
Mathematics for the Life Sciences:
Calculus, Modeling, Probability, and Dynamical Systems

R Scripts and Instructions

My first experience of computers was in 1971 as a 10th grader in an advanced algebra
class. We had a remote terminal connected to the main frame computer housed in the
district office. We wrote programs in Basic (the text version, not Visual Basic), ran them
immediately, and had them printed on yellow paper tapes because software storage methods
did not yet exist. The power conferred by the capability of making a computer do calculations
was immediately obvious. I had no doubt that within a few years computer programming
would become as standard a topic in school as mathematics or English. Fast forward to 2013,
where Estonia has become the first country to mandate instruction in computer programming
for all children. Many people will be surprised when Estonia becomes the dominant force in
world science and technology in twenty years, but not me.

In the 42 years since I started programming, learning to write computer programs has
been a clear path to success, not just for the entrepreneurs who created Apple and Microsoft,
but also to the hordes of programmers who work for these companies and others. There are
a number of reasons for this success. One is that computers are useful, but only when they
are running good programs. Few of us can write a word processing or spreadsheet program
ourselves. Another is that computer programming is good mental training, and this reason
applies to everyone.

The skills learned in computer programming have so suffused my thinking that I cannot
picture myself without them. I make this claim in spite of the fact that by modern standards
I am not considered to have real programming skills. Real programmers today do object-
oriented programming, which is necessary for any program that is launched, interacts with
a user through sporadic mouse clicks, and terminates only when so directed by the user.
This type of programming is difficult, but it is not necessary for mathematics. Mathematics
programs are completely set up in advance, run on their own with no user input, and ter-
minate automatically. The simpler function-oriented paradigm is all that is needed for this
kind of programming. Where object-oriented programs have come to be called applications,
function-oriented programs are often called scripts. The name is apt, as function-oriented
programs dictate calculations that are followed literally in a prescribed order. The calcu-
lations can be made conditional on intermediate results, but the computer still follows a
predetermined path.

No special talents are required to learn to write scripts. It is very similar to giving a set
of instructions to an assistant, but with one key difference: computers are incredibly stupid.
They can only understand communication that follows a highly proscribed format, and any
deviation from that format on the part of the programmer leads to error in execution of
the script. Function-oriented programming consists of two unrelated sets of skills–the skill
of communicating with computers in accordance with rigid syntax requirements and the
skill of breaking a complicated procedure down into tiny pieces that can be executed in
some sequence. Both of these skills can be learned through practice, and both make us
better thinkers in all settings. Learning to write scripts will help you harness the power of
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mathematics beyond what you can do by hand, and it will also help you harness the power
of your own mind beyond what it can do now.

For the skill of communication with computers, I recommend what I call the “Rosetta
stone” method. Start with simple scripts written by a skilled function-oriented programmer.
Run them line by line so that you understand what each line does, picking up the syntax
requirements as you go. If, for example, you run the script

x <- 2
y <- 3*x
y

in R, you see the following output:

> x <- 2
> y <- 3*x
> y
[1] 6

A number of conclusions about R syntax follow from this example.

1. The construction “name <− formula” assigns the numerical value of the formula to
the name, as clearly the program has obtained x = 2 and y = 6.

2. Multiplication always requires the “*” symbol, else the script would have had
“y <− 3x”.

3. All commands in the script are echoed in the output. (Syntax errors provoke R output
that interrupts the echo so that you can tell which line detected the error. The error
could actually be a formula error in an earlier line rather than a true error in syntax
in the flagged line. One method for locating the actual error is to salt the script with
extra statements that output intermediate calculation results.)

4. Assignment commands are normally echoed without showing the results, but we can
obtain results at any point in a script using a command that merely names the variable
whose value is desired.

This guide accompanies the folder of computer scripts found on the web site for the book.
A few of these scripts are complete, but most of them are templates that require completion
by the user. Completed scripts can be adapted for use with similar problems.

Getting Started in R

When you open the R application, you get a full-screen window that has some open space
and a smaller window that is the R console. You can enter commands in the R console and
have them executed immediately. Type

x <- 2
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and hit the Enter key. You will simply get a new command prompt. Now enter

x

and you will get the answer 2, indicating that your first line did indeed assign the value 2 to
the variable name x.

The problem with doing computations in the console is that you can’t save them. Instead,
it is better to create script files that contain a set of commands. From the file menu, click
on New Script to bring up a script window. Move and resize the two windows so that there
is no overlap. You want to be able to see the full contents of both windows regardless of
which one is active.

Type

x <- 2
y <- 3*x
y

in the new script file. To run this script, type <Ctrl>-ar. This sequence highlights the entire
text and then executes all of the commands.

One of the most difficult programming skills to learn is the skill of debugging. Remove
the “*” symbol from your script and run it again. Note the error message that appears in the
console window. The error messages appear at the first point where a script command failed.
This may not be the line where the actual error occurred. Even when it is the right line, the
message may not clearly identify the error. In this case, the error message unexpected
symbol is misleading; the real problem is that there is a symbol missing. Unfortunately, R
doesn’t know what the correct formula should have been. It only knows that a letter should
not follow a number. The unexpected symbol is the x.

