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There are always flowers for those who want to see them

Abstract I discuss a variety of results involving s(n), the number of
representations of n as a sum of three squares. One of my objectives is to reveal
numerous interesting connections between the properties of this function and certain
modular equations of degree 3 and 5. In particular, I show that

s(25n) = (6− (−n|5)) s(n)− 5s
( n
25

)

follows easily from the well known Ramanujan modular equation of degree 5.
Moreover, I establish new relations between s(n) and h(n), g(n), the number of
representations of n by the ternary quadratic forms

2x2 + 2y2 + 2z2 − yz + zx+ xy, x2 + y2 + 3z2 + xy,

respectively.
Finally, I propose a remarkable new identity for s(p2n)− ps(n) with p being an

odd prime. This identity makes nontrivial use of the ternary quadratic forms with
discriminants p2, 16p2.
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1 Introduction

Let (a, b, c, d, e, f)(n) denote the number of representations of n by the ternary form
ax2 + by2 + cz2 + dyz + ezx + fxy. I will assume that (a, b, c, d, e, f)(n) = 0,
whenever n 
∈ Z . Let s(n) denote the number of representations of n by ternary
form x2+y2+z2. In [14], Hirschhorn and Sellers proved in a completely elementary
manner that

s(p2n) = (p+ 1− (−n|p)) s(n)− ps
(
n

p2

)
, (1.1)

when p = 3. Here (a|p) denotes the Legendre symbol. It should be pointed out that
the authors of [14] proved (1.1) for all odd prime numbers p by an appeal to the
theory of modular forms.

In Sect. 2, I will show that (1.1) with p = 5 follows easily from the well-known
identity for φ(q)2 − φ(q5)2 with

φ(q) =

∞∑

n=−∞
qn

2

. (1.2)

Here and throughout, q is a complex number with |q| < 1. I will also provide an
elementary proof of the following

Theorem 1.1. If n ≡ 1, 2 mod 4, then

s(25n)− 5s(n) = 4(2, 2, 2,−1, 1, 1)(n), (1.3)

and

Theorem 1.2. If n ≡ 1, 2 mod 4, then

s(9n)− 3s(n) = 2(1, 1, 3, 0, 0, 1)(n). (1.4)

In Sect. 5, I will show how to remove the parity restrictions in the above theorems
by proving Theorems 5.2 and 5.3. Section 6 contains my new Proposition 6.1, which
generalizes Theorems 1.1, 1.2, 5.2 and 5.3. A reader with no vested interest in q-
series may want to proceed directly to Sect. 6. However, a motivated reader may
decide to walk slowly through the initial sections to experience suffering which will
later turn into joy.

Let me point out that two ternary forms 2x2 + 2y2 + 2z2 − yz + zx + xy and
x2 + y2 + 3z2 + xy both have class number one. This implies that these forms
are both regular [11, 16, 17]. For a recent discussion of the relation between the
Ramanujan modular equations and certain ternary quadratic forms the reader is
invited to examine [2]. And it goes without saying that one should not forget the
timeless classic [1].
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I begin by recalling some standard notations, definitions, and useful formulas.

(a; q)∞ :=
∏

j≥0

(1− aqj), (1.5)

and

E(q) :=
∏

j≥1

(1− qj). (1.6)

Note that

E(−q) = E(q2)3

E(q4)E(q)
, (1.7)

Ramanujan’s general theta-function f(a, b) is defined by

f(a, b) =

∞∑

n=−∞
a

(n−1)n
2 b

(n+1)n
2 , |ab| < 1. (1.8)

In Ramanujan’s notation, the celebrated Jacobi triple product identity takes the
shape [5], p. 35

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1. (1.9)

Note that φ(q) can be interpreted as

φ(q) = f(q, q) =
E(q2)5

E(q4)2E(q)2
, (1.10)

where the product on the right follows easily from (1.8). We shall also require

φ(−q) = E(q)2

E(q2)
. (1.11)

Next we define

ψ(q) = f(q, q3) =

∞∑

n=−∞
q2n

2+n. (1.12)

It is not hard to check that

ψ(q) =
1

2
f(1, q) =

∑

n≥0

q
(n+1)n

2 =
E(q2)2

E(q)
, (1.13)

∞∑

n=−∞
q(4n+1)2 =

∞∑

n=−∞
q(4n+3)2 = qψ(q8), (1.14)
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and that

f(q, q9)f(q3, q7) =
E(q20)E(q5)E(q2)2

E(q4)E(q)
, (1.15)

f(q, q4)f(q2, q3) =
E(q5)3E(q2)

E(q10)E(q)
. (1.16)

The function f(a, b) may be dissected in many different ways. We will use the
following trivial dissections [5], pp. 40, 49

φ(q) = φ(q4) + 2qψ(q8), (1.17)

φ(q) = φ(q9) + 2qf(q3, q15), (1.18)

φ(q) = φ(q25) + 2qf(q15, q35) + 2q4f(q5, q45). (1.19)

