
Chapter 2
Generalized Spaces

In this chapter, we present some generalized spaces and their properties for the main
results in this chapter.

2.1 Random Normed Spaces

Random (probabilistic) normed spaces were introduced by Šerstnev in 1962 [242]
by means of a definition that was closely modelled on the theory of (classical)
normed spaces, and used to study the problem of best approximation in statistics. In
the sequel, we shall adopt usual terminology, notation and conventions of the theory
of random normed spaces, as in [9, 10, 148, 241].

Definition 2.1.1 A Menger probabilistic metric space (or random metric spaces) is
a triple (X,F, T ), where X is a nonempty set, T is a continuous t -norm and F is a
mapping from X × X into D+ such that, if Fx,y denotes the value of F at a point
(x, y) ∈ X × X, the following conditions hold: for all x, y, z in X,

(PM1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t + s) ≥ T (Fx,y(t),Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2.1.2 [242] A random normed space (briefly, a RN-space) or a Šerstnev
(Sherstnev) probabilistic normed space (briefly, a Šerstnev PN-space) is a triple
(X,μ,T ), where X is a vector space, T is a continuous t -norm and μ is a mapping
from X into D+ such that the following conditions hold:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0 (0 is the null vector in X);
(RN2) μαx(t) = μx(

t
|α| ) for all x ∈ X and α �= 0;

(RN3) μx+y(t + s) ≥ T (μx(t),μy(s)) for all x, y ∈ X and t, s ≥ 0, where μx de-
notes the value of μ at a point x ∈ X.
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Note that a triangular function τ : Δ+ × Δ+ → Δ+ is a binary operation on Δ+
which is associative, commutative and nondecreasing in each argument and has ε0
as the unit, that is, for all F,G,H ∈ Δ+,

τ
(
τ(F,G),H

) = τ
(
F, τ(G,H)

)
,

τ (F,G) = τ(G,F ),

τ (F, ε0) = F,

F ≤ G =⇒ τ(F,H) ≤ τ(G,H).

The continuity of a triangular function means the continuity with respect to the
topology of weak convergence in Δ+. Triangular functions are recursively defined
by τ 1 = τ and

τn(F1, . . . ,Fn+1) = τ
(
τn−1(F1, . . . ,Fn),Fn+1

)

for each n ≥ 2.
Typical continuous triangular functions are as follows:

τT (F,G)(x) = sup
s+t=x

T
(
F(s),G(t)

)
,

and

τT ∗(F,G) = inf
s+t=x

T ∗(F(s),G(t)
)
,

where T is a continuous t -norm, that is, a continuous binary operation on [0,1] that
is commutative, associative, nondecreasing in each variable and has 1 as the identity
element and T ∗ is a continuous t -conorm, that is, a continuous binary operation on
[0,1] which is related to the continuous t -norm T through T ∗(x, y) = 1 − T (1 −
x,1 − y).

Examples of such t -norms and t -conorms are M and M∗, respectively, defined
by

M(x,y) = min(x, y)

and

M∗(x, y) = max(x, y).

Let τ1 and τ2 be two triangular functions. Then τ1 dominates τ2 (which is denoted
by τ1 	 τ2) if, for all F1,F2,G1,G2 ∈ Δ+,

τ1
(
τ2(F1,G1), τ2(F2,G2)

) ≥ τ2
(
τ1(F1,F2), τ1(G1,G2)

)
.

In 1993, Alsina, Schweizer and Sklar gave a new definition of a probabilistic
normed space [9] as follows:

A probabilistic normed space (briefly, PN-space) is a quadruple (V , ν, τ, τ ∗),
where V is a real vector space, τ , τ ∗ are continuous triangulares functions and ν
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is a mapping from V → Δ+ such that, for all p,q ∈ V , the following conditions
hold:

(PN1) νp = ε0 if and only if p = θ , where θ is the null vector in V ;
(PN2) ν−p = νp for all p ∈ V ;
(PN3) νp+q ≥ τ(νp, νq) for all p,q ∈ V ;
(PN4) νp ≤ τ ∗(ναp, ν(1−α)p) for all α ∈ [0,1].

