the Poisson distribution to
approximate the binomial distribution. There are a number of rules-of-thumb that one can
find that indicate when the approximation is good. Of course this is somewhat subjective,
and it is far better to offer a formula for error approximation, which allows the user to
decide how much error is tolerable. The formula I present in this problem is based on
an asymptotic approximation for relative error along with an observation that appears to
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connect maximum absolute error with maximum relative error.* The error approximation is
remarkably accurate for the values used in the problem, and it seems to be accurate over a
broad range of parameter values. Problems 3.7.15 and 3.7.16 introduce the negative binomial
distribution, which I felt should be included for the benefit of wildlife biologists although
not in the text itself.

4 Working With Probability

This chapter is the least coherent one in the book. It could not have been otherwise. Many
reworkings of Chapter 2 eventually resulted in its current form, which seems very coherent
to me now. A year from now I may think the order of sections could be improved, however.
There are trade-offs in imposing a linear structure on a multidimensional graph.

In probability, there was a need for sections on descriptive statistics, basic probability,
conditional probability, probability distributions, samples and inferential statistics, and pa-
rameterization of probability models. In early versions, I had the topics in this order, with
the chapter break in the same place as it is now. That made for a nine-section Chapter 3
followed by what was then a very short Chapter 4 of just three sections. In the classroom, I
found the long interlude of three sections on basic and conditional probability to be an intru-
sive break between descriptive statistics and probability distributions, which I felt belonged
together. In the end, I opted to remove conditional probability from Chapter 3, making
the chapters more equal in length and making Chapter 3 highly coherent. Experience with
students has confirmed for me that this is the correct pedagogical decision. No harm comes
from delaying conditional probability, and I believe that instructors who are able to get past
the initial reactions of “You can’t do that” and “That’s not how I learned it” will come
to agree with me. I would even go so far as to say that I would rather scrap conditional
probability for lack of time than to scrap material on probability distributions or sampling.
Instructors anxious to have enough time for conditional probability should skip Section 4.5
and could also opt not to do the Poisson and exponential distributions of Section 3.7. Of
course they can also insert Sections 4.6 and 4.7 into their original location between Sections
3.2 and 3.3.

4.1 An Introduction to Statistical Inference

This section was added in the final revision of the book, in response to a reviewer’s request for
much more material to help students understand sampling. This was certainly an oversight
on my part. All of the other chapters began with at least one introductory section that
explores a topic without getting into the technical details. There was clearly a need for the
same thing in this chapter.

The question to be addressed in choosing a topic for the opening section was “What is the
important intuition that students should get about applications of probability?” Just as the
answer to that question for the modeling chapter was an understanding of the importance

4The details of this approximation are far beyond the scope of the text and the mathematics is outside
the scope of this guide. See the separate document on the Poisson approximation that appears on the book
web site.
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of demographic stochasticity, the answer for this chapter was an understanding that random
does not mean representative. This point has already been made once, in the discussion
of Mendel’s pea experiments that appears in the discussion of Example 3.4.4, where I ob-
served that approximately 1 in 20 biologists repeating Mendel’s experiments would obtain
evidence that was not sufficient to suggest the dominant-recessive combination that figures
prominently in Mendelian genetics.

Where I usually prefer a biological setting in which to introduce a key idea, I chose
a setting from everyday life for this section. The point to be made runs counter to our
intuition, and I felt that it could be made more strongly in a context in which our intuition
is strong. We all have the experience of seeing something that seems unusually rare and
wondering whether there is any significance to its appearance.

Three main points are made in this section and supported by the problem set. First, the
test for a discrete outcome to be considered unusual must be based on the probability of
obtaining that outcome or smaller (if the result is below the mean) rather than the probability
of obtaining that specific outcome. This is a hard point to understand and a hard one to
explain. I have tried to do so with specific examples from the calculations. It should be fairly
easy to explain why the specific probability is inadequate. Where the number of discrete
outcomes is quite large, each of them has a low probability even though some are close to
the mean.

The second main point is brought out by the specific numerical values used in the story.
The initial set of data probably seems convincing to most people, but turns out to be merely
suggestive. The second set of data falls in that gray area where as ordinary humans we are
utterly convinced but as scientists we remain skeptical. At the risk of being overly didactic, I
put the key conclusion in italics: The standard for a result to be considered unusual is much
stricter than the standard needed to arouse suspicion that a result is unusual. In work on
education research projects, I have learned that even professional researchers are often overly
interested in whether a statistical test returns a “significant” result, missing the additional
questions of whether the difference found to be significant is meaningful and whether the
unusual data can be supported by a plausible theoretical explanation. I would sooner accept
something that is significant at the 94% level and backed by theory than something that is
significant at the 96% level and seems to be inexplicable.?

The third main point is the one that drove the choice of example, that random samples
do not have to be representative. A probability of 0.05 does not merely mean that something
is unlikely—it also means that we will see it in one case out of twenty. When we are using
data to inform scientific judgment, we have to keep this lesson firmly in mind; our results
could be anomalous simply because we were unlucky enough to have chosen a random sample
that is not representative. Put another way, a research goal is to obtain a representative
sample, but we have no way to accomplish this goal directly. The best we can do is to obtain
a large random sample. The larger the sample, the more likely it is to be representative,
but the only way to be sure is to repeat that large sample numerous times. Of course this
is not easily done in the real world, but it can easily be done when working with computer
simulations. The problem set provides opportunities for students to do just that. The size
of sample needed to reproduce probability results to four decimal digits is staggering, as

5See Problem 4.4.1 for a specific example.
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the student sees in Problem 4.1.1, where we draw one million numbers from a binomial
distribution and compare the results to the theoretical probability. In Problem 4.1.3, we
test the results of a sample of some given size by collecting a lot of comparable samples and
examining the aggregate results. Of course they never approach the accuracy achieved in
the example with one million samples. In Problem 4.1.4, we determine how large a sample is
needed to reach a given level of confidence that an observation of 2.5% successes is unusual
when 5% is expected. The sample size required for what appears to be an obvious difference
is much larger than most people would guess it to be.