We will also require a special case of Schröter’s formula [5], p. 45

f(a, b)f(c, d) = f(ac, bd)f(ad, bc) + af

(
b

c
, ac2d

)
f

(
b

d
, acd2

)
, (1.20)

provided ab = cd. Setting a = b = c = d = q in (1.20) we obtain

φ(q)2 = φ(q2)2 + 4qψ(q4)2. (1.21)

Iterating, we find that

φ(q)2 = φ(q4)2 + 4qψ(q4)2 + 4q2ψ(q8)2. (1.22)

Next, we set a = q, b = q9, c = q3, d = q7 in (1.20) and square the result. This way
we have

f(q, q9)2f(q3, q7)2 = f(q4, q16)2f(q8, q12)2

+2qf(q4, q16)f(q8, q12)f(q6, q14)f(q2, q18) + q2f(q6, q14)2f(q2, q18)2.

(1.23)

Finally, we multiply both sides in (1.23) by

E(q4)φ(q5)

E(q20)E(q10)2
,

and use (1.10), (1.13), (1.15) and (1.16) to arrive at

φ(q)f(q2, q8)f(q4, q6) = ψ(q4)φ(q5)φ(q10)

+ 2qψ(q2)ψ(q10)φ(q5) + q2ψ(q20)φ(q2)φ(q5). (1.24)
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This result will come in handy in my proof of (1.3) with n ≡ 2 mod 4. To deal with
the case n ≡ 1 mod 4 in (1.3) I will require another identity

φ(q)φ(q5) +
∑

m,n

q2m
2+2nm+3n2

= 2Π1(q), (1.25)

where

Π1(q) =
E(q10)E(q5)E(q4)E(q2)

E(q20)E(q)
. (1.26)

This formula was discovered and proven in [4]. The proof of (1.25), given in [4],
used only a special case of the Ramanujan 1ψ1 summation formula [6], p. 64.
Multiplying both sides in (1.25) by ψ(q10) and utilizing (1.13) and (1.15) we can
rewrite (1.25) as

ψ(q10)φ(q)φ(q5)+ψ(q10)
∑

m,n

q2m
2+2nm+3n2

= 2ψ(q2)f(q, q9)f(q3, q7). (1.27)

2 The Ternary Implications of the Fundamental Modular
Equation of Degree 5

In this section we will make an extensive use of a well-known modular equation of
degree 5

φ(q)2 − φ(q5)2 = 4qf(q, q9)f(q3, q7) (2.1)

to prove (1.1) with p = 5. We note that (2.1) has an attractive companion

5φ(q5)2 − φ(q)2 = 4Π2(q), (2.2)

where

Π2(q) =
E(q10)2E(q4)E(q)

E(q20)E(q5)
. (2.3)

Both (2.1) and (2.2) are discussed in [5]. We remark that the right hand side of (2.1)
was interpreted in terms of so-called self-conjugate 5-cores in [12]. To proceed
further I will need a sifting operator St,s. It is defined by its action on power series
as follows

St,s

∑

n≥0

c(n)qn =
∑

k≥0

c(tk + s)qk. (2.4)

Here t, s are integers such that 0 ≤ s < t. Making use of (1.19), we find that

S5,0φ(q)
2 = φ(q5)2 + 8qf(q, q9)f(q3, q7). (2.5)
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And so

S5,0(φ(q)
2 − φ(q5)2) = −(φ(q)2 − φ(q5)2) + 8qf(q, q9)f(q3, q7). (2.6)

Employing (2.1) twice, we see that

S5,0(qf(q, q
9)f(q3, q7)) = qf(q, q9)f(q3, q7). (2.7)

Analogously, we can check that

S5,0φ(q)
3 = φ(q5)3 + 24qφ(q5)f(q, q9)f(q3, q7), (2.8)

and that

S5,1φ(q)
3 = 6f(q3, q7)(φ(q5)2 + 4qf(q, q9)f(q3, q7)) = 6f(q3, q7)φ(q)2, (2.9)

S5,4φ(q)
3 = 6f(q, q9)(φ(q5)2 + 4qf(q, q9)f(q3, q7)) = 6f(q, q9)φ(q)2. (2.10)

We note, in passing, that thanks to (1.9), the right hand side in (2.9) can be rewritten
as an infinite product

∞∑

n=0

s(5n+ 1)qn = 6

∞∏

j=1

(1 − q2j)2(1 − q10j)

(1 + q−1+2j)4(1 + q−3+10j)(1 + q−7+10j).

Cooper and Hirschhorn studied the generating functions of subsequences of s(n)
that could be represented by a single, simple infinite product. For example,
(2.9), (2.10) and (4.17) are the formulas (3.1), (3.2) and (1.1) in [10].

