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European Style Derivatives

2.1 Asset Price Models and Itô’s Lemma

2.1.1 Models for Asset Prices
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Fig. 2.1. Stock price of Microsoft Inc.

As examples, in Figs. 1.1–1.7 we showed how the prices of assets vary with
time t. Figure 2.1 shows the stock price of Microsoft Inc. in the period March
30, 1999, to June 8, 2000. From these figures, we can see the following: the
graphs are jagged, and the size of the jags changes all the time. This means
that we cannot express S as a smooth function of t, and it is difficult to predict
exactly the price at time t from the price before time t. It is natural to think
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18 2 European Style Derivatives

of the price at time t as a random variable. Now let us give a model for such
a random variable.

Suppose that at time t the asset price is S. Let us consider a small subse-
quent time interval dt, during which S changes to S+dS. (We use the notation
df for the small change in any quantity f over this time interval.) How might
we model the corresponding return rate on the asset, dS/S?

Assume that the return rate on the asset can be described by the following
stochastic differential equation:

dS

S
= μ(S, t)dt+ σ(S, t)dX, (2.1)

where μ and σ are called the drift and the volatility, respectively, and dX
is known as a Wiener process defined by

⎧
⎨

⎩

dX = φ
√
dt,

φ being a standardized normal random variable.

In this model, the first part is an anticipated and deterministic return rate,
and the second part is the random return rate of the asset price in response to
unexpected events. As we can see, the random increment dS depends solely
on today’s price. This independence from the past is known as the Markov
property. In many situations, it is assumed that μ and σ are constants. Due
to its simplicity, this is a popular model for asset prices

For a random variable ψ with a probability density function f(ψ) defined
on (−∞,∞), the expectation of any function F (ψ), E [F (ψ)], is given by

E [F (ψ)] =

∫ ∞

−∞
F (ψ)f(ψ)dψ.

The variance of F (ψ), Var [F (ψ)], is defined by

Var [F (ψ)] = E
[
(F (ψ)− E [F (ψ)])2

]
.

According to these definitions, for any constants a, b, c, and random variable
W , we have

E [aW − b] = aE [W ]− b,

Var [W ] = E
[
(W − E [W ])

2
]

= E
[
W 2
]− (E [W ])

2

and

Var

[
W

c

]

=
1

c2
Var [W ] .
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For a standardized normal random variable φ, the probability density func-
tion is

1√
2π

e−φ2/2, −∞ < φ <∞.

As a probability density function, this function satisfies1

∫ ∞

−∞

1√
2π

e−φ2/2dφ = 1.

Therefore we have

E [φ] =

∫ ∞

−∞
φ

1√
2π

e−φ2/2dφ = 0

and

Var [φ] = E
[
φ2
]

=

∫ ∞

−∞
φ2

1√
2π

e−φ2/2dφ

= − 1√
2π

∫ ∞

−∞
φd
(
e−φ2/2

)

=
1√
2π

∫ ∞

−∞
e−φ2/2dφ

= 1.

From these we obtain

E [dX] = E [φ]
√
dt = 0

and

Var [dX] = E
[
dX2

]
= E

[
φ2
]
dt = dt.

Consequently2

E [dS] = E [σS dX + μS dt] = μS dt,

and

Var [dS] = E
[
dS2
]− (E [dS])

2

= E
[
σ2S2dX2 + 2σS2μdt dX + μ2S2dt2

]− μ2S2dt2

= σ2S2dt.

The square root of the variance is known as the standard deviation. Thus,
the deviation of the return on the asset is proportional to σ. This means

1Because
∫∞
0

e−x2/2dx × ∫∞
0

e−y2/2dy =
∫ π/2

0

∫∞
0

e−r2/2rdrdθ = π/2, we have
∫∞
0

e−φ2/2dφ =
√

π/2 .
2Here, dX is a random variable and S is unchanged. In stochastic calculus, it is

called conditional expectation (see [51, 6]).
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that an asset price with a larger σ would appear more jagged. Typically, for
stocks, indices, exchange rates, and bonds, the value of σ is in the range
0.02–0.4. Usually, the volatility of stocks is greater than indices, exchange
rates, and bonds, and government bonds have the smallest volatility among
these. Among shares, high-tech companies tend to have higher volatility than
other companies. For example, assume that the volatility of the price of IBM
stock is a constant during 1990–2000, then its value is 0.31. Under the same
assumption, for the price of GE stock, σ = 0.23. For S&P 500, British pound—
U.S. dollar exchange rate, Japanese yen—U.S. dollar exchange rate, and a
five-year government bond with coupon 6.5% and maturing on May 31, 2001,
σ = 0.10, 0.11, 0.12, and 0.03, respectively. For the bond, we assume that σ
depends on the time to maturity. Clearly, at maturity σ is zero. The value
0.03 means that the maximum value of σ is 0.03. In practice, the volatility is
often quoted as a percentage so that σ = 0.2 would be 20% volatility.

If σ = 0, then

dS

S
= μdt and S (t) = S0e

μ(t−t0),

where S0 is the value of the asset at t = t0.
In this asset price model, μ and σ are two parameters. In general, these

parameters depend on the asset price S and time t, i.e., μ = μ(S, t),
σ = σ(S, t). According to the historical data, we can determine these parame-
ters (or parameter functions) for the past by statistical analysis. If we assume
that μ and σ depend on S only, then the functions μ(S) and σ(S) determined
by the historical data can be used for the future.

A Wiener process is also referred to as a Brownian motion. There are many
excellent books on the Brownian motion. Readers interested in this subject
can read, for example, [51]. A basic and very important feature of the Wiener
process is that the sum of two independent Wiener processes is also a Wiener
process, and the variance of the sum is the sum of the two original variances.
That is, if dX1 = φ1

√
dt1 and dX2 = φ2

√
dt2 are two Wiener processes and

they are independent, namely, E [φ1φ2] = 0, then

dX3 = dX1 + dX2 = φ1
√
dt1 + φ2

√
dt2 = φ3

√
dt1 + dt2, (2.2)

where φ3 is also a standardized normal random variable. Readers are asked
to prove a similar conclusion as a portion of Problem 4.

2.1.2 Itô’s Lemma

There is a practical lower bound for the basic time-step dt of the random walk
of an asset price. Thus, an asset price is a discrete random variable. However,
sometimes the lower bound is so small that we consider an asset price as a
continuous random variable. Also, because it is much more efficient to solve the
resulting differential equations than to evaluate options by direct simulation
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of the random walk on a practical time scale, we will assume that an asset
price is a continuous random variable even if the basic time-step is not very
small.

Before coming to Itô’s lemma, we need one result, which we do not prove.
This result is, with probability one,

dX2 = φ2dt→ dt as dt→ 0.

This can be explained as follows. Because

E
[
dX2

]
= E

[
φ2
]
dt = dt

and
Var
[
dX2

]
= E

[
dX4

]− (E
[
dX2

]
)2 = O(dt2),

the variance of dX2 is very small and the smaller dt becomes, the closer dX2

comes to being equal to dt.
Assume

dS = a(S, t)dt+ b(S, t)dX

and suppose f (S, t) is a smooth function of a random variable S and time t.
We need to find a stochastic differential equation for f . If we vary S and t by
a small amount dS and dt, then f also varies by a small amount. From the
Taylor series expansion we can write

df =
∂f

∂S
dS +

∂f

∂t
dt+

1

2

(
∂2f

∂S2
dS2 + 2

∂2f

∂t∂S
dt dS +

∂2f

∂t2
dt2
)

+ · · · .

Because

dS2 = [a(S, t)dt+ b(S, t)dX]
2
=
(
adt+ bφ

√
dt
)2

= a2(dt)2 + 2abφ(dt)3/2 + b2φ2dt→ b2dt as dt→ 0,

we have3

df =
∂f

∂S
dS +

(
∂f

∂t
+

1

2
b2
∂2f

∂S2

)

dt as dt→ 0 (2.3)

or in the form of a stochastic differential equation

df = b
∂f

∂S
dX +

(
∂f

∂t
+

1

2
b2
∂2f

∂S2
+ a

∂f

∂S

)

dt.

This is Itô’s lemma. If in the asset price model (2.1), μ and σ are constants,
i.e.,

3As we know, in calculus we have df(S, t) =
∂f

∂S
dS +

∂f

∂t
dt. Thus this relation is

the same as the relation in calculus only if f(S, t) is a linear function in S.
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dS = μSdt+ σSdX,

then Itô’s lemma is in the form:

df =
∂f

∂S
dS +

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)

dt

= σS
∂f

∂S
dX +

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2
+ μS

∂f

∂S

)

dt.

2.1.3 Expectation and Variance of Lognormal Random Variables

As a simple example, consider the function f (S) = lnS. Differentiation of
this function gives

df

dS
=

1

S
and

d2f

dS2
= − 1

S2
.

Suppose that S satisfies Eq. (2.1) with constant μ and σ, i.e., dS = μSdt +
σSdX. Using Itô’s lemma, for lnS we have

d lnS = σdX +

(

μ− σ2

2

)

dt = mdt+ σdX, (2.4)

where

m = μ− σ2

2
. (2.5)

It is clear that

E [d lnS] = E [mdt+ σdX] = mdt

and

Var [d lnS] = E
[
(d lnS)2

]− (E [d lnS])2

= E
[
σ2dX2 + 2σmdt dX +m2dt2

]−m2dt2

= σ2E
[
φ2dt

]
= σ2dt.

From Eq. (2.4), the probability density function for d lnS is4

4• Here e−(d lnS−mdt)2/2σ2dt means e−(d lnS−mdt)2/(2σ2dt). That is, in the expres-
sion (d lnS −mdt)2 /2σ2dt, the division between (d lnS −mdt)2 and 2σ2dt should
be done after 2 × σ2 × dt is obtained. Throughout the entire book we use such a
notation.

• If x is a normal random variable and its mean and variance are a and b2, then
its probability density function is

1

b
√
2π

e−(x−a)2/2b2 .
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1

σ
√
2πdt

e−(d lnS−mdt)2/2σ2dt.

Let d lnS = lnS′ − lnS. Then for lnS′, the probability density function is

G1 (lnS
′) =

1

σ
√
2πdt

e−[lnS′−lnS−mdt]
2
/2σ2dt.

Here, S is the value of the asset at time t and S′ is the value of the asset at
time t+dt which is a random variable. In Fig. 2.2, the curve of G1 (lnS

′) with
lnS +mdt = 0 and σ

√
dt = 0.2 is shown.

Fig. 2.2. The probability density function for lnS′

with lnS +mdt = 0 and σ
√
dt = 0.2

Suppose that for S′ the probability density function is G (S′). Because5

G (S′) dS′ =
1

σ
√
2πdt

e−(lnS′−lnS−mdt)
2
/2σ2dtd lnS′,

we have

G(S′) =
1

S′σ
√
2πdt

e−(lnS′−lnS−mdt)2/2σ2dt.

5If for x the probability density function is f(x), then the probability of x ∈
[x, x+dx] is f(x)dx. If y = y(x) and y(x) is a nondecreasing function, then x ∈ [x, x+

dx] if and only if y ∈ [y(x), y(x+dx)] ≈
[

y(x), y(x) +
dy

dx
dx

]

. Thus, the probability

of the event y ∈
[

y(x), y(x) +
dy

dx
dx

]

is also f(x)dx. If for y the probability density

function is f1(y), then f1(y)dy = f(x)dx, from which we have f1(y) = f(x(y))
dx

dy
.

If x = lnS′ and y = S′, then f1(S
′) = f(x(y))

dx

dy
= f(lnS′)

1

S′ .
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Fig. 2.3. The probability density function for S′

with lnS +mdt = 0 and σ
√
dt = 0.2

In Fig. 2.3, the corresponding curve of G(S′) is given. This is called a
lognormal because the corresponding distribution for lnS′ is normal.

Now the question is what are E [S′] and Var [S′]. Because we have the
probability density function, let

y =
lnS′ − lnS −mdt

σ
√
dt

and we have

E [S′] =
∫ ∞

0

G(S′)S′dS′

=
1

σ
√
2πdt

∫ ∞

0

e−(lnS′−lnS−mdt)2/2σ2dt 1

S′ × S′dS′

=
1√
2π

∫ ∞

−∞
e−y2/2eyσ

√
dt+lnS+mdtdy

=
1√
2π

∫ ∞

−∞
e−(y−σ

√
dt)

2
/2 × eσ

2dt/2+lnS+mdtdy

= eσ
2dt/2+lnS+mdt = Seμdt,

E
[
S′2] =

∫ ∞

0

G(S′)S′2dS′

=
1

σ
√
2πdt

∫ ∞

0

e−(lnS′−lnS−mdt)2/2σ2dt 1

S′S
′2dS′

=
1√
2π

∫ ∞

−∞
e−y2/2 × e2(yσ

√
dt+lnS+mdt)dy

=
1√
2π

∫ ∞

−∞
e−(y−2σ

√
dt)

2
/2e2σ

2dt+2(lnS+mdt)dy

= e2σ
2dt+lnS2+2mdt = S2e2μdt+σ2dt
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and

Var [S′] = S2e2μdt+σ2dt − S2e2μdt

= S2e2μdt
(
eσ

2dt − 1
)
,

where we have used the relation (2.5).
If m and σ in the expression (2.4) are constants, then for a large time

period T − t, we can have

lnS′ − lnS =

∫ T

t

d lnS = m

∫ T

t

dt+ σ

∫ T

t

dX(t) = m(T − t) + σφ
√
T − t,

where S′ is the stock price at time T , S is the stock price at time t, and
φ is a standardized normal random variable. Here we used the relation∫ T

t
dX(t) = φ

√
T − t, which can be obtained from the relation (2.2). There-

fore, in this case, the probability density function for S′ is

G(S′) =
1

S′σ
√
2π(T − t)

e−[lnS′−lnS−m(T−t)]2/2σ2(T−t)

and
⎧
⎪⎨

⎪⎩

E [S′] = Seμ(T−t),

Var [S′] = S2e2μ(T−t)
[
eσ

2(T−t) − 1
]
,

(2.6)

where μ is given by the relation (2.5):

μ = m+
σ2

2
.

2.2 Derivation of the Black–Scholes Equation

2.2.1 Arbitrage Arguments

In the modern world, financial transactions may be done simultaneously in
more than one market. Suppose the price of gold is $324 per ounce in New York
and 37,275 Japanese Yen in Tokyo, while the exchange rate is 1 U.S. dollar
for 115 Japanese Yen. An arbitrageur, who is always looking for any arbitrage
opportunities to make money, could simultaneously buy 1,000 ounces in New
York, sell them in Tokyo to obtain a risk-free profit of

37,275× 1,000/115− 324× 1,000 = $130.43

if the transaction costs can be ignored. Small investors may not profit from
such opportunity due to the transaction costs. However, the transaction costs
for large investors might be a small portion of the profit, which makes the
arbitrage opportunity very attractive.



26 2 European Style Derivatives

Arbitrage opportunities usually cannot last long. As arbitrageurs buy the
gold in New York, the price of the gold will rise. Similarly, as they sell the gold
in Tokyo, the price of the gold will be driven down. Very quickly, the ratio be-
tween the two prices will become closer to the current exchange rate. In prac-
tice, due to the existence of arbitrageurs, very few arbitrage opportunities can
be observed. Therefore, throughout this book we will assume that there are
no arbitrage opportunities for financial transactions.

Let us make the following assumptions: both the borrowing short-term in-
terest rate and the lending short-term interest rate are equal to r, short selling
is permitted, the assets and options are divisible, and there is no transaction
cost. Then, we can conclude that the absence of arbitrage opportunities is
equivalent to all risk-free portfolios having the same return rate r.

Let us show this point. Suppose that Π is the value of a portfolio and that
during a time step dt the return of the portfolio dΠ is risk-free. If

dΠ > rΠdt,

then an arbitrageur could make a risk-free profit dΠ − rΠdt during the time
step dt by borrowing an amount Π from a bank to invest in the portfolio.
Conversely, if

dΠ < rΠdt,

then the arbitrageur would short the portfolio and invest Π in a bank and
get a net income rΠdt− dΠ during the time step dt without taking any risk.
Only when

dΠ = rΠdt

holds, is it guaranteed that there are no arbitrage opportunities.
In the next subsection, we will derive the equation the prices of derivative

securities should satisfy by using the conclusion that all risk-free portfolios
have the same return rate r.

2.2.2 The Black–Scholes Equation

Let V denote the value of an option that depends on the value of the under-
lying asset S and time t, i.e., V = V (S, t). It is not necessary at this stage
to specify whether V is a call or a put; indeed, V can even be the value of
a whole portfolio of various options. For simplicity, readers may think of a
simple call or put.

Assume that in a time step dt, the underlying asset pays out a dividend
SD0dt, where D0 is a constant known as the dividend yield.6 Suppose S
satisfies Eq. (2.1):

6This dividend structure is a good model for an index. In this case, many discrete
dividend payments are paid at many different times, and the dividend payment can
be approximated by a continuous yield without serious error. Also, if the asset is a
foreign currency, then the interest rate for the foreign currency plays the role of D0.
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dS

S
= μ(S, t)dt+ σ(S, t)dX.

According to Itô’s lemma (2.3), the random walk followed by V is given by

dV =
∂V

∂S
dS +

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)

dt. (2.7)

Here we require V to have at least one t derivative and two S derivatives.
Now construct a portfolio consisting of one option and a number −Δ of

the underlying asset. This number is as yet unspecified. The value of this
portfolio is

Π = V −ΔS. (2.8)

Because the portfolio contains one option and a number −Δ of the underlying
asset, and the owner of the portfolio receives SD0dt for every asset held, the
earnings for the owner of the portfolio during the time step dt is

dΠ = dV −Δ (dS + SD0dt) .

Using the relation (2.7), we find that Π follows the random walk

dΠ =

(
∂V

∂S
−Δ

)

dS +

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
−ΔSD0

)

dt.

The random component in this random walk can be eliminated by choosing

Δ =
∂V

∂S
. (2.9)

This results in a portfolio whose increment is wholly deterministic:

dΠ =

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
−ΔSD0

)

dt. (2.10)

Because the return for any risk-free portfolio should be r, we have

rΠdt = dΠ =

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
−ΔSD0

)

dt. (2.11)

Substituting the relations (2.8) and (2.9) into Eq. (2.11) and dividing by dt,
we arrive at

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0. (2.12)

When we take differentΠ for different S and t, we can conclude that Eq. (2.12)
holds on a domain. In this book, Eq. (2.12) is called the Black–Scholes partial
differential equation, or the Black–Scholes equation,7 even though D0 = 0
in the equation originally given by Black and Scholes (see [11]). With its
extensions and variants, it plays the major role in the rest of the book.

About the derivation of this equation and the equation itself, we give more
explanation here.

7It is also called Black–Scholes–Merton differential equation (see [43]).
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• The key idea of deriving this equation is to eliminate the uncertainty
or the risk. dΠ is not a differential in the usual sense. It is the earning
of the holder of the portfolio during the time step dt. Therefore, ΔSD0dt
appear. In the derivation, in order to eliminate any small risk, Δ is chosen
before an uncertainty appears and does not depend on the coming risk.
Therefore, no differential of Δ is needed.

• The linear differential operator given by

∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

has a financial interpretation as a measure of the difference between the
return on a hedged option portfolio

∂

∂t
+

1

2
σ2S2 ∂2

∂S2
−D0S

∂

∂S

and the return on a bank deposit

r

(

1− S
∂

∂S

)

.

Although the difference between the two returns is identically zero for
European options, we will later see that the difference between the two
returns may be nonzero for American options.

• From the Black–Scholes equation (2.12), we know that the parameter μ in
Eq. (2.1) does not affect the option price, i.e., the option price determined
by this equation is independent of the average return rate of an asset price
per unit time.

• From the derivation procedure of the Black-Scholes equation we know that
the Black-Scholes equation still holds if r and D0 are functions of S and t.

• If dividends are paid only on certain dates, then the money the owner of
the portfolio will get during the time period [t, t+ dt] is

dV −ΔdS −ΔD(S, t)dt,

where D(S, t) is a sum of several Dirac delta functions. Suppose that a
stock pays dividend D1(S) at time t1 and D2(S) at time t2 for a share,
where D1(S) ≤ S and D2(S) ≤ S. Then

D(S, t) = D1(S)δ(t− t1) +D2(S)δ(t− t2),

where the Dirac delta function8 δ(t) is defined as follows:

8It is the limit as ε → 0 of the one-parameter family of functions:

δε(x) =

⎧
⎨

⎩

1

2ε
, −ε ≤ x ≤ ε,

0, |x| > ε.
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δ(t) =

⎧
⎨

⎩

0, if t �= 0,

∞, if t = 0
and

∫ ∞

−∞
δ(t) = 1.