I believe that learning to program a simulation on a computer is a worthwhile skill on its
own. I use software packages to sample a probability distribution or to compute theoretical
probabilities, but not to run simulations. Problem 4.1.5 asks the student to write a very
simple simulation that is a prototype for agent-based modeling. I do not discuss this topic
in the book, but it could be mentioned by the instructor in conjunction with this problem.

Problem 4.1.6 will be inaccessible to most students, but I have included it as one of a
small number of problems to provide mathematical challenges for those students who would
enjoy them or benefit from them.

4.2 Tests on Probability Distributions

Connecting models with data is a recurring theme of mathematical modeling. Chapter 2
features three sections that deal with parameterization and selection for deterministic models.
This chapter features two sections that deal with similar topics for probabilistic models: this
section and Section 4.5. Thematically, these two sections complement each other; I have
placed this section second because it serves the additional purpose of providing a tool for
understanding the central limit theorem, which appears in Section 4.3. Students have a very
difficult time understanding distributions of sample means as distinct from the underlying
distributions. With a quantitative test for normality, we can see how larger samples produce
means that become normally distributed. In Section 4.4 on inferences about populations,
we can use a normality test to support the normality assumption required to relate standard
deviation to probability.

The question of whether a data set appears to come from a normal distribution can not
be resolved in the affirmative, but only in the negative. On the other hand, data that is
not inconsistent with a normal distribution can safely be considered as normally distributed;
hence, there is no great need for an affirmative result.

As in my treatment of AIC, I do not shy away from using results presented without proof,
provided the conceptual basis is clear. The core of AIC is the idea of combining the residual
sum of squares on a graph of y vs x with a measure of model complexity. The specific
manipulation used to combine these quantities and the interpretation of AIC differences
is presented without proof. Similarly, the core of the Cramer-von Mises test statistic is a
residual sum of squares measured on a graph. The specific correction for small sample size
and the corresponding confidence levels are presented without proof.

This section also includes a brief optional discussion of outliers. The most commonly
used test for outliers, Grubbs’ test, is somewhat complicated, so I present a more conceptual
method in the text and defer the more sophisticated test to the problem set.
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Most of the problems on normality testing are routine examples that appear here to jus-
tify the assumption of normality that will be made when the same data sets are investigated
in Section 4.4. Issues of what makes a distribution not be normal are explored in several
problems in different ways. Problem 4.2.5 is a data set that fails the normality test only
because the data is too highly rounded. Problem 4.2.8 is a data set that is exponentially dis-
tributed rather than normally distributed, and problem 4.2.9 looks at uniformly distributed
data and data drawn randomly from a uniform distribution. Problems 4.2.4 and 4.2.10 ex-
plore what happens when two normal distributions are combined into a single data set, the
first using experimental data and the second using theoretical data. Problem 4.2.11 looks at
normally distributed data that is contaminated with data from some other distribution.

4.3 Probability Distributions of Samples

The only way to obtain useful data in the face of demographic stochasticity is to use large
samples rather than individual values. It is therefore essential for biologists to understand
the basic facts of sampling distributions. The subject is difficult because of the need to
clearly distinguish the underlying distribution from the distribution of sample means. In my
experience, the best way to get students to understand the relationship between individual
values and sample means is to have them write computer simulations to compute sample
means. This is the approach taken in this section. We have the simple theory to see
how the standard deviation changes with sample size, but the change from an underlying
distribution shape to a normal distribution is mysterious. Computer simulations show the
gradual progression of the distribution as it becomes less skewed. Analytical evidence using
the Cramer-von Mises test complements the visual evidence from histograms. I spend a day
in class guiding the students through the process of writing the computer simulation, and
then I assign problems using the simulation to be done at home. Most, but not all, of the
problems in this section are of this type. Problem 4.3.1 asks students to prove the theorem
about means and standard deviations for sums of distributions. Problem 4.3.2 requires only
means and standard deviations. Problem 4.3.8 analyzes a wildly inaccurate statement about
probability that I heard on a news report from an otherwise trustworthy source, NPR. I
posted the comment, “Your story on climate change contained a wildly inaccurate statement
equating one standard deviation to rolling snake eyes three consecutive times. In actual fact,
a sum of 6 on six dice represents 3.6 standard deviations from the mean. It is unfortunate
for NPR to inadvertently make a negative contribution to mathematics education. Not to
worry—I am writing a mathematics book and will make a positive contribution out of your
error by using it for an exercise.” Parts d and e of that problem explore the relationship
between the granularity of a mean of discrete sums and the closeness to normality.

4.4 Inferences About Populations

This section presents the key probability results used in inferential statistics, but without
emphasizing the 5% and 1% significance levels. Given the focus on modeling, I pay par-
ticular attention to the question of whether an approximation valid in the limit n — oo is
useful for finite n. This is particularly relevant in the probability result for inferences about
proportions. I chose not to present a lot of detail in the discussion here, but the individual
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instructor might want to add to the text presentation. The issue is that discrete distribu-
tions are granular. The probabilities P [X < 5] and P [X < 6] are the same in a discrete
distribution because there is no possibility of an outcome less than 6 and greater than 5. In
a normal distribution, these probabilities differ by N(zg) — N(z1), where z;, and zg are the
z values obtained from x = 5 and x = 6, respectively. The magnitude of this difference is a
measure of the granularity of the discrete distribution.

The problem with granularity is that we could approximate B(5) by either N(z.) or
N(zr), depending on whether we interpret B(5) as P [X < 5] or P[X < 6]. Theorem 4.4.2
is based on the assumption that the best strategy is to use N(zj/) instead, where zy; is
the z value corresponding to the intermediate point = 5.5. While this theorem is almost
universally used for inferential statistics, Problem 4.4.10 clearly illustrates its weakness.

Most of the problems combine basic calculations from the two theorems with more so-
phisticated questions designed to give students experience in interpreting probability results
and a general sense of how more data allows for stronger conclusions.

4.5 Estimating Parameters for Distributions

The connection between experimental and theoretical science was introduced in Section 2.2
and further explored in the three sections on empirical modeling. We return to that theme in
this section with a brief look at the problem of using experimental data to obtain parameter
values for probability distributions. After the standard material on confidence intervals for
normal distributions, I present a standard example of finding the success probability for a
binomial distribution and then turn to a more complicated situation of an ecologist who
wants to estimate the size of a population that cannot be counted directly. The mark-and-
recapture method is of great interest to ecologists, but probably not to anyone else, and it
could easily be omitted.