With the aid of (1.19) we can combine (2.9) and (2.10) into a single elegant
statement

S5,r(φ(q)
3 − 3φ(q)φ(q5)2) = 0, (2.11)

where r = 1, 4. Next, we apply S5,0 to both sides of (2.8) to obtain, with a little
help from (2.7)

S25,0φ(q)
3 = φ(q)3 + 24qφ(q)f(q, q9)f(q3, q7). (2.12)

Subtracting 5φ(q)3 and making use of (2.1) again, we deduce that

S25,0φ(q)
3 − 5φ(q)3 = −4φ(q)3 + 6φ(q)(φ(q)2 − φ(q5)2)

= 2(φ(q)3 − 3φ(q)φ(q5)2). (2.13)

Finally, we apply S5,r with r = 1, 4 to both sides of (2.13) to find that

S125,25rφ(q)
3 − 5S5,rφ(q)

3 = 0. (2.14)



On Representation of an Integer by X2 + Y 2 + Z2 and the Modular Equations. . . 35

But it is plain that

φ(q)3 =
∞∑

n=0

s(n)qn. (2.15)

And so the equation (2.14) can be interpreted as

s(25n)− 5s(n) = 0, (2.16)

when n ≡ 1, 4 mod 5. Thus, the proof of (1.1) with p = 5 and n ≡ 1, 4 mod 5 is
complete.

We now turn our attention to the n ≡ 2, 3 mod 5 case. Subtracting 2φ(q)3 from
the extremes of (2.13), we end up with the formula

S25,0φ(q)
3 − 7φ(q)3 = −6φ(q)φ(q5)2. (2.17)

It is now clear that for r = 2, 3

S5,r(S25,0φ(q)
3 − 7φ(q)3) = −6φ(q)2S5,rφ(q) = 0, (2.18)

where in the last step we took advantage of the dissection formula (1.19). Obviously,
(2.18) is equivalent to

s(25n)− 7s(n) = 0, (2.19)

when n ≡ 2, 3 mod 5. And so we completed the proof of (1.1) with p = 5 and
n ≡ 2, 3 mod 5. All that remains to do is to take care of the n ≡ 0 mod 5 case.
Adding φ(q)3 to both sides of (2.17) and applying S5,0 to the result, we get

S5,0(S25,0φ(q)
3 − 6φ(q)3) = S5,0(φ(q)

3 − 6φ(q)φ(q5)2). (2.20)

Next, we utilize (1.19), (2.1) and (2.8) to process the right hand side of (2.20) as
follows

S5,0(φ(q)
3 − 6φ(q)φ(q5)2) = φ(q5)3 + 6φ(q5)(φ(q)2 − φ(q5)2)− 6φ(q5)φ(q)2

= −5φ(q5)3.

Hence, we have shown that

S125,0φ(q)
3 − 6S5,0φ(q)

3 = −5φ(q5)3. (2.21)

Consequently,

s(25n)− 6s(n) = −5s
( n
25

)
, (2.22)

when 5|n. This concludes our proof of (1.1) with p = 5.
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3 Proof of Theorem 1.1

I begin by observing that Theorem 1.1 is equivalent to the following statement

S100,25rφ(q)
3 − 5S4,rφ(q)

3 = 4S4,rT (q), (3.1)

where

T (q) :=
∑

x,y,z

q2x
2+2y2+2z2−yz+zx+xy (3.2)

and r = 1, 2. It is not hard to verify that

S4,1T (q) = 6S4,1X(1, q), (3.3)

and that

S4,2T (q) = 3S4,2(X(0, q) +X(2, q)). (3.4)

Here

X(r, q) :=
∑

x,
y≡−z≡rmod 4

q2x
2+2y2+2z2−yz+zx+xy. (3.5)

It takes very little effort to check that

2x2+2y2+2z2−zy+zx+xy = 2

(
x+

y + z

4

)2

+
5

8
(y+z)2+

5

4
(y−z)2. (3.6)

Hence

X(r, q) =
∑

x,
y≡−z≡rmod 4

q2(x+
y+z
4 )

2
+10( y+z

4 )2+20( y−z
4 )2

=
∑

u,
w≡v+ r

2 mod 2

q2u
2+10v2+20w2

, (3.7)

for r = 0, 2. It is now evident that

X(0, q) +X(2, q) =
∑

u,v,w

q2u
2+10v2+20w2

= φ(q2)φ(q10)φ(q20). (3.8)

Using this last result in (3.4), we find that

S4,2T (q) = 3φ(q5)S4,2(φ(q
2)φ(q10)). (3.9)

Recalling (1.17), we obtain at once that

4S4,2T (q) = 24φ(q5)(ψ(q4)φ(q10) + 6q2φ(q2)ψ(q20)). (3.10)
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We now consider X(r, q) with r = 1, 3.

X(r, q) =
∑

u,
v≡wmod 2

q2u
2+10v2+5(2w+r)2 .

Recalling (1.14), we get

X(1, q) = X(3, q) =
∑

u,v,w̃

q2n
2+10v2+5(4w̃+1)2 = q5φ(q2)φ(q10)ψ(q40). (3.11)

Using (1.17), (3.3) and (3.11), we deduce that

S4,1T (q) = 6qψ(q10)S4,0(φ(q
2)φ(q10)) = 6qψ(q10)(φ(q2)φ(q10) + 4q3ψ(q4)ψ(q20)).