One drawback of R is that the official documentation is not always very helpful. When
I need to look something up, I do a Google search. For example, I needed to know how to
get a dashed line for the program 01 below, so I searched “line styles in R” and got a nice
document on the web site of Washington University of St. Louis.

General Note on R Scripts for This Book

The Rosetta Stone method of computer programming instruction has two components. The
first component is that new instructions need to be explained so that students can understand
them. Each time I introduce something new in R, I include the full statement in the program
and the full explanation in this guide. The second component is that students must write
new program code that adapts instructions to new purposes. Each time a calculation is
needed that uses R syntax already discussed, I leave a set of three blanks ( ) for the reader
to fill in. Doing this requires knowledge of the context as well as R syntax. For example,
there is a formula to calculate a quantity m in script 2-3. The reader who is working through
Section 2.3 should know the correct formula.

It is good programming practice to test lines of code as you write them. This requires
you to execute small blacks of instructions rather than the full script. In R, you do this by
highlighting the desired lines and then typing <Ctrl>-r. The shortcut <Ctrl>-ar discussed
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earlier runs the entire code without the need to highlight specific lines. (Think of “r” as
representing “run” and “a” as representing “all”.)

Part I

Calculus and Modeling
The first three scripts present instructions for plotting functions and linear and nonlinear
curve fitting. The instructions in these scripts are used in scripts for Parts 2 and 3 without
further description.

1-1 Plotting in R

The first script introduces much of the syntax required to produce graphs in R as well as
some other standard R syntax. In the commentary, I also discuss general programming style.

### This program reproduces Figure 1.1.4.

Any command that begins with the # character is a comment. It is a good idea to use
comments to document a script so that you can figure out what it does a year after writing
it. I use comments with ## to break scripts into sections.

## DATA

I use the data section to define quantities that I envision changing for additional runs of a
script. The viewing window of a graph might need to be changed, or I might want to change
parameter values. Putting these definitions together in a small section makes it easier to find
them and allows me to ignore the working parts of a script when I am only doing additional
runs with slight modifications.

# k values
k <- c(0.5,1,2)
k

The command c is used to create a list of values with a single name. If needed, R will
interpret this list as a row or column vector, but most often it is simply a numbered list that
can be accessed element by element.

## INITIALIZATION

I use the initialization section for instructions that set up the main computations in the
program. In this case, the only initialization needed is to set up the list of t values for the
plots. In most programs, this section does not need to be changed from one run to another.
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# make list of t values
t <- 0.02*(0:100)
t

There are a number of ways to make lists of numbers in R. If we want a list of 100 equally-
spaced values, we certainly don’t want to have type them all into a c command. One nice
way is to define the values as the product of a spacing and a range. This command creates
a set of values with spacing 0.02 and running from 0 to 2. Note that the construction m:n,
where m and n are integers, creates a list of consecutive integers from m to n.

## COMPUTATION

I use the computation section for the main calculations in a script. These are the same in
every run. As our scripts get more complicated, it will become a big advantage to have a
large part of the script that we need not look at when doing new runs.

# compute half-lives
T <- log(2)/k
T

Note that R uses log for the natural logarithm rather than the more usual “ln”. This
command shows why lists of values are convenient in R. One calculation produces the half-life
for each of the values of k.

## OUTPUT

R scripts generate echoes of all instructions, so any calculation reported in the early part
of a run has scrolled out of view by the end. In most scripts, I collect all statements that
produce some useful output at the end in an output section. I generally put plots before
numerical results so that the numerical results come after all command echoes. Because plot
parameters sometimes need to be changed for different runs, the output section often needs
to be modified for different runs of a program.

# plot the first function
plot(t, exp(-k[1]*t), type="l", xlim=trange, ylim=yrange,

xlab="t", ylab="y", lty="dotdash", lwd=2, xaxs="i", yaxs="i")

The plot command contains only two required arguments: the lists of horizontal and vertical
coordinates of the points. These can simply be names, such as t, or calculations. Here, the
function to be plotted is y = e−0.5t, which means that we want the first value of the list k.
Note that the first value is accessed using square brackets. The remaining arguments of the
plot command are optional and can be in any order.

• The type parameter specifies that we want a connect-the-dots curve rather than the
specific points. If this command is omitted, the points are plotted instead.

• The xlim and ylim parameters specify the viewing window. If omitted, R has a
built-in algorithm that chooses the viewing window.
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• The lty parameter determines the line style. The standard choices are solid,
dashed, dotted, dotdash, longdash, and twodash. The default is solid.

• The lwd parameter specifies the line width. The default line width of 1 is rather thin,
so I generally use a line width of 2.

• The xlab and ylab parameters prescribe the axis labels.

• The xaxs and yaxs instructions specify the relationship between the plot window
and the axis limits. The default is for the plot window to extend a little bit beyond
the axis limits. All of the graphs in the book have the plot window the same as the
axis limits, which we get with the specification of i. This does not always look best
in R, so the user should try plots with and without these specifications.