Problems 4.5.7, 4.5.8, and 4.5.12 have the students analyzing data they collect for them-
selves. I recommend doing at least one of these for classes with an emphasis on modeling.
People do not have good natural intuition for probability and statistics, and the best way to
develop intuition is to collect and analyze data. Problem 4.5.6 is of particular importance for
understanding likelihood functions. The problem deals with a very large sample of Bernoulli
trials; the problem guides students to the discovery that the likelihood for a normal distri-
bution is the probability density function, suitably scaled. This is what allows us to make a
connection between confidence intervals and values of the likelihood function.

4.6 Conditional Probability

This section presents a standard approach to the subject of conditional probability, albeit
rather late in the book for many people’s taste. In my experience, students find conditional
probability to be conceptually more difficult than probability distributions. The idea that
new information changes the probability of something that has already happened is unnat-
ural, as seen in discussions of the Monty Hall problem that occur every few years. This is
the problem made famous by the old television game show, “Let’s Make a Deal,” which I
am old enough to remember watching. In one recurring segment, a contestant guessed which
of three doors shielded the one real prize. The host, Monty Hall, then opened one of the
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other doors to reveal a joke prize. The contestant was then given an opportunity to change
doors. It is not obvious that doing so confers an advantage, and not all contestants did. I
recommend doing this problem in class with students because it offers a nuanced example of
conditional probability.

A conceptual way to reason through the Monty Hall problem is to appreciate that re-
vealing the joke prize behind one door cannot change the location of the real prize. The
probability that the initial choice was correct was initially 1/3 and remains so. This proba-
bility is independent rather than conditional. Opening a door does change the probability
that the real prize is behind it from 1/3 to 0, not because the prize has moved but because
we can see it was never there. We have new information about that door, but we don’t have
new information about our original choice. So far, so good. The hard part is seeing that
the total probability must be 1, so the probability of the real prize being behind the third
door must have gone up from 1/3 to 2/3. This probability is conditional on the opening of
the second door. This is where our intuition fails. How can seeing what is behind door 2
change the probability of the prize being behind door 3 and not the probability for door 17
Why aren’t the new probabilities both 0.57 If students can appreciate why the probability
for one door is independent and the other conditional, then they will have made progress in
understanding the concept of conditional probability.

The mechanism that makes the probability of the selected door stay at 1/3 and the
unselected door go up to 2/3 is subtle. Opening door 2 provides information about door 3
and not door 1 because Monty Hall could have opened door 3 if it shielded a joke prize, but
he didn’t. He would not have opened the door chosen by the contestant at this time anyway,
so his choosing not to open it provides no information. His choosing not to open door 3
provides evidence that increases the probability of it being the correct one.

I find the conceptual argument very convincing, as will most mathematicians, but most
students remain skeptical. I suggest having them detail the three cases. We can assume
without loss of generality that the contestant has chosen door 1; if not, just put new labels
on the doors to make it so. The three cases correspond to the three possible prize locations.
In each case, we can see whether switching is successful. For example, if the prize is behind
door 1, the host opens either door 2 or door 3 and the player wins by standing firm. If
the prize is behind door 2, the host opens door 3 and the player wins by switching to door
2. Similarly, if the prize is behind door 3 the player wins by switching. Two of the three
possible scenarios reward the switching strategy.

4.7 Conditional Probability Applied to Diagnostic Tests

Many of my students are in pre-medicine programs, and for them it seemed particularly
useful to discuss the mathematics of diagnostic tests, which is an application of conditional
probability. The standard treatment of this material is to present Bayes’ formula as a
theorem. Mathematicians may feel that this is satisfactory because they present the proof
to their students, but I doubt that very many expect their students to be able to explain it
in their own words. As a modeler, I always prefer a conceptual approach to a formula-driven
approach. Here, I present a simple tabular method for solving problems in which we know
the conditional probability in one direction and want the conditional probability in the other
direction. The key idea is that the joint probabilities provide all the necessary information.

24



A two-step approach is to use the given information to obtain all four joint probabilities and
then use the latter to obtain any other probabilities of interest.

5 Dynamics of Single Populations

This chapter develops the mathematics of discrete and continuous models for a single dy-
namic quantity. We begin with separate presentations of numerical methods for simulations
and graphical methods of analysis before combining both model types in a single section
that does linearized stability analysis. We progress from simulation to graphical methods
to analytical methods because simulations serve as an informal introduction and graphical
methods provide a starting point for the development of analytical methods. Combining
discrete and continuous models into a single chapter allows us to draw a sharp contrast
between the graphical methods for the two types while also emphasizing the very close con-
nection between the analytical methods. Three lessons follow from these juxtapositions.
First, graphical methods for continuous models are very simple, while graphical methods for
discrete models are complex. In later chapters, readers will see that there are no graphical
extensions of cobweb analysis to multivariable systems, while phase line analysis extends
naturally to nullcline analysis in the phase plane. Second, graphical methods are superior
to analytical methods for single dynamic models. Cobweb analysis can suggest stability of
cycles of length 2™ with much less effort than analytical methods, and both cobweb analysis
and phase line analysis can demonstrate global stability. Third, instability is driven by move-
ment away from a potential long-term solution in both cases, but only in discrete models can
instability be driven by rapid movement toward such a solution. Rapid movement toward an
equilibrium in a continuous model causes stiffness, which complicates simulation but does
not affect stability. These broad themes should be emphasized throughout the chapter.

Analytical solutions are generally not in the toolbox for mathematical modeling with
dynamical systems. Of course they can be used for any single autonomous differential equa-
tion, but the solution formulas provide no results of value that could not be obtained more
easily without them. While methods for solving differential equations are interesting from a
mathematical point of view, they serve biologists merely as a barrier to dynamical systems
analysis and a reason for employing a discrete model where a continuous model would be
better.