Also, it is not hard to check that

∑

m,n

q2m
2+2nm+3n2

=
∑

m,n

q2(m+n)2+10n2

+ q3
∑

m,n

q2(m+n+1)(m+n)+10(n+1)n

= φ(q2)φ(q10) + 4q3ψ(q4)ψ(q20). (3.12)

This implies that

4S4,1T (q) = 24qψ(q10)
∑

m,n

q2m
2+2nm+3n2

. (3.13)

Next, we employ (2.13) to get

S100,25rφ(q)
3 − 5S4,rφ(q)

3 = 2S4,r(φ(q)
3 − 3φ(q)φ(q5)2). (3.14)

With the aid of (1.17), (1.22), (2.1) and (2.2) we verify that

S4,1(φ(q)
3 − 3φ(q)φ(q5)2) = 24qψ(q2)f(q, q9)f(q3, q7)− 12qφ(q)φ(q5)ψ(q10),

(3.15)

S4,2(φ(q)
3 − 3φ(q)φ(q5)2) = −24qψ(q2)ψ(q5)2 + 12φ(q)f(q2, q8)f(q4, q6).

(3.16)
Utilizing these results in (3.14) we obtain

S100,25φ(q)
3 − 5S4,1φ(q)

3 = 48qψ(q2)f(q, q9)f(q3, q7)− 24qφ(q)φ(q5)ψ(q10),
(3.17)

S100,50φ(q)
3 − 5S4,2φ(q)

3 = −48qψ(q2)ψ(q5)2 + 24φ(q)f(q2, q8)f(q4, q6).
(3.18)

Recalling (3.13), we see that (3.1) with r = 1 is equivalent to

2ψ(q2)f(q, q9)f(q3, q7)− φ(q)φ(q5)ψ(q10) = ψ(q10)
∑

m,n

q2m
2+2nm+3n2

,



38 A. Berkovich

which is, essentially, (1.27). Analogously, employing (3.10), we find that (3.1) with
r = 2 is equivalent to

−2qψ(q2)ψ(q5)2+φ(q)f(q2, q8)f(q4, q6) = φ(q5)ψ(q4)φ(q10)+6q2φ(q2)φ(q5)ψ(q20),

which is, essentially, (1.24). The proof of Theorem 1.1 is now complete.
In Sect. 5 we will generalize Theorem 1.1. To this end we need to define

Y (r, q) :=
∑

x,
y+z≡rmod 4

q2x
2+2y2+2z2−yz+zx+xy, (3.19)

where r = 0, 1, 2, 3. Observe that the condition y + z ≡ r mod 4 allows us to
introduce new summation variables u, v, w, defined as x = w− v, y = 2u+ v + r,
z = 2u− v. Using (3.6), it is easy to see that

2x2 + 2y2 + 2z2 − zy+ zx+ xy = 2r2 +w(2w + r) + 5v(v + r) + 5u(2u+ r).

Hence

Y (0, q) = φ(q2)φ(q5)φ(q10), (3.20)

Y (2, q) = 4q3φ(q5)ψ(q4)ψ(q20), (3.21)

Y (1, q) = Y (3, q) = 2q2ψ(q)ψ(q5)ψ(q10). (3.22)

Employing (3.12), (3.20)–(3.22), we derive

T (q) =

3∑

r=0

Y (r, q) = φ(q5)
∑

m,n

q2m
2+2nm+3n2

+ 4q2ψ(q)ψ(q5)ψ(q10). (3.23)

It is easy to see that

∑

x,
y+z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy = Y (1, q) + Y (3, q) = 4q2ψ(q)ψ(q5)ψ(q10),

(3.24)
and that ∑

x,
y+z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy = 2Z(q), (3.25)

where

Z(q) :=
∑

x,
y≡0mod 2,
z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy. (3.26)
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It is worthwhile to point out that Z(q) has six equivalent representations. For
example, one has

Z(q) :=
∑

x≡0mod 2,
y≡1mod 2,

z

q2x
2+2y2+2z2−yz+zx+xy.

From (3.24), (3.25) we deduce that

Z(q) = 2q2ψ(q)ψ(q5)ψ(q10). (3.27)

We conclude this Section that by proving that
∑

x+y≡1mod 2,
y≡zmod 2

q2x
2+2y2+2z2−yz+zx+xy = Z(q). (3.28)

Indeed, the left hand side of (3.28) can be rewritten as

∑

x≡0mod 2,
y≡1mod 2,
z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy +

∑

x≡1mod 2,
y≡0mod 2,
z≡0mod 2

q2x
2+2y2+2z2−yz+zx+xy.

Now observe that

∑

x≡1mod 2,
y≡0mod 2,
z≡0mod 2

q2x
2+2y2+2z2−yz+zx+xy =

∑

x≡0mod 2,
y≡1mod 2,
z≡0mod 2

q2x
2+2y2+2z2−yz+zx+xy.