# plot the remaining functions (types 1 and 2 are solid and dashed)
for (i in 2:3)

lines(t, exp(-k[i]*t), lty=i-1, lwd=2)

The plot command in R erases any previous plots. Hence, we need a different command to
add a curve to an existing plot, and that is what the lines command does. Note that the
optional arguments should only include those items that are specific to each curve and not
those that are properties of the graph as a whole. Note that the lines command is executed
twice, once with i=2 and once with i=3. Repeated instructions can be embedded inside
a loop indexed by a parameter so that the command is executed differently each time. In
the lines command here, the index i appears twice. We get two different curves by using
different elements of the k list and we get two different line styles by calculating a value for
lty. The numbers refer to the list of line styles given above; in particular, 1 is solid and 2
is dashed.

# plot the dotted lines
lines(c(0,T[1]), c(0.5,0.5), lty="dotted")
for (i in 1:3)

lines(c(T[i],T[i]), c(0,0.5), lty="dotted")

The last set of instructions plot all the dotted lines in the figure. There are several ways to
plot straight lines, but the easiest to remember is to use the standard lines command with
the list of x coordinates of the end points followed by the list of y coordinates of the end
points.

2-3 Linear Least Squares

This script applies the least squares formulas to obtain a best fit line for a set of data. The
data can be entered directly in the program using the c command as in program 01; however,
there are cases where the data set is large enough that it is easier to import it from a file.
The easiest way to do that is to put the data in columns in a spreadsheet and then save the
file as comma-delimited (csv). The file DetroitLake0.csv contains two columns of data with
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no headers. The first column is the year, with 1930 representing the winter of 1929-1930.
The second column is the number of days of consecutive ice cover seen at Detroit Lake,
Minnesota during that winter. The slope of the straight line is in some sense an indication
of global warming, although we should be careful not to interpret this result seriously. More
thorough studies of global warming are indicated in Problems 2.3.9 and 2.7.10.

# Define the original data for a linear model Y=mX.
data <- read.csv("DetroitLake0.csv",header=FALSE)
x <- data[,1]

The first of these instructions defines a data frame in R. Data frames are matrices augmented
with headers. We can extract the pure numerical values from the data frame using data
handling instructions in R. The first line creates a variable x using all of the numbers
in the first column of the data. If we only wanted the first ten numbers, we could use
data[1:10,1].

# Modify the data so that the mean is at (X,Y)=(0,0).
xbar = mean(x)
X = x-xbar

The mean function computes the arithmetic average or mean of a list of numbers. Note that
it is legal in R to subtract a single number xbar from a list x, the result being a list in
which the subtraction has occurred for each element.

# Compute the best slope and residual sum of squares.
sumX2 <- sum(Xˆ2)
RSSavg <- RSS/length(X)

The sum and length functions extract properties of a list of numbers, similar to the mean
function. We could have calculated the mean directly with xbar = sum(x)/length(x).
There are often trade-offs between using more elementary components that have to be as-
sembled versus using pre-assembled but specialized components. At times, I will combine R
components rather than add more syntax to the list of things the reader should know. In
this case, the built-in mean function is easy to remember and will have multiple uses.

# Plot the data.
plot (___, ___, xlab="year", ylab="ice duration")

# Plot the linear regression line.
abline (b, m, lwd=2)

Fewer optional instructions are needed in this plot command, primarily because we are
using it to plot data rather than a curve, which corresponds to the defaults in R. The abline
instruction is a convenient way to add a straight line to a plot when it is easier to identify
the lline by slope and intercept than by end point coordinates.

# Display the slope, residual sum of squares (RSS), and average RSS

The reader should know how to display results, as this was done in the first elementary
example in which we calculated and displayed a variable y = 3x.
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2-4 Semilinear Least Squares

This script computes the parameters for models of the form y = qf(x, p). It can be applied
to any model of this form, which means that the user must provide the model form as
part of the program. In making the necessary modification, one could change the names of
the parameters q and p wherever they occur in the program, but it makes more sense for
programming to simply change the names of the parameters in the model. The example in
the text uses the model y = Axp, so we can define f(x, p) = xp and simply associate q with
A.

# Specify the data.
x <- ___
y <- ___

The data can be specified as lists of values using the c instruction or it can be read from a
csv file. In the example from the text, we use the P. speedius data from Table 2.1.1.

# Define the function f. The parameter must be the first argument.
f <- function(p,x) xˆp

Simple functions can be defined in R using a single line of code. This particular line estab-
lishes a function f(x, p) calculated with the formula xp. Note the special use of the reserved
word “function”. In ordinary mathematical usage, it is common to say that y = x2 defines a
function y(x). This interpretation is not always correct outside of a mathematical context.
In computer programming, we should say that the statement defines a value y in terms of a
value of x. The statement y <- xˆ2 cannot calculate the square of any number other than
the one currently stored as x. The word “function” in computer programming specifically
refers to a line of code that produces an output from any given input, regardless of the name
the input had been given. Thus, the code given here will calculate f(p, x) for any pair of
numbers. For example, suppose the script has previously assigned values of 2 and 3 to names
y and z, respectively. Then f(y,z) will produce the result 9, just the same as f(2,3).

# Provide minimum and maximum values for p.
minp <- 0
maxp <- 1

The program finds the optimal p using a built-in function that requires an interval that
brackets the optimal value. In this case, a plot of the data clearly shows that the graph is
increasing, which means p > 0 and concave down, which means p < 1.