In this case, the modified Black–Scholes equation is in the form

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ [rS −D (S, t)]

∂V

∂S
− rV = 0. (2.13)

2.2.3 Final Conditions for the Black–Scholes Equation

From the derivation of the Black–Scholes equation (2.12), we know that this
partial differential equation holds for any option (or portfolio of options) whose
value depends only on S and t. In order to determine a unique solution of the
Black–Scholes equation, the solution at the expiry, t = T , needs to be given.
This condition is called the final condition for the partial differential equation.
Different options satisfy the same partial differential equation, but different
final conditions. Therefore, in order to determine the price of an option, we
need to know the value of the option at time T . In what follows, we will derive
the final conditions for call and put options.

Final Condition for Call Options. Let us examine what a holder of a call
option will do just at the moment of expiry. If S > E at expiry, it makes
financial sense for the holder to exercise the call option, handing over an
amount E for an asset worth S. The money earned by the holder from such a
transaction is then S − E. On the other hand, if S < E at expiry, the holder
should not exercise the option because the holder would lose an amount of
E − S. In this case, the option expires valueless. Thus, the value of the call
option at expiry can be written as

C(S, T ) = max(S − E, 0). (2.14)

This function giving the value of a call option at expiry is usually called the
payoff function of a call option. In Fig. 1.9, we plot max(S−E, 0) as a function
of S, which is usually known as a payoff diagram. A call option with such a
payoff is the simplest call option and is known as a vanilla call option.

Final Condition for Put Options. Each option or each portfolio of options
has its own payoff at expiry. An argument similar to that given above for the
value of a call at expiry leads to the payoff for a put option. At expiry, the
put option is worthless if S > E but has the value E − S for S < E. Thus,
the payoff function of a put option is

P (S, T ) = max(E − S, 0). (2.15)

The payoff diagram for a put is shown in Fig. 1.10 where the line shows
the payoff function max(E−S, 0). In order to distinguish this put option from
other more complicated put options, sometimes it is referred to as the vanilla
put option.
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2.2.4 Hedging and Greeks

The way to reduce the sensitivity of a portfolio to the movement of something
by taking opposite positions in different financial instruments is called hedg-
ing. Hedging is a basic concept in finance. When we derived the Black–Scholes

equation in Sect. 2.2.2, we chose the delta to be
∂V

∂S
, so that the portfolio Π

became risk-free. This gives an important example on how hedging is applied.
Let us see another example of hedging that is similar to what we have used
in deriving the Black–Scholes equation.

Consider a call option on a stock. Figure 2.4 shows the relation between the
call price and the underlying stock price. When the stock price corresponds
to point A, the option price corresponds to point B and the Δ of the call is
the slope of the line indicated. As an approximation

Δ =
δc

δS
,

where δS is a small change in the stock price and δc is the corresponding
change in the call price.

Fig. 2.4. Δ = the slope of a curve

Assume that the delta of the call option is 0.7 and a writer sold 10,000
units of call options. Then, the writer’s position could be hedged by buying
0.7 × 10,000 = 7,000 shares of stocks. If the stock price goes up by $0.50,
the writer will earn $3,500 from the 7,000 shares of stocks held. At the same
time, the price of call options will go up approximately 0.7 × 0.5 = $0.35,
and he will lose 10,000 × $0.35 = $3,500 from 10,000 shares of option he sold.
Therefore, the net profit or loss is about zero. If the price falls down by a
small amount, the situation is similar. Consequently, the writer’s position has
been hedged quite well as long as the movement of the price is small. This is
called delta hedging.

In the example above, we have considered only a call option. Actually, any
portfolio can be hedged in this way. If Π denotes the price of option, then the
slope is
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Δ =
∂Π

∂S
.

If the movement of the price is not very small, then it might be necessary
to use the value of the second derivative of the portfolio with respect to S in
order to eliminate most of the risk. The second derivative is known as gamma

Γ =
∂2Π

∂S2
.

When hedging in practice, some other values, for example,
∂Π

∂t
,
∂Π

∂σ
,
∂Π

∂r
,

∂Π

∂D0
, may need to be known. Usually,

∂Π

∂t
,
∂Π

∂σ
, and

∂Π

∂r
are called theta,

vega, and rho, respectively; namely, the following notation is used:

Θ =
∂Π

∂t
, V =

∂Π

∂σ
,

and

ρ =
∂Π

∂r
.

In currency options, D0 is the interest rate in the foreign country. Thus,
∂Π

∂D0

is also known as rho. In order to distinguish
∂Π

∂r
and

∂Π

∂D0
, here we define

ρd =
∂Π

∂D0
.

These quantities are usually referred to as Greeks.

When σ depends on S, or the coefficient of
∂V

∂S
is more complicated,

analytic expressions of option prices may not exist. In this case, we have to
use numerical methods. Also sometimes (for example, for a call option), the
solution is unbounded. It is not convenient to solve a problem numerically
on an infinite domain with an unbounded solution. Therefore in Sect. 2.2.5,
we also provide a transformation under which the Black–Scholes equation on
[0,∞) becomes an equation on [0, 1) with a bounded solution.

2.2.5 Transforming the Black–Scholes Equation into an Equation
Defined on a Finite Domain

Let us consider the following option problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

0 ≤ S <∞, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S <∞.

(2.16)
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The transformation to be described in this subsection works even when σ, r,
or D0 depends on S and t. For simplicity, we assume in the derivation that σ
depends on S and that r, D0 are constant. In this case, an analytic expression
of the solution V (S, t) may not exist, and numerical methods may be neces-
sary. Also for a call option, the solution V (S, t) is not bounded. Therefore,
we introduce new independent variables and dependent variable through the
following transformation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

τ = T − t,

V (S, t) = (S + Pm)V (ξ, τ).

(2.17)

From Eq. (2.17) we have

S =
Pmξ

1− ξ
, S + Pm =

Pm

1− ξ

and
dξ

dS
=

Pm

(S + Pm)2
=

(1− ξ)2

Pm
.

Because

∂V

∂t
=

∂

∂t

[
(S + Pm)V (ξ, τ)

]
= −(S + Pm)

∂V

∂τ
= − Pm

1− ξ

∂V

∂τ
,

∂V

∂S
=

∂

∂S

[
(S + Pm)V (ξ, τ)

]
= (S + Pm)

∂V

∂ξ

dξ

dS
+ V = (1− ξ)

∂V

∂ξ
+ V ,

∂2V

∂S2
=

∂

∂ξ

[

(1− ξ)
∂V

∂ξ
+ V

]
dξ

dS
=

(1− ξ)3

Pm

∂2V

∂ξ2
,

and let

σ̄(ξ) = σ(S(ξ)) = σ

(
Pmξ

1− ξ

)

,

the original equation becomes9

Pm

1− ξ

∂V

∂τ
=
σ̄2(ξ)Pmξ

2(1− ξ)

2

∂2V

∂ξ2
+ (r −D0)Pmξ

∂V

∂ξ
+

(r −D0)ξ − r

1− ξ
PmV

or

∂V

∂τ
=
σ̄2(ξ)ξ2(1− ξ)2

2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ < 1, 0 ≤ τ.

9Actually, the same equation can be directly obtained by constructing a portfolio
and using Itô lemma (see Problem 23).



2.2 Derivation of the Black–Scholes Equation 33

Assume that V is a smooth function of ξ, then the equation also holds at

ξ = 1. Because V (S, T ) = (S + Pm)V (ξ, 0) = V (ξ, 0)
Pm

1− ξ
, the condition

V (S, T ) = VT (S) can be rewritten as V (ξ, 0) = VT

(
Pmξ

1− ξ

)
1− ξ

Pm
. Conse-

quently, the problem (2.16) becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) =
1− ξ

Pm
VT

(
Pmξ

1− ξ

)

, 0 ≤ ξ ≤ 1.

(2.18)
Thus, the transformation (2.17) converts a problem on an infinite domain
into a problem on a finite domain. For a parabolic equation defined on a
finite domain to have a unique solution, besides an initial condition, boundary
conditions are usually needed. However, in this equation the coefficients of
∂2V

∂ξ2
and

∂V

∂ξ
at ξ = 0 and at ξ = 1 are equal to zero, i.e., the equation

degenerates to ordinary differential equations at the boundaries. Actually, at
ξ = 0 the equation becomes

∂V (0, τ)

∂τ
= −rV (0, τ)

and the solution is

V (0, τ) = V (0, 0)e−rτ . (2.19)

Similarly, at ξ = 1 the equation reduces to

∂V (1, τ)

∂τ
= −D0V (1, τ),

from which we have
V (1, τ) = V (1, 0)e−D0τ . (2.20)

Therefore for this equation, the two solutions of the ordinary differential equa-
tions provide the values at the boundaries, and no boundary conditions are
needed in order for the problem (2.18) to have a unique solution.

Consequently, in order to price an option, we need to solve a problem
on a finite domain if this formulation is adopted. From the point view of
numerical methods, such a formulation is better. This is its first advantage.
Actually, the uniqueness of solution for problem (2.18) can easily be proved
(see Sect. 2.4). Indeed, not only the uniqueness can be proved, but the stability
of the solution with respect to the initial value can also be shown easily. That
is, this formulation makes proof of some theoretical problems easy. This is its
other advantage.
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For a call option, the payoff is

V (S, T ) = max(S − E, 0),

so the initial condition in the problem (2.18) for a call is

V (ξ, 0) = max(S − E, 0)(1− ξ)/Pm

= max

(
Pmξ

1− ξ
− E, 0

)

(1− ξ)/Pm

= max

(

ξ − E

Pm
(1− ξ), 0

)

.

For a put option

V (S, T ) = max(E − S, 0).

Therefore

V (ξ, 0) = max

(
E

Pm
(1− ξ)− ξ, 0

)

.

Let Pm = E, the two initial conditions become

V (ξ, 0) = max (2ξ − 1, 0) and V (ξ, 0) = max (1− 2ξ, 0) ,

respectively. Therefore, a European call option is the solution of the following
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) = max(2ξ − 1, 0), 0 ≤ ξ ≤ 1
(2.21)

and the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) = max(1− 2ξ, 0), 0 ≤ ξ ≤ 1
(2.22)

gives the price of a European put option. In the problem (2.21) the initial
condition is bounded, so V (ξ, τ), as a solution of a linear parabolic equation,
is also bounded. Therefore in this case, the solution that needs to be found
numerically is bounded.

So far, we assumed that σ depends only on S and that r and D0 are
constant. However, the result will be the same if σ depends on both S and t,
and r and D0 also depend on S and t.
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Finally, we would like to point out that from the expression (2.20) we can
have an asymptotic expression of the solution of the Black–Scholes equation
at infinity. Because at ξ = 1 there is an analytic solution (2.20), noticing

V (S, t) = (S + Pm)V (ξ, τ),

for S ≈ ∞ we have

V (S, t) = (S + Pm)V (ξ, τ) ≈ (S + Pm)V (1, τ)

= (S + Pm)V (1, 0)e−D0τ

≈ V (S, T )e−D0τ = V (S, T )e−D0(T−t). (2.23)

This is an asymptotic expression of the solution of the Black–Scholes equation
at infinity.

2.2.6 Derivation of the Equation for Options on Futures

As we know, a futures contract in finance is a standardized contract between
two parties to exchange a specified asset of a standardized quantity and quality
for a price K (the delivery price) agreed today with delivery occurring at a
specified future date, while a forward contract in finance is a nonstandardized
contract between two parties to buy or sell an asset at a specified future
time at a price K agreed today. There are some differences between a futures
contract and a forward contract, but both are a contract in which two parties
agree to exchange a specified asset for a specified amount of cash at a specified
future date. Here we derive the PDE for options on such a contract.

Suppose that the price of the underlying asset satisfies

dS = μSdt+ σSdX, (2.24)

and it pays dividends continuously with a constant dividend yield D0. We also
assume that the interest rate r is a constant. Let T be the expiration date of
the contract and t be the time today.

Before deriving the PDE, we point out that the value of a forward/futures
contract at time t is

f = Se−D0(T−t) −Ke−r(T−t), (2.25)

from which we can have

S = eD0(T−t)
(
f +Ke−r(T−t)

)
. (2.26)

The reason is as follows. At time t, the seller of this contract, who gets f when
the contract is sold, can borrow Ke−r(T−t) from a bank with an interest rate
r and buy e−D0(T−t) units of the asset by spending Se−D0(T−t). At time T ,
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the seller will get K from the holder of the contract, which will be paid to the
bank, and give a unit of the asset to the holder. Therefore, there is no risk for
seller, and it is a reasonable price for the contract.

Now we consider an option on such a contract. When we consider options
on stocks, we let its value be a function of the value of the stock, S, and t.
Thus, it is natural to let the value of options on futures be a function of the
value of futures contracts, f , and t. That is, let V1(f, t) denote the price of the
option. The PDE for V1(f, t) can be derived in the following way. Consider a
portfolio

Π = V1(f, t)−Δf.

Because we assume that S is a lognormal variable,10 using Itô’s lemma, for f
we have

df =
∂f

∂S
dS +

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)

dt

= e−D0(T−t)dS +
(
D0Se

−D0(T−t) − rKe−r(T−t)
)
dt

= e−D0(T−t)(μSdt+ σSdX) +
(
D0Se

−D0(T−t) − rKe−r(T−t)
)
dt

=
(
e−D0(T−t)μS +D0Se

−D0(T−t) − rKe−r(T−t)
)
dt+ e−D0(T−t)σSdX

=
[
(μ+D0)

(
f +Ke−r(T−t)

)
− rKe−r(T−t)

]
dt

+σ
[
f +Ke−r(T−t)

]
dX.

Using this relation and Itô’s lemma again, we can further have

dΠ =
∂V1
∂f

df +

[
∂V1
∂t

+
1

2
σ2
(
f +Ke−r(T−t)

)2 ∂2V1
∂f2

]

dt−Δdf

=

(
∂V1
∂f

−Δ

)

df +

[
∂V1
∂t

+
1

2
σ2
(
f +Ke−r(T−t)

)2 ∂2V1
∂f2

]

dt.

If we choose Δ =
∂V1
∂f

, then the portfolio dΠ is risk-free and

dΠ =

[
∂V1
∂t

+
1

2
σ2
(
f +Ke−r(T−t)

)2 ∂2V1
∂f2

]

dt

= rΠdt = r

(

V1(f, t)− ∂V1
∂f

f

)

dt.

This relation can be rewritten as

∂V1
∂t

+
1

2
σ2
(
f +Ke−r(T−t)

)2 ∂2V1
∂f2

+ rf
∂V1
∂f

− rV1 = 0. (2.27)

10If we assume that f has a lognormal distribution, the PDE will be different.



2.2 Derivation of the Black–Scholes Equation 37

Actually, if we use another independent variable, the PDE will become
simple. This independent variable is the forward price F . What is the forward
price? Consider a foreign currency. Let S be the current spot price in dollars
of one unit of the foreign currency at time t and F be the forward price in
dollars of one unit of the foreign currency in the forward contract issued at
time t and expiring at time T . Let D0 be the interest rate in the foreign
country. Then for the forward price F , there is the following expression:

F = e(r−D0)(T−t)S. (2.28)

This is because the seller of the forward contract can borrow e−D0(T−t)S to
buy e−D0(T−t) units of the foreign currency at time t, and at time T he or
she can have one unit of the foreign currency and can obtain an amount of
e(r−D0)(T−t)S from one unit of the foreign currency, which is what he or she
needs in order to pay off the borrowing. It is clear that between F and f ,
there are the following relations:

f = e−r(T−t)
(
Se(r−D0)(T−t) −K

)
= e−r(T−t) (F −K) (2.29)

and
F = er(T−t)f +K.

Let V (F, t) denote the value of that option, and let us find the PDE for the
function V (F, t). Set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F = er(T−t)f +K,

t = t,

V1(f, t) = V (F (f, t), t) = V (er(T−t)f +K, t).

From these expressions, we have

∂V1
∂t

=
∂V

∂t
− rer(T−t)f

∂V

∂F
,

∂V1
∂f

= er(T−t) ∂V

∂F
,

and

∂2V1
∂f2

= e2r(T−t) ∂
2V

∂F 2
.

Using these relations, we can rewrite the PDE for V1 as

∂V

∂t
− rer(T−t)f

∂V

∂F
+

1

2
σ2
(
f +Ke−r(T−t)

)2
e2r(T−t) ∂

2V

∂F 2

+rfer(T−t) ∂V

∂F
− rV = 0
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or
∂V

∂t
+

1

2
σ2F 2 ∂

2V

∂F 2
− rV = 0. (2.30)

Usually, this equation is called the PDE for an option on a futures contract
(see [8]). However, the PDE indeed is a variant of the Black–Scholes equation
in Sect. 2.2.2. Because F is a function of S and t, we can define a function
of S, t as follows: V2(S, t) = V (F (S, t), t). It is clear that V2(S, t) also gives
the value of the option. The only difference is that it is a function of S, t, not
F, t. As we know, any function of S, t, giving the value of a derivative security,
should satisfy the Black–Scholes equation; that is, the equation

∂V2
∂t

+
1

2
σ2S2 ∂

2V2
∂S2

+ (r −D0)S
∂2V2
∂S

− rV2 = 0

holds. Let us show by direct calculation that V2(S, t) satisfies the Black–
Scholes equation. Because

V (F, t) = V2(S(F, t), t)

and
S = e−(r−D0)(T−t)F,

we have

∂V

∂t
=
∂V2
∂t

+
∂V2
∂S

∂S

∂t
=
∂V2
∂t

+ (r −D0)S
∂V2
∂S

,

∂V

∂F
= e−(r−D0)(T−t) ∂V2

∂S
,

∂2V

∂F 2
= e−2(r−D0)(T−t) ∂

2V2
∂S2

.

From Eq. (2.30) we can have

∂V2
∂t

+ (r −D0)S
∂V2
∂S

+
1

2
σ2F 2e−2(r−D0)(T−t) ∂

2V2
∂S2

− rV2 = 0

or
∂V2
∂t

+
1

2
σ2S2 ∂

2V2
∂S2

+ (r −D0)S
∂V2
∂S

− rV2 = 0.

Thus, we have proved that if the value of an option on a futures contract is
a function of S and t, then it satisfies the Black–Scholes equation. It can also
be proved that if we let V3(S, t) = V1(f(S, t), t), then V3(S, t) also satisfies the
Black–Scholes equation. This means that Eq. (2.27) is also a variant of the
Black–Scholes equation. The proof is left for readers as a part of Problem 16.
When the Black–Scholes equation is derived, the randomness of the value of
derivative securities is cancelled by the randomness of the value of the stock, S,
and when Eq. (2.27) is derived, the randomness is cancelled by the randomness
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of the value of the forward/futures contract, f . However, f is a function of
S and t given by the expression (2.25). Thus, their randomnesses are related.
Consequently, the Black–Scholes equation and the equation for options on
futures contracts are the same essentially.

2.3 General Equations for Derivatives

Generally speaking, a financial derivative could depend on several random
variables, and a random variable may not represent a price of an asset that
can be traded on the market. For example, a derivative could depend on prices
of several assets. Also interest rates and volatilities may need to be treated
as random variables. As we know, both interest rates and volatilities are not
prices of assets. In this section, we will derive the general partial differential
equations satisfied by derivatives, where there exist several state variables and
a state variable may not be a price of an asset traded on the market or even
not be related to a price. The derivation of equations for derivatives with
several state variables can be found from other books, for example, the books
by Hull [42], and Wilmott, Dewynne, and Howison [84].

2.3.1 Generalization of Itô’s Lemma

Suppose a financial derivative depends on time t and n random state variables,
namely, S1, S2, · · · , Sn. Each of them satisfies a stochastic differential equation

dSi = aidt+ bidXi, i = 1, 2, · · · , n, (2.31)

where ai,bi are functions of S1, S2, · · · , Sn and t, and dXi = φi
√
dt are Wiener

processes. In addition, φ1, φ2, · · · , φn have a joint normal distribution and

E [φiφj ] = ρij , (2.32)

where
−1 ≤ ρij ≤ 1.

If ρij = 0, then φi and φj are not correlated. If ρij = ±1, then φi and φj are
completely correlated. It is clear that ρii = 1. In this book ρij is referred to
as the correlation coefficient between Si and Sj .

Let V = V (S1, S2, · · · , Sn, t). According to the Taylor expansion, we have

dV =V (S1 + dS1, S2 + dS2, · · · , Sn + dSn, t+ dt)− V (S1, S2, · · · , Sn, t)

=

n∑

i=1

∂V

∂Si
dSi +

∂V

∂t
dt+

1

2

n∑

i=1

n∑

j=1

∂2V

∂Si∂Sj
dSidSj

+

n∑

i=1

∂2V

∂Si∂t
dSidt+

1

2

∂2V

∂t2
(dt)2 + · · · .



40 2 European Style Derivatives

Because
lim
dt→0

dSidSj/dt = bibjρij

and dSidt is a quantity of order (dt)
3/2

, the relation above as dt→ 0 becomes

dV = fdt+

n∑

i=1

∂V

∂Si
dSi, (2.33)

where

f =
∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

∂2V

∂Si∂Sj
bibjρij .