If the inequality (PN4) is replaced by the equality νp = τM(ναp, ν(1−α)p), then
the PN-space (V , ν, τ, τ ∗) is called a Šerstnev probabilistic normed space or a ran-
dom normed space (see Definition 2.1.2) and, as a consequence, we have the fol-
lowing condition stronger than (N2):

νλp(x) = νp

(
x

|λ|
)

for all p ∈ V , λ �= 0 and x ∈R.

Example 2.1.3 Let (X,‖ · ‖) be a linear normed spaces. Define a mapping

μx(t) =
{

0, if t ≤ 0,
t

t+‖x‖ , if t > 0.

Then (X,μ,Tp) is a random normed space. In fact, (RN1) and (RN2) are obvious.
Now, we show (RN3).

Tp

(
μx(t),μy(s)

) = t

t + ‖x‖ .
s

s + ‖y‖
= 1

1 + ‖x‖
t

· 1

1 + ‖y‖
s

≤ 1

1 + ‖x‖
t+s

· 1

1 + ‖y‖
t+s

≤ 1

1 + ‖x‖+‖y‖
t+s

≤ 1

1 + ‖x+y‖
t+s

= t + s

t + s + ‖x + y‖
= μx+y(t + s)

for all x, y ∈ X and t, s ≥ 0. Also, (X,μ,TM) is a random normed space.
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Example 2.1.4 Let (X,‖ · ‖) be a linear normed spaces. Define a mapping

μx(t) =
{

0, if t ≤ 0,

e−(
‖x‖
t

), if t > 0.

Then (X,μ,Tp) is a random normed space. In fact, (RN1) and (RN2) are obvious
and so, now, we show (RN3).

Tp

(
μx(t),μy(s)

) = e−(
‖x‖
t

) · e−(
‖y‖
s

)

≤ e−(
‖x‖
t+s

) · e−(
‖y‖
t+s

)

= e−(
‖x‖+‖y‖

t+s
)

≤ e−(
‖x+y‖
t+s

)

= μx+y(t + s)

for all x, y ∈ X and t, s ≥ 0. Also, (X,μ,TM) is a random normed space.

Example 2.1.5 [164] Let (X,‖ · ‖) be a linear normed space. For all x ∈ X, define a
mapping

μx(t) =
{

max{1 − ‖x‖
t

,0}, if t > 0,

0, if t ≤ 0.

Then (X,μ, TL) is a RN-space (this was essentially proved by Musthari in [179],
see also [213]). Indeed, we have

μx(t) = 1 =⇒ ‖x‖
t

= 0 =⇒ x = 0

for all t > 0 and, obviously,

μλx(t) = μx

(
t

λ

)

for all x ∈ X and t > 0. Next, for any x, y ∈ X and t, s > 0, we have

μx+y(t + s) = max

{
1 − ‖x + y‖

t + s
,0

}

= max

{
1 − ‖x + y

t + s
‖,0

}

= max

{
1 − ‖ x

t + s
+ y

t + s
‖,0

}

≥ max

{
1 − ‖x

t
‖ − ‖y

s
‖,0

}
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= TL

(
μx(t),μy(s)

)
.

Let ϕ be a function defined on the real field R into itself with the following
properties:

(a) ϕ(−t) = ϕ(t) for all t ∈R;
(b) ϕ(1) = 1;
(c) ϕ is strictly increasing and continuous on [0,∞), ϕ(0) = 0 and

limα→∞ ϕ(α) = ∞.

Examples of such functions are as follows:

ϕ(t) = |t |, ϕ(t) = |t |p (
p ∈ (0,∞)

)
, ϕ(t) = 2t2n

|t | + 1

for all t ∈R and n ≥ 1.

Definition 2.1.6 [97] A random ϕ-normed space is a triple (X, ν,T ), where X is
a real vector space, T is a continuous t -norm and ν is a mapping from X into D+
such that the following conditions hold:

(ϕ-RN1) νx(t) = ε0(t) for all t > 0 if and only if x = 0;
(ϕ-RN2) ναx(t) = νx(

t
ϕ(α)

) for all x in X, α �= 0 and t > 0;
(ϕ-RN3) νx+y(t + s) ≥ T (νx(t), νy(s)) for all x, y ∈ X and t, s ≥ 0.

Example 2.1.7 [165] An important example is the space (X, ν,TM), where
(X,‖ · ‖p) is a p-normed space and

νx(t) =
{

0, if t ≤ 0,
t

t+‖x‖p , p ∈ (0,1], if t > 0.