5.1 Discrete Population Models

This section introduces discrete population models using the solution formula for the discrete
exponential model and simulations for other models. Simulations also provide a context for
the definition and an informal discussion of stability. Most of the problems in this section
use simulations to introduce models that will be analyzed in the problem sets for Sections
5.2 and 5.5. Problem 5.1.6 develops a model to explore the behavior of 2-cycle solutions of
the discrete logistic equation. The algebra is complicated, but there are also simulations that
use several growth rates to illustrate possible solution behaviors. These simulations could be
run without the accompanying theoretical analysis. This problem is of more mathematical
interest than biological interest. Discrete models contain the implicit assumption that life
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events are synchronized, and it is this synchronicity that makes the instability of the discrete
logistic map possible. Continuous models should be used for populations whose life history
does not impose synchronicity, both to avoid instability caused by model choice and because
the analysis of continuous models is more powerful.

5.2 Cobweb Analysis

Cobweb analysis is a useful graphical technique for discrete dynamic equations. While most
of the information it provides can be obtained by analytical methods, it has the advantage
of being intuitive rather than strictly formal.

The key to understanding cobweb analysis is separation of the processes of construction
and analysis. I begin with a detailed description of the construction process along with
an explanation for why the method does what it does. Once the reader understands the
construction, it is an easy matter to understand the analysis.

Mathematicians might be tempted to skip this section, but I recommend against doing
so. I use cobweb analysis to motivate the later development of linearized stability analysis.
I also find that cobweb analysis is a useful conceptual tool for explaining why rapid change
can lead to instability in discrete models but not continuous models.

5.3 Continuous Population Models

Mathematicians can help biologists overcome their natural reticence toward continuous mod-
els by making them seem less mysterious. This requires us to focus on interpreting differential
equations as prescriptions for calculating rates of change, which in turn means that we need
to emphasize graphical methods of analysis and simulations while deemphasizing analytical
techniques for finding solution formulas. The only solution formula used in this section is
that for exponential growth, which can be obtained from a table of derivatives without need
for a solution method. Other equations are studied using Euler’s method for simple simula-
tions. This method is discussed in the text because it has some conceptual value, and it can
be used for simulation on today’s fast computers by selecting a very small step size. For any
extensive amount of simulation, it is far better to use the classic Runge-Kutta method of or-
der 4. This method is summarized in Appendix C without the mathematical derivation that
is far beyond the scope of this book. The method has the advantage of being almost as good
as methods used for commercial software while also being simple enough to code manually.
I do not recommend using commercial software to run differential equation simulations. It
is much easier in any computer programming environment to write one’s own code for this
method than to track down and implement a professionally written subroutine, and it also
removes the mystique from using tools that are beyond the students’ understanding.

The renewable resource model presented in Subsection 5.3.4 is somewhat complicated,
but I believe its richness makes it well worth the effort. It serves as a context for several
examples and problems and it can be used to explain a number of real biological phenomena.
It also illustrates the continuing importance of technical algebra skills, as contrasted with
many other analytical skills whose importance has waned with technology. Computer algebra
systems do algebra by brute force and are incapable of obtaining results that require any
subtlety. The careful rearrangement of the equilibrium equation in Equation 5.3.11 results
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in the illustration of equilibrium solution cases in Figure 5.3.3. A similar technique is put
to use in some of the problems of the section. These problems require the reader to perform
algebraic manipulations, but they do not require the reader to determine the appropriate
manipulations to perform. Some readers may see enough of a pattern to be able to do similar
work on their own, but this is not required in this book.

Many of the problems in this section explore the properties and uses of the renewable re-
source model (5.3.8). Others introduce the Schaefer fishery model, the Holling type 2 version
of the renewable resource model, and a model of lake eutrophication. The eutrophication
problem is slightly more complicated than the Holling type 3 renewable resource model and
occupies almost two full pages of the book for its presentation. I would not use it with most
classes, but it is an excellent case study for students who have strong mathematical skills
and an interest in environmental issues. If I use it with a class, I either make it (along with
follow-up problems in Sections 5.4 and 5.5) an extended project or else I dedicate at least
one class period to working on it in groups. Of course this takes time away from presentation
of new material, but this may be an acceptable trade-off between depth and breadth.

5.4 Phase Line Analysis

Phase line analysis is a simple technique that relies entirely on the interpretation of an
autonomous differential equation as a prescription for a rate of change in terms of the state
of the system. It is a simple matter of identifying intervals, marked out by equilibrium
values, that distinguish increasing population from decreasing population, with results for
global stability as well as local stability. This comparison of this section with Section 5.2
illustrates the general fact that continuous models have simpler properties than discrete
models, in spite of their equations being less intuitive. Because motion on the phase line is
continuous, it is impossible for the state of the system to jump across an equilibrium value. In
contrast, motion on the state curve of a cobweb plot is done in large jumps, making possible
a sequence of jumps that bypass a fixed point in alternate directions without ever being
trapped in a domain of attraction. This behavior requires two dimensions for illustration,
making the cobweb technique much more complicated than the phase line and ruling out
the possibility of an extension to discrete systems of two variables. In contrast, students can
appreciate while studying the phase line that it should be possible to use two phase lines at
right angles to display systems of two continuous dynamic variables. (Motion in the plane
generated in this way can occur in a variety of directions, so it is not immediately obvious
how such a phase plane could be used.)

The problem set for this section is quite limited because of my preference not to include
technical exercises for modeling topics. The phase line is too simple to require much practice
for its mastery. There are a few problems in Chapter 7 that ultimately come down to analysis
of single differential equations, and these will of course make use of phase line analysis.

5.5 Linearized Stability Analysis

The methods for linearized stability analysis are derived from the graphical methods of
cobweb analysis and phase line analysis by connecting the visual idea of zooming in on a
fixed point or equilibrium point with the analytical idea of applying a linear approximation
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when arbitrarily close to a given point. As generally presented, the stability requirements
for discrete and continuous systems seem to have nothing in common, but there actually is
an important connection that is revealed by writing discrete models as equations for rates
of change rather than new amounts. With similar forms for the types of equations, we see
that one of the stability requirements for discrete equations is identical to the requirement
for continuous equations that the solution must be attracted to the equilibrium point (fixed
point in the discrete case), while the other requirement is necessary to rule out the possibility
of instability resulting from an attraction that is too strong. As we saw in graphical analysis,
too strong an attraction matters in the discrete case and not the continuous case, so naturally
there is an additional requirement for stability in discrete equations.