This is called the generalized Itô’s lemma.

2.3.2 Derivation of Equations for Financial Derivatives

On the n random variables, we further assume that

S1, S2, · · · , and Sm, m ≤ n,

are prices of some assets which can be traded on markets, and that the k-th
asset pays a dividend payment Dkdt during the time interval [t, t+ dt], Dk

being a known function that may depend on S1,S2, · · · , Sn and t. In order to
derive the general PDE for financial derivatives, we suppose that there are

n−m+ 1

distinct financial derivatives dependent on S1, S2, · · · , Sn and t. Let Vk stand
for the value of the k-th derivative, k = 0, 1, · · · , n−m and assume that the
k-th derivative during the time interval [t, t+ dt] pays coupon payment Kkdt,
Kk being a known function that may depend on S1,S2, · · · , Sn and t. They
could have different expiries, different exercise prices, or different payoff func-
tions. Even some of the derivatives may depend on only some of the random
variables. According to the generalized Itô’s lemma, for each derivative, we
have

dVk = fkdt+

n∑

i=1

νi,kdSi,

where

fk =
∂Vk
∂t

+
1

2

n∑

i=1

n∑

j=1

∂2Vk
∂Si∂Sj

bibjρij

and

νi,k =
∂Vk
∂Si

.
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Consider a portfolio consisting of the n − m + 1 derivatives and the m
assets, whose prices are S1, S2, · · · , Sm:

Π =

n−m∑

k=0

ΔkVk +

n∑

k=n−m+1

ΔkSk−n+m,

where Δk is the amount of the k-th derivative for k = 0, 1, · · · , n − m and
the amount of the (k − n+m)-th asset, for k = n−m+ 1, n−m+ 2, · · · , n.
During the time interval [t, t+ dt] , the holder of this portfolio will earn

n−m∑

k=0

Δk (dVk +Kkdt) +
n∑

k=n−m+1

Δk (dSk−n+m +Dk−n+mdt)

=

n−m∑

k=0

Δk

(

fkdt+

n∑

i=1

νi,kdSi +Kkdt

)

+

n∑

k=n−m+1

Δk (dSk−n+m +Dk−n+mdt)

=

n−m∑

k=0

Δk (fk +Kk) dt+

n∑

i=1

(
n−m∑

k=0

Δkνi,k

)

dSi

+

m∑

i=1

Δi+n−mdSi +

n∑

k=n−m+1

ΔkDk−n+mdt

=

n−m∑

k=0

Δk (fk +Kk) dt+

m∑

i=1

(
n−m∑

k=0

Δkνi,k +Δi+n−m

)

dSi

+

n∑

i=m+1

(
n−m∑

k=0

Δkνi,k

)

dSi +

n∑

k=n−m+1

ΔkDk−n+mdt.

Let us choose Δk so that

n−m∑

k=0

Δkνi,k +Δi+n−m = 0, i = 1, 2, · · · ,m

and
n−m∑

k=0

Δkνi,k = 0, i = m+ 1,m+ 2, · · · , n.

In this case the portfolio is risk-free, so its return rate is r, i.e.,

n−m∑

k=0

Δk (fk +Kk) dt+

n∑

k=n−m+1

ΔkDk−n+mdt

= r

[
n−m∑

k=0

ΔkVk +
n∑

k=n−m+1

ΔkSk−n+m

]

dt,
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or

n−m∑

k=0

Δk (fk +Kk − rVk) +

n∑

k=n−m+1

Δk (Dk−n+m − rSk−n+m) = 0,

or
n−m∑

k=0

Δk (fk +Kk − rVk) +

m∑

k=1

Δn−m+k (Dk − rSk) = 0.

This relation and the relations the chosen Δk satisfy can be written together
in a matrix form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν1,0 ν1,1 · · · ν1,n−m 1 0 · · · 0
ν2,0 ν2,1 · · · ν2,n−m 0 1 · · · 0
...

...
...

...
...

...
. . .

...
νm,0 νm,1 · · · νm,n−m 0 0 · · · 1
νm+1,0 νm+1,1 · · · νm+1,n−m 0 0 · · · 0

...
...

...
...

...
...

...
...

νn,0 νn,1 · · · νn,n−m 0 0 · · · 0
g0 g1 · · · gn−m h1 h2 · · · hm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δ0

Δ1
...

Δn−m

Δn−m+ 1
Δn−m+ 2

...
Δn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0,

where
gk = fk +Kk − rVk, k = 0, 1, · · · , n−m

and
hk = Dk − rSk, k = 1, 2, · · · ,m.

In order for the system to have a non-trivial solution, the determinant of the
matrix must be zero, or the n+ 1 row vectors of the matrix must be linearly
dependent. Therefore, it is expected that the last row can be expressed as a
linear combination of the other rows with coefficients λ̃1, λ̃2, · · · , λ̃n:

gk =

n∑

i=1

λ̃iνi,k, k = 0, 1, · · · , n−m

and
hk = λ̃k, k = 1, 2, · · · ,m.

Using the last m relations, we can rewrite the first n−m+ 1 relations as

gk −
m∑

i=1

hiνi,k −
n∑

i=m+1

λ̃iνi,k = 0, k = 0, 1, · · · , n−m,

which means that any derivative satisfies an equation in the form

f +K − rV −
m∑

i=1

hi
∂V

∂Si
−

n∑

i=m+1

λ̃i
∂V

∂Si
= 0,
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or

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

bibjρij
∂2V

∂Si∂Sj
+

m∑

i=1

(rSi −Di)
∂V

∂Si

−
n∑

i=m+1

λ̃i
∂V

∂Si
− rV +K = 0,

where bi, ρij are given functions in the models of Si, λ̃i are unknown functions
which are independent of V0, V1, · · · , Vn−m and could depend on S1, S2, · · · , Sn

and t, and K depends on the individual derivative security. Usually λ̃i is writ-
ten in the form:

λ̃i = λibi − ai

and λi is called the market price of risk for Si. Using this notation, we finally
arrive at

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

bibjρij
∂2V

∂Si∂Sj
+

m∑

i=1

(rSi −Di)
∂V

∂Si

+

n∑

i=m+1

(ai − λibi)
∂V

∂Si
− rV +K = 0. (2.34)

It is clear that if m = n = 1, b1 = σ1S1, D1 = D01S1, and K = 0, then
this equation becomes the Black–Scholes equation (2.12) after ignoring the
subscript 1.

In the last we give some explanation on why λi is called the market price
of risk for Si. For simplicity, assume that none of Sk, k = 1, 2, · · · , n, is a
price. In this case the PDE above becomes

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

bibjρij
∂2V

∂Si∂Sj
+

n∑

i=1

(ai − λibi)
∂V

∂Si
− rV +K = 0.

According to Itô’s lemma and using this PDE, we have

dV =

⎛

⎝
∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

∂2V

∂Si∂Sj
bibjρij

⎞

⎠ dt+

n∑

i=1

∂V

∂Si
dSi

=

[
n∑

i=1

(λibi − ai)
∂V

∂Si
+ rV −K

]

dt+

n∑

i=1

∂V

∂Si
(aidt+ bidXi)

or

dV +Kdt− rV dt =

n∑

i=1

∂V

∂Si
bi (dXi + λidt) .

Here, dV +Kdt is the return for the derivative including the coupon payment
and rV dt is the return if the investment is risk-free. Therefore, dV+Kdt−rV dt
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is the excess return above the risk-free rate during the time interval [t, t+ dt].

This equals the right-hand side of the equation. Its expectation is
n∑

i=1

∂V

∂Si
biλidt

because E [dXi] = 0, i = 1, 2, · · · , n. Therefore, the term
∂V

∂Si
biλidt may be

interpreted as an excess return above the risk-free return for taking the risk
dXi. Consequently, λi is a price of risk for Si that is associated with dXi and
is often called the market price of risk for Si.

2.3.3 Three Types of State Variables

When we talk about the market price of risk, we can think that there are
three types of state variables.

The first type of state variable is a price of an asset. In this case the coef-

ficient of
∂V

∂Si
in Eq. (2.34) is rSi−Di. Thus for such a state variable, there is

no market price of risk. However, this fact can also be understood in another
way: there still is a market price of risk and the market price of risk for an
asset is determined by

ai − λibi = rSi −Di(S1, S2, · · · , Sn, t). (2.35)

This can be explained as follows. Suppose that the (m+1)-th random variable
actually is a price of an asset. In this case, let us consider a portfolio consisting
of the n−m derivatives and the m+1 assets, and derive the PDE. In the new

PDE obtained the coefficient of
∂V

∂Sm+1
is rSm+1−Dm+1. The price of any fi-

nancial derivative dependent on S1, S2, · · · , Sn, t should satisfy the same equa-
tion. Thus am+1 − λm+1bm+1 should equal rSm+1 −Dm+1(S1, S2, · · · , Sn, t),
which means that the relation (2.35) holds. If Di = D0iSi, then the following
should be true:

ai − λibi = (r −D0i)Si. (2.36)

This can be shown in another way, which is left for readers as Problem 22.
A state variable Si with bi = 0 in Eq. (2.31) is another type of state

variable. From bi = 0, we have

ai − λibi = ai, (2.37)

so λi disappears in Eq. (2.34). As we will see from Chap. 4, if S′
i is the price

of a stock and Si is the maximum, minimum, or average price of the stock
during a time period, and both of them are state variables, then dSi = aidt.

If Si is the short-term interest rate, then in order to determine λi, we have
to solve an inverse problem. We will discuss this problem in detail in Chap. 5.
This is an example of the third type of state variable. Besides the interest
rate, the random volatility also falls into this type of state variable.
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2.3.4 Random Variables Not Being But Related to Prices of Assets

In Sect. 2.3.2 we assume that a random variable either is a value of a derivative
or is a price of an asset. However, sometimes a random variable is merely re-
lated to an asset price. The random variable ξ in Sect. 2.2.5 and the random
variable F in Sect. 2.2.6 are such examples. In Sects. 2.2.5 and 2.2.6, the PDEs
for V (ξ, τ) and V (F, t) are obtained from the known PDEs by using trans-
formations of independent and dependent variables. However, the two PDEs
can also be obtained by setting a portfolio and using Itô’s lemma. In Prob-
lems 23 and 24, readers are asked to derive the two PDEs and some other
PDEs in this way. Here we assume that there are m random variables that
do not represent prices of assets, but there exist m known different functions
dependent on the m random variables that represent asset prices. In this case,
in the procedure of deriving a PDE, determining Δ0, · · · , Δn in the portfolio
will involve solving a linear system; the expressions of the coefficients of the
first derivatives in the PDE are more complicated. Here we give an example
with m = 2, and readers are asked to do Problem 26 with m = 3.

Suppose that ξ1 and ξ2 satisfy the system of stochastic differential equa-
tions

dξi = μi(ξ1, ξ2, t)dt+ σi(ξ1, ξ2, t)dXi, i = 1, 2,

where dXi are the Wiener processes and E [dXidXj ] = ρijdt with −1 ≤ ρij ≤
1. The functions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1 (ξ1)− Z2,l]

= Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l]

represent prices of two nondividend-paying assets, where Z1,l and Z2,l are
two constants. Let V (ξ1, ξ2, t) be the value of a noncoupon-paying derivative
security. Because Z1(ξ1) and Z2(ξ1, ξ2) are prices of two assets, we can set a
portfolio

Π = V −Δ1Z1(ξ1)−Δ2Z2(ξ1, ξ2)

when deriving the PDE for V (ξ1, ξ2, t). According to Itô’s lemma and noticing
the form of functions Z1 (ξ1) and Z2 (ξ1, ξ2), we have

dV =
2∑

i=1

∂V

∂ξi
dξi +

⎛

⎝
∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj

⎞

⎠ dt,

dZ1 =
∂Z1

∂ξ1
dξ1,

dZ2 =

2∑

i=1

∂Z2

∂ξi
dξi + σ1σ2ρ1,2

∂2Z2

∂ξ1∂ξ2
dt.
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Using these expressions, we obtain

dΠ =

2∑

i=1

∂V

∂ξi
dξi +

⎛

⎝
∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj

⎞

⎠ dt

−Δ1
∂Z1

∂ξ1
dξ1 −Δ2

(
2∑

i=1

∂Z2

∂ξi
dξi + σ1σ2ρ1,2

∂2Z2

∂ξ1∂ξ2
dt

)

=

(
∂V

∂ξ1
−Δ1

∂Z1

∂ξ1
−Δ2

∂Z2

∂ξ1

)

dξ1 +

(
∂V

∂ξ2
−Δ2

∂Z2

∂ξ2

)

dξ2

+

⎛

⎝
∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj

⎞

⎠ dt

−Δ2σ1σ2ρ1,2
∂2Z2

∂ξ1∂ξ2
dt.

Let us choose

Δ2 =
1

∂Z2

∂ξ2

∂V

∂ξ2
,

Δ1 =
1

∂Z1

∂ξ1

(
∂V

∂ξ1
−Δ2

∂Z2

∂ξ1

)

=
1

∂Z1

∂ξ1

∂V

∂ξ1
−

∂Z2

∂ξ1
∂Z1

∂ξ1
∂Z2

∂ξ2

∂V

∂ξ2
,

so that
∂V

∂ξ1
−Δ1

∂Z1

∂ξ1
−Δ2

∂Z2

∂ξ1
=
∂V

∂ξ2
−Δ2

∂Z2

∂ξ2
= 0.

In this case, the portfolio is risk-free and the return rate should be r:

⎛

⎝
∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj

⎞

⎠ dt−Δ2σ1σ2ρ1,2
∂2Z2

∂ξ1∂ξ2
dt

= r (V −Δ1Z1 −Δ2Z2) dt

or

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj
+
rZ1

∂Z1

∂ξ1

∂V

∂ξ1

+

(

−
rZ1

∂Z2

∂ξ1
∂Z1

∂ξ1
∂Z2

∂ξ2

+
rZ2

∂Z2

∂ξ2

−
σ1σ2ρ1,2

∂2Z2

∂ξ1∂ξ2
∂Z2

∂ξ2

)
∂V

∂ξ2
− rV = 0.
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Noticing

∂Z1

∂ξ1
= 1− Z1,l,

∂Z2

∂ξ1
= ξ2 (1− Z1,l) ,

∂Z2

∂ξ2
= Z1 − Z2,l,

∂2Z2

∂ξ1∂ξ2
= 1− Z1,l,

we can rewrite the PDE as

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj
+

rZ1

1− Z1,l

∂V

∂ξ1

+

(

− rZ1ξ2 (1− Z1,l)

(1− Z1,l) (Z1 − Z2,l)
+

rZ2

Z1 − Z2,l
− σ1σ2ρ1,2 (1− Z1,l)

Z1 − Z2,l

)
∂V

∂ξ2
−rV = 0,

which can be simplified to

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj
+

rZ1

1− Z1,l

∂V

∂ξ1

+

[
r (Z2 − Z1ξ2)− σ1σ2ρ1,2 (1− Z1,l)

Z1 − Z2,l

]
∂V

∂ξ2
− rV = 0.

From Sect. 5.6 you can see that it could be a PDE for a two-factor interest
rate model.

2.4 Uniqueness of Initial-Value Problems for Degenerate
Parabolic PDEs

2.4.1 Reversion Conditions for Stochastic Models

In many cases, a stochastic model in finance usually describes a random vari-
able which can take its value on an infinite domain. For such a model, closed-
form solutions can be found in many situations. This is an advantage of such
a model. However it seems that assuming a random variable (such as interest
rates, volatilities) to be defined on a finite domain and designing a model from
market data are more realistic. How do we model a random variable with such
a property? For simplicity, we consider problems with only one random vari-
able S. Suppose that we want a random variable S to have a lower boundary
Sl, i.e., if S ≥ Sl at time t, then we want to guarantee that S is still greater
than or equal to Sl after time t even though the movement of S possesses
some uncertainty. In this case, we need to require that a (S, t) and b (S, t) at
S = Sl satisfy the conditions
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⎧
⎨

⎩

a (Sl, t) ≥ 0, 0 ≤ t ≤ T,

b (Sl, t) = 0, 0 ≤ t ≤ T.
(2.38)

This is a necessary condition because if either of the two conditions does not
hold, then there is a chance for S to be lower than Sl at time t + dt when
S = Sl at time t. In Sect. 2.4.2, we will see that if

⎧
⎨

⎩

a (Sl, t)− b(Sl, t)
∂

∂S
b(Sl, t) ≥ 0, 0 ≤ t ≤ T,

b (Sl, t) = 0, 0 ≤ t ≤ T

(2.39)

holds, then a unique solution of the corresponding partial differential equation
can be determined by a final condition on [Sl,∞) without any boundary
conditions at S = Sl. Therefore, what happens at S = Sl will not affect the
solution at t = 0 for any S. This fact can be interpreted as follows. If the
condition (2.39) holds for any t ∈ [t0,T ], then for any such time t, S will be
greater than or equal to Sl if S > Sl at t = t0. That is, S is either reflected
into the region S > Sl or is absorbed by the boundary S = Sl in the event S
hits the lower bound Sl at some time t ∈ [t0, T ]. This is because if there are
paths that pass through a point (Sl, t) and go to the outside of [Sl,∞), then
the solution at the point (S, 0) should depend on the value of the solution at
the point (Sl, t). The solution is determined only by the final condition, so
there is no path passing the boundary S = Sl. Consequently the condition
(2.39) is a sufficient condition to guarantee S ≥ Sl for any t.

In the popular model

dS = μSdt+ σSdX,

we have a = μS and b = σS. Therefore, the condition (2.39) holds at S = 0,
and S is always greater than or equal to zero. In the Cox–Ingersoll–Ross
interest rate model (see [23])

dr = (μ̄− γ̄r)dt+
√
αrdX, μ̄, γ̄, α > 0,

which will be discussed in Chap. 5, a = μ̄ − γ̄r, b =
√
αr, and the condition

(2.39) is reduced to μ̄− α/2 ≥ 0 if the lower bound is zero. This means that
if μ̄ − α/2 ≥ 0, then at r = 0, no boundary condition is needed. In fact, if
μ̄− α/2 ≥ 0, the upward drift is sufficiently large to make the origin inac-
cessible (see [23]). Therefore, no boundary condition at r = 0 is related to
inaccessibility to the origin.

Actually, Sl may not be zero, and a similar condition

⎧
⎨

⎩

a (Su, t)− b(Su, t)
∂

∂S
b(Su, t) ≤ 0, 0 ≤ t ≤ T,

b (Su, t) = 0, 0 ≤ t ≤ T

(2.40)
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can also be required at S = Su > Sl so that S will always be in [Sl,Su] .
If a (Sl, t) ≥ 0 and a (Su,t) ≤ 0, then it is usually said that the model has a
mean reversion property. However, if b (Sl, t) �= 0 or b (Su,t) �= 0, then there is
still a chance for S to become less than Sl or greater than Su. If the conditions
(2.39) and (2.40) hold, then we say that the model really has a reversion
property because S will always be in [Sl, Su]. In this book, the conditions
(2.39) and (2.40) will be referred to as the reversion conditions, and (2.38)
and the like will be referred to as the weak-form reversion conditions. When
∂

∂S
b(S, t) is bounded, the two types of reversion conditions are the same.

The two random variables given above as examples are defined on [0,∞).
In what follows, we will show that they can be converted into new random
variables whose domains are [0, 1) and can be naturally extended to [0, 1], and
for them the reversion conditions hold at both the lower and upper boundaries.

Let us introduce a new random variable

ξ =
S

S + Pm
,

where Pm is a positive parameter. From this relation, we can have

S =
Pmξ

1− ξ
,

S + Pm =
Pm

1− ξ
,

dξ

dS
=

Pm

(S + Pm)
2 =

(1− ξ)
2

Pm
,

and
d2ξ

dS2
=

−2Pm

(S + Pm)3
=

−2(1− ξ)3

P 2
m

.

According to Itô’s lemma, if S satisfies dS = μSdt + σSdX, then for ξ the
stochastic differential equation is

dξ =
(1− ξ)

2

Pm
dS − (1− ξ)

3

P 2
m

σ2S2dt

=
[
μξ(1− ξ)− σ2ξ2(1− ξ)

]
dt+ σξ(1− ξ)dX.

Consequently for ξ, the conditions (2.39) and (2.40) are fulfilled at ξ = 0 and
ξ = 1, respectively.

Similarly for the Cox–Ingersoll–Ross interest rate model, let

ξ =
r

r + Pm
,
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then we get

dξ =

[
(1− ξ)

2

Pm

(

μ̄− γ̄Pmξ

1− ξ

)

− αξ (1− ξ)
2

Pm

]

dt+

√
αξ1/2(1− ξ)3/2

P
1/2
m

dX.