(ϕ-RN1) and (ϕ-RN2) are obvious and so we show (ϕ-RN3). In fact, let νx(t) ≤
νy(s). Then we have

‖y‖p

s
≤ ‖x‖p

t

for any x, y ∈ X

Now, if x = y, we have t ≤ s. Thus, otherwise, we have

‖x‖p

t
+ ‖x‖p

t
≥ ‖x‖p

t
+ ‖y‖p

s

≥ 2
‖x‖p

t + s
+ 2

‖y‖p

t + s

≥ 2
‖x + y‖p

t + s
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and so

1 + ‖x‖p

t
≥ 1 + ‖x + y‖p

t + s
,

which implies that νx(t) ≤ νx+y(t + s). Hence, νx+y(t + s) ≥ TM(νx(t), νy(s)) for
all x, y ∈ X and t, s ≥ 0.

Definition 2.1.8 Let μ and ν be measure and non-measure distribution function
from X × (0,+∞) to [0,1], respectively, such that μx(t) + νx(t) ≤ 1 for all x ∈ X

and t > 0, where X is a real vector space. The triple (X,Pμ,ν,T ) is said to be
an intuitionistic random normed space (briefly, IRN-space) if X is a real vector
space, T is a continuous t -representable and Pμ,ν is a mapping X × (0,+∞) → L∗
satisfying the following conditions: for all x, y ∈ X and t, s > 0,

(IRN1) Pμ,ν(x,0) = 0L∗ ;
(IRN2) Pμ,ν(x, t) = 1L∗ if and only if x = 0;
(IRN3) Pμ,ν(αx, t) =Pμ,ν(x, t

|α| ) for all α �= 0;
(IRN4) Pμ,ν(x + y, t + s) ≥L∗ T (Pμ,ν(x, t),Pμ,ν(y, s)).

In this case, Pμ,ν is called an intuitionistic random norm, where

Pμ,ν(x, t) = (
μx(t), νx(t)

)
.

Definition 2.1.9 A lattice random normed space (LRN-space shortly) is a triple
(X,μ,T∧), where X is a vector space and μ is a mapping from X into D+

L such that
the following conditions hold:

(LRN1) μx(t) = 1L for all t > 0 if and only if x = 0;
(LRN2) μαx(t) = μx(

t
|α| ) for all x in X, α �= 0 and t ≥ 0;

(LRN3) μx+y(t + s) ≥L T∧(μx(t),μy(s)) for all x, y ∈ X and t, s ≥ 0.

We note that, from (LRN2), μ−x(t) = μx(t) for all x ∈ X and t ≥ 0.

Example 2.1.10 Let L = [0,1] × [0,1] and the operation ≤L be defined by:

L = {
(a1, a2) : (a1, a2) ∈ [0,1] × [0,1] a1 + a2 ≤ 1

}
,

(a1, a2) ≤L (b1, b2) ⇐⇒ a1 ≤ b1, a2 ≥ b2

for all a = (a1, a2), b = (b1, b2) ∈ L. Then (L,≤L) is a complete lattice (see [49]).
In this complete lattice, we denote its units by 0L = (0,1) and 1L = (1,0).

Let (X,‖ · ‖) be a normed linear space. Let T (a, b) = (min{a1, b1},max{a2, b2})
for all a = (a1, a2), b = (b1, b2) ∈ [0,1] × [0,1] and μ be a mapping defined by

μx(t) =
(

t

t + ‖x‖ ,
‖x‖

t + ‖x‖
)

for all t ∈R
+. Then (X,μ,T ) is a lattice random normed space.
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2.2 Random Topological Structures

In this section, we give some topological structures of random normed spaces.

Definition 2.2.1 Let (X,μ,T ) be an RN-space. We define the open ball Bx(r, t)

and the closed ball Bx[r, t] with center x ∈ X and radius 0 < r < 1 for all t > 0 as
follows:

Bx(r, t) = {
y ∈ X : μx−y(t) > 1 − r

}
,

Bx[r, t] = {
y ∈ X : μx−y(t) ≥ 1 − r

}
,

respectively.

Theorem 2.2.2 Let (X,μ,T ) be an RN-space. Every open ball Bx(r, t) is open set.