# Provide a list of x values for the plot.
xplot <- seq(0,5,by=0.1)

The variable xplot is so named to distinguish it from the variable x, which contains the x
values of the data. In script 02, we were able to plot the best fit line simple by using the
parameters, but this can only be done for a line. Here, we want to plot the function f with
particular choices for p and q; as in script 01, we can do this only by preparing a list of
values for numerous points. The seq instruction provides an alternative means of defining
a list of equally spaced values.
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# Calculate quantities that do not depend on p.
sumy2 <- ___
numpoints <- ___

The algorithm for semilinear least squares involves some quantities that do not depend on
the parameter p. These could be put in either the initialization or computation sections.
The reader should know how to calculate these from earlier scripts.

## FUNCTIONS

# Define the function F(p) that determines RSS when q is optimal.
F <- function(p) ___-(___)ˆ2/sum((f(p,x))ˆ2)

This instruction defines a function, so it is the same kind of programming statement as the
one that defined the function f(p, x). I put this one in a separate functions section because
it is part of the fixed code for the script, whereas the other is part of the data to be specified
by the user. I have found the standard practice of isolating code that needs to be changed
between runs in the data and output sections. Note that the function F uses all of the
x values from the data, the input value p, and the model f to produce a residual sum of
squares corresponding to the optimal choice of q. The formula for the residual sum of squares
is derived in Section 2.4 of the text.

# Find the optimum value of p and the residual sum of squares.
result <- optimize(f=F, lower=minp, upper=maxp, maximum=FALSE)
pstar <- result$minimum
RSS <- result$objective

The name optimize refers to a built-in function that produces more than a single quantity
of output. In such cases, R combines the outputs into a data structure called a frame. This is
something R programmers must understand. The first line of code runs the optimize function,
using the user-defined function F as the input function that optimize knows as f and the
user-defined quantities minp and maxp as the lower and upper bounds. It could be used
to find either the maximum or minimum, depending on what is indicated for the parameter
maximum. What makes a multiple-valued function different from a normal function in R is
that you have to know the right syntax for unpacking the data structure. The code puts the
output of the optimize function into a variable called result, but this quantity is a frame
rather than a number. What we actually want in this case are the components of the frame
that contain the minimizer and the corresponding function value. These are accessed using
the $ symbol as in the subsequent lines of code. To use the optimize function, we need
to know the names of the desired results (minimum and objective) as well as the input
arguments (f, lower, upper, and maximum). Presumably we would have used pstar
<- result$maximum if we had set maximum to TRUE, and it also seems that R does not
have a restriction preventing input names from matching names for the output data.

# Find the corresponding value of q and the average residual sum of squares.
qstar <- ___
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RSSavg <- ___

# Compute y values for the plot.
yplot <- ___

The reader should be able to fill in these instructions using prior knowledge about R pro-
gramming and semilinear least squares.

# Determine the axis bounds.
xmax <- max(x,xplot)
ymax <- max(y,yplot)

# Plot the data.
plot (___, ___, xlim=c(0,xmax), ylim=___, xlab=___, ylab=___)

# Plot the model.
lines (___, ___, lwd=___)

The plot commands are essentially the same as in earlier scripts, but here we have some code
to determine the axis bounds. If the axis bounds are left unspecified, R will choose them
to match the data used in the original plot command. If the points used in the subsequent
lines command extend beyond the boundaries of the axis limits, it will be too bad. The code
used here avoids this problem by finding the largest values of x and y in the combined sets
of data and then hard coding the axis bounds to go from 0 to the appropriate maximum.

Part II

Probability
The scripts in this section present descriptive statistics and probability distributions. The
reader should be familiar with the instructions used in the Part I scripts.

3-1 Descriptive Statistics

This script collects the ice duration values from DetroitLake0.csv, computes the mean,variance,
and standard deviation, and produces a histogram of the data. Its only real purpose is to
document the basic instructions for descriptive statistics. Nothing more need be said, as the
documentation is self-contained.

3-X Probability Distributions

Like the previous script, this one is primarily here to document the basic instructions for
probability distributions. The script does include a small amount of code that produces a
plot containing a probability density function and an associated histogram. Combining the
two plots requires some special effort, also documented in the script.
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# Define the set of x values for the histogram boundaries.
dx <- 1
x1 <- seq(0-0.5*dx,10+0.5*dx,by=dx)

We have chosen a bin width of 1 with average x values from 0 to 10. The boundaries of
these bins must then run from -0.5 to 10.5.

# Use the cumulative distribution function to compute the frequencies.
f1 <- pexp(x1[-1],rate=0.2) -pexp(x1[-length(x1)],rate=0.2)

We want ten values for the histogram, each with the accumulated probability corresponding
to that interval. Thus, the first histogram value should be E(0.5) − E(−0.5) and the last
should be E(10.5) − E(9.5). This is accomplished in a single instruction by creating a list
f1 in which the list with elements E(−0.5) through E(9.5) is subtracted from the list with
elements E(0.5) through E(10.5). Recall that x1[-1] refers to the list x1 without its first
element.

# Use the barplot instruction to plot the histogram.
barplot(f1,space=0,names.arg=0:10,ylim=c(0,0.2))

A description of barplot occurs earlier in the script.