And so the left hand side of (3.28) becomes

∑

x≡0mod 2,
y≡1mod 2,

z

q2x
2+2y2+2z2−yz+zx+xy =

∑

x,
y≡0mod 2,
z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy = Z(q),

as desired.

4 Cubic Modular Identities Revisited

As in the last section, I begin by observing that Theorem 1.2 is equivalent to the
following statement

S36,9rφ(q)
3 − 3S4,rφ(q)

3 = 4S4,rφ(q
3)a(q), (4.1)
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where

a(q) :=
∑

x,y

qx
2+xy+y2

,

and r = 1, 2. The function a(q) was extensively studied in the literature [7–9,
13]. It appeared in Borwein’s cubic analogue of Jacobi’s celebrated theta function
identity [8]. I will record below some useful formulas

4a(q2)φ(q3) = φ(q)3 + 3φ(q3)4

φ(q) , (4.2)

a(q) = a(q3) + 6qE(q9)3

E(q3) , (4.3)

a(q) = φ(q)φ(q3) + 4qψ(q2)ψ(q6), (4.4)

a(q) = 2φ(q)φ(q3)− φ(−q)φ(−q3), (4.5)

2a(q2)− a(q) = φ(−q)3

φ(−q3) (4.6)

a(q) = a(q4) + 6qψ(q2)ψ(q6). (4.7)

Formula (4.2) appears as equation (6.4) in [7]. Identities (4.3)–(4.6) are discussed
in [9]. In order to prove (4.7), the authors of [13] have shown that

2qψ(q2)ψ(q6) =
∑

u�≡vmod 2

qu
2+3v2

. (4.8)

We have at once that

2qψ(q2)ψ(q6) =
∑

u≡1mod 2,
v≡0mod 2

qu
2+3v2

+
∑

u≡0mod 2,
v≡1mod 2

qu
2+3v2

= 2qψ(q8)φ(q12) + 2q3φ(q4)ψ(q24). (4.9)

Combining (4.7) and (4.9), we have a pretty neat dissection of a(q) mod 4

a(q) = a(q4) + 6qψ(q8)φ(q12) + 6q3φ(q4)ψ(q24). (4.10)

In [19], L.C. Shen discussed two well-known modular identities of degree 3

φ(q)2 − φ(q3)2 = 4q
ψ(q)ψ(q3)ψ(q6)

ψ(q2)
, (4.11)

and

φ(q)2 + φ(q3)2 = 2
ψ(q)f(q, q2)f(q2, q4)

ψ(q2)
. (4.12)
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Multiplying (4.11) and (4.12), and using

f(q, q2) =
E(q3)2E(q2)

E(q6)E(q)
, (4.13)

f(q, q5) =
E(q12)E(q3)E(q2)2

E(q6)E(q4)E(q)
(4.14)

together with (1.13) we have

φ(q)4 − φ(q3)4 = 8qφ(q3)f(q, q5)3. (4.15)

Next, we rewrite (4.15) as

φ(q)4

φ(q3)
= φ(q3)3 + 8qf(q, q5)3. (4.16)

Recalling (1.18), we can recognize the expression on the right as

φ(q3)3 + 8qf(q, q5)3 = S3,0(φ(q
9) + 2qf(q3, q15))3 = S3,0φ(q)

3.

And so

S3,0φ(q)
3 =

φ(q)4

φ(q3)
. (4.17)

Next, we want to show that

S9,0φ(q)
3 =

4φ(q)4 − 3φ(q3)4

φ(q)
. (4.18)

To this end, we apply S3,0 to both sides of (4.17). Utilizing (1.18), we find that

S9,0φ(q)
3 =

φ(q3)4 + 4(8qφ(q3)f(q, q5)3)

φ(q)
. (4.19)

The statement in (4.18) follows immediately from (4.15) and (4.19). Moreover,
we have

S9,0φ(q)
3 − 5φ(q)3 = −φ(q)3 − 3

φ(q3)4

φ(q)
= −4a(q2)φ(q3), (4.20)

where we used (4.2) in the last step. Adding 2φ(q)3 to the extremes in (4.20)
we derive

S9,0φ(q)
3 − 3φ(q)3 = 2φ(q)3 − 4a(q2)φ(q3). (4.21)

This result will come in handy in my proof of Theorem 5.2 in the next section.
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5 Proof of Theorems 1.2, 5.2 and 5.3

I begin this section by providing an easy proof of two formulas in (4.1). All I need
is the following

Lemma 5.1. If r = 1, 2, then

S4,r(φ(q)
3 − 2a(q2)φ(q3)) = S4,r(a(q)φ(q

3)). (5.1)

Proof: This lemma is a straightforward corollary of (1.17), (4.7) and (4.10). Next,
we apply S4,r with r = 1, 2 to (4.21) and use (5.1) to obtain

S36,9rφ(q)
3 − 3S4,rφ(q)