The problem set for this section consists primarily of problems that complete investiga-
tions started in earlier sections. In each case, the student is asked to determine stability
results and confirm that they are consistent with results obtained using simulations and
graphical methods. Problem 5.5 determines the requirements for stability of a 2-cycle for
the discrete logistic equation; this serves as an excellent example of what can be accom-
plished by stability analysis, but the calculations are more complicated than what I would
expect from most biology students.

6 Discrete Dynamical Systems

This short chapter presents discrete linear dynamical systems and the matrix algebra neces-
sary for their analysis. It was originally written before the rest of the book as a stand-alone
module for the Research Skills in Theoretical Ecology that my biologist colleague Brigitte
Tenhumberg and I created for an NSF-funded undergraduate research program. The stu-
dents in that course were primarily pre-freshman biology majors. They were generally strong
students, but their background in mathematics was limited to what they had seen in high
school. The purpose of the course was to provide students with an authentic theory-and-
experiment research experience. The overall research program is described in Example 2.2.3,
and the full course is described elsewhere.® The research focused on the population dynamics
of aphids, and we used a stage-structured linear dynamical system model.

The reader will no doubt wonder why discrete nonlinear systems do not appear in this
chapter. This topic appears in Section 1 of Appendix A instead, having been placed there
for two reasons. Discrete nonlinear systems are more complicated than continuous linear
systems, so it makes good pedagogical sense to do the continuous ones first. I also wanted to
put this topic in the appendix to deemphasize it. Discrete models are often used in settings
more suitable for continuous models. I sometimes see the argument that discrete models
should be used when the data is discrete. This is incorrect. The purpose of a model is to
capture the relevant dynamics of a real-world settings, which includes dynamic properties
that are not measured as well as those that are. Discrete models should only be used for
populations where life history events are synchronized, such as annual plants with seed banks
or fish that spawn at the same time each year. My advice is that the material on discrete

6See Ledder, Tenhumberg, and Adams, An interdisciplinary research course in theoretical ecology for
young undergraduates, in Undergraduate Mathematics for the Life Sciences: Models, Processes, and Direc-
tions, ed. Ledder, Carpenter, and Comar, Mathematics Association of America, 2013, Chapter 10.
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nonlinear systems should only be studied after mastering the material in Chapter 7.

There are two additional discrete topics that could have been put in Chapter 6, but were
placed in Appendix A instead: Markov chain models and Boolean models. I put these in the
appendix for pedagogical reasons; a reader who does not have enough time for these topics
and Chapter 7 should choose the latter so as to have a thorough introduction to dynamical
systems.

6.1 Discrete Linear Systems

The standard pedagogical order in mathematics is definition-theorem-proof-application. This
has the advantage of mathematical clarity, but is of dubious pedagogical value. There are
infinitely many mathematical definitions that could be made; in practice, we only define
things that we already know will be useful. On pedagogical grounds, we should start by
discovering something useful through simulations or thought experiments, and only then
should we develop the formal mathematics. This is the philosophy that drives the material
in this opening section of the chapter. We start with simulations of a simple discrete linear
system. By choosing just the right quantities to graph, we discover the biological fact that a
discrete linear system has an asymptotic growth rate and stage structure. Mathematically,
these quantities are the dominant eigenvalue and the associated eigenvector. Graphs of
ratios of successive populations converge to the dominant eigenvalue, and graphs of ratios of
populations of various stages converge to fixed ratios that represent the eigenvector.

The theory behind the methods for finding eigenvalues and eigenvectors is hard to under-
stand because there is no simple concept represented by the determinant. The calculations
for eigenvectors are additionally complicated by having an underdetermined system. These
difficulties can be overcome for small systems by a careful conceptualization of the problem.
We get the standard eigenvalue problem by looking for a vector whose proportions are not
changed by the matrix multiplication. An equally valid conceptual framework is to hypoth-
esize a stage structure that is unchanged by matrix multiplication. The assumption that a
set of unknown initial conditions has this property leads to expressions for the populations
at time 1, which must be equal to those obtained by matrix multiplication. The problem is
simplified by the arbitrary assumption that one of the stages has initial population 1. We
cannot do this in a general setting because there is no way of knowing whether an eigenvector
has a component of 0. But in the context of population models, the matrices are nonneg-
ative and the Perron-Frobenius theorem guarantees that the eigenvector for the dominant
eigenvalue is strictly positive; hence there is no loss in generality in arbitrarily taking one of
the components to be 1. This simplifies the mathematical problem by reducing the number
of unknowns so that the system is no longer underdetermined. Mathematicians may object
to the use of a method that is not fully general; my justification is that I am not advocating
the method for practical use but merely using the method to build intuition. In a similar
vein, we can obtain the dominant eigenvalue approximately by graphing the characteristic
polynomial rather than by a formal numerical method.

Two of the problems are case studies that are worth spending extra time on for a course
that emphasizes modeling. Problem 6.1.9 is based on a paper produced by a Research
Experience for Undergraduates team at the University of Nebraska. Problem 6.1.10 is an
exercise that was part of the Research Skills for Theoretical Ecology course mentioned in

29



the introduction to Chapter 6 of this guide. Real science begins with observations and
experimental data, not a verbal narrative that summarizes what has been learned from this
beginning, as appears in most modeling problems. BUGBOX-population was written as a
way of giving students a chance to generate their own observations and data, so that they
would have to create the narrative as well as the model. I have used this problem many
times with great success. I spend a class period guiding the students through part (a), and
then I have them do parts (b) and (c) outside of class. I spend a second class period helping
the students write the computer program to do parts (d) through (f), and they finish the
problem at home.

6.2 A Matrix Algebra Primer

Section 6.1 presents an informal approach to analysis of discrete linear systems, and Section
6.3 repeats the analysis using the mathematics of matrix algebra. This section develops the
matrix algebra background necessary for Section 6.3, focusing on the properties of homoge-
nous linear algebraic equations.