# Define the set of x values for the probability density function plot.
# Normally a plot of 1000 points is overkill. In this case, we need
# a very large number because the pdf is discontinuous at x=0.
x <- seq(0-0.5*dx,10+0.5*dx,by=0.01*dx)

# Compute the set of y values for the pdf plot.
f <- dexp(x,rate=0.2)

We now want to add a plot of the probability density function to the barplot, so we want
the same range of x values.

# Add the pdf plot to the barplot. Note that the x values need
# to be shifted by half of the bin width so that they line up
# correctly with the barplot.
lines(x+0.5*dx,f,type="l",lwd=1.5,col="blue3")

This instruction seems to make perfectly good sense except that x coordinates are specified
as x+0.5*dx rather than x. This has nothing to do with the mathematics, but is an artifact
of the way R plots bar graphs. The vertical axis for a bar plot is positioned differently on
the screen that a standard vertical axis. Since the bar plot was done first, all we can do is
to shift the graph for the probability density function to line up. If we use the seemingly
correct x, the y values for the centers of the bars will be plotted at the left end instead.
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4-1 Random Sampling

One important use of computers in biology is to set up simulations for stochastic processes
(processes that produce randomly-distributed results). These require random samples to
be drawn from a probability distribution. The book uses random samples from probability
distributions for pedagogical experiments in Sections 4.2 and 4.3.

R has excellent built-in capability for drawing random numbers from probability distri-
butions and manipulating the resulting data. Some of the key instructions are introduced in
this script. We also introduce the first of several control structures, the counting loop.

Note that this script requires instructions that define data values, produce a histogram
from a list of probabilities, and display results of output variables. The reader should be
able to write these instructions from prior knowledge. One point is worth noting: omitting
the ylim parameter from the barplot instruction allows R to use its default routine for
determining the vertical axis limits. This is usually a good thing, and you can always
prescribe the parameter value later if you don’t like the way the plot looks initially.

# Collect a sample of size N from a binomial distribution b_{n,p}.
X <- rbinom(N,size=n,prob=p)

The instructions for drawing random numbers from a probability distribution use the prefix
“r” with the same suffix as that used for other instructions with the same distribution, and
the parameters are mostly the same as well.

# Set up the list of frequencies.
maxX <- max(X)
counts <- rep(0,maxX+1)

The rep instruction given here creates a list of length maxX+1, with all values preset to 0.
The actual preset value is irrelevant, as we will subsequently assign the correct values. It
is generally good practice in R to create data structures of the desired size before filling in
the values. The previous instruction is needed to establish the correct size for the list. We
need to record the frequencies of all outcomes in the interval [0, xm], where xm is the largest
outcome obtained from the simulation; hence the list needs to have xm + 1 elements.

# Count the occurrences of each outcome.
for (k in 0:maxX)

counts[k+1] <- length(which(X==k))

This composite instruction is best examined one part at a time. The function which(X==0)
determines which entries in the list X are the number 0. We don’t actually care what order
the outcomes are drawn; we only want to know how many 0s there are, which is the length
of the list obtained from the which function. Hence, the command

counts[1] <- length(which(X==0))
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finds the list entries that have value 0, counts how many there are, and records that number
in the first position of the list counts, replacing the initial value of 0. Our goal is to count
the number of occurrences of each of the outcomes and store these in the appropriate position
in the list. Given any possible outcome k, we want to store the total count in position k+1.
This can be accomplished in one step by embedding the instruction

counts[k+1] <- length(which(X==k))

in a loop that executes the instructions for all desired values of k. The general structure of
a counting loop is

for (var in set)
{
statement
statement
...
}

where for and in are part of the R syntax and “var”, “set”, and “statement” are used to
represent whatever variable, set, and statement(s) are desired. The curly braces are optional
when there is only one statement, as in the current example. The layout is also optional. I
find that it makes scripts easier to read if the curly braces are typed in separate lines and
indented, with the statements in the loop indented as well.

4-2 Normality Tests

This script should be almost entirely reproducible by anyone who has worked through the first
six scripts and Section 4.2 of the book. To encourage more independence in the programming
student, I have begun with this script to use to indicate places where the programmer
needs to add two or more instructions. Only two instructions in this script are new.

# Draw n values from a uniform distribution.
X <- runif(n,min=0,max=1)
X <- sort(X)

The reader familiar with the previous two scripts could probably guess that runif( ) is
the instruction for obtaining values from a uniform distribution. As the instruction shows,
the programmer needs to indicate how many values are desired and supply the minimum
and maximum outcomes for the distribution. The sort function rearranges the elements
in the input list in ascending order. The sorting is necessary for producing the EDF plot
and calculating the Cramer-von Mises statistic. The output is worth noting. Most runs of
the script produce a value for the Cramer-von Mises statistic that is not inconsistent with a
normal distribution; however, the clear pattern in the EDF plot suggests that the distribution
is not normal. A larger sample of data from a non-normal distribution will generally yield a
larger value of the statistic.

We could have used a different name for the sorted list, but it is standard programming
practice to reuse names when the old values are no longer needed. Note that the goal could
also be accomplished by nesting the two instructions in a single line of code:
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X <- sort(runif(n,min=0,max=1))

The single line version is easy enough to read in this case, but we should be cautious about
combining too many instructions or making single formulas that are too complicated. Pro-
grams only work correctly if there are no errors, and readability, rather than brevity, is the
key to identifying errors.