In this case ξl = 0 and ξu = 1 and it is easy to show that both the conditions
(2.39) and (2.40) hold if μ̄−α/2 ≥ 0. All the proofs here are left for readers as
Problem 28. In this book we only talk these models satisfying conditions (2.39)
and (2.40) or these models which can become models satisfying conditions
(2.39) and (2.40) after introducing new random variables.

Suppose that a model defined on [Sl, Su] has the property of mean revert-
ing, but it does not satisfy the reversion condition. The model can be modified
as follows: the coefficient of dX is multiplied by a function, for example,

Φ(x) =
1− (1− 2x)2

1− 0.975(1− 2x)2
,

where x = (S−Sl)
(Su−Sl)

. Because Φ(x) are equal to zero at S = Sl and S = Su and

very close to one at S ∈ (Sl + ε, Su − ε), ε being a very small number, almost
all the properties of the original model are kept in the modified model and
the reversion conditions will hold after the modification is made.

Now we describe the reversion conditions for the case involving n random
variables. Suppose that a financial derivative depends on the time t and n
random variables S1, S2, · · · , Sn and that for i = 1, 2, · · · , n, Si satisfies the
equation

dSi = ai(S1, S2, · · · , Sn, t)dt+ bi(S1, S2, · · · , Sn, t)dXi (2.41)

in a rectangular domain Ω : [S1l, S1u] × [S2l, S2u] × · · · × [Snl, Snu]. In this
case we require that the following conditions hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Sil

Sj∈[Sjl,Sju]
j �=i

≥ 0,

bi(S1, S2, · · · , Sn, t)| Si=Sil

Sj∈[Sjl,Sju]
j �=i

= 0

(2.42)
and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Siu

Sj∈[Sjl,Sju]
j �=i

≤ 0,

bi(S1, · · · , Sn, t)| Si=Siu

Sj∈[Sjl,Sju]
j �=i

= 0.

(2.43)
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These conditions are called the reversion conditions on a rectangular do-
main Ω. It is clear that if

∂bi(S1, · · · , Sn, t)

∂Si

∣
∣
∣
∣ Si=Sil

Sj∈[Sjl,Sju]
j �=i

and
∂bi(S1, · · · , Sn, t)

∂Si

∣
∣
∣
∣ Si=Siu

Sj∈[Sjl,Sju]
j �=i

are bounded, then the two conditions (2.42) and (2.43) can be reduced to

⎧
⎪⎪⎨

⎪⎪⎩

ai(S1, · · · , Sn, t)| Si=Sil

Sj∈[Sjl,Sju]
j �=i

≥ 0,

bi(S1, · · · , Sn, t)| Si=Sil

Sj∈[Sjl,Sju]
j �=i

= 0
(2.44)

and
⎧
⎪⎪⎨

⎪⎪⎩

ai(S1, · · · , Sn, t)| Si=Siu

Sj∈[Sjl,Sju]
j �=i

≤ 0,

bi(S1, · · · , Sn, t)| Si=Siu

Sj∈[Sjl,Sju]
j �=i

= 0.
(2.45)

If the domain is not rectangular, the form of reversion conditions will be
a little different. If all the coefficients in the models are differential, then
the form is relatively simple. For example, consider the case of n = 3. Let
the outer normal vector be (n1, n2, n3)

T . Then the reversion conditions are
that ⎧

⎨

⎩

n1a1 + n2a2 + n3a3 ≥ 0,

Var(n1b1dX1 + n2b2dX2 + n3b3dX3) = 0

hold on the boundary of the domain.

2.4.2 †Uniqueness of Solutions for One-Dimensional Case

Equation (2.34) is a parabolic equation. When Si is defined on [Sil, Siu], i =
1, 2, · · · , n, Eq. (2.34) is defined on the rectangular domain Ω. If bi = 0 at
Si = Si,l and Si = Si,u, i = 1, 2, · · · , n, then we say that the equation is
a degenerate parabolic partial differential equation. In this subsection, we
are going to discuss when a degenerate equation has a unique solution. The
conclusion expected is that if for any i,
[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Sil

Sj∈[Sjl,Sju]
j �=i

≥ 0

(2.46)
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and
[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Siu

Sj∈[Sjl,Sju]
j �=i

≤ 0

(2.47)
hold, the solution of the degenerate parabolic equation on a rectangular do-
main with a final condition at t = T is unique.11 If

[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Sil

Sj∈[Sjl,Sju]
j �=i

< 0

(2.48)
or
[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Siu

Sj∈[Sjl,Sju]
j �=i

> 0,

(2.49)
then a boundary condition at Si = Si,l or Si = Si,u needs to be imposed
besides the final condition in order to have a unique solution. In this subsec-
tion we now prove this conclusion for the one-dimensional case. In the next
subsection we will prove that for a final-value problem the solution is unique
if the reversion conditions hold.

In the case m = 0 and n = 1, after ignoring the subscript 1, Eq. (2.34)
becomes

∂V

∂t
+

1

2
b2
∂2V

∂S2
+ (a− λb)

∂V

∂S
− rV +K = 0.

Here, the sign of the coefficient of the second derivative is opposite to that
of the coefficient of the second derivative in the heat equation. We say that
such a parabolic equation has an “anti-directional” time. For a heat equation,
an initial condition is given at t = 0, and the solution for t ≥ 0 needs to
be determined. Therefore, for the equation with an “anti-directional” time, a
final condition should be given at t = T , and the solution for t ≤ T needs to
be determined. Consequently, we consider the following problem:

11For a parabolic equation defined on a non-rectangular domain, the conditions
for a parabolic partial differential equation to be degenerate and the conditions for
the solution of its initial-value problem to be unique, see the paper [91] by Zhu.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
b2
∂2V

∂S2
+ (a− λb)

∂V

∂S
− rV +K = 0,

0 ≤ t ≤ T, Sl ≤ S ≤ Su,

V (S, T ) = f(S), Sl ≤ S ≤ Su,

V (Sl, t)

⎧
⎨

⎩

needs not to be given if the condition (2.46) holds,

= fl(t) if the condition (2.46) does not hold,

V (Su, t)

⎧
⎨

⎩

needs not to be given if the condition (2.47) holds,

= fu(t) if the condition (2.47) does not hold.

(2.50)

Let τ = T −t and x = (S−Sl)/(Su−Sl), then the problem (2.50) is converted
into a problem in the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= f1(x, τ)

∂2u

∂x2
+ f2(x, τ)

∂u

∂x
+ f3(x, τ)u+ g(x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,

u(x, 0) = f(x), 0 ≤ x ≤ 1,

u(0, τ)

⎧
⎪⎪⎨

⎪⎪⎩

needs not to be given if f2(0, τ)− ∂f1(0, τ)

∂x
≥ 0,

= fl(τ) if f2(0, τ)− ∂f1(0, τ)

∂x
< 0,

u(1, τ)

⎧
⎪⎪⎨

⎪⎪⎩

needs not to be given if f2(1, τ)− ∂f1(1, τ)

∂x
≤ 0,

= fu(τ) if f2(1, τ)− ∂f1(1, τ)

∂x
> 0,

(2.51)

where f1(0, τ) = f1(1, τ) = 0 and f1(x, τ) ≥ 0. Thus, if we can prove the
uniqueness of the solution of the problem (2.51), then we have the uniqueness
of the solution of the problem (2.50). The third and fourth relations in the
problem (2.51) are the boundary conditions for degenerate parabolic equa-
tions. For parabolic equations, there is always a boundary condition at any
boundary, that is, the number of boundary conditions for parabolic equations
is always one. However, for degenerate parabolic equations, sometimes there
is a boundary condition and sometimes there is not, depending on the value

of f2(x, τ)− ∂f1(x, τ)

∂x
at the boundary. For the problem (2.51), we have the

following theorem (see [79]).

Theorem 2.1 Suppose that the solution of the problem (2.51) exists and is
bounded12 and that there exist a constant c1 and two bounded functions c2(τ)

12This is proved in the paper [7] by Behboudi.
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and c3(τ) such that

1 + max
0≤x≤1, 0≤τ≤T

(∣
∣
∣
∣
∂2f1(x, τ)

∂x2
− ∂f2(x, τ)

∂x
+ 2f3(x, τ)

∣
∣
∣
∣

)

≤ c1,

−min

(

0, f2(0, τ)− ∂f1(0, τ)

∂x

)

≤ c2(τ),

and

max

(

0, f2(1, τ)− ∂f1(1, τ)

∂x

)

≤ c3(τ).

In this case, its solution is unique and stable with respect to the initial value
f(x), inhomogeneous term g(x, τ), and the boundary values fl(τ), fu(τ) if
there are any.

Proof. Because the partial differential equation in the problem (2.51) can
be rewritten as

∂u

∂τ
=

∂

∂x

[

f1(x, τ)
∂u

∂x

]

+

[

f2(x, τ)− ∂f1(x, τ)

∂x

]
∂u

∂x
+ f3(x, τ)u+ g(x, τ),

multiplying that equation by 2u, we have

∂(u2)

∂τ
= 2

∂

∂x

(

f1u
∂u

∂x

)

+

(

f2 − ∂f1
∂x

)
∂(u2)

∂x
− 2f1

(
∂u

∂x

)2

+ 2f3u
2 + 2gu

= 2
∂

∂x

(

f1u
∂u

∂x

)

+
∂

∂x

[(

f2 − ∂f1
∂x

)

u2
]

− 2f1

(
∂u

∂x

)2

+

(
∂2f1
∂x2

− ∂f2
∂x

+ 2f3

)

u2 + 2gu.

Integrating this equality with respect to x on the interval [0, 1], we obtain the
second equality

d

dτ

∫ 1

0

u2(x, τ)dx

= 2

(

f1u
∂u

∂x

)∣
∣
∣
∣

1

x=0

+

[(

f2 − ∂f1
∂x

)

u2
]∣
∣
∣
∣

1

x=0

− 2

∫ 1

0

f1

(
∂u

∂x

)2

dx

+

∫ 1

0

(
∂2f1
∂x2

− ∂f2
∂x

+ 2f3

)

u2dx+ 2

∫ 1

0

gudx.

Because
[(

f2 − ∂f1
∂x

)

u2
]∣
∣
∣
∣

1

x=0

=

[

f2(1, τ)− ∂f1(1, τ)

∂x

]

u2(1, τ)−
[

f2(0, τ)− ∂f1(0, τ)

∂x

]

u2(0, τ)

≤ max

(

0, f2(1, τ)− ∂f1(1, τ)

∂x

)

f2u(τ)−min

(

0, f2(0, τ)− ∂f1(0, τ)

∂x

)

f2l (τ),
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from the equality above and the relations f1(0, τ) = f1(1, τ) = 0 and
f1(x, τ) ≥ 0, we have

d

dτ

∫ 1

0

u2(x, τ)dx≤c1
∫ 1

0

u2(x, τ)dx+

∫ 1

0

g2(x, τ)dx+ c2(τ)f
2
l (τ) + c3(τ)f

2
u(τ).

Based on this inequality and by the Gronwall inequality,13 we arrive at
∫ 1

0

u2(x, τ)dx

≤ ec1τ
{∫ 1

0

f2(x)dx+

∫ τ

0

[∫ 1

0

g2(x, s)dx+ c2(s)f
2
l (s) + c3(s)f

2
u(s)

]

ds

}

,

t ∈ [0, T ].

From the last inequality, we know that the solution is stable with respect
to f(x) and g(x, τ). Also if

f2(0, τ)− ∂f1(0, τ)

∂x
≥ 0 and f2(1, τ)− ∂f1(1, τ)

∂x
≤ 0

hold and
f(x) ≡ 0, g(x, τ) ≡ 0,

then the solution of the problem (2.51) must be zero. Hence, the functions
f(x) and g(x, τ) determine the solution uniquely. If

f2(0, τ)− ∂f1(0, τ)

∂x
< 0 and f2(1, τ)− ∂f1(1, τ)

∂x
≤ 0

hold, then the solution is determined by f(x), g(x, τ), and fl(τ) uniquely.
The situation for other cases are similar. Therefore, we may conclude that if
the solution of the problem (2.51) exists, then it is unique and stable with
respect to the initial value f(x), the inhomogeneous term g(x, τ), and the
boundary values fl(τ), fu(τ) if there are any. This completes the proof and
gives an explanation on when a boundary condition is necessary. ��

Here we give some remarks.

• From the probabilistic point of view, a boundary condition on a boundary
is needed if and only if there are paths reaching the boundary from a point
x ∈ (0, 1) and t = 0. Therefore, on whether or not a random variable can
reach a boundary from the interior, there are similar conclusions (see [33]).

• This result indicates that a degenerate parabolic equation at boundaries
is similar to a hyperbolic equation.14 Due to this fact, roughly speak-
ing, we might say that the parabolic equation degenerates into a hyper-
bolic equation at the boundaries. When conditions (2.46) and (2.47) hold,

13The inequality dA(τ)/dτ ≤ cA(τ) +B(τ) can be rewritten as e−cτ [dA(τ)/dτ −
cA(τ)] ≤ e−cτB(τ) or d(e−cτA(τ))/dτ ≤ e−cτB(τ), so for positive τ, c, B(τ) we have
A(τ) ≤ ecτ [A(0) +

∫ τ

0
e−cτ̄B(τ̄)dτ̄ ] ≤ ecτ [A(0) +

∫ τ

0
B(τ̄)dτ̄ ].

14When f1(x, t) ≡ 0, the partial differential equation in Eq. (2.51) is called a
hyperbolic equation.
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incoming information is not needed at boundaries, that is, the value of V
at the boundaries at t = t∗ is determined by the value V on the region:
Sl ≤ S ≤ Su and t∗ ≤ t ≤ T . Therefore, in this case, in order for a degen-
erate parabolic equation to have a unique solution, only the final condition
is needed.15

• When the domain of S is not finite, a final condition is still enough for
such an equation to have a unique solution if S can be converted into a
random variable for which the reversion conditions hold. The reason is
that a final condition can determine a unique solution if the new random
variable is used. However, a transformation will not change the nature
of the problem. If the problem has a unique solution as a function of a
random variable, the problem will also have a unique solution as a function
of another random variable associated by a transformation. Applying this
theorem to problem (2.18), we know that its solution is unique and stable
with respect to the initial value. Problem (2.18) is obtained through a
transformation from the European option problem (2.16). Therefore, the
European option problem (2.16) also has a unique solution. In Sect. 2.2.5 it
is pointed that for problem (2.18) the values at ξ = 0 and ξ = 1 are given
by the expressions (2.19) and (2.20), respectively. This means that when
a solution of the problem (2.18) is determined, no boundary condition is
needed. The result here points out not only that no boundary condition is
needed when a solution of the problem (2.18) is determined, but also that
it is impossible for problem (2.18) to have several solutions.

2.4.3 ‡Uniqueness of Solutions for Two-Dimensional Case

On a multidimensional rectangular domain, it can be proved that if the re-
version conditions are satisfied, then the final-value problem for degenerate
parabolic partial differential equations has a unique solution. In this subsec-
tion, we give a detailed proof only for the two-dimensional case; at the end of
this subsection, we point out the key part of the proof for the multidimensional
case.

Suppose that a financial derivative depends on the time t and two random
variables S1 and S2, which satisfy Eq. (2.41) and the reversion conditions, and
let V (S1, S2, t) be the price of the financial derivative. By an arbitrage argu-
ment, it can be shown that V (S1, S2, t) should satisfy the following equation
(see Sect. 2.3.2):

∂V

∂t
+

1

2
b21
∂2V

∂S2
1

+ ρb1b2
∂2V

∂S1∂S2
+

1

2
b22
∂2V

∂S2
2

+(a1 − λ1b1)
∂V

∂S1
+ (a2 − λ2b2)

∂V

∂S2
− rV + g(S1, S2, t) = 0,

15Olĕinik and Radkevič in their book [65] discussed the uniqueness of solutions
of this type of partial differential equations under different conditions.
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where λ1 and λ2 are two bounded functions and called the market prices of
risk on S1 and S2, respectively, and r is the short-term interest rate.16 Also,
many financial derivatives should be solutions of the final-value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V

∂t
+ 1

2b
2
1

∂2V

∂S2
1

+ ρb1b2
∂2V

∂S1∂S2
+ 1

2b
2
2

∂2V

∂S2
2

+(a1 − λ1b1)
∂V

∂S1
+ (a2 − λ2b2)

∂V

∂S2
− rV + g(S1, S2, t) = 0,

S1 ∈ [S1l, S1u], S2 ∈ [S2l, S2u], t ∈ [0, T ],
V (S1, S2, T ) = f(S1, S2), S1 ∈ [S1l, S1u], S2 ∈ [S2l, S2u].

(2.52)

Now let us discuss when Problem (2.52) has a unique solution. For this
question, we have the following theorem:

Theorem 2.2 If

(i) the reversion conditions (2.42) and (2.43) hold;
(ii) there exists a constant c1 such that

max
S1l≤S1≤S1u
S2l≤S2≤S2u

∣
∣
∣
∣
∂

∂S1

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)

+
∂

∂S2

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)

+ 2r

∣
∣
∣
∣+ 1 ≤ c1;

(iii) solutions of Problem (2.52) exist and their first derivatives are bounded,

then the solution of Eq. (2.52) is unique.

Proof. Suppose that u(S1, S2, t) is a solution of the problem (2.52). Let
τ = T − t and define

W (τ) =

∫ S2u

S2l

∫ S1u

S1l

u2(S1, S2, T − τ)dS1dS2. (2.53)

Since the partial differential equation in the problem (2.52) can be rewritten
as

∂u

∂τ
=

1

2

∂

∂S1

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)

+
1

2

∂

∂S2

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)

+

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)
∂u

∂S1

+

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)
∂u

∂S2
− ru+ g,

16If r is replaced by a bounded function, Theorem 2.2 still holds.
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we have

1

2

dW (τ)

dτ
=

∫ S2u

S2l

∫ S1u

S1l

u
∂u

∂τ
dS1dS2

=

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S1

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)

dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S2

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)

dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

u

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)
∂u

∂S1
dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

u

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)
∂u

∂S2
dS1dS2

−
∫ S2u

S2l

∫ S1u

S1l

ru2dS1dS2 +

∫ S2u

S2l

∫ S1u

S1l

gudS1dS2. (2.54)

Now let us look at the first four terms in the right-hand side of the relation
(2.54). Using integration by parts and the equality conditions in the conditions
(2.42) and (2.43), we can rewrite the first and second terms as follows:

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S1

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)

dS1dS2

=
1

2

∫ S2u

S2l

{[

u

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)]∣
∣
∣
∣

S1u

S1l

−
∫ S1u

S1l

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)
∂u

∂S1
dS1

}

dS2

= −1

2

∫ S2u

S2l

∫ S1u

S1l

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)
∂u

∂S1
dS1dS2 (2.55)

and

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S2

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)

dS1dS2

=
1

2

∫ S1u

S1l

{[

u

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)]∣
∣
∣
∣

S2u

S2l

−
∫ S2u

S2l

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)
∂u

∂S2
dS2

}

dS1

= −1

2

∫ S2u

S2l

∫ S1u

S1l

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)
∂u

∂S2
dS1dS2. (2.56)
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Also, according to the equality condition in the condition (2.42), b1(S1l, S2, t) =
0 holds for any S2, so

∂

∂S2
(ρb1b2)

∣
∣
∣
∣
S1=S1l

= 0.

Similarly, we have

∂

∂S2
(ρb1b2)

∣
∣
∣
∣
S1=S1u

=
∂

∂S1
(ρb1b2)

∣
∣
∣
∣
S2=S2l

=
∂

∂S1
(ρb1b2)

∣
∣
∣
∣
S2=S2u

= 0.

Noticing these facts and the inequality conditions in the conditions (2.42) and
(2.43), for the third and fourth integrals in the right-hand side of the relation
(2.54), we have

∫ S2u

S2l

∫ S1u

S1l

u

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)
∂u

∂S1
dS1dS2

=
1

2

∫ S2u

S2l

{[

u2
(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)]∣
∣
∣
∣

S1u

S1l

−
∫ S1u

S1l

u2
∂

∂S1

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)

dS1

}

dS2

≤ −1

2

∫ S2u

S2l

∫ S1u

S1l

u2
∂

∂S1

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)

dS1dS2

(2.57)

and

∫ S1u

S1l

∫ S2u

S2l

u

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)
∂u

∂S2
dS2dS1

=
1

2

∫ S1u

S1l

{[

u2
(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)]∣
∣
∣
∣

S2u

S2l

−
∫ S2u

S2l

u2
∂

∂S2

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)

dS2

}

dS1

≤ −1

2

∫ S2u

S2l

∫ S1u

S1l

u2
∂

∂S2

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)

dS1dS2.