6.3 Long-term Behavior of Linear Models

Having previously discovered the existence of an asymptotic growth rate and stage structure
for a discrete linear system and learned about the solution structure for homogeneous linear
systems, the reader is now ready for the formal mathematics of the eigenvalue problem. This
section is similar to that in any linear algebra book except that it is limited to nonnegative
matrices, for which the dominant eigenvalue is always positive and the associated eigenvector
is positive as well. This allows us to avoid the complications of complex eigenvalues and
multiple eigenvalues. The point of this section is not to make the reader an expert on the
eigenvalue problem of matrix algebra, but to give the reader enough knowledge to be able
to manage any matrices that arise in population models.

For those interested in mathematical modeling, there are four extended case studies in the
problem set for this section. Problem 6.3.9 looks at a model for a plant with a complicated life
history, which appears in Hal Caswell’s book on matrix population models. This problem is a
good example of how much modeling can accomplish if done carefully. The model presented
by Caswell is quite complicated, but the work in this problem results in a much simpler model
that produces almost identical results; this is of biological significance because it helps us
distinguish between model features that are critical and ones that make very little difference.
Problem 6.3.10 is the modeling done in the Research Skills for Theoretical Ecology course
mentioned earlier. Problem 6.3.11 is another investigation that grew out of a Research
Experience for Undergraduates project. I have simplified the model to make the analysis
easier for students, but the overall result of the analysis is unchanged. The conclusion is
worth seeing for students interested in wildlife conservation—mnot all endangered species can
be saved. There is little doubt that the Serengeti cheetah will become extinct in the wild.
Problem 6.3.12 examines the population dynamics of loggerhead sea turtles that appears
in one of the best-known papers on a wildlife conservation issue. Here we see how it is
sometimes possible to make a big difference in survival chances for an endangered species,
provided the data and modeling are able to identify a critical intervention.
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7 Continuous Dynamical Systems

The typical reaction from mathematicians looking at this chapter is that it is too difficult
for students with only a limited calculus background. In my view, this is because the
topics covered in the chapter are generally deferred to a differential equations course taught
to students with a background that includes the full calculus sequence and a course in
matrix algebra. This background is needed for a full development that includes all analytical
methods, but a lot of useful work in dynamical systems can be done without them. It is not
necessary to obtain analytical solutions even for linear systems. It is not even necessary to
calculate eigenvalues, as we can obtain the needed qualitative results merely by examining
the entries in the Jacobian matrix. Nor is any background in multivariable calculus necessary,
as students with a solid understanding of parameters have no difficulty computing partial
derivatives.

The material does make some demands on students, but those demands are primarily on
algebra and graphing skills rather than calculus or matrix algebra skills. The only calculus
skills used in the chapter are ability to interpret a differential equation as a statement about
a rate of change and ability to differentiate simple functions of more than one variable.
Similarly, only the minimal matrix algebra skills covered in Chapter 6 are necessary as
background. In practice, my students have done very well on this material, particularly
biology graduate students who have a limited mathematics background but a good intuitive
feel for graphs.

While the other chapters in the book have one section that serves as a relatively informal
introduction to the chapter theme, this chapter has two such sections. Both showcase impor-
tant modeling techniques; additionally, the graphical and analytical techniques developed in
the main part of the chapter (Sections 7.3 through 7.5) require introductory examples with
different features.

Most of the problems in the first two sections introduce models that will be analyzed in
the problem sets of later sections. Instructors should look at the list of extended case studies
that appears at the beginning of Chapter 7 before choosing the problems to use in the first
two sections. There should be enough variety to set up problems in later sections, but it is
important not to do too many, as each one requires much more time and effort than typical
textbook problems.

7.1 Pharmacokinetics and Compartment Models

Compartment models made a brief appearance in Chapter 2 and are dealt with in much
more detail here. The primary example of the section considers a generic pharmacokinetics
model using a narrative of lead poisoning rather than drug interaction. One reason for using
this narrative is that the parameter values are such that we can identify a two-component
model that produces results almost identical to the three-component model. Mathematical
treatments of dynamical systems usually deal strictly with the problems as originally defined,
but mathematical modelers should always be on the lookout for approximations that simplify
without introducing much quantitative error, as in the teasel model introduced by Caswell
and studied in detail in Problem 6.3.9. Both graphical and qualitative methods of analysis
are complicated by extra dimensions, so reducing the dimensionality of a problem makes
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it much easier to study. In the lead poisoning model, I use simulation results to identify
the correct simplification and then nondimensionalize the simplified model. The preferred
method is to do the nondimensionalization first and use the parameter values to motivate
the simplification. This is deferred to a later section, but the calculations needed to derive
the simplified model are the subject of Problem 7.1.1. The remaining problems in the section
introduce several epidemiology models. In this section, students are asked only to interpret
and nondimensionalize models that will be analyzed in later sections.

The choices given for scales to use in nondimensionalization in both this section and the
next are not always obvious. In some cases, I have explained them in a footnote, while I
have asked students to suggest explanations in other cases. The choices for dimensionless
combinations of parameters are more subtle. I have yet to see a treatment of scaling in
any book that does a good job explaining these choices. Usually the explanation is based
almost entirely on dimensional arguments, which offer no explanation at all. Dimensional
arguments merely identify an infinite set of possible scales; they do not rule out bad choices.
Scales should be based on a combination of representative sizes and algebraic convenience,
and subsequent parameter combinations should be chosen first to make as many of them
factor out of a differential equation as possible, then to make as few of them large or small
as possible, and finally for algebraic convenience. The instructor who is not an expert in
asymptotic analysis should realize from this one-sentence summary that the correct choice of
scales and dimensionless parameters is far beyond the scope of students at this level. I could
not attempt to teach students to be expert modelers, but it was reasonable to expect them
to be able to do the mechanics of nondimensionalization and to appreciate the advantages
of the correct choices made by an expert.