4-3 Distributions of Sample Means

This script collects a large number of values from the distribution of sample means with
underlying distribution E0.5, determining the key statistics of the distribution and producing
the plot of Figure 4.3.2b.

# Draw N values from the distribution of sample means and sort.
X <- rep(___)
for (___)

X[k] <- mean(___)
X <- sort(X)

The blanks in this section of code can be filled in by reference to earlier scripts. Note that
the random variable X is defined as a list of size N with all values initially set to 0. The
actual values in the list are computed one at a time in the loop. Each value is obtained
by collecting a list of n values from the appropriate probability distribution and computing
the mean. The values are then sorted because the script computes the Cramer-von Mises
statistic.

# Prepare the histogram.
over <- length(which(X>7))
N <- N-over
hist(X[1:N],freq=FALSE,breaks=___,col="yellow")

There are two subtleties in the histogram instruction used here. First, the desired plot only
includes means up to 7, but some of the samples may have a larger mean. These samples
must be culled from the data. The variable over is used to record the number of outsized
values, and this number is subtracted from the total to identify those values that are to
be included in the histogram. The argument X[1:N] in hist limits the histogram to the
values that are not outsized. Second, the parameter setting freq=FALSE is used to make
the vertical coordinate in the graph be the relative frequency per bin width rather than the
actual frequency. Note that the axis limits differ by a factor of 4 from Figure 4.3.2b, which
uses relative frequency rather than relative frequency per bin width.
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Part III

Dynamical Systems
The scripts in this section present the instructions needed to run simulations for discrete and
continuous dynamical systems. These scripts assume familiarity with the scripts of Part I,
but not the scripts in Part II.

5-1 Discrete Equations

This script runs a simulation for a single discrete dynamic variable and plots the results. It
will be superseded by script 5-2.

# Define the model.
g <- function(x) x+R*x*(1-x/K)

As in script 2-4, we can define a simple function using a single line of code. As we have
defined the function, the names R and K are global in scope, while the name x is local. Global
names have values defined outside the body of the function; in this case, they are defined in
the data section. Local names are only known internally to the function. Thus, the name x
has been used arbitrarily for the input variable; its value is passed from the main program
by any instruction that calls the function g and is independent of any global variable called
x.

# Define t and create data structure for N.
t <- 0:T
N <- rep(N0,T+1)

The rep instruction is used to create a data structure. This instance sets up a list of T+1
items, all initially set at N0. This initial value is only correct for the first entry in the list,
which represents N0, but it will be overwritten in all other list positions.

# Compute N values.
for (i in 1:T)

N[i+1] <- g(N[i])

Instead of separately computing N[2], N[3], and all the rest, all N values are computed
with a single instruction embedded in a counting loop. The general structure of a counting
loop is

for (var in set)
{
statement
statement
...
}
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where for and in are part of the R syntax and “var”, “set”, and “statement” are used to
represent whatever variable, set, and statement(s) are desired. The counting loop produces
different results in each run through the loop because the formulas depend on the value of
the index variable. The curly braces are optional when there is only one statement, as in
the current example. The layout is also optional. I find that it makes scripts easier to read
if the curly braces are typed in separate lines and indented, with the statements in the loop
indented as well.

# Determine top value.
ymax <- ___

# Plot the results.
plot(___)

See script 2-4 for discussion of how to set the top value for plot axes.

5-2 Discrete Equations

This script improves on script 5-1 by adding optional code for a cobweb plot.

# Set display parameters.
cobweb <- 1 # 1 if yes and 0 if no
Nmax <- K*(1+1/R) # maximum coordinate on N axes
pts <- 50 # number of points used to plot g(N)

The upper limit on N for a cobweb plot should be set manually or computed; in this case,
it is chosen to be the N value for which g(N) = 0.

# Set up the plot window.
par(mfrow=c(1,1+cobweb))

This bizarre-looking instruction sets up a plot window with 1 row and 1+cobweb columns;
hence, we will get the usual plot window in cobweb is 0 and a window with two columns in
cobweb is 1. In the latter case, subsequent plot commands will alternate between the left
and right halves of the plot window. Thus, the second plot command will produce a new
plot without erasing the previous one.

# Produce the cobweb plot.
if (cobweb==1)

{
# Plot the function g.
x <- ___
y <- ___
plot(___ ___, xlim=___, ylim=___, xlab=___, ylab="",

col="blue", lwd=3)
# Plot the line y=N.
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lines(___ ___, lwd=2)
# Plot the first vertical cobweb line.
lines(c(N[1],N[1]), c(0,N[2]), col="green4")
# Plot the remaining cobweb lines.
for (i in 2:T)

{
lines(c(N[i-1],N[i]),c(N[i],N[i]), col="red3")
lines(c(N[i],N[i]),c(N[i],N[i+1]), col="green4")
}

}

This section of code contains the cobweb plot instructions embedded in a conditional struc-
ture that dictates execution only if the cobweb plot is indicated by the value of cobweb.
The instructions themselves are broken into four groups. The first group computes points
for the plot of g(N) and plots the curve through those points, while the second group plots
the line y = N . The third group plots the vertical line that locates N1. The remaining group
plots pairs of horizontal and vertical lines to locate the points N2 through NT .