(2.58)
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Adding the relations (2.55) and (2.56) together, due to |ρ| ≤ 1, we have

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S1

(

b21
∂u

∂S1
+ρb1b2

∂u

∂S2

)

dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S2

(

ρb1b2
∂u

∂S1
+b22

∂u

∂S2

)

dS1dS2

=−1

2

∫ S2u

S2l

∫ S1u

S1l

[(

b1
∂u

∂S1

)2

+2ρb1b2
∂u

∂S1

∂u

∂S2
+

(

b2
∂u

∂S2

)2
]

dS1dS2≤0.

(2.59)

Substituting the relations (2.55)–(2.56) and the inequalities (2.57)–(2.58) into
the relation (2.54) and applying the inequality (2.59) and condition (ii), we
have

1

2

dW (τ)

dτ
≤ −1

2

∫ S2u

S2l

∫ S1u

S1l

u2
{

∂

∂S1

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)

+
∂

∂S2

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)

+ 2r

}

dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

g(S1, S2, T − τ)udS1dS2

≤ 1

2
c1W (τ) +

1

2

∫ S2u

S2l

∫ S1u

S1l

g2(S1, S2, T − τ)dS1dS2.

Therefore, according to the Gronwall inequality, we arrive at

0 ≤W (τ) ≤ ec1τ

[

W (0) +

∫ τ

0

∫ S2u

S2l

∫ S1u

S1l

g2(S1, S2, T − τ)dS1dS2dτ

]

.

Suppose that u1 and u2 are two solutions of the problem (2.52) and let
u = u1 − u2. It is clear that u is the solution of the problem (2.52)
with V (S1, S2, T ) = f(S1, S2) ≡ 0 and g(S1, S2, t) ≡ 0. In this case, we get
W (τ) ≡ 0. Then, u ≡ 0, or u1 ≡ u2; that is, the solution of the problem (2.52)
is unique. ��

Here we would like to make some remarks. The first one is about the
conditions given in the theorem. If a1, a2, b1, b2, λ1, λ2, r, the first deriva-
tives of a1, a2, λ1, and λ2, and the first and second derivatives of ρ, b1, and
b2 are bounded, then conditions (2.42), (2.43) are reduced to the conditions
(2.44), (2.45) respectively, and condition (ii) is always satisfied. The partial
differential equation in the problem (2.52) is called a degenerate parabolic par-
tial differential equation because of the equality conditions in the conditions
(2.42) and (2.43). It is clear that the result can be applied to any degenerate
parabolic problems from various fields.
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When there are K random variables, K ≥ 3, governed by

dSi = ai(S1, S2, · · · , SK , t)dt+ bi(S1, S2, · · · , SK , t)dXi, i = 1, 2, · · · ,K,

similar results can still be proved. For the proof above, a key fact we used is
|ρ| ≤ 1, which means that the correlation matrix is semi-positive. For multi-
dimensional cases, the key fact we need is that the correlation matrix

⎛

⎜
⎜
⎜
⎝

1 ρ12 · · · ρ1K
ρ21 1 · · · ρ2K
...

...
. . .

...
ρK1 ρK2 · · · 1

⎞

⎟
⎟
⎟
⎠

is semi-positive definite. Here ρi,j = E[dXidXj ]/dt.
The meaning of the final-value problem (2.52) having a unique solution

is that the solution of the problem (2.52) is completely determined by the
PDE and the final condition. This also means that the random variables will
never reach the boundaries if they are inside the domain at the beginning
[33]. This is because if the random variables reach the boundaries, then the
solution must also be affected by what happens at the boundaries. Therefore,
if stochastic models satisfy the reversion conditions, then those random vari-
ables should be guaranteed on the finite domain [S1l, S1u]× [S2l, S2u]. When
∂bi(S1, S2, t)

∂Si

∣
∣
∣
∣
Si=Sil

and
∂bi(S1, S2, t)

∂Si

∣
∣
∣
∣
Si=Siu

are bounded, then conditions

(2.42) and (2.43) are reduced to the conditions (2.44) and (2.45). Under con-
ditions (2.44) and (2.45), the fact that the random variable will never reach
the boundaries has been proved for the one-dimensional case in [33]. It can
be expected that the same result is still true for multidimensional cases and
when conditions (2.42) and (2.43) cannot be reduced to the conditions (2.44)
and (2.45).

2.4.4 ‡Uniqueness of Solutions for European Options on Assets
with Stochastic Volatilities

In this subsection, we consider a special two-factor financial derivative: options
on assets with stochastic volatilities. We assume that the asset price S follows
the following stochastic process:

dS = μSdt+ σSdX1, 0 ≤ S (2.60)

and that the volatility σ is also a random variable and its evolution is governed
by

dσ = p(σ, t)dt+ q(σ, t)dX2, σl ≤ σ ≤ σu, (2.61)
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where the two random increments dX1 and dX2 are twoWiener processes. dX1

and dX2 are correlated and E[dX1dX2] = ρdt. Furthermore, we assume that
the stochastic model for σ satisfies reversion conditions; that is, the following
relations hold:

{

p(σl, t)− q(σl, t)
∂q

∂σ
(σl, t) ≥ 0,

q(σl, t) = 0
(2.62)

and
{

p(σu, t)− q(σu, t)
∂q

∂σ
(σu, t) ≤ 0,

q(σu, t) = 0,
(2.63)

or when
∂q

∂σ
(σl, t) and

∂q

∂σ
(σu, t) are bounded,

{
p(σl, t) ≥ 0,
q(σl, t) = 0

(2.64)

and
{
p(σu, t) ≤ 0,
q(σu, t) = 0

(2.65)

hold. Suppose that V (S, σ, t) is the value of such an option. V (S, σ, t) satisfies

∂V

∂t
+
1

2
σ2S2 ∂

2V

∂S2
+ρσqS

∂2V

∂S∂σ
+
1

2
q2
∂2V

∂σ2
+(r−D0)S

∂V

∂S
+(p−λq)∂V

∂σ
−rV=0.

(2.66)

This equation holds for S ∈ [0,∞). In order to convert the problem on an
infinite domain into one on a finite domain, we introduce the following trans-
formation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

σ = σ,

t = t,

V =
V

S + Pm
,

(2.67)
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where Pm is a positive constant. Since the following expressions exist:

S =
ξPm

1− ξ
, S + Pm =

Pm

1− ξ
,

dξ

dS
=

(1− ξ)2

Pm
,

∂V

∂t
=

Pm

1− ξ

∂V

∂t
,

∂V

∂S
= V + (1− ξ)

∂V

∂ξ
,

∂V

∂σ
=

Pm

1− ξ

∂V

∂σ
,

∂2V

∂S2
=

(1− ξ)3

Pm

∂2V

∂ξ2
,

∂2V

∂S∂σ
=
∂V

∂σ
+ (1− ξ)

∂2V

∂ξ∂σ
,

∂2V

∂σ2
=

Pm

1− ξ

∂2V

∂σ2
,

we can rewrite Eq. (2.66) as

∂V

∂t
+

1

2
σ2ξ2(1− ξ)2

∂2V

∂ξ2
+ ρσξ(1− ξ)q

∂2V

∂ξ∂σ
+

1

2
q2
∂2V

∂σ2

+(r −D0)ξ(1− ξ)
∂V

∂ξ
+ [p− (λ− ρσξ)q]

∂V

∂σ
− [r − (r −D0)ξ]V = 0.

Since the transformation above converts a value of S ∈ [0,∞) into a value of
ξ ∈ [0, 1), V (ξ, σ, t) is defined on the domain [0, 1]× [σl, σu]× [0, T ]. Therefore,
the determination of European option prices in this case reduces to finding
the solution of the following final-value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+ 1

2σ
2ξ2(1− ξ)2

∂2V

∂ξ2
+ ρσξ(1− ξ)q

∂2V

∂ξ∂σ
+ 1

2q
2 ∂

2V

∂σ2

+(r −D0)ξ(1− ξ)
∂V

∂ξ
+ [p− (λ− ρσξ)q]

∂V

∂σ
− [r − (r −D0)ξ]V = 0,

ξ ∈ [0, 1], σ ∈ [σl, σu], t ∈ [0, T ],

V (ξ, σ, T ) = f(ξ, σ), ξ ∈ [0, 1], σ ∈ [σl, σu].

(2.68)

It is easy to see dξ = a1(ξ)dt+ b1(ξ)dX1, where a1(ξ) = (μ− σξ)ξ(1− ξ) and
b1(ξ) = σξ(1 − ξ). Thus, this problem is in the form of the problem (2.52)
with

λ1 =
μ− σξ − r +D0

σ
, a2 = p(σ, t),

b2 = q(σ, t), λ2 = λ− ρσξ,

and the coefficient of V here is −[r − (r − D0)ξ] instead of −r. In order to
have a unique solution, the key is that a1, b1, a2, and b2 should satisfy the
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reversion conditions (2.42) and (2.43). In this case, a1 and b1 always satisfy the
conditions (2.42) and (2.43). That a2 and b2 satisfy the reversion conditions is
equivalent to fulfillment of the conditions (2.62) and (2.63). Therefore, if the
conditions (2.62), (2.63), conditions (ii) and (iii) of Theorem 2.2 are satisfied,
then the problem (2.68) has a unique solution.

Suppose that a problem is defined on an infinite domain and its closed-
form solution cannot be found. In order to get its solution, we need to solve the
problem numerically on a finite domain. In this case, an artificial boundary
condition will be needed, which causes some error and problems. The problem
here is defined on a finite domain, so its numerical solution can be obtained
without using any artificial boundary conditions; if the singularity-separating
method and extrapolation techniques are used, then numerical solutions are
very good even on quite coarse meshes.

2.5 Jump Conditions

2.5.1 Hyperbolic Equations with a Dirac Delta Function

Consider the following linear hyperbolic partial differential equation

∂u

∂t
+ f1(x1, x2, · · · , xK , t)

∂u

∂x1
+ · · ·+ fK(x1, x2, · · · , xK , t)

∂u

∂xK

= 0.

Let C be a curve defined by the system of ordinary differential equations

dx1(t)

dt
= f1(x1, x2, · · · , xK , t),

...
dxK(t)

dt
= fK(x1, x2, · · · , xK , t)

with initial conditions

x1(0) = ξ1, x2(0) = ξ2, · · · , xK(0) = ξK .

Along the curve C we have

du

dt
=
∂u

∂t
+

∂u

∂x1

dx1
dt

+ · · ·+ ∂u

∂xK

dxK

dt
= 0.

Therefore, u is a constant along the curve:

u (x1(t
∗), x2(t∗), · · · , xK(t

∗), t∗) = u (x1(t
∗∗), x2(t∗∗), · · · , xK(t

∗∗), t∗∗) ,
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where t∗ and t∗∗ are any two times. If

fk(x1, x2, · · · , xK , t) = Fk(x1, x2, · · · , xK , t)δ(t− ti),

where δ(t− ti) is the Dirac delta function, then 17

xk(t
+
i )− xk(t

−
i ) =

∫ t+i

t−i

Fk(x1(t), x2(t), · · · , xK(t), t)δ(t− ti)dt

= Fk

(
x1(t

−
i ), x2(t

−
i ), · · · , xK(t

−
i ), t

−
i

)

and

u
(
x1(t

−
i ), x2(t

−
i ), · · · , xK(t

−
i ), t

−
i

)

= u
(
x1(t

+
i ), x2(t

+
i ), · · · , xK(t

+
i ), t

+
i

)

= u
(
x1(t

−
i ) + F−

1i , x2(t
−
i ) + F−

2i , · · · , xK(t
−
i ) + F−

Ki, t
+
i

)
, (2.69)

where t−i and t+i denote the time just before and after ti, respectively, and

F−
ki ≡ Fk

(
x1(t

−
i ), x2(t

−
i ), · · · , xK(t

−
i ), t

−
i

)
.

For such a jump condition, a similar derivation is given in the book [84] by
Wilmott, Dewynne, and Howison.

2.5.2 Jump Conditions for Options on Stocks with Discrete
Dividends and Discrete Sampling

From the relation (2.69), jump conditions of various options can be derived.
Here, we give three examples. Two are simple and the other is quite compli-
cated. Jump conditions for other options will be given when they are discussed.

Suppose V (S, t) is the value of an option on a stock, which pays a dividend
Di at time ti, i = 1, 2, · · · , I. Here, we assume that ti ≤ T , T being expiry.
From Sect. 2.2, we know that V (S, t) satisfies Eq. (2.13):

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ [rS −D(S, t)]

∂V

∂S
− rV = 0,

17Here an integral is defined in the following way. Suppose that on [0, T ] we have
a partition with N + 1 points: 0 = t0 < t1 < · · · < TN = T . The definition of an
integral is

∫ T

0

f(t)dt = lim
dt→0

n=N−1∑

n=0

f(tn)(tn+1 − tn),

where dt = max
0≤n≤N−1

(tn+1 − tn). Let us call it an Itô integral. Such a definition is

usually used in financial calculus.
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where

D(S, t) =
I∑

i=1

Di(S)δ(t− ti), with Di(S) ≤ S.

This means that at t �= ti, i = 1, 2, · · · , I, V satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

and at t = ti, i = 1, 2, · · · , or I, the equation

∂V

∂t
−Di(S)δ(t− ti)

∂V

∂S
= 0

holds. According to Eq. (2.69), at t = ti we have

V (S, t−i ) = V (S −Di(S), t
+
i ). (2.70)

This is the jump condition for options on stocks with discrete dividends.
We now explain the financial meaning of this relation. At t = ti, the stock
pays a dividend Di, so the stock price will drop by Di. If the price is S at t−i ,
then the price is S −Di at t

+
i . However, the price of the option is unchanged

at time ti because the holder of the option does not receive any money at
time ti.

The second example is similar to the first one. Suppose that W (η, t) sat-
isfies

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

K

K∑

i=1

δ (t− ti)

]
∂W

∂η
−D0W = 0,

Then at t = ti, i = 1, 2, · · · , or K, W satisfies

∂W

∂t
+

1

K
δ (t− ti)

∂W

∂η
= 0

Thus according to the relation (2.69), at t = ti we have

W
(
η, t−i

)
=W

(

η +
1

K
, t+i

)

. (2.71)

We will see in Chap. 4 that this jump condition will be often used when pricing
Asian options because usually the average is measured discretely.

The third example involves several independent variables. Suppose the
stock price is measured discretely and let S1, S2, · · · , SN be the first N largest
sampled stock prices until time t and S1 ≥ S2 ≥ · · · ≥ SN . Assume that the
value of option V depends on S, S1, · · · , SN , t. From Sect. 4.4.6, we will see
that if sampling occurs at t = ti, then
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dSn

dt
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
max(S, S1(t

−
i ))− S1(t

−
i )
]
δ(t− ti), if n = 1,

[
max(min(S, Sn−1(t

−
i )), Sn(t

−
i ))− Sn(t

−
i )
]
δ(t− ti),

if n = 2, 3, · · · , N ;

otherwise
dSn

dt
= 0.

According to Sect. 2.3, in this case, the option price is the solution of

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S

+
∂V

∂S1

dS1

dt
+
∂V

∂S2

dS2

dt
+ · · ·+ ∂V

∂SN

dSN

dt
− rV = 0.

Consequently, at t = ti, V satisfies

∂V

∂t
+
∂V

∂S1

dS1

dt
+
∂V

∂S2

dS2

dt
+ · · ·+ ∂V

∂SN

dSN

dt
= 0.

From the relation (2.69) we know when t = ti, the jump condition

V (S, S−
1 , S

−
2 , · · · , S−

N , t
−
i ) = V (S, max(S, S−

1 ), max(min(S, S−
1 ), S−

2 ),

· · · ,max(min(S, S−
N−1), S

−
N ), t+i ) (2.72)

holds, where S−
n denotes Sn(t

−
i ) for brevity.

It is clear how to use such a jump condition when a European-style deriva-
tive is evaluated. When the price of an American-style derivative needs to
be calculated, such a condition should be used on the solution obtained by
the PDE. After that, taking the maximum between the new solution and the
constraint yields the solution for the American derivative.

2.6 Solutions of European Options

A linear partial differential equation

A
∂2u

∂t2
+ 2B

∂2u

∂t∂x
+ C

∂2u

∂x2
= F

(

x, t, u,
∂u

∂t
,
∂u

∂x

)

is called a parabolic partial differential equation if AC −B2 = 0, where A,B,
and C are not all equal to zero. The diffusion equation is the simplest parabolic
equation. The Black–Scholes equation is another parabolic equation. In this
section we mainly do two things. We reduce the Black–Scholes equation to a
diffusion equation, and find out the analytic expression of the solution of the
Black–Scholes equation and the Black–Scholes formulae for European options
based on the analytic solution of the diffusion equation.
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2.6.1 Converting the Black–Scholes Equation into a Heat Equation

In this subsection, we introduce one transformation that reduces the Black–
Scholes equation to the heat equation. Because Green’s function18 of the heat
equation has an analytic expression, we can obtain an analytic expression of
Green’s function for the Black–Scholes equation using the inverse transfor-
mation. Based on this, analytic expressions of European call and put option
prices can be derived. These are the famous Black–Scholes formulae.

The price of a European option is a solution of the following problem:
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

(2.73)

The payoff function VT (S) is determined by the feature of the option. For
example, the payoffs of European calls and puts are given by

VT (S) = max(±(S − 1), 0), 0 ≤ S,

where + and − in ± correspond to call and put options, respectively. Here,
the exercise price is 1 because we assume that both the price of the stock and
the price of option have been divided by the exercise price. We call a problem
with such a payoff a standard put/call problem. Let us set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y = lnS,

τ = T − t,

V (S, t) = e−r(T−t)v(y, τ).

(2.74)

Because

∂V

∂t
= e−r(T−t)

(

rv − ∂v

∂τ

)

,

∂V

∂S
= e−r(T−t) ∂v

∂y

dy

dS
= e−r(T−t) 1

S

∂v

∂y
,

∂2V

∂S2
=

∂

∂S

(
∂V

∂S

)

=
∂

∂S

(

e−r(T−t) 1

S

∂v

∂y

)

= e−r(T−t)

(

− 1

S2

∂v

∂y
+

1

S2

∂2v

∂y2

)

,

the Black–Scholes equation is converted into

−∂v
∂τ

+
1

2
σ2

(
∂2v

∂y2
− ∂v

∂y

)

+ (r −D0)
∂v

∂y
= 0,

18The definitions of Green’s functions of the heat equation and the Black–Scholes
equation are given in Sect. 2.6.



2.6 Solutions of European Options 69

and the problem above becomes
⎧
⎪⎨

⎪⎩

∂v

∂τ
=

1

2
σ2 ∂

2v

∂y2
+

(

r −D0 − 1

2
σ2

)
∂v

∂y
, −∞ < y <∞, 0 ≤ τ,

v(y, 0) = VT (e
y), −∞ < y <∞.

(2.75)

Furthermore, we let
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = y +

(

r −D0 − 1

2
σ2

)

τ,

τ̄ =
1

2
σ2τ,

v(y, τ) = u(x, τ̄).

(2.76)

Noticing the relations

∂v

∂τ
=

1

2
σ2 ∂u

∂τ̄
+

(

r −D0 − 1

2
σ2

)
∂u

∂x
,

∂v

∂y
=
∂u

∂x
,

∂2v

∂y2
=
∂2u

∂x2
,

we finally arrive at
⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = VT (e
x), −∞ < x <∞,

(2.77)

where VT (e
x) = max(±(ex − 1), 0) for the European call and put options.

The partial differential equation in this problem is usually called the heat or
diffusion equation.

Before we go to the next subsection, we point out the following:

1. From the relations (2.74) and (2.76), we know

V (S, t) = e−r(T−t)u(lnS + (r −D0 − σ2/2)(T − t), σ2(T − t)/2)

= e−r(T−t)u

(

ln
Se−D0(T−t)

e−r(T−t)
− σ2(T − t)/2, σ2(T − t)/2

)

.

Therefore, besides those parameters in the payoff function VT (S), V (S, t)
depends on only three parameters: Se−D0(T−t), e−r(T−t), and σ2(T − t)/2.

2. Actually, the transformations (2.74) and (2.76) can be combined into one
transformation19

19The transform converting the Black-Scholes equation into a heat equation is not

unique. For example, let x̄ =
√
2

[

lnS +

(

r −D0 − 1

2
σ2

)

(T − t)

]
/
σ, τ = T−t, and
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = lnS +

(

r −D0 − 1

2
σ2

)

(T − t),

τ̄ =
1

2
σ2(T − t),

V (S, t) = e−r(T−t)u(x, τ̄).

(2.78)

That is, through the transformation (2.78), the Black–Scholes equation
can be directly converted into the heat equation. The reason we complete
the transformation through two steps is to see the function of each single
transformation. In fact, from the derivation we know the following:
• Through setting τ = T − t, we change a problem with a final condition

to a problem with an initial condition and let the initial time be zero.
• The transformation y = lnS is to reduce an equation with variable

coefficients to one with constant coefficients. This is the transformation
by which the Euler equation in ordinary differential equations becomes
a differential equation with constant coefficients.