3 = 2S4,r(φ(q)
3 − 2φ(q3)a(q2)) = 2S4,r(a(q)φ(q

3)),
(5.2)

which is (4.1), as desired. The proof of Theorem 1.2 is now complete. We can do
much better, if we realize that (5.1) is an immediate consequence of the following
elegant result

φ(q)3 = φ(q3)(a(q) + 2a(q2)− 2a(q4)). (5.3)

To prove it, we divide both sides by φ(q3) and obtain

φ(q)3

φ(q3)
= 2a(q2)− a(q) + 2(a(q)− a(q4)). (5.4)

Using (4.6) and (4.7) in (5.4), we see that (5.3) is equivalent to

φ(q)3

φ(q3)
− φ(−q)3
φ(−q3) = 12qψ(q2)ψ(q6). (5.5)

To verify (5.5), I replace q by −q in (4.6) and subtract (4.6) to find with the aid of
(4.5) the following

φ(q)3

φ(q3)
− φ(−q)3
φ(−q3) = a(q)− a(−q) = 3(φ(q)φ(q3)− φ(−q)φ(−q3)). (5.6)

Subtracting (4.4) from (4.5) we obtain

φ(q)φ(q3)− φ(−q)φ(−q3) = 4qψ(q2)ψ(q6). (5.7)

Hence,
φ(q)3

φ(q3)
− φ(−q)3
φ(−q3) = 12qψ(q2)ψ(q6), (5.8)

as desired. This completes the proof of (5.3). We are now in a position to improve
on (5.2). Indeed, it follows from (4.21) and (5.3) that
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S9,0φ(q)
3 − 3φ(q)3 = 2φ(q3)a(q)− 4φ(q3)a(q4). (5.9)

Consequently, we can extend Theorem 1.2 as

Theorem 5.2.

s(9n)− 3s(n) = 2(1, 1, 3, 0, 0, 1)(n)− 4(4, 3, 4, 0, 4, 0)(n). (5.10)

It is worthwhile to point out that Theorem 1.1 can be extended in a similar manner as

Theorem 5.3.

s(25n)− 5s(n) = 4(2, 2, 2,−1, 1, 1)(n)− 8(7, 8, 8,−4, 8, 8)(n). (5.11)

It is easy to check that (7, 8, 8,−4, 8, 8)(n) = 0 when n ≡ 1, 2 mod 4. And so
(5.11) reduces to (1.3) when n ≡ 1, 2 mod 4. Recalling (2.13), we see that all that
is required to prove Theorem 5.3 is

φ(q)3 − 3φ(q)φ(q5)2 = 2T (q)− 4T̃ (q), (5.12)

where T (q) was defined in (3.2), and

T̃ (q) :=
∑

x,y,z

q7x
2+8y2+8z2−4yz+8zx+8xy. (5.13)

Making easy changes of summation variables y → x+ y and z → x+ z in (3.2) we
find that

T (q) =
∑

x,y,z

q7x
2+2y2+2z2−yz+4zx+4xy. (5.14)

In a similar fashion one can prove that

T̃ (q) =
∑

x≡y≡zmod 2

q2x
2+2y2+2z2−yz+zx+xy. (5.15)

Combining (3.2), (3.25), (3.27), (3.28) and (5.15), we can easily derive that

T (q)− T̃ (q) = 2Z(q) + Z(q) = 6q2ψ(q)ψ(q5)ψ(q10). (5.16)

Hence we can rewite the right hand side of (5.12) as

2T (q)− 4T̃ (q) = 24q2ψ(q)ψ(q5)ψ(q10)− 2T (q).

Recalling (3.23), we see that (5.12) is equivalent to

φ(q)3 − 3φ(q)φ(q5)2 = 16q2ψ(q)ψ(q5)ψ(q10)− 2φ(q5)
∑

m,n

q2m
2+2nm+3n2

.

(5.17)
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To prove the above identity we subtract 2φ(q)φ(q5)2 from both sides and use (1.25),
(2.2) to find that

φ(q)Π2(q) = φ(q5)Π1(q)− 4q2ψ(q)ψ(q5)ψ(q10). (5.18)

Next, we multiply both sides of (5.18) by

E(q20)E(q5)E(q)

E(q10)2E(q4)E(q2)
,

and use (1.11) to end up with

φ(−q2)2 − φ(−q10)2 = −4q2E(q20)3E(q2)

E(q10)E(q4)
.

Finally, replacing q2 by q in the above, we deduce that (5.12) is equivalent to

φ(−q)2 − φ(−q5)2 = −4qE(q10)3E(q)

E(q5)E(q2)
.

Employing (1.7) and (1.15), we see that the last identity is nothing else but (2.1) with
q replaced by−q. Hence (5.12) is true. This completes my proof of the Theorem 5.3.

6 Bold Proposition

I now proceed to describe the generalization of Theorem 1.2 for any odd prime p.
Observe that the ternary quadratic form x2 + y2 + 3z2 + xy in this theorem has
the discriminants 32. We remind the reader that a discriminant of a ternary form
ax2 + by2 + cz2 + dyz + ezx+ fxy is defined as

1

2
det

⎡

⎣
2a f e

f 2b d

e d 2c

⎤

⎦ .