# Plot the results.
plot(___ ___)

The final line plots the results of the discrete simulation. This plot will appear on the right
if cobweb is 1 and in a single window otherwise.

5-3 Differential Equations

This script runs a simulation for a single discrete dynamic variable and plots the results.

# Specify total time and number of time steps
tmax <- 20
steps <- 100

Numerical methods for differential equations work by computing exact solutions of discrete
approximations to the differential equations. The total time and number of steps combine
together to determine the step size, which controls the error in the discrete approximation as
well the spacing between points in the plot. Of course the number of steps should generally
be increased if the total time is increased. Some trial and error can discover how many steps
are necessary. If the plot for 200 steps is indistinguishable from that for 100 steps, then 100
steps is sufficient.

# The RK4 function computes one step of the solution of a
# discrete approximation to an initial value problem
# x’=f(x,t), x(0)=x0.
# The inputs are the starting value, time, and time step.
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RK4 <- function(x0,t,dt)
{
k1 <- f(x0, t )
k2 <- f(x0+k1*dt/2, t+dt/2)
k3 <- f(x0+k2*dt/2, t+dt/2)
k4 <- f(x0+k3*dt, t+dt )
x <- x0+(k1+2*k2+2*k3+k4)*dt/6
return(x)
}

We have already seen the function instruction used to create single line functions. The
RK4 function requires multiple lines of code. Those lines must be placed inside a set of curly
braces, similar to sets of instructions that go inside a for loop. The last line inside the
curly braces must be a return statement, which indicates the name of the variable whose
value is the output of the function. This particular function implements the most popular
simple method for discretizing a differential equation. The user does not need to know how
the method works; the only crucial thing to understand is that the function has been written
with f as the name of the function on the right side of the differential equation. This means
that the function defined for that purpose in the data section must be named f.

# Compute the solution.
for (i in 1:steps)

x[i+1] <- RK4(x[i],t[i],t[i+1]-t[i])

User-defined functions are called in exactly the same manner as functions that are predefined.
In structural terms, RK4 is identical to the predefined R functions that compute probability
distributions. It differs from the optimize function used in script 2-4 only in that the
latter outputs a data frame rather than a single variable. Note that RK4 computes one step
in the approximation; its inputs are the current values of the variable x and time t and the
length of the time step for the next interval.

6-1 Discrete Linear Systems (scalar notation)

This script runs a simulation for a pair of discrete dynamic variable and plots the results. It
will be superseded by script 6-3.

# Set model parameters.
___ ___

# Set initial condition and total time.
___ ___

It is good programming practice to test scripts on problems for which you already know
the answer. Equation (6.1.4) in the book provides a model that is thoroughly analyzed in
subsequent examples.
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# Set the top value for the y axis. Use 0 to accept the default.
ymax <- 0

The R default axis limits do not always work well with this script, and we need a sophisticated
way of working around the difficulty. It may be necessary to choose the maximum y value,
but we can’t know what is a good choice without seeing the plot. The output part of the
script contains a statement that establishes a default upper bound for the plot. Setting
ymax to 0 accepts this default; if need be, you can improve the plot by choosing a specific
value.

# Define t and create data structures.
___ ___

# Compute population values.
for (i in 1:T)

{
___
___
}

These lines of code are easily adapted from script 5-1.

# Compute growth rates.
x <- 2:T
y1 <- J[x]/J[x-1]
y2 <- ___

The ratios of successive population values are meaningful in discrete linear systems, and
these are the quantities that should be used for the plot. Note that the list of ratios begins
with J2/J1 and ends with JT/JT−1.

# Set maximum y value for plot.
if (ymax==0)

ymax <- 2.5*y1[T-1]

The conditional structure is used here so that the calculation occurs only when the earlier
instruction ymax <- 0 was used to indicate that the default should be used. The default
simply makes sure that the long-term growth rate is visible in the plot. In many cases, the
default choice for the axis limit is larger than is necessary.

# Plot growth rates.
plot(___ ___,col="blue3")
points(___ ___,col="red3")

We have previously used lines to add curves to existing plots. Sets of points are added
with points. The arguments are the same, except of course that we would not specify a
line style. There are optional arguments that can be used to change the style of the points.
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6-3 Discrete Linear Systems

This script improves on script 6-1 by generalizing to systems of any size and adding code to
find the long-term stable growth rate and population ratios.

# Set model parameters.
r1 <- c( 0, 104, 160)
r2 <- c(.01, 0, 0)
r3 <- c( 0, .3, 0)
M <- rbind(r1,r2,r3)

# Set initial condition and total time.
x0 <- ___

A discrete linear system is defined by the matrix M of coefficients. An efficient was to
assemble a matrix from data in R is to define each of the rows and then bind them together
into the desired matrix. The specific example used here is Example 6.1.5 from the book.
The extra spaces in the definitions of the rows are not needed, but they make it easier to
identify the model. Code in the data section should be as human-readable as possible. Note
that the initial condition is a list of n values, one for each component of the population.