• Letting V = e−r(T−t)v(y, τ), we eliminate the term rV in the equation.

This is similar to the fact that an equation
dV

dτ
−rV = f can be written

as
d(e−rτV )

dτ
= e−rτf after the equation is multiplied by e−rτ . The

factor e−rτ is called an integrating factor for the ordinary differential
equation. If r depends on t, then the integrating factor is e−

∫ τ
0

r(T−s)ds

= e−
∫ T
t

r(s)ds and the term rV can be eliminated in the same way.
• The transformation x = y+ (r−D0 − σ2/2)τ is to eliminate the term

(r−D0−σ2/2)
∂v

∂y
. This is similar to reducing the simplest hyperbolic

partial differential equation
∂v

∂τ
− a

∂v

∂y
= 0 to an ordinary differen-

tial equation. For this case, the characteristic equation is
dy

dτ
= −a

and its solution is y = −aτ + c or y + aτ = c. Let x = y + aτ and
v(y, τ) = u(x, τ), then the hyperbolic partial differential equation be-

comes
∂u(x, τ)

∂τ
= 0. If a depends on t, then the solution of the charac-

teristic equation is y = − ∫ τ

0
a(T − s)ds+ c = − ∫ T

t
a(s)ds+ c. Letting

x = y +
∫ T

t
a(s)ds and v(y, τ) = u(x, τ), we still have

∂u(x, τ)

∂τ
= 0.

V (S, t) = e−r(T−t)u(x̄, τ), then u(x̄, τ) is a solution of the problem

⎧
⎪⎨

⎪⎩

∂u

∂τ
=

∂2u

∂x̄2
, −∞ < x̄ < ∞, 0 ≤ τ,

u(x, 0) = VT (e
σx̄/

√
2), −∞ < x̄ < ∞.
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• In order for the coefficient of
∂2u

∂x2
to be one, we let τ̄ = σ2τ/2. If σ

depends on t, then letting τ̄ = 1
2

∫ τ

0
σ2(T − s)ds = 1

2

∫ T

t
σ2(s)ds can

still make the coefficient of
∂2u

∂x2
be one.

3. From the explanation on the function of each single transformation given
above, we can see that if r,D0, and σ are not constant, but depend on t
only, then the Black–Scholes equation can still be converted into a heat
equation by the following transformation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = lnS +
∫ T

t

[
r(s)−D0(s)− σ2(s)/2

]
ds,

τ̄ =
1

2

∫ T

t
σ2(s)ds,

V (S, t) = e−
∫ T
t

r(s)dsu(x, τ̄)

(2.79)

and the solution V (S, t) possesses the following form:

e−
∫ T
t

r(s)dsu

(

ln
Se−

∫ T
t

D0(s)ds

e−
∫ T
t

r(s)ds
− 1

2

∫ T

t

σ2(s)ds,
1

2

∫ T

t

σ2(s)ds

)

,

(2.80)

where u(x, τ̄) is a solution of the heat equation (see [84]). This is left
for readers as an exercise (Problem 36). There, in order to see the func-
tion of each part of the transformation, readers are asked to reduce the
Black–Scholes equation with time-dependent parameters to a heat equa-
tion through two steps.

4. The transformation to convert the Black–Scholes equation into a heat

equation is not unique. In fact, we can let x = lnS, τ̄ =
1

2
σ2(T − t),

V (S, t) = eαx+βτ̄u(x, τ̄), and choose constants α and β such that u(x, τ̄)
satisfies the heat equation (see [84]).

2.6.2 The Solutions of Parabolic Equations

In order for a parabolic differential equation to have a unique solution, one
has to specify some conditions. For example, the initial value problem for a
heat equation

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, τ̄ ≥ 0 (2.81)

with
u (x, 0) = u0 (x) (2.82)

has a unique solution under certain conditions that usually hold for cases
considered in this book.
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Let us find the solution of Eq. (2.81) with initial condition (2.82). The way
to find the solution is not unique. Here, we use the following method (see
[52]). We first try to find a special solution of Eq. (2.81) in the form

u(x, τ̄) = τ̄−1/2U(η),

where

η =
x− ξ√
τ̄
, ξ being a parameter.

Because

∂u

∂τ̄
= − τ̄

−3/2

2

(

U + η
dU

dη

)

= − τ̄
−3/2

2

d

dη
[ηU(η)],

∂u

∂x
= τ̄−1/2 dU

dη

1√
τ̄
= τ̄−1 dU

dη
,

∂2u

∂x2
= τ̄−3/2 d

2U

dη2
,

from Eq. (2.81) we have

− τ̄
−3/2

2

d

dη
(ηU) = τ̄−3/2 d

2U

dη2
,

that is,
d2U

dη2
+

1

2

d

dη
(ηU) = 0.

Integrating this equation, we have

dU

dη
+
η

2
U = c1,

where c1 is a constant. Let us choose c1 = 0, so now we have a linear homo-
geneous equation. The solution of this equation is

U(η) = ce−η2/4,

where c is a constant. Thus, for the diffusion equation we have a special
solution in the form

cτ̄−1/2e−(x−ξ)2/4τ̄ .

If we further require
∫ ∞

−∞
cτ̄−1/2e−(x−ξ)2/4τ̄dξ = 1,
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then

c =
1

∫ ∞

−∞
τ̄−1/2e−(x−ξ)2/4τ̄dξ

=
1

√
2

∫ ∞

−∞
e−η2/2dη

=
1

2
√
π

and the special solution is

1

2
√
πτ̄

e−(x−ξ)2/4τ̄ .

This solution is called the fundamental solution, or Green’s function, for the
heat equation (2.81). Let g(ξ;x, τ̄) represent this class of functions with ξ as
parameters. It is clear that the relation

∂g(ξ;x, τ̄)

∂τ̄
=
∂2g(ξ;x, τ̄)

∂x2

holds for any ξ. Thus, for any u0(ξ) we have
∫ ∞

−∞
u0(ξ)

∂g(ξ;x, τ̄)

∂τ̄
dξ =

∫ ∞

−∞
u0(ξ)

∂2g(ξ;x, τ̄)

∂x2
dξ,

that is,

∂

[∫ ∞

−∞
u0(ξ)g(ξ;x, τ̄)dξ

]

∂τ̄
=

∂2
[∫ ∞

−∞
u0(ξ)g(ξ;x, τ̄ )dξ

]

∂x2
.

Consequently,

u(x, τ̄) =

∫ ∞

−∞
u0(ξ)× 1

2
√
πτ̄

e−(x−ξ)2/4τ̄dξ (2.83)

is also a solution of Eq. (2.81). Because

lim
τ̄→0

1

2
√
πτ̄

e−(x−ξ)2/4τ̄ =

{
0, x− ξ �= 0,
∞, x− ξ = 0

and ∫ ∞

−∞

1

2
√
πτ̄

e−(x−ξ)2/4τ̄dξ = 1

is true for any τ̄ , we have

lim
τ̄→0

1

2
√
πτ̄

e−(x−ξ)2/4τ̄ = δ(x− ξ)

and

lim
τ̄→0

∫ ∞

−∞
u0(ξ)× 1

2
√
πτ̄

e−(x−ξ)2/4τ̄dξ = u0(x).

Consequently, Eq. (2.83) is the solution of the initial-value problem
⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, τ̄ > 0,

u(x, 0) = u0(x), −∞ < x <∞.
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2.6.3 Solutions of the Black–Scholes Equation

Because the solution of the problem (2.77) is the expression (2.83), from the
relation (2.78) we know that the solution of the final value problem

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = VT (S), 0 ≤ S

is

V (S, t) = e−r(T−t)

∫ ∞

−∞
u0(ξ)

1

2
√
πτ̄

e−(x−ξ)2/4τ̄dξ

= e−r(T−t)

∫ ∞

−∞
VT
(
eξ
) 1

2
√
πτ̄

e−(ξ−x)2/4τ̄dξ

= e−r(T−t) 1

σ
√
2π(T − t)

×
∫ ∞

0

VT (S
′)e−{lnS′−[lnS+(r−D0−σ2/2)(T−t)]}2

/2σ2(T−t) dS
′

S′ .

This result can be written as

V (S, t) = e−r(T−t)

∫ ∞

0

VT (S
′)G(S′, T ;S, t)dS′, (2.84)

where

G(S′, T ;S, t)

=
1

σ
√
2π(T − t)S′ e

−{lnS′−[lnS+(r−D0−σ2/2)(T−t)]}2
/2σ2(T−t). (2.85)

Equations (2.84) and (2.85) are usually referred to as the general solution and
Green’s function of the Black–Scholes equation, respectively. From Sect. 2.1.3,
we know that this function is also the probability density function for a log-
normal distribution, that is, we can say that S′ is a lognormal random variable
and according to the result (2.6) its expectation is

E [S′] = Se(r−D0)(T−t). (2.86)

In order to make the expression of this function short, we rewrite it as

G(S′, T ;S, t) =
1√

2πbS′ e
−[ln(S′/a)+b2/2]

2
/2b2 ,

where

a = Se(r−D0)(T−t) and b = σ
√
T − t.
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For this function, there are the following useful formulae:
∫ ∞

c

G(S′, T ;S, t)dS′ = N

(
ln(a/c)− b2/2

b

)

(2.87)

and
∫ ∞

c

S′G(S′, T ;S, t)dS′ = aN

(
ln(a/c) + b2/2

b

)

, (2.88)

where N(z) is the cumulative distribution function for the standard normal
distribution defined by20

N(z) =
1√
2π

∫ z

−∞
e−ξ2/2dξ. (2.89)

The proof of the two formulae is straightforward. Let

η(S′) =
ln(S′/a) + b2/2

b
,

that is,

S′ = aebη−b2/2.

Thus

dS′ = aebη−b2/2bdη = S′bdη.

Consequently, we have
∫ ∞

c

1√
2πbS′ e

−[ln(S′/a)+b2/2]
2
/2b2dS′

=

∫ ∞

η(c)

1√
2πbS′ e

−η2/2S′bdη

= N(−η(c))
= N

(

− ln(c/a) + b2/2

b

)

= N

(
ln(a/c)− b2/2

b

)

20The value of this function has to be obtained by numerical methods. If z ≤ 0,
this function can be approximated by

N(z) = 0.5t exp(−x2 − 1.26551223 + t(1.00002368 + t(0.37409196 + t(0.09678418

+t(−0.18628806 + t(0.27886807 + t(−1.13520398 + t(1.48851587

+t(−0.82215223 + t× 0.17087277))))))))),

where x = −z × 0.707106781186550 and t = 1.0/(1.0 + 0.5x). If z > 0, then N(z) =
1−N(−z). The fractional error is less than 0.6×10−7 everywhere. See NUMERICAL
RECIPES IN C: The Art of Scientific Computing. Cambridge University Press,
Cambridge (1988–1992).
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and
∫ ∞

c

S′ 1√
2πbS′ e

−[ln(S′/a)+b2/2]
2
/2b2dS′

=

∫ ∞

η(c)

1√
2πb

e−η2/2aebη−b2/2bdη

=
a√
2π

∫ ∞

η(c)

e−(η−b)2/2dη

=
a√
2π

∫ ∞

η(c)−b

e−ξ2/2dξ

= aN

(

− ln(c/a) + b2/2

b
+ b

)

= aN

(
ln(a/c) + b2/2

b

)

.

2.6.4 Prices of Forward Contracts and Delivery Prices

From Sect. 1.2.1, we know that the payoff function for a forward contract is

V (S, T ) = S −K.

Therefore, according to the formula (2.84) and using the result (2.86), we see
that its price is

V (S, t) = e−r(T−t)

∫ ∞

0

(S′ −K)G(S′, T ;S, t)dS′

= e−r(T−t)(Se(r−D0)(T−t) −K)

= Se−D0(T−t) −Ke−r(T−t).

Because for a forward contract the buyer does not need to pay any premium
at t = 0, we have

V (S, 0) = Se−D0T −Ke−rT = 0.

Consequently, the delivery price should be

K = e(r−D0)TS0,

where in order to make it clear, we use S0, instead of S, to denote the price
of the underlying asset at the initiation of the contract.

2.6.5 Derivation of the Black–Scholes Formulae

At t = T , the value of a call option is

c(S, T ) = max(S − E, 0).
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According to the formulae (2.84), (2.87), and (2.88), the value of a European
call is

c(S, t) = e−r(T−t)

∫ ∞

0

max(S′ − E, 0)G(S′, T ;S, t)dS′

= e−r(T−t)

∫ ∞

E

(S′ − E)G(S′, T ;S, t)dS′

= e−r(T−t)

[∫ ∞

E

S′G(S′, T ;S, t)dS′ −
∫ ∞

E

EG(S′, T ;S, t)dS′
]

= e−r(T−t)
[
Se(r−D0)(T−t)N(d1)− EN(d2)

]

= Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2), (2.90)

where

d1 =

[

ln
Se(r−D0)(T−t)

E
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)

=

[

ln
Se−D0(T−t)

Ee−r(T−t)
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)
,

d2 =

[

ln
Se(r−D0)(T−t)

E
− 1

2
σ2(T − t)

]/(
σ
√
T − t

)

=

[

ln
Se−D0(T−t)

Ee−r(T−t)
− 1

2
σ2(T − t)

]/(
σ
√
T − t

)

= d1 − σ
√
T − t.

For a put, the final value is

p(S, T ) = max(E − S, 0).

Thus, the value of a European put is

p(S, t) = e−r(T−t)

∫ ∞

0

max(E − S′, 0)G(S′, T ;S, t)dS′

= e−r(T−t)

∫ E

0

(E − S′)G(S′, T ;S, t)dS′

= e−r(T−t)

[

E

∫ E

0

G(S′, T ;S, t)dS′ −
∫ E

0

S′G(S′, T ;S, t)dS′
]

= e−r(T−t)
{
E[1−N(d2)]− Se(r−D0)(T−t)[1−N(d1)]

}

= Ee−r(T−t)N(−d2)− Se−D0(T−t)N(−d1). (2.91)

It is interesting that the values of European call and put options can be
expressed in terms of the cumulative distribution function for the standardized
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normal random variable, N(z). Expressions (2.90) and (2.91) give closed-form
solutions for European vanilla options and are usually referred to as the Black–
Scholes formulae.

When hedging is involved, we not only seek the value of options, but also
the value of the first and second derivatives with respect to S, Δ, and Γ .

For European call, Δ =
∂c

∂S
is

∂c

∂S
= e−D0(T−t)N(d1) + Se−D0(T−t) 1√

2π
e−d2

1/2
∂d1
∂S

−Ee−r(T−t) 1√
2π

e−d2
2/2

∂d2
∂S

= e−D0(T−t)N(d1) +
1√
2π

∂d1
∂S

(
Se−D0(T−t)−d2

1/2 − Ee−r(T−t)−d2
2/2
)
.

Noticing

−r(T − t)− d22/2

=−r(T − t)−
[
d21 − 2d1σ

√
T − t+ σ2(T − t)

]/
2

=−r(T − t)− [d21 − 2 ln(S/E)− 2
(
r −D0 + σ2/2

)
(T − t) + σ2(T − t)

]/
2

=−d21/2−D0(T − t) + ln(S/E),

that is,

Se−D0(T−t)−d2
1/2 = Ee−r(T−t)−d2

2/2,

we have
∂c

∂S
= e−D0(T−t)N(d1).

Taking the derivative with respect to S again yields

∂2c

∂S2
=

1

Sσ
√
2π(T − t)

e−D0(T−t)−d2
1/2.

Similarly, for put options

∂p

∂S
= −e−D0(T−t)N(−d1) and

∂2p

∂S2
=
∂2c

∂S2
.

We need to point out that if the value of an option and the price of the
underlying asset are divided by E, then the dimensionless option value V/E
and the derivatives of V/E can still be obtained by the same formulae. The
only change is to let E = 1 and S should have dimensionless value.

What the values of c(S, t) and p(S, t) are? What do the functions c(S, t)
and p(S, t) look like? For the case S = E, r = 0.1, D0 = 0.05, σ = 0.2 and
T − t = 1,



2.6 Solutions of European Options 79

Fig. 2.5. The European call value c(S, t) as a function of S
(r = 0.1, D0 = 0.05, σ = 0.2, and T − t = 0, 0.5, and 1.0)

Fig. 2.6. The European put value p(S, t) as a function of S
(r = 0.1, D0 = 0.05, σ = 0.2, and T − t = 0, 0.5, and 1.0)

c(S, t)/E = 0.0994 and p(S, t)/E = 0.0530

and for the case S = E, r = 0.02, D0 = 0.01, σ = 0.2 and T − t = 1,

c(S, t)/E = 0.0835 and p(S, t)/E = 0.0736.

The functions of the European call and put options for the case r = 0.1,
D0 = 0.05, σ = 0.2, T − t = 0, 0.5, 1 are shown in Figs. 2.6 and 2.5. Clearly,
the curves should approach the payoff functions as t→ T , which can be seen
from the two figures. From Fig. 2.6, we can also see that when S is close to
zero, the curves approach the payoff from the bottom and when S is large,
the curves tend to the payoff from the top. That is, p(S, t) is less than the
payoff for small S and greater than the payoff for large S. In Sect. 3.1, we will
see that for American options, the price should always be at least the payoff.
Because of this, the Black–Scholes equation cannot be used to determine the
price of American options in some situations.
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When σ, r, and D0 depend on t, closed-form solutions can still be obtained
(see [63, 84]). Actually, through the transformation (2.79), the Black–Scholes
equation

∂V

∂t
+

1

2
σ2(t)S2 ∂

2V

∂S2
+ [r(t)−D0(t)]S

∂V

∂S
− r(t)V = 0

can still be reduced to a diffusion equation. Let

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α(t) =
1

2

∫ T

t
σ2(s)ds,

δ(t) =
∫ T

t
D0(s)ds,

γ(t) =
∫ T

t
r(s)ds,

then the solution of the Black–Scholes equation in this case is

V (S, t) = e−γ(t)

∫ ∞

−∞
VT
(
eξ
) 1

2
√
πτ̄

e−(ξ−x)2/4τ̄dξ,

where x = lnS + γ(t) − δ(t) − α(t) and τ̄ = α(t). Therefore, for a call with
coefficients r(t), D0(t), and σ(t), the solution should be

c(S, t) = Se−δ(t)N(d1)− Ee−γ(t)N(d2),

where

d1 =

[

ln
Se−δ(t)

Ee−γ(t)
+ α(t)

]/

[2α(t)]1/2,

d2 =

[

ln
Se−δ(t)

Ee−γ(t)
− α(t)

]/

[2α(t)]1/2.

2.6.6 Put–Call Parity Relation

Although call and put options are superficially different, they can be combined
in such a way that they are perfectly correlated. In fact, there is the following
relation:

c(S, t)− p(S, t) = Se−D0(T−t) − Ee−r(T−t), (2.92)

which is usually called the put–call parity relation. It can be obtained in
different ways. From the Black–Scholes formulae (2.90) and (2.91), we can
have

c(S, t)− p(S, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2)

−Ee−r(T−t)N(−d2) + Se−D0(T−t)N(−d1)
= Se−D0(T−t) − Ee−r(T−t).

This is one way to get it.
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We can also find this relation without finding the concrete expressions of
c(S, t) and p(S, t). Let us look at a portfolio whose payoff is

Π(S, T ) = S +max(E − S, 0)−max(S − E, 0)− E = 0.

According to the formula (2.84), Π(S, t) = 0 and we also have

Π(S, t)

=e−r(T−t)

∫ ∞

0

[S′ +max(E − S′, 0)−max(S′ − E, 0)− E]G(S′, T ;S, t)dS′

=Se−D0(T−t) + p(S, t)− c(S, t)− Ee−r(T−t).

Here, we are actually using the superposition principle of homogeneous linear
partial differential equations. From these relations, we immediately have the
put–call parity. In Sect. 3.4, we will derive this relation again without using
a partial differential equation. Here, we need to point out that the put–call
parity relation is true only for European options. For American options, the
equality becomes an inequality, which will be discussed in Sect. 3.4.

2.6.7 An Explanation in Terms of Probability

The function G(S′, T ;S, t) given by the expression (2.85) represents a prob-
ability density function of a random variable S′, and S′ can be interpreted
as the random price of a stock at time T . Then, we can understand S as
the price of the stock at time t because G (S′, T ;S, t) goes to a Dirac delta
function δ(S′ − S) as T → t. VT (S

′) is the value of an option at time T if the
price is S′. Therefore

∫ ∞

0

VT (S
′)G(S′, T ;S, t)dS′

is the expectation of the value of the option at time T if the price is S at time
t, and

e−r(T−t)

∫ ∞

0

VT (S
′)G(S′, T ;S, t)dS′

is the present (or discounted) value of the expectation at time T . That is, the
price of an option at time t given by the formula (2.84) is the present value of
the expectation of the option value at time T . This is the explanation of the
solution given by the formula (2.84) in terms of probability.