Using [18] it is easy to check that all ternary forms with the discriminant p2

belong to the same genus, say TG1,p. Let |Aut(f)| denote the number of integral
automorphs of a ternary quadratic form f , and let Rf (n) denote the number of
representations of n by f . Let p be an odd prime and n 
≡ 3 mod 4. I propose that

s(p2n)− ps(n) = 48
∑

f∈TG1,p

Rf (n)

|Aut(f)| − 96
∑

f∈TG1,p

Rf

(
n
4

)

|Aut(f)| . (6.1)
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Clearly, one wants to know if the parity restriction on n in (6.1) can be
removed. In other words, the question is whether a straightforward generalizion
of Theorem 5.2 exists. Fortunately, the answer is “yes”. However, the answer
involves the second genus of ternary forms TG2,p with discriminant 16p2. Note
that, in general, there are 12 genera of the ternary forms with the discriminant
16p2 [18]. However, when p ≡ 3 mod 4 one can create TG2,p from some binary
quadratic form of discriminant−p. It is a well known fact that all binary forms with
the discriminant −p belong to the same genus, say BGp. Let ax2 + bxz + cz2 be
some binary form ∈ BGp. We can convert it into ternary form

f(x, y, z) := 4ax2 + py2 + 4cz2 + 4|b|xz.
Next, we extend f to a genus that contains f . This genus is, in fact, TG2,p when
p ≡ 3 mod 4. It can be shown that the map

BGp → TG2,p

does not depend on which specific binary form from BGp we have choosen as
our starting point. I would like to comment that somewhat similar construction was
employed in [2] to define the so-called S-genus. Let me illustrate this map for
p = 23. In this case,

BG23 = {x2 + xz + 6z2, 2x2 + xz + 3z2, 2x2 − xz + 3z2}.

Choosing a binary form x2 + xz + 6z2 as a starting point one gets

{x2 + xz + 6z2} → {4x2 + 23y2 + 24z2 + 4xz} →
{4x2 + 23y2 + 24z2 + 4xz, 8x2 + 23y2 + 12z2 + 4xz, 3x2

+ 31y2 + 31z2 − 30yz + 2zx+ 2xy}.
We note that

TG2,23 : = {4x2 + 23y2 + 24z2 + 4xz, 8x2 + 23y2 + 12z2 + 4xz, 3x2

+ 31y2 + 31z2 − 30yz + 2zx+ 2xy}
is just one out of 12 possible genera of the ternary form with the discriminant 8,464.
It is instructive to compare TG2,23 and

TG1,23 := {x2+6y2+23z2+xy, 2x2+3y2+23z2+xy, 3x2+8y2+8z2−7yz+2zx+2xy}.

Clearly,

|TG1,23| = |TG2,23|.
Moreover,

|Aut(3x2 + 8y2 + 8z2 − 7yz + 2zx+ 2xy)|
= |Aut(3x2 + 31y2 + 31z2 − 30yz + 2zx+ 2xy)| = 12,
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|Aut(x2 + 6y2 + 23z2 + xy)| = |Aut(4x2 + 23y2 + 24z2 + 4xz)| = 8,

|Aut(2x2 + 3y2 + 23z2 + xy)| = |Aut(8x2 + 23y2 + 12z2 + 4xz)| = 4.

It is a bit less obvious that

(3, 31, 31,−30, 2, 2)(4n) = (3, 8, 8,−7, 2, 2)(n),

(4, 23, 24, 0, 4, 0)(4n) = (1, 6, 23, 0, 0, 1)(n),

(8, 23, 12, 0, 4, 0)(4n) = (2, 3, 23, 0, 0, 1)(n),

and that

(3, 31, 31,−30, 2, 2)(m) = (4, 23, 24, 0, 4, 0)(m) = (8, 12, 23, 0, 0, 4)(m) = 0,

whenever m ≡ 1, 2 mod 4. I propose that the above properties are, in fact, the
signature properties of TG2,p. In other words, for any odd prime p there exists an
automorphism preserving bijection

H : TG2,p → TG1,p,

such that , for any f ∈ TG2,p,

|Aut(f)| = |AutH(f)|,

Rf (4n) = RH(f)(n), (6.2)

and

Rf (m) = 0, when m ≡ 1, 2 mod 4. (6.3)

Jagy [15] suggested that TG1,p ∪ TG2,p does not represent any integer that is
quadratic residue mod p when p ≡ 1 mod 4, and when p ≡ 3 mod 4 this union
does not represent any integer that is a quadratic nonresidue mod p. That is for any
f ∈ TG1,p ∪ TG2,p

Rf (n) = 0,

when (−n|p) = 1. In addition, he pointed out that TG2,p represents a proper subset
of those numbers represented by TG1,p. Lastly, he observed that both TG1,p and
TG2,p are anisotropic at p. I discuss one more example. This time I choose p = 17.
Here one has