# x is the vector of current populations.
# X is a matrix with the population vectors as columns.
# N is the vector of total populations.
# L is the ratio L[j]=N[j+1]/N[j]
x <- ___
X <- matrix(0,nrow=length(x0),ncol=T+1)
X[,1] <- ___
N <- rep(___,___)
L <- rep(0,___)

We want to save a vector of population values for each time step, which requires a more
sophisticated data structure than any of the previous scripts. As defined here, x is the
variable that gets updated with current populations at each time step. These population
values are also recorded in a matrix X, which saves the initial population vector as column
1 and the population at time t as column t + 1. Two instructions are used to create the
data structure, with initial values all 0, and then record the list of initial populations in the
first column. The list N is used to keep track of the total population at each time step, so
it must be initialized as a list with a component for each time, including 0. Be careful to
initialize it with the correct value. The list L is the list of total population growth rates,
which should converge to the long-term stable growth rate λ1. Since growth rates are ratios
of successive populations, we do not have a value for time 0; hence the list has only T entries
and no meaningful initial value.

# Compute the long-term behavior.
result <- eigen(M)
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evals <- result$val
evecs <- result$vec
lambda <- evals[1]
proportions <- evecs[,1]/sum(evecs[,1])

eigen is a built-in R function that produces a data frame of output values. These are com-
puted in the first instruction and then unpacked in the next two. The function automatically
sorts the eigenvalues by magnitude, so the long-term growth rate is always the first eigen-
value. The long-term proportions must be computed from the corresponding eigenvector;
dividing by the sum of the components of that vector ensures that the total is 1. Alterna-
tively, we could divide by evecs[1,1] to obtain a list of ratios of stage populations to the
population of the last stage.

# Compute population values and update data structures.
for (i in 1:T)

{
x <- M %*% x
X[,i+1] <- x
N[i+1] <- ___
L[i] <- ___
}

Matrix multiplication in R uses the symbol %*% rather than *. The following instruction
saves the new population vector in the appropriate column of X. The final two instructions
record the total population and growth rate in the next position of the list; recall that N[1]
is needed to record the initial population, whereas L[1] is used for the ratio of population
at time 1 to that at time 0.

ymax <- max(L)

Since only total populations are used for the plot, there is no risk of an infinite ratio of
successive populations; hence, the largest ratio is a reasonable choice for the maximum axis
limit. If the initial conditions are far from the stable stage structure, there could be very
large values at the beginning, which would lead to a graph with axis limits too large. In this
case, the parameter ymax should be chosen to make a meaningful graph rather than using
the default.

# Plot growth rates.
plot(t[-1],___ ___)

Note that there is no ratio for time 0; hence, the list of times that correspond to values of
L begins with time 1 rather than time 0. The list t[-1] is the list of all times except the
first one.
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7-X Continuous Systems

This script generalizes script 5-3 for use with continuous dynamical systems.

## MODEL

# xx is the vector of current solution values
# tt is the current time
# yy is the vector of derivatives

# solution components are extracted from xx
# derivatives yy are computed from components and
# parameters

f <- function(xx,tt)
{
X <- xx[1]
Y <- xx[2]
Z <- xx[3]
yy <- rep(0,length(xx))
yy[1] <- ___
yy[2] <- ___
yy[3] <- ___
return(yy)
}

This section replaces the single-line function in script 5-3. It is easy to get confused between
the names of scalar components of a system and the name used for the collection of these
components. I use xx and yy in this function rather than x and y because we might have
scalar variables with the latter names. The function f must compute the derivatives for
all of the differential equations and return the results as a list. While we could use the
scalar components as inputs, it is good programming practice to make these a list as well;
this means that the instructions that call the function f do not need to be modified to
account for different names or numbers of scalar components. The drawback of passing all
variable values in through a list is that the individual variables names are lost. For easy
readability, I like to include instructions that unpack the variable list x into its components,
which will match the notation for the specific model. The right hand sides of the differential
equations are then calculated individually, with the formula for the derivative of the jth
variable defined to be yy[j]. The derivative formula list is then returned as the value of
the function.

# Create a data structure for the solution.
x <- ___
results <- ___
results[,1] <- ___

The data structures are similar to that used in script 6-3.
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# The RK4 function computes one step of the solution of a
# discrete approximation to an initial value problem
# x’=f(x,t), x(0)=x0, where x and f could be vectors.
# The inputs are the starting values, time, and time step.

RK4 <- function(x0,t,dt)

The RK4 function used here is exactly the same as that of script 5-3. No changes are needed
to use the function when x is a list rather than a single variable.

# Compute solution values and update data structure.
for (i in 1:steps)

{
x <- ___
___
}

This section of code is similar to that of script 5-3 in computation and 6-3 in structure, with
results playing the role played by X in script 6-3.

# Set maximum y value for plot.
___ ___

The maximum value for the plot should be the largest value in the matrix of results.

# Unpack results matrix.
X <- results[1,]
___ ___

The results should be unpacked in the same fashion as xx is unpacked in the function f.
This makes it easier to set up the plot instructions. Note that the details of the instructions
in this output section are model-dependent; hence, the output section of this script needs to
be modified each time the script is adapted to a new model.

8-1 Discrete Systems

This script does not exist. Create it using elements of scripts 6-2 and 7-X.
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