7.2 Enzyme Kinetics

Enzyme kinetics is a natural choice for an example of a dynamical system. Many of the
students in my class are biochemistry majors, for whom enzyme kinetics is an important
subject. At the time they take the course, these students have probably heard of the subject
from an introductory biology course, but will not have seen it discussed from either a chemical
or mathematical point of view. Even advanced biochemistry students familiar with the
Briggs-Haldane approximation (usually incorrectly attributed to Michaelis and Menten) will
have no idea where it comes from. Deriving something that students have had to take for
granted gives them a great lesson in the power of mathematics. The enzyme kinetics model
is another illustration of the benefits of a proper nondimensionalization using appropriate
scales for the variables. Because of differences in initial concentrations and reaction rates,
the two differential equations have intrinsic time scales that are considerably different. With
a correct choice of scales and dimensionless parameters, the dimensionless system has a
small parameter that factors out of one of the derivatives and can therefore be written on
the left side of the equation, as in Equation 7.2.11. The presence of this small parameter
provides a mathematical justification for the assumption that the corresponding equation
is quasi-steady on the long time scale. In fact, the other equation is quasi-steady on the
short time scale because changes encoded in the faster equation happen too quickly for the
changes encoded in the slower equation to accumulate. The effect of having two time scales is
demonstrated numerically in Figure 7.2.1 before being treated analytically in Section 7.2.3.
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The problems serve several different functions. The first four supplement the text material
on enzyme kinetics. Four of the remaining problems introduce models that will be used as
case studies for the sections that follow. Of these, Problem 7.2.6 stands out as different
from the other three. It turns out that standard analysis methods for dynamical systems
are neither necessary nor possible for this model. The only readily apparent clue for this is
that the equilibria for the system are not isolated. As in Section 7.1, the choices of scales
and dimensionless parameters is not always obvious, and students should not be expected to
make these choices themselves. In some cases, it is reasonable to ask them to explain why
one set of choices is better than another.

7.3 Phase Plane Analysis

The phase plane is a natural extension to two dimensions of the powerful phase line technique.
Graphical analysis in the phase plane uses nullclines, which are curves on which one of the
two dynamic variables is constant. Phase line plots always provide conclusive evidence
of domains of attraction because movement in a one-dimensional world is highly restricted.
Nullcline plots can be more or less revealing of system properties, depending on the extent to
which the nullclines restrict the more extensive possibilities of movement in two dimensions.
Students must learn some subtleties to master nullcline analysis, but this is not overly
difficult. Nullcline arguments can often be made with parameter values restricted to intervals
rather than specified as numerical values. This is necessary if the results are to apply to
large regions of the parameter space rather than being limited to specific examples.

The Michaelis-Menten system from Section 7.2 is an ideal first example for nullcline
analysis because the system of nullclines is much simpler than those for the predator-prey
systems commonly used as first examples. I prepare students for nullcline analysis by first
using the phase plane merely as a device for turning simulation results into an animated
graph of the system state. It is a natural extension to ask what we can say about solution
curves in the phase plane without having simulation results to work with.

Most written descriptions of the process for constructing nullcline plots initially focus
on the nullclines rather than the regions bounded by them. In my experience, students
find it easier to determine what I call a compass quadrant in a region than to determine
the direction for the heads on the arrows located on a nullcline. They do better when we
teach them to start with one region, usually near the origin. Once we know the correct
compass quadrant for one region, we can work our way around the plot with a combination
of nullcline arrows and compass quadrants. This is tricky for the Michaelis-Menten system
because nullclines pass through the open first quadrant into the origin. However, it works
nicely in most nullcline plots, such as that of Figure 7.3.5. In that example, we can look at
linear approximations near the origin to determine that the compass quadrant is southeast.
This means that the arrows on the nullcline boundaries for the region must point either
down or to the right. It is easy to distinguish these, as the nullclines have already been
identified as to type. When I draw a nullcline, I immediately add vertical or horizontal line
segments without arrowheads. I then start with compass quadrants and add arrowheads to
the nullcline ticks by working my way to those ticks through the adjoining regions.

The conclusions that can be drawn from nullclines depend on the topological properties of
the flows across them. A no-egress region traps solution curves in a two-dimensional analog of
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the way solution curves are always trapped in the one-dimensional phase line. Absent any no-
egress regions, strong conclusions about stability of equilibria cannot be drawn. Nevertheless,
nullclines are in a sense more powerful than linearized stability analysis; when stability is
proven by a nullcline plot, the stability is clearly global for a portion of the phase plane.

Problem 7.3.1 exhibits a system in which the only parameter represents a ratio of time
scales, leading to a family of problems with a common nullcline plot but parameter-dependent
stability. This illustrates our inability to draw stability conclusions from nullclines in the
absence of no-egress regions. Without analytical methods, we can only determine the sta-
bility by numerical simulation; the problem is completed in the next section with analysis of
the Jacobian matrix.

7.4 Stability in Linear Systems

Two sections are devoted to the analytical technique for local stability analysis. In this
first section, we consider only linear systems, such as the lead poisoning model from Section
7.1. Thus, the use of eigenvalues to determine stability appears in this section, while the
linearization component of stability analysis is deferred to the next one. Eigenvalues are
sometimes the easiest path to stability results, but often it is easier to work directly with the
system matrix by means of the Routh-Hurwitz conditions. For some reason I do not know,
many treatments of stability analysis in texts only present the eigenvalue method. This may
be a case of mathematical bias against certain methods, as I have noted in earlier chapters.
Here there does not seem to be any reason for such bias, as the theorem that justifies the
Routh-Hurwitz conditions is easy to prove in the 2 x 2 case and not overly difficult in the
3 x 3 case. Perhaps the method is overlooked by some mathematicians because it does not
scale up to higher dimensions the way the eigenvalue method does. This is an argument
for including the eigenvalue method rather than an argument for discounting the Routh-
Hurwitz method. Good modeling practice can often reduce larger systems to smaller ones,
and any system of three components is easy to analyze with the Routh-Hurwitz conditions.
Higher-dimensional systems require more conditions and more work to check them, but it is
also more difficult to find the eigenvalues without specifying all parameter values.

The problem set for this section is quite limited because very few real biological models
are linear. It is important not to spend too much time on this section. It should be seen
primarily as background for the following one.

7.5 Stability in Nonlinear Systems

This section provides the principal tool for determining local stability of systems, which is
the eigenvalue analyses of the Jacobian matrix evaluated at the various equilibria. Again,
it is usually more efficient to use the Routh-Hurwitz conditions rather than to compute the
eigenvalues, the exception being the case where there are enough zeros in the Jacobian to
decouple the eigenvalue problem into smaller dimensional components. There are usually
one or more equilibria in which the eigenvalues can be determined by inspection.