Suppose that S and S′ are the prices of a stock at time T − Δt and
time T , respectively, and that S′ has the probability density function
G(S′, T ;S, T −Δt). According to the result (2.6) we have

E [S′] = Se(r−D0)Δt
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and
Var [S′] = S2e2(r−D0)Δt

(
eσ

2Δt − 1
)
≈ S2σ2Δt.

Therefore21

E

[
S′ − S

S

]

=
Se(r−D0)Δt − S

S
≈ (r −D0)Δt

and

Var

[
S′ − S

S

]

≈ σ2Δt.

Consequently
dS

S
= (r −D0)dt+ σdX.

However, in the real world

dS

S
= μdt+ σdX.

Therefore, the random variable in the expression of the solution is a different
random variable from that in the real world. Usually, we say that the random
variable in the expression of the solution is in a “risk-neutral” world. In this
case, the expected return rate per unit time on any asset is the difference
between the riskless interest rate r and the dividend yield D0.

It is clear that if we let

V (S, t) = er(T−t)V (S, t),

then V is the solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
= 0, 0 ≤ S, t ≤ T,

V (S, T ) = V T (S), 0 ≤ S

and

V (S, t) =

∫ ∞

0

V T (S
′)G(S′, T ;S, t)dS′ = E

[
V T (S

′)
]
.

In probability theory, when this relation holds, it is said that V (S, t) is a
martingale under the probability density function G(S′, T ;S, t).

21Here we take a conditional expectation, i.e., S′ is a random variable and S is
fixed.
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Problems

Table 2.1. Problems and subsections

Problems Subsections Problems Subsections Problems Subsections

1–4 2.1.1 5–10 2.1.2 11(a) 2.2.1

11(b) 2.2.2 12–15 2.2.5 16 2.2.6

17–18 2.3.1 19–21 2.3.2 22 2.3.3

23–26 2.3.4 27–28 2.4.1 29–30 2.4.2

31(a) 2.5.1 31(b–d)–33 2.5.2 34–36 2.6.1

37 2.6.2 38–42 2.6.3 43–58 2.6.5

59–61 2.6.6

1. (a) Show ∫ ∞

−∞

1√
2π

e−x2/2dx = 1.

(b) Show that
∫ ∞

−∞

1

b
√
2π

e−(x−a)2/2b2dx = 1

holds for any a and b. (Because this is true and the integrand is always
positive, it can be a probability density function.)

(c) If the probability density function of a random variable x is

1

b
√
2π

e−(x−a)2/2b2 ,

then it is called a normal random variable. Show E[x] = a and
Var[x] = b2.

2. Define dX = φ
√
dt, where φ is a standardized normal random variable

and its probability density function is

1√
2π

e−φ2/2, −∞ < φ <∞.

Find E [dX], Var [dX], E
[
(dX)2

]
, and Var

[
(dX)2

]
.

3. Suppose that S has the probability density function

G(S) =
1√
2πbS

e−[ln(S/a)+b2/2]
2
/2b2 .

Find the probability density function for ξ =
1

S
, E [ξ] and Var [ξ].
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4. (a) Suppose that S1 and S2 are two independent normal random variables.
The mean and variance of S1 are μ1 and σ2

1 and for S2 they are μ2

and σ2
2 . Find the probability density function of the random variable

S1+S2 and using this function, show that S1+S2 is a normal random
variable with mean μ1 + μ2 and variance σ2

1 + σ2
2 .

22

(b) Suppose that Δt = t/n and φi, i = 1, 2, · · · , n, are independent stan-
dardized normal random variables. Show that

X(t) = lim
n→∞

(
φ1

√
Δt+ φ2

√
Δt+ · · ·+ φn

√
Δt
)

is a normal random variable with mean zero and variance t.
(c) Define dX = X(t + dt) − X(t). Show that it is a normal random

variable with mean zero and variance dt.
(d) Suppose S(t) = eμt+σX(t). Show that d lnS(t) ≡ lnS(t + dt) −

lnS(t) = μdt+σdX without using Itô’s lemma. (This result shows that
S(t) = eμt+σX(t) is a solution of the equation d lnS(t) = μdt+ σdX.)

5. *23Suppose
dS = a(S, t)dt+ b(S, t)dX,

where dX is a Wiener process. Let f be a function of S and t. Show that

df =
∂f

∂S
dS +

(
∂f

∂t
+

1

2
b2
∂2f

∂S2

)

dt

= b
∂f

∂S
dX +

(
∂f

∂t
+

1

2
b2
∂2f

∂S2
+ a

∂f

∂S

)

dt.

This result is usually referred to as Itô’s lemma.
6. Suppose that a random variable satisfies

dS = μSdt+ σSdX,

where dX is a Wiener process. Find the stochastic equation for ξ =
1

S

by using Itô’s lemma and determine the mean and variance of
dξ

ξ
.

7. Suppose that S satisfies

dS = μSdt+ σSdX.

22You have to show directly the relation

1√
2πσ1

∫ ∞

−∞
etS1e−(S1−μ1)

2/2σ2
1dS1 · 1√

2πσ2

∫ ∞

−∞
etS2e−(S2−μ2)

2/2σ2
2dS2

=
1√

2π
√

σ2
1 + σ2

1

∫ ∞

−∞
etSe−(S−μ1−μ2)

2/2(σ2
1+σ2

2)dS

if such a conclusion is used.
23A problem with * in this book means that you can find the answer in this book.

It is suggested that a student should first read and understand the corresponding
material and then do the problem without looking at the book.
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(a) Let F = e(r−D0)(T−t)S, which is called the forward/futures price, and
f = Se−D0(T−t) −Ke−r(T−t), which is the value of a forward/futures
contract. Here K is a constant and we assume that r and D0 are
constant. By Itô’s lemma, show that F and f satisfy

dF = (μ− r +D0)Fdt+ σFdX

and

df =
[
(μ+D0)

(
f +Ke−r(T−t)

)
− rKe−r(T−t)

]
dt

+σ
[
f +Ke−r(T−t)

]
dX,

respectively.

(b) Define ξ10 =
Se−D0(T−t)

Ee−r(T−t)
=
Se(r−D0)(T−t)

E
and ξ01 =

Ee−r(T−t)

Se−D0(T−t)
=

E

Se(r−D0)(T−t)
, where E is a constant. Show

dξ10 = (μ− r +D0)ξ10dt+ σξ10dX

and
dξ01 = (−μ+ r −D0 + σ2)ξ01dt− σξ01dX.

8. Suppose that S satisfies

dS = a(S, t)dt+ b(S, t)dX.

Show that for any functions f1(S, t) and f2(S, t), the following is true:

d (f1f2) = f1df2 + f2df1 + b2
∂f1
∂S

∂f2
∂S

dt.

9. Suppose that S satisfies

dS = μSdt+ σSdX, 0 ≤ S <∞,

where μ, σ are positive constants and dX is a Wiener process. Let

ξ =
S

S + Pm
,

where Pm is a positive constant. The range of ξ is [0, 1) and the stochastic
differential equation for ξ is in the form:

dξ = a(ξ)dt+ b(ξ)dX.

Find the concrete expressions for a(ξ) and b(ξ) by Itô’s lemma and show
⎧
⎨

⎩

a(0) = 0,

b(0) = 0,
and

⎧
⎨

⎩

a(1) = 0,

b(1) = 0.
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10. Consider a random variable r satisfying the stochastic differential equa-
tion

dr = (μ− γr)dt+ wdX, −∞ < r <∞,

where μ, γ, w are positive constants and dX is a Wiener process. Define

ξ =
r

|r|+ Pm
, Pm > 0,

which transforms the domain (−∞,∞) for r into (−1, 1) for ξ. Suppose
the stochastic equation for the new random variable ξ is

dξ = a(ξ)dt+ b(ξ)dX.

Find the concrete expressions of a(ξ) and b(ξ) and show that a(ξ) and
b(ξ) fulfill the conditions

⎧
⎪⎨

⎪⎩

a(−1) = 0,

b(−1) =
db(−1)

dξ
= 0,

and

⎧
⎪⎨

⎪⎩

a(1) = 0,

b(1) =
db(1)

dξ
= 0.

11. (a) *Show that if an investment is risk-free, then theoretically its return
rate must be the short-term interest rate.

(b) *Using this fact and Itô’s lemma, derive the Black–Scholes equation.
12. *Suppose V (S, t) is the solution of the problem

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0 , 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

Let ξ =
S

S + Pm
, τ = T − t, and V (S, t) = (S + Pm)V (ξ, τ), where Pm

is a positive constant.
(a) Show that V (ξ, τ) is the solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

−[r(1− ξ) +D0ξ]V , 0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) =
1− ξ

Pm
VT

(
Pmξ

1− ξ

)

, 0 ≤ ξ ≤ 1,

where σ̄(ξ) = σ

(
Pmξ

1− ξ

)

.

(b) What are the advantages of reformulating the problem on a finite
domain?
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13. Consider the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

T

]
∂W

∂η
−D0W = 0,

−∞ < η <∞, t ≤ T,

W (η, T ) =WT (η) , −∞ < η <∞,

which is related to the European average price options. Let us introduce
the following transformation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
η

|η|+ Pm
,

τ = T − t,

W (η, t) = (|η|+ Pm)u(ξ, τ),

where Pm > 0. Find the PDE and the initial condition u(ξ, τ) should
satisfy.

14. As we know, the prices of European call and put options are solutions of
the problem

⎧
⎪⎨

⎪⎩

∂c

∂t
+

1

2
σ2S2 ∂

2c

∂S2
+ (r −D0)S

∂c

∂S
− rc = 0, 0 ≤ S, t ≤ T,

c(S, T ) = max(S − E, 0), 0 ≤ S,

and the problem

⎧
⎪⎨

⎪⎩

∂p

∂t
+

1

2
σ2S2 ∂

2p

∂S2
+ (r −D0)S

∂p

∂S
− rp = 0, 0 ≤ S, t ≤ T,

p(S, T ) = max(E − S, 0), 0 ≤ S,

respectively.
(a) Let S∗

0=Ee−r(T−t), S∗
1=Se

−D0(T−t), ξ10=S
∗
1/S

∗
0 , and ξ01 = S∗

0/S
∗
1 .

Define V0(ξ10, t) = c(S, t)/S∗
0 and V1(ξ01, t) = p(S, t)/S∗

1 . Find the
PDEs and final conditions for V0(ξ10, t) and V1(ξ01, t).

(b) Based on the results in part (a), show that when S∗
1 is replaced

by S∗
0 and S∗

0 by S∗
1 at the same time, the expression for c(S, t) =

S∗
0V0(S

∗
1/S

∗
0 , t) becomes the expression for p(S, t) = S∗

1V1(S
∗
0/S

∗
1 , t).

15. Consider the following option problem:

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = max(E,S), 0 ≤ S.

Suppose that the uniqueness of the solution has been proved.
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a) Let S∗
0 = Ee−r(T−t), S∗

1 = Se−D0(T−t), ξ10 = S∗
1/S

∗
0 , and ξ01 = S∗

0/S
∗
1 .

Define V0(ξ10, t) = V (S, t)/S∗
0 and V1(ξ01, t) = V (S, t)/S∗

1 . Based on
these relations, find the PDEs and final conditions for V0(ξ10, t) and
V1(ξ01, t).

b) Based on the results in part (a), show that V (S, t) can be expressed
as a function f(S∗

0 , S
∗
1 , t) and this function is symmetric for S∗

0 and
S∗
1 , i.e., f(S

∗
0 , S

∗
1 , t) = f(S∗

1 , S
∗
0 , t). This result indicates that in this

option problem, the position of the cash and the position of the value
of the stock are symmetric in some sense.

16. As we know, f = Se−D0(T−t)−Ke−r(T−t) is the value of a forward/futures
contract. For S we assume dS = μSdt+ σSdX, so for df we have

df =
[
(μ+D0)

(
f +Ke−r(T−t)

)
− rKe−r(T−t)

]
dt

+σ
[
f +Ke−r(T−t)

]
dX

according to Itô’s lemma.

(a) *Consider an option on a forward/futures and let the price of such an
option be V1(f, t). Derive the PDE for V1 by using Itô’s lemma. (Hint:
Set Π = V1(f, t)−Δf .)

(b) *Let F = e(r−D0)(T−t)S, then for f we have another expression: f =
e−r(T−t)

(
Se(r−D0)(T−t) −K

)
= e−r(T−t) (F −K). Define V (F, t) =

V1(f(F, t), t) = V1(e
−r(T−t) (F −K) , t). Derive the PDE for V (F, t)

from the PDE obtained in part (a).
(c) Define V3(S, t) = V1(f(S, t), t) = V1(Se

−D0(T−t)−Ke−r(T−t), t). Show
that V3(S, t) satisfies the Black–Scholes equation:

∂V3
∂t

+
1

2
σ2S2 ∂

2V3
∂S2

+ (r −D0)S
∂V3
∂S

− rV3 = 0.

17. *Describe and derive the generalized Itô’s lemma.
18. Suppose that S1, S2, · · · , Sn are n lognormal random variables satisfying

the following stochastic differential equations:

dSi = μiSidt+ σiSidXi, i = 1, 2, · · · , n,
where μi, σi, i = 1, 2, · · · , n, are constants and dXi, i = 1, 2, · · · , n, are
n Wiener processes, i.e., dXi = φi

√
dt, φi being distinct standardized

normal random variables, i = 1, 2, · · · , n. φi and φj could be correlated
and E[φiφj ] = ρij , i, j = 1, 2, · · · , n, where −1 ≤ ρij ≤ 1. Define

ξij =
Si

Sj
, i �= j.

(a) Show that ξij satisfies the following stochastic differential equation

dξij = (μi − μj + σ2
j − ρijσiσj)ξijdt+ σijξijdXij ,
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where

σij =
√

σ2
i − 2ρijσiσj + σ2

j

and dXij is a Wiener process defined by

dXij =
σidXi − σjdXj

σij
.

That is, ξij = Si/Sj is also a lognormal variable and its volatility
is σij .

(b) Let S0 be a function of t, satisfying

dS0 = μ0S0dt.

It is clear that if we think S0 to be a random variable and let its
volatility be σ0, then σ0 = 0. Show that if Si is S0, then σ0j = σj and
dX0j = −dXj ; if Sj is S0, then σi0 = σi and dXi0 = dXi.

(c) Define

ρijk =
σ2
k − ρikσiσk − ρjkσjσk + ρijσiσj

σikσjk
.

Show
E[dXikdXjk] = ρijkdt,

i.e., ρijk is the correlation coefficient between the Wiener processes
related to ξik and ξjk.

(d) Show that if Si = S0, then

E[dX0kdXjk] = ρ0jkdt =
σk − ρjkσj

σjk
dt.

19. Suppose that S is the price of a dividend-paying stock and satisfies

dS = μ(S, t)Sdt+ σSdX1, 0 ≤ S <∞,

where dX1 is a Wiener process and σ is another random variable. Let the
dividend paid during the time period [t, t+dt] be D(S, t)dt. Assume that
for σ, the stochastic equation

dσ = p(σ, t)dt+ q(σ, t)dX2, σl ≤ σ ≤ σu

holds. Here, p(σ, t) and q(σ, t) are differentiable functions. dX2 is an-
other Wiener process correlated with dX1, and the correlation coeffi-
cient between them is ρdt. For options on such a stock, derive directly
the partial differential equation that contains only the unknown mar-
ket price of risk for the volatility. Here “Directly” means “without using
the general PDE for derivatives”. (Hint: Take a portfolio in the form
Π = Δ1V1(S, σ, t) +Δ2V2(S, σ, t) + S, where V1 and V2 are two different
options.)
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20. Consider a two-factor convertible bond paying coupons with a rate
k(t). For such a convertible bond, derive directly the partial differen-
tial equation that contains only the unknown market price of risk for
the short-term interest rate. “Directly” means “without using the gen-
eral PDE for derivatives”. (Hint: Take a portfolio in the form Π =
Δ1V1(S, r, t) +Δ2V2(S, r, t) + S, where V1 and V2 are two different con-
vertible bonds.)

21. *Describe and derive the general equations for derivative securities.
22. (a) Suppose that V (S, t) satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (a− λb)

∂V

∂S
− rV = 0.

Assuming that V = Se−D0(T−t) is a solution, find a− λb.
(b) Let Zl be a constant and suppose that V (ξ, t) = Zl+ξ(1−Zl) satisfies

∂V

∂t
+

1

2
σ2 ∂

2V

∂ξ2
+ (a− λb)

∂V

∂ξ
− rV = 0.

Find a− λb.
23. Suppose that ξ satisfy the stochastic differential equation:

dξ = a(ξ, t)dt+ b(ξ, t)dX,

where dX is a Wiener process. Let S(ξ) be the price of a stock which
pays dividends D(S(ξ), t)dt during the time period [t, t + dt] and f(ξ, t)
represent the value of a derivative security.
(a) Setting a portfolio Π = f(ξ, t)−ΔS(ξ) and using Itô’s lemma, derive

a PDE for f(ξ, t).
(b) Assume f(ξ, t) = V (ξ, t), S(ξ) = eξ and D(S(ξ), t) = D0e

ξ. Find the
PDE for V (ξ, t).

(c) Assume f(ξ, t) = V (ξ, t)/ξ, S(ξ) = 1/ξ and D(S(ξ), t) = D0/ξ. Find
the PDE for V (ξ, t).

(d) Assume f(ξ, t) = PmV (ξ, t)/(1−ξ), S(ξ) = Pmξ/(1−ξ) andD(S(ξ), t)
= D0Pmξ/(1− ξ). Find the PDE for V (ξ, t).

24. As we know, f = Se−D0(T−t)−Ke−r(T−t) is the value of a forward/futures
contract. If we set F = e(r−D0)(T−t)S, then for f we have another ex-
pression: f = e−r(T−t)

(
Se(r−D0)(T−t) −K

)
= e−r(T−t) (F −K). For S

we assume dS = μSdt+ σSdX, so for F we have

dF = (μ− r +D0)Fdt+ σFdX

according to Itô’s lemma. Consider an option on a forward/futures and let
the price of such an option be V (F, t). Derive the PDE for V by using Itô’s
lemma. (Hint: Set Π = V (F, t)−Δf(F, t) = V (F, t)−Δe−r(T−t)(F−K)).
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25. *Suppose that ξ1 and ξ2 satisfy the system of stochastic differential equa-
tions:

dξi = μi(ξ1, ξ2, t)dt+ σi(ξ1, ξ2, t)dXi, i = 1, 2,

where dXi are Wiener processes and E [dXidXj ] = ρijdt with −1 ≤ ρij ≤
1. Define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1 (ξ1)− Z2,l]

= Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l] .

Assume that Z1(ξ1) and Z2(ξ1, ξ2) represent prices of two securities.
Let V (ξ1, ξ2, t) be the value of a derivative security. Setting a portfo-
lio Π = V −Δ1Z1(ξ1)−Δ2Z2(ξ1, ξ2) and using Itô’s lemma, show that
V (ξ1, ξ2, t) satisfies the following PDE:

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj
+

rZ1

1− Z1,l

∂V

∂ξ1

+

[
r (Z2 − Z1ξ2)

Z1 − Z2,l
− σ1σ2ρ1,2 (1− Z1,l)

Z1 − Z2,l

]
∂V

∂ξ2
− rV = 0.

26. Suppose that ξ1, ξ2 and ξ3 satisfy the system of stochastic differential
equations:

dξi = μ̃i(ξ1, ξ2, ξ3, t)dt+ σ̃i(ξ1, ξ2, ξ3, t)dX̃i, i = 1, 2, 3,

where dX̃i are the Wiener processes and E
[
dX̃idX̃j

]
= ρ̃ijdt with

−1 ≤ ρ̃ij ≤ 1. Define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1 (ξ1)− Z2,l]

= Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l] ,

Z3 (ξ1, ξ2, ξ3) = Z3,l + ξ3 [Z2 (ξ1, ξ2)− Z3,l]

= Z3,l + ξ3 {Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l]− Z3,l} .
Assume that Z1(ξ1), Z2(ξ1, ξ2), and Z3(ξ1, ξ2, ξ3) represent prices of three
securities. Let V (ξ1, ξ2, ξ3, t) be the value of a derivative security. Setting
a portfolio Π = V −Δ1Z1(ξ1)−Δ2Z2(ξ1, ξ2)−Δ3Z3(ξ1, ξ2, ξ3) and using
Itô’s lemma, derive the PDE that V (ξ1, ξ2, ξ3, t) should satisfy.