Proof Let Bx(r, t) an open ball with center x and radius r for all t > 0. Let y ∈
Bx(r, t). Then μx−y(t) > 1 − r . Since μx−y(t) > 1 − r , there exists t0 ∈ (0, t) such
that μx−y(t0) > 1 − r . Put r0 = μx,y(t0). Since r0 > 1 − r , there exists s ∈ (0,1)

such that r0 > 1 − s > 1 − r . Now, for any r0 and s such that r0 > 1 − s, there exists
r1 ∈ (0,1) such that T (r0, r1) > 1 − s. Consider the open ball By(1 − r1, t − t0).

Now, we claim that By(1−r1, t − t0) ⊂ Bx(r, t). In fact, let z ∈ By(1−r1, t − t0).
Then μy−z(t − t0) > r1 and so

μx−z(t) ≥ T
(
μx−y(t0),μy−z(t − t0)

)

≥ T (r0, r1)

≥ 1 − s

> 1 − r.

Thus, z ∈ Bx(r, t) and hence By(1 − r1, t − t0) ⊂ Bx(r, t). This completes the
proof. �

Now, different kinds of topologies can be introduced in a random normed space
[241]. The (r, t)-topology is introduced by a family of neighborhoods

{
Bx(r, t)

}
x∈X,t>0,r∈(0,1)

.

In fact, every random norm μ on X generates a topology ((r, t)-topology) on X

which has as a base the family of open sets of the form

{
Bx(r, t)

}
x∈X,t>0,r∈(0,1)

.

Remark 2.2.3 Since {Bx(
1
n
, 1

n
) : n ≥ 1} is a local base at x, the (r, t)-topology is

first countable.
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Theorem 2.2.4 Every RN-space (X,μ,T ) is a Hausdorff space.

Proof Let (X,μ,T ) be an RN-space. Let x and y be two distinct points in X and
t > 0. Then 0 < μx−y(t) < 1. Put r = μx−y(t). For each r0 ∈ (r,1), there exists r1
such that T (r1, r1) ≥ r0. Consider the open balls Bx(1 − r1,

t
2 ) and By(1 − r1,

t
2 ).

Then, clearly, Bx(1 − r1,
t
2 ) ∩ By(1 − r1,

t
2 ) = ∅. In fact, if there exists

z ∈ Bx

(
1 − r1,

t

2

)
∩ By

(
1 − r1,

t

2

)
,

then we have

r = μx−y(t)

≥ T

(
μx−z

(
t

2

)
,μy−z

(
t

2

))

≥ T (r1, r1)

≥ r0

> r,

which is a contradiction. Hence (X,μ,T ) is a Hausdorff space. This completes the
proof. �

Definition 2.2.5 Let (X,μ,T ) be an RN-space. A subset A of X is said to be R-
bounded if there exist t > 0 and r ∈ (0,1) such that μx−y(t) > 1−r for all x, y ∈ A.

Theorem 2.2.6 Every compact subset A of an RN-space (X,μ,T ) is R-bounded.

Proof Let A be a compact subset of an RN-space (X,μ,T ). Fix t > 0, 0 < r <

1 and consider an open cover {Bx(r, t) : x ∈ A}. Since A is compact, there exist
x1, x2, . . . , xn ∈ A such that

A ⊆
n⋃

i=1

Bxi
(r, t).

Let x, y ∈ A. Then x ∈ Bxi
(r, t) and y ∈ Bxj

(r, t) for some i, j ≥ 1. Thus we have
μx−xi

(t) > 1 − r and μy−xj
(t) > 1 − r . Now, let

α = min
{
μxi,xj

(t) : 1 ≤ i, j ≤ n
}
.

Then we have α > 0 and

μx−y(3t) ≥ T 2(μx−xi
(t),μxi ,xj

(t),μy−xj
(t)

)

≥ T 2(1 − r,1 − r,α)

> 1 − s.



2.2 Random Topological Structures 19

Taking t ′ = 3t , it follows that μx−y(t
′) > 1 − s for all x, y ∈ A. Hence A is R-

bounded. This completes the proof. �

Remark 2.2.7 In an RN-space (X,μ,T ), every compact set is closed and R-
bounded.