The problem set consists primarily of case studies that were begun in Sections 7.1 and
7.2. Some are quite detailed, and instructors may want to assign only parts of problems.
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7.6 Primary HIV Infection

I changed my mind several times about whether my treatment of the classic Perelson HIV
model should be written in the text as a complete case study or broken into components
and placed in the problem sets. I finally decided to place this particular case study in the
text for two reasons. First, there are plenty of other case studies broken into components,
so there was no great need for another. Second, this case study brings together all of the
themes of the chapter into one grand summary. I often find that I can improve on published
analyses by applying modeling techniques not used in the original investigation. These
minor improvements are not publishable as papers because they produce no new results,
but it seems to me that they are worthy of publication in some venue because they are
simpler than prior treatments. I consider it to be analogous to papers that consist of new
proofs of previously-proven theorems, which are sometimes judged worthy of publication on
pedagogical or aesthetic grounds.

Because my treatment of the HIV model is intended as a complete case study, there
is limited scope for problems. Instead, I have crafted a collection of problems based on
another physiological model dealing with the immune system. I discovered this general
area of modeling in a talk by Angela Reynolds, the lead author of the paper from which
these problems were drawn. Where almost all other examples in the book are concerned
with systems that are completely known, these problems are concerned with a system that
remains a topic for active research. The models presented in the problems are reduced
versions of models presented in the Reynolds et al paper, which are all reductions of a full
immune system model. Comprehensive models are obviously desirable, but there is also a
place for simplified models that examine subsystems of larger systems.

A Additional Topics in Discrete Dynamical Systems

The three topics that appear in this appendix could have been placed in Chapter 6 instead.
I did not do so for various reasons. Section A.1l is analogous to Section 7.5 on continuous
nonlinear systems. However, the mathematics of discrete systems is more complicated than
that for continuous systems; in particular, graphical methods are weaker or absent and
stability conditions are more complicated. Consequently, discrete models should be used
only when rendered necessary by synchronization of life history events in a population. The
fact that data is frequently collected at discrete times is not an argument in favor of discrete
modeling. Indeed, my colleague Bo Deng argues convincingly that it is best to choose random
times for data collection so as to avoid effects that are mere artifacts of the collection scheme.
Because of these difficulties, it makes good pedagogical sense to study continuous nonlinear
systems before discrete nonlinear systems. The same argument does not hold for linear
systems, since the matrix algebra methods that arise naturally with discrete linear systems
are needed for continuous linear systems.

The remaining sections are on topics that are peripheral to the central theme of Part III.
I included these topics for the benefit of those readers who want an introduction to them,
but it seemed unwise to allow their placement in Chapter 6 to interrupt the logical flow of
the dynamical system narrative.
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A.1 Discrete Nonlinear Systems

Chapter 7 features three sections on analysis of continuous systems, while the appendix
contains but one section on analysis of discrete systems. Section 7.3 contains graphical
analysis for which there is no counterpart in discrete mathematics, except in the sense that
Boolean models can be thought of in graphical terms. Two sections were needed for linearized
analysis because of the need to present material on both the analysis via eigenvalues and
the construction of the Jacobian matrix for a nonlinear system. Only one section is now
necessary for linearized analysis of discrete systems because of the presumption that the
reader has learned about linearization and the Jacobian in Section 7.5. Readers who prefer
to disregard my advice to study continuous systems first will need supplement Section A.1
with these topics.

The material in the section is generally similar to that in Section 7.5 aside from the
inclusion of the Jacobian as a new topic in the latter. It is somewhat harder to obtain general
results for discrete systems with arbitrary parameter values, but it is not impossible if the
systems are small. Most of the examples in this section and its problem set are systems of
just two components. We can find the eigenvalues for these systems to determine stability;
alternatively, we can use the Jury conditions, which are analogous to the Routh-Hurwitz
conditions for continuous systems, albeit a little more complicated.

A.2 Markov Chains

I wanted to include one topic in the area of bioinformatics, since this is a an important area
where mathematics is used for biology. I chose the problem of determining phylogenetic
distance because it uses matrix methods developed earlier in the book and because the
biological question of how closely species are related is of general interest. The presentation
of Markov chain mathematics is focused on the specific problem of determining phylogenetic
distance using the Jukes-Cantor model, which is the simplest of the possible models of
genetic mutation. The Markov chain concept is simple enough, as is the general idea that
phylogenetic distance is greater than total genome change because some mutations reverse
other changes, but the calculations necessary to produce the final result are complicated. I
recommend omitting that portion of the section unless the students have very strong algebra
skills.

A.3 Boolean Algebra Models

I also wanted to include a brief introduction to Boolean algebra models, and I eventually
decided to place it in the Appendix so as not to interrupt the flow of the dynamical systems
chapters. As with the rest of the book, my focus is on concepts and modeling. For this
reason, | restricted consideration to Boolean networks with only three components. With
only eight possible states, it is not difficult to work out the graph by hand, and there is some
conceptual value in doing so. Adding another component doubles the number of states, which
greatly increases the work needed to produce the graph and poses the additional practical
problem of finding a layout that makes the graph readable. In practice, people use software
to produce the graph. I would have done this if the goal were to analyze real gene regulatory
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systems rather than to develop the concepts of Boolean network analysis.

I find the notation for Boolean networks to be difficult to read. I have to keep reminding
myself which symbol refers to which logical operation and which components are active for
a given state. I have no solution for the first difficulty, but I believe the second difficulty is
solved by the alternative notation I introduce for the labeling of the states. It takes me less
time to identify the state in which X and Z are present and Y absent from the designation
X Z than the usual designation (1,0,1). I'm sure that people who work in the field quickly
internalize the notation, but I think students will appreciate the greater readability of the
alternate notation.

The problems focus on a specific application of Boolean network analysis. Suppose we
know the effect of each component on the others. A particular component can be promoted
or inhibited by any of the other components. In cases where production of a component is
affected by presence or absence of more than one component, the logical connection between
the relationships may not be clear. For example, we may know that both X and Y promote
Z but not know whether both must be present, either can be present, or only one must be
present. These three cases lead to different sets of recurrent states, so each makes a different
prediction that could be tested by experiment. The problems look out how different logical
connections produce different predicted outcomes.
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