27. *Write down the weak-form reversion conditions and the reversion con-
ditions of a stochastic process, describe when the two types of reversion
conditions are the same, and give the intuitive meaning of the weak-form
reversion conditions.
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28. Show the following:
(a) The Cox–Ingersoll–Ross interest rate model defined on [0,∞)

dr = (μ̄− γ̄r)dt+
√
αrdX, μ̄, γ̄, α > 0

can be converted into the model

dξ =

[
(1− ξ)

2

Pm

(

μ̄− γ̄Pmξ

1− ξ

)

− αξ (1− ξ)
2

Pm

]

dt+

√
αξ1/2(1− ξ)3/2

P
1/2
m

dX

by introducing a new random variable ξ =
r

r + Pm
, where Pm is a

positive constant.
(b) ξ is defined on [0, 1]. For the new model, the reversion conditions at ξ =

0 hold if and only if μ̄−α/2 ≥ 0 and the reversion conditions at ξ = 1
always hold.

29. *Consider the following degenerate parabolic problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= f1(x, τ)

∂2u

∂x2
+ f2(x, τ)

∂u

∂x
+ f3(x, τ)u+ g(x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,

u(x, 0) = f(x), 0 ≤ x ≤ 1,

u(0, τ)

⎧
⎪⎪⎨

⎪⎪⎩

needs not to be given if f2(0, τ)− ∂f1(0, τ)

∂x
≥ 0,

= fl(τ) if f2(0, τ)− ∂f1(0, τ)

∂x
< 0,

u(1, τ)

⎧
⎪⎪⎨

⎪⎪⎩

needs not to be given if f2(1, τ)− ∂f1(1, τ)

∂x
≤ 0,

= fu(τ) if f2(1, τ)− ∂f1(1, τ)

∂x
> 0,

where f1(0, τ) = f1(1, τ) = 0 and f1(x, τ) ≥ 0. Suppose that its solution
exists and is bounded and that there exist a constant c1 and two bounded
functions c2(τ) and c3(τ) such that

1 + max
0≤x≤1, 0≤τ≤T

(∣
∣
∣
∣
∂2f1(x, τ)

∂x2
− ∂f2(x, τ)

∂x
+ 2f3(x, τ)

∣
∣
∣
∣

)

≤ c1,

−min

(

0, f2(0, τ)− ∂f1(0, τ)

∂x

)

≤ c2(τ),

and

max

(

0, f2(1, τ)− ∂f1(1, τ)

∂x

)

≤ c3(τ).

Show that in this case, its solution is unique and stable with respect to
the initial value f(x), inhomogeneous term g(x, τ), and the boundary
values fl(τ), fu(τ) if there are any.
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30. Suppose f1(r, t) ≥ 0 and f1(rl, t) =
∂f1(rl, t)

∂r
= f1(ru, t) =

∂f1(ru, t)

∂r
= 0,

and f2(rl, t) < 0, f2(ru, t) > 0. Explain why problem A
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
= f1

∂2V

∂r2
+ f2

∂V

∂r
+ f3V, rl ≤ r ≤ ru, 0 ≤ t,

V (r, 0) = V0(r), rl ≤ r ≤ ru,

V (rl, t) = fl(t), 0 ≤ t,

V (ru, t) = fu(t), 0 ≤ t

and problem B
⎧
⎪⎨

⎪⎩

∂V

∂t
= −f1 ∂

2V

∂r2
+ f2

∂V

∂r
+ f3V, rl ≤ r ≤ ru, t ≤ T,

V (r, T ) = VT (r), rl ≤ r ≤ ru

have unique solutions.
31. (a) Consider a linear hyperbolic partial differential equation

∂u

∂t
+ f(x, t)

∂u

∂x
= 0.

Let x = x(t) be the curve C which is determined by the following
ordinary differential equation

dx(t)

dt
= f(x, t)

with x(0) = ξ. Show that u is a constant along the curve C:

u (x(t∗), t∗) = u (x(t∗∗), t∗∗) ,

where t∗ and t∗∗ are any two times, and that if

f(x, t) = F (x, t)δ(t− ti),

where δ(t− ti) is the Dirac delta function, then

u
(
x(t−i ), t

−
i

)
= u

(
x(t−i ) + F

(
x(t−i ), t

−
i

)
, t+i
)
,

where t−i and t+i denote the time just before and after ti, respectively.
(b) Derive the jump condition for options on stocks with discrete divi-

dends and explain its financial meaning.
(c) Find the corresponding jump condition for the following PDE

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

K

K∑

i=1

δ (t− ti)

]
∂W

∂η
−D0W = 0.
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(d) Find the corresponding jump condition for the following PDE

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S

+
K∑

i=1

[
max

(
S (t) , H

(
t−
))−H

(
t−
)]
δ (t− ti)

∂V

∂H
− rV = 0.

32. Show that the expression

W (η, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e−r(T−t)η, t2 < t ≤ T,

e−r(T−t)η + 1
2e

−r(T−t2)−D0(t2−t), t1 < t ≤ t2,

e−r(T−t)η + 1
2e

−r(T−t1)−D0(t1−t)

+ 1
2e

−r(T−t2)−D0(t2−t), 0 < t ≤ t1,

is the solution of the problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

2

2∑

i=1

δ (t− ti)

]
∂W

∂η

−D0W = 0, 0 ≤ η, 0 ≤ t ≤ T,

W (η, T ) = η, 0 ≤ η.

(This problem is related to discretely sampled average price call options.)

33. Suppose that V (S, t) is the solution of the following PDE:

∂V

∂t
+ a(S, t)

∂2V

∂S2
+ b(S, t)

∂V

∂S
+ c(S, t)V + d(S, t)δ(t− ti) = 0.

Find the relation between V (S, t+i ) and V (S, t−i ), and describe the finan-
cial meaning of this relation.

34. Suppose V (S, t) is the solution of the problem
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

Let x =

√
2

σ

[
lnS + (r −D0 − σ2/2)(T − t)

]
, τ = T − t and V (S, t) =

e−r(T−t)u(x, τ). Show that u(x, τ) is the solution of the problem

⎧
⎪⎨

⎪⎩

∂u

∂τ
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ,

u(x, 0) = VT

(
eσx/

√
2
)
, −∞ < x <∞.
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35. *Suppose V (S, t) is the solution of the problem
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

Let x = lnS + (r − D0 − σ2/2)(T − t), τ̄ = σ2(T − t)/2 and V (S, t) =
e−r(T−t)u(x, τ̄). Show that u(x, τ̄) is the solution of the problem

⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = VT (e
x), −∞ < x <∞.

36. Consider problem A:
⎧
⎪⎨

⎪⎩

∂V

∂t
+ a(t)S2 ∂

2V

∂S2
+ b(t)S

∂V

∂S
− r(t)V = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S

and define

α(t) =

∫ T

t

a(s)ds, β(t) =

∫ T

t

b(s)ds,

and

γ(t) =

∫ T

t

r(s)ds.

Assume that for this problem the uniqueness of solution is proved. Show
that
(a) Let x = lnS + β(t)− α(t), τ̄ = α(t) and V (S, t) = e−γ(t)u(x, τ̄), then

u(x, τ̄) is the solution of the problem:
⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = VT (e
x), −∞ < x <∞.

(b) V (S, t) must be in the form

V (S, t) = e−γ(t)u(lnS + β(t)− α(t), α(t))

or
V (S, t) = e−γ(t)ū(Seβ(t), α(t)).

(c) If
V (S, t) = e−r(T−t) ¯̄u(Seb(T−t), a(T − t))

is the solution of problem A with constant coefficients, then

V (S, t) = e−γ(t) ¯̄u(Seβ(t), α(t))

is the solution of problem A with time-dependent coefficients.
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37. *Find an integral expression of the solution of the following problem

⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = u0(x), −∞ < x <∞.

38. Using the results given in Problems 34 and 37, show that the solution of
the following problem

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S

is

V (S, t) = e−r(T−t)

∫ ∞

0

VT (S
′)G(S′, T ;S, t)dS′,

where

G(S′, T ;S, t)

=
1

σ
√
2π(T − t)S′ e

−[lnS′−lnS−(r−D0−σ2/2)(T−t)]
2
/2σ2(T−t).

39. Suppose that S is a random variable which is defined on [0,∞) and whose
probability density function is

G(S) =
1√
2πbS

e−[ln(S/a)+b2/2]
2
/2b2 ,

a and b being positive numbers. Show that
(a)

∫ c

0

G(S)dS = N

(
ln(c/a) + b2/2

b

)

;

(b)
∫ c

0

SG(S)dS = aN

(
ln(c/a)− b2/2

b

)

;

(c) for any real number n

∫ c

0

SnG(S)dS = ane(n
2−n)b2/2N

(
ln(c/a) + b2/2

b
− nb

)

;

(d) for any real number n

E [Sn] = ane(n
2−n)b2/2;
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(e) for any real number n

∫ ∞

c

SnG(S)dS = ane(n
2−n)b2/2N

(

− ln(c/a) + b2/2

b
+ nb

)

;

(f)
∫ c

0

lnS G (S) dS

=
−b√
2π

e−[ln(c/a)+b2/2]
2
/2b2 +

(
ln a− b2/2

)
N

(
ln (c/a) + b2/2

b

)

;

(g)
∫ ∞

c

lnS G (S) dS

=
b√
2π

e−[ln(c/a)+b2/2]
2
/2b2 +

(
ln a− b2/2

)
N

(

− ln (c/a) + b2/2

b

)

,

where

N(z) =
1√
2π

∫ z

−∞
e−ξ2/2dξ.

40. (a) Define S∗
0 = Ee−r(T−t) and S∗

1 = Se−D0(T−t). Show that there exists
a function f(x1, x2, t;σ) such that the following is true:

e−r(T−t)

∫ E

0

max(E,S′)G(S′, T ;S, t)dS′ = f(S∗
0 , S

∗
1 , t;σ)

and

e−r(T−t)

∫ ∞

E

max(E,S′)G(S′, T ;S, t)dS′ = f(S∗
1 , S

∗
0 , t;σ),

where

G(S′, T ;S, t)

=
1

σ
√
2π(T − t)S′ e

−{lnS′−[lnS+(r−D0−σ2/2)(T−t)]}2
/2σ2(T−t).

(b) Let V (S, t) be the solution of the problem
⎧
⎪⎨

⎪⎩

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = max(E,S), 0 ≤ S.

Based on the results in part (a), show that in the expression for V (S, t),
the positions of S∗

0 and S∗
1 are symmetric, i.e., exchanging S∗

0 and S∗
1

in the expression for V (S, t) will generate the same expression.
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41. As we know,

c(S, t) = e−r(T−t)

∫ ∞

0

max(S′ − E, 0)G(S′, T ;S, t)dS′

and

p(S, t) = e−r(T−t)

∫ ∞

0

max(E − S′, 0)G(S′, T ;S, t)dS′,

where

G(S′, T ;S, t) =
1

σ
√
2π(T − t)S′ e

−[ln(S′/S)−(r−D0−σ2/2)(T−t)]
2
/2σ2(T−t).

(a) Using the expression above for c(S, t), show that if D0 = 0, then
c(S, t) ≥ max(S − E, 0), which means that for this case the value of
an American call option is the same as the value of a European call
option.

(b) Using the expression above for p(S, t), show that if r = 0, then
p(S, t) ≥ max(E − S, 0), which means that for this case the value
of an American put option is the same as the value of a European put
option.

42. Consider the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Bc

∂t
+

1

2
σ2S2 ∂

2Bc

∂S2
+ (r −D0)S

∂Bc

∂S
− rBc = 0,

0 ≤ S, 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S,

where σ, r,D0, Z, and n are constants. Show that if D0 ≤ 0, then

Bc(S, t) ≥ max
(
Ze−r(T−t), nS

)
for 0 ≤ t ≤ T.

43. Find the solution in the form of V (S, t) = V (S) for the Black–Scholes
equation.

44. Show by substitution that
(a) V (S, t) = Se−D0(T−t),
(b) V (S, t) = Ee−r(T−t)

are solutions of the Black–Scholes equation. What do these solutions rep-
resent?

45. *Using the results given in Problems 38 and 39, derive the Black-Scholes
formula for a European put option.

46. As we know, the price of a call option on a forward/futures is the solution
of the following problem:
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⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2F 2 ∂

2V

∂F 2
− rV = 0, 0 ≤ F, t ≤ T,

V (F, T ) = max(F −K, 0), 0 ≤ F.

Using the general solution of the Black–Scholes equation and the results
given in Problem 39, find a closed-form solution for this case.

47. Consider the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV + k(t)Z = 0,

0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS), 0 ≤ S,

where σ, r, D0, Z, n are constants and k(t) is a nonnegative function.
Using the general solution of the Black–Scholes equation and the re-
sults given in Problem 39, find a closed-form solution for this case. (If
D0 = 0, this solution gives the price of a one-factor convertible bond pay-
ing coupon.) (Hint: Define V (S, t) = V (S, t) − b0(t), where b0(t) is the
solution of the following problem:

⎧
⎨

⎩

db0
dt

− rb0 + k(t)Z = 0, 0 ≤ t ≤ T,

b0(T ) = 0.

Find b0(t) and a closed-form solution of V (S, t) first, then putting them
together, we have V (S, t).)

48. Consider the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cb
∂t

+
1

2
σ2S2 ∂

2cb
∂S2

+ (r −D0)S
∂cb
∂S

− rcb = 0,

0 ≤ S <∞, 0 < t < T,

cb(S, T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if 0 ≤ S < S∗∗,

f(S), if S∗∗ ≤ S < S∗,

S − E, if S∗ ≤ S <∞,

where
f(S) = a0 + a1S + · · ·+ aJS

J .



100 2 European Style Derivatives

Show that it has a solution in the following closed form:

cb(S, t) =
J∑

n=0

{
anS

ne[−r+n(r−D0)+(n−1)nσ2/2](T−t)

×
[
N
(
d∗ − nσ

√
T − t

)
−N

(
d∗∗ − nσ

√
T − t

)]}

+Se−D0(T−t)
[
1−N

(
d∗ − σ

√
T − t

)]
− Ee−r(T−t)[1−N(d∗)],

where

d∗ =

[

ln(S∗/S)−
(

r −D0 − 1

2
σ2

)

(T − t)

]/(
σ
√
T − t

)
,

d∗∗ =

[

ln(S∗∗/S)−
(

r −D0 − 1

2
σ2

)

(T − t)

]/(
σ
√
T − t

)
.

49. Using the Black–Scholes formula for a put option and the result in Prob-
lem 36 part (c), find the formula for the price of a put option with time-
dependent parameters.

50. Consider a European call option on a non-dividend-paying stock. Use the
Black–Scholes formula to find the option price when the stock price is
$63, the strike price is $60, the risk-free interest rate is 5% per annum,
the volatility is 35% per annum, and the time to maturity is six months.

51. Consider a European put option on a dividend-paying stock. Use the
Black–Scholes formula to find the option price when the stock price is
$55, the strike price is $60, the risk-free interest rate is 5% per annum,
the volatility is 35% per annum, the dividend yield is 3% per annum,
and the time to maturity is six months.

52. Consider a European call option on a non-dividend-paying stock. The
option price is $4.5, the stock price is $86, the exercise price is $92,
the risk-free interest rate is 5% per annum, and the time to maturity is
three months. Use the Black–Scholes formula for a call option to find what
the corresponding volatility should be. (This volatility is usually referred
to as the implied volatility associated with the given option price.)

53. *Show
Se−D0(T−t)−d2

1/2 = Ee−r(T−t)−d2
2/2,

where

d1 =

[

ln
Se(r−D0)(T−t)

E
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)
,

d2 = d1 − σ
√
T − t.
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54. Verify that the Black–Scholes formula for a put option is the solution of
the following problem:
⎧
⎪⎨

⎪⎩

∂p

∂t
+

1

2
σ2S2 ∂

2p

∂S2
+ (r −D0)S

∂p

∂S
− rp = 0, 0 ≤ S, 0 ≤ t ≤ T,

p(S, T ) = max(E − S, 0), 0 ≤ S.

(Hint: Show the following identity Ee−r(T−t)−d2
2/2 = Se−D0(T−t)−d2

1/2

first.)
55. Find the expressions of limS→0 c(S, t) and limS→0 p(S, t).
56. Derive the expressions for derivatives of c(S, t) and p(S, t) with respect

to r, D0, σ, E, and show that
∂c

∂r
,
∂c

∂σ
,
∂p

∂D0
,
∂p

∂σ
,
∂p

∂E
are nonnegative,

and others are nonpositive.
57. Let c̄(ξ, τ) = c(S, t)/(S + Pm) and p̄(ξ, τ) = p(S, t)/(S + Pm), where

ξ = S/(S + Pm) and τ = T − t. Derive the expressions of c̄(ξ, τ) and
p̄(ξ, τ) and find the limits of c̄(ξ, τ) and p̄(ξ, τ) as ξ tends to 0 and 1. Also
write down the formulae for the case Pm = E.

58. Suppose that S is the price of a stock,

dS = μSdt+ σSdX,

and V (S, t) is the value of an option on the stock. Define S∗
0 =Ee−r(T−t),

S∗
1 = Se−D0(T−t), ξ10 =

S∗
1

S∗
0

=
Se(r−D0)(T−t)

E
, ξ01 =

S∗
0

S∗
1

=
E

Se(r−D0)(T−t)
,

V0(ξ10, t) = V (S(ξ10, t), t)/S
∗
0 (t), and V1(ξ01, t)=V (S(ξ01, t), t)/S

∗
1 (ξ01, t),

where E and T are constants, r is the interest rate, andD0 is the dividend
yield of the stock. Assume that we already know that

dξ10 = (μ− r +D0)ξ10dt+ σξ10dX.

(a) By setting Π = V −ΔS = S∗
0 (t)V0(ξ10, t)−ΔEe−(r−D0)(T−t)ξ10 and

using Itô’s lemma, show that the PDE for V0(ξ10, t) is

∂V0
∂t

+
1

2
σ2ξ210

∂2V0
∂ξ210

= 0.

(b) From the PDE for V0(ξ10, t) obtained in part (a), show that the PDE
for V1(ξ01, t) is

∂V1
∂t

+
1

2
σ2ξ201

∂2V1
∂ξ201

= 0.

(c) Consider the problem:
⎧
⎪⎨

⎪⎩

∂W

∂t
+ 1

2σ
2ξ2

∂2W

∂ξ2
= 0, 0 ≤ ξ, t ≤ T,

W (ξ, T ) = max(ξ, 1), 0 ≤ ξ.
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As we know, the solution of this problem is

W (ξ, t) =

∫ ∞

0

max(ξ′, 1)G(ξ′, T ; ξ, t)dξ′

=

∫ 1

0

G(ξ′, T ; ξ, t)dξ′ +
∫ ∞

1

ξ′G(ξ′, T ; ξ, t)dξ′,

where

G(ξ′, T ; ξ, t) =
1√
2πbξ′

e−[ln(ξ
′/ξ)+b2/2]

2
/2b2 , b being σ

√
T − t.

Let V (S, t) be the price of the option with payoff max(S,E). In this
case V0(ξ10, T ) = max(S,E)/E = max(ξ10, 1) and V1(ξ01, T ) =
max(S,E)/S = max(ξ01, 1). Thus, for V (S, t) we have two expres-
sions:

V (S, t) = S∗
0W (ξ10, t)

= S∗
0

∫ 1

0

G(ξ′10, T ; ξ10, t)dξ
′
10 + S∗

0

∫ ∞

1

ξ′10G(ξ
′
10, T ; ξ10, t)dξ

′
10,

and

V (S, t) = S∗
1W (ξ01, t)

= S∗
1

∫ 1

0

G(ξ′01, T ; ξ01, t)dξ
′
01 + S∗

1

∫ ∞

1

ξ′01G(ξ
′
01, T ; ξ01, t)dξ

′
01.

Because at t = T both ξ′10 < 1 and ξ′01 > 1 correspond to S′ < E,
both the first term in the first expression and the second term in
the second expression represent the contribution which the function
max(S′, E) as S′ < E makes to the value V (S, t). Consequently, the
two terms should be equal. Similarly the second term in the first ex-
pression should be equal to the first term in the second expression.
Verify this conclusion by direct calculation.

59. *Suppose that c(S, t) and p(S, t) are the prices of European call and put
options with the same parameters, respectively. Show the put–call parity

c(S, t)− p(S, t) = Se−D0(T−t) − Ee−r(T−t)

without using the Black–Scholes formulae.
60. Consider a European option on a non-dividend-paying stock. The stock

price is $37, the exercise price is $34, the risk-free interest rate is 5% per
annum, the volatility is 30% per annum, and the time to maturity is six
months. Find the call and put option prices by using the Black–Scholes
formulae and verify that the put–call parity holds.
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61. By using the put–call parity relation of European options

c(S, t)− p(S, t) = Se−D0(T−t) − Ee−r(T−t),

show that the following relations hold:

∂p

∂S
=
∂c

∂S
− e−D0(T−t),

∂2p

∂S2
=
∂2c

∂S2

and
∂2p

∂S∂σ
=

∂2c

∂S∂σ
,

∂p

∂σ
=
∂c

∂σ
,

∂2p

∂σ2
=
∂2c

∂σ2
.
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