Definition 2.2.8 Let (X,μ,T ) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for any ε > 0
and λ > 0, there exists a positive integer N such that

μxn−x(ε) > 1 − λ

whenever n ≥ N .
(2) A sequence {xn} in X is called a Cauchy sequence if, for any ε > 0 and λ > 0,

there exists a positive integer N such that

μxn−xm(ε) > 1 − λ

whenever n ≥ m ≥ N .
(3) An RN-space (X,μ,T ) is said to be complete if every Cauchy sequence in X

is convergent to a point in X.

Theorem 2.2.9 [241] If (X,μ,T ) is an RN-space and {xn} is a sequence such that
xn → x, then limn→∞ μxn(t) = μx(t) almost everywhere.

Theorem 2.2.10 Let (X,μ,T ) be an RN-space such that every Cauchy sequence in
X has a convergent subsequence. Then (X,μ,T ) is complete.

Proof Let {xn} be a Cauchy sequence in X and {xin} be a subsequence of {xn} which
converges to a point x ∈ X.

Now, we prove that xn → x. Let t > 0 and ε ∈ (0,1) such that

T (1 − r,1 − r) ≥ 1 − ε.

Since {xn} is a Cauchy sequence, there exists n0 ≥ 1 such that

μxm−xn(t) > 1 − r

for all m,n ≥ n0. Since xin → x, there exists a positive integer ip such that ip > n0
and

μxip −x

(
t

2

)
> 1 − r.

Then, if n ≥ n0, we have

μxn−x(t) ≥ T

(
μxn−xip

(
t

2

)
,μxip −x

(
t

2

))



20 2 Generalized Spaces

> T (1 − r,1 − r)

≥ 1 − ε.

Therefore, xn → x and hence (X,μ,T ) is complete. This completes the proof. �

Lemma 2.2.11 Let (X,μ,T ) be an RN-space. If we define

Fx,y(t) = μx−y(t)

for all x, y ∈ X and t > 0, then F is a random (probabilistic) metric on X, which is
called the random (probabilistic) metric induced by the random norm μ.

Lemma 2.2.12 A random (probabilistic) metric F which is induced by a random
norm on a RN-space (X,μ,T ) has the following properties: for all x, y, z ∈ X and
scalar α �= 0,

(1) Fx+z,y+z(t) = Fx,y(t);
(2) Fαx,αy(t) = Fx,y(

t
|α| ).

Proof We have the following:

Fx+z,y+z(t) = μ(x+z)−(y+z)(t) = μx−y(t) = Fx,y(t)

and, also,

Fαx,αy(t) = μαx−αy(t) = μx−y

(
t

|α|
)

= Fx,y

(
t

|α|
)

.

Therefore, we have (1) and (2). This completes the proof. �

Lemma 2.2.13 If (X,μ,T ) is an RN-space, then we have

(1) The function (x, y) → x + y is continuous;
(2) The function (α, x) → αx is continuous.

Proof If xn → x and yn → y as n → ∞, then we have

μ(xn+yn)−(x+y)(t) ≥ T

(
μxn−x

(
t

2

)
,μyn−y

(
t

2

))
→ 1

as n → ∞. This proves (1).
Now, if xn → x and αn → α as n → ∞, where αn �= 0, then we have

μαnxn−αx(t) = μαn(xn−x)+x(αn−α)(t)

≥ T

(
μαn(xn−x)

(
t

2

)
μx(αn−α)

(
t

2

))
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= T

(
μxn−x

(
t

2αn

)
,μx

(
t

2(αn − α)

))
→ 1

as n → ∞. This proves (2). This completes the proof. �

Definition 2.2.14 An RN-space (X,μ,T ) is called a random Banach space when-
ever X is complete with respect to the random metric induced by random norm.

Lemma 2.2.15 Let (X,μ,T ) be an RN-space and define

Eλ,μ : X → R
+ ∪ {0}

by

Eλ,μ(x) = inf
{
t > 0 : μx(t) > 1 − λ

}

for all λ ∈ (0,1) and x ∈ X. Then we have

(1) Eλ,μ(αx) = |α|Eλ,μ(x) for all x ∈ X and α ∈R;
(2) If T satisfies (1.1.2), then, for any α ∈ (0,1), there exists β ∈ (0,1) such that

Eγ,μ(x1 + · · · + xn) ≤ Eλ,μ(x1) + · · · + Eλ,μ(xn)

for all x, y ∈ X;
(3) A sequence {xn} is convergent with respect to the random norm μ if and only if

Eλ,μ(xn − x) → 0. Also, the sequence {xn} is a Cauchy sequence with respect
to the random norm μ if and only if it is a Cauchy sequence with Eλ,μ.