TG1,17 := {3x2+5y2+6z2+yz+2zx+3xy, 3x2+6y2+6z2−5yz+2zx+2xy},

and

TG2,17 := {7x2+11y2+20z2−8yz+4zx+6xy,3x2+23y2+23z2−22yz+2zx+2xy}.
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Note that

|Aut(3x2+5y2+6z2+yz+2zx+3xy)| = |Aut(7x2+11y2+20z2−8yz+4zx+6xy)| = 4,

|Aut(3x2+6y2+6z2−5yz+2zx+2xy)| = |Aut(3x2+23y2+23z2−22yz+2zx+2xy)| = 12,

(3, 23, 23,−22, 2, 2)(4n) = (3, 6, 6,−5, 2, 2)(n),
(7, 11, 20,−8, 4, 6)(4n) = (3, 5, 6, 1, 2, 3)(n),

(7, 11, 20,−8, 4, 6)(m) = (3, 23, 23,−22, 2, 2)(m) = 0,

whenever m ≡ 1, 2 mod 4. It is worthwhile to point out that there are exactly 12
genera with the discriminant 4,624. Only three of those have the correct cardinality

|TG2,17| = 2,

|{3x2 + 6y2 + 68z2 + 2xy, 10x2 + 11y2 + 14z2 + 2yz + 4zx+ 10xy}| = 2,

|{5x2 + 7y2 + 34z2 + 2xy, 6x2 + 12y2 + 17z2 + 4xy}| = 2.

Note, however, that

|Aut(3x2+6y2+68z2+2xy)| = |Aut(10x2+11y2+14z2+2yz+4zx+10xy)| = 4,

and

|Aut(5x2 + 7y2 + 34z2 + 2xy)| = |Aut(6x2 + 12y2 + 17z2 + 4xy)| = 4.

And so, TG2,17 is a unique genus with the desired properties.
I would like to conclude this discussion of TG2,p by providing a more explicit

description valid in three special cases. If p ≡ 3 mod 4, then TG2,p is the genus that
contains

4x2 + py2 + (p+ 1)z2 + 4zx.

I remark that the above form was obtained from the principal binary form x2+xz+
p+1
4 z2. If p ≡ 2 mod 3, then TG2,p is the genus that contains

x2 +
4p+ 1

3
y2 +

4p+ 1

3
z2 +

2− 4p

3
yz + 2zx+ 2xy.

If p ≡ 5 mod 8, then TG2,p is the genus that contains

8x2 +
p+ 1

2
y2 + (p+ 2)z2 + 2yz + 8zx+ 4xy.

Observe that the smallest prime to escape the above net of three special cases is
p = 73. I am now ready to unveil the promised extension of (6.1).
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Proposition 6.1. Let p be an odd prime, then

s(p2n)− ps(n) = 48
∑

f∈TG1,p

Rf (n)

|Aut(f)| − 96
∑

f∈TG2,p

Rf (n)

|Aut(f)| . (6.4)

The proof of this neat result with p ≥ 7 is beyond the scope of this paper and
will be given in [3]. Note, that (6.1) follows easily from (6.2) to (6.4).
Below I illustrate Proposition 6.1 with some initial examples

s(72n)− 7s(n) = 6(1, 2, 7, 0, 0, 1)(n)− 12(4, 7, 8, 0, 4, 0)(n), (6.5)

s(112n)− 11s(n) = 4(3, 4, 4,−3, 2, 2)(n) + 6(1, 3, 11, 0, 0, 1)(n)

− 8(3, 15, 15− 14, 2, 2)(n)− 12(4, 11, 12, 0, 4, 0)(n), (6.6)

s(132n)− 13s(n) = 12(2, 5, 5,−3, 1, 1)(n)− 24(8, 7, 15, 2, 8, 4)(n), (6.7)

s(172n)− 17s(n) = 12(3, 5, 6, 1, 2, 3)(n) + 4(3, 6, 6,−5, 2, 2)(n)
− 24(7, 11, 20,−8, 4, 6)(n)− 8(3, 23, 23,−22, 2, 2)(n),

(6.8)

s(192n)− 19s(n) = 6(1, 5, 19, 0, 0, 1)(n) + 12(4, 5, 6, 5, 1, 2)(n)

− 12(4, 19, 20, 0, 4, 0)(n)− 24(7, 11, 23,−10, 6, 2)(n), (6.9)

s(232n)− 23s(n) = 4(3, 8, 8,−7, 2, 2)(n) + 6(1, 6, 23, 0, 0, 1)(n)

+ 12(2, 3, 23, 0, 0, 1)(n)− 8(3, 31, 31,−30, 2, 2)(n)
− 12(4, 23, 24, 0, 4, 0)(n)− 24(8, 23, 12, 0, 4, 0)(n), (6.10)

Finally, I note that (6.5) implies the following impressive identity

8qψ(−q)E(q2)2S7,5(−q; q2)∞
= φ(q)3 + φ(q7)

∑

m,n

(qm
2+mn+2n2 − 2q4m

2+4mn+8n2

).
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