Proof For (1), we have

Eλ,μ(αx) = inf
{
t > 0 : μαx(t) > 1 − λ

}

= inf

{
t > 0 : μx

(
t

|α|
)

> 1 − λ

}

= |α| inf
{
t > 0 : μx(t) > 1 − λ

}

= |α|Eλ,μ(x).

For (2), by (1.1.2), for all α ∈ (0,1), we can find λ ∈ (0,1) such that

T n−1(1 − λ, . . . ,1 − λ) ≥ 1 − α.

Thus, we have

μx1+···+xn

(
Eλ,μ(x1) + · · · + Eλ,μ(xn) + nδ

)

≥L T n−1(μx1

(
Eλ,M(x1) + δ

)
, . . . ,μxn

(
Eλ,P (xn) + δ

))
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≥ T (1 − λ, . . . ,1 − λ)

≥ 1 − α

for all δ > 0, which implies that

Eα,μ(x1 + · · · + xn) ≤ Eλ,μ(x1) + · · · + Eλ,μ(xn) + nδ.

Since δ > 0 is arbitrary, we have

Eα,μ(x1 + · · · + xn) ≤ Eλ,μ(x1) + · · · + Eλ,μ(xn).

For (3), since μ is continuous, Eλ,μ(x) is not an element of the set {t > 0 :
μx(t) > 1 − λ} for all x ∈ X with x �= 0. Hence, we have

μxn−x(η) > 1 − λ ⇐⇒ Eλ,μ(xn − x) < η

for all η > 0. This completes the proof. �

Definition 2.2.16 A function f from a RN-space (X,μ,T ) to a RN-space (Y, ν, T ′)
is said to be uniformly continuous if, for all r ∈ (0,1) and t > 0, there exist
r0 ∈ (0,1) and t0 > 0 such that

μx−y(t0) > 1 − r0 =⇒ νf (x),f (y)(t) > 1 − r.

Theorem 2.2.17 (Uniform Continuity Theorem) If f is continuous function from
a compact RN-space (X,μ,T ) to an RN-space (Y, ν, T ′), then f is uniformly con-
tinuous.

Proof Let s ∈ (0,1) and t > 0 be given. Then we can find r ∈ (0,1) such that

T ′(1 − r,1 − r) > 1 − s.

Since f : X → Y is continuous, for any x ∈ X, we can find rx ∈ (0,1) and tx > 0
such that

μx−y(tx) > 1 − rx =⇒ νf (x)−f (y)

(
t

2

)
> 1 − r.

But rx ∈ (0,1) and then we can find sx < rx such that

T (1 − sx,1 − sx) > 1 − rx.

Since X is compact and
{
Bx

(
sx,

tx

2

)
: x ∈ X

}
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is an open covering of X, there exist x1, x2, . . . , xk in X such that

X =
k⋃

i=1

Bxi

(
sxi

,
txi

2

)
.

Put s0 = min sxi
and t0 = min

txi

2 , i = 1,2, . . . , k. For any x, y ∈ X, if μx−y(t0) >

1 − s0, then μx−y(
txi

2 ) > 1 − sxi
. Since x ∈ X, there exists xi ∈ X such that

μx−xi

(
txi

2

)
> 1 − sxi

.

Hence, we have

νf (x),f (xi )

(
t

2

)
> 1 − r.

Now, note that

μy−xi
(txi

) ≥ T

(
μx−y

(
txi

2

)
,μx−xi

(
txi

2

))

≥ T (1 − sxi
,1 − sxi

)

> 1 − rxi
.

Therefore, we have

νf (y)−f (xi )

(
t

2

)
> 1 − r

and so

νf (x)−f (y)(t) ≥ T

(
νf (x)−f (xi )

(
t

2

)
, νf (y)−f (xi )

(
t

2

))

≥ T (1 − r,1 − r)

> 1 − s.

Therefore, f is uniformly continuous. This completes the proof. �

Remark 2.2.18 Let f be an uniformly continuous function from an RN-space
(X,μ,T ) to an RN-space (Y, ν, T ′). If {xn} is a Cauchy sequence in X, then {f (xn)}
is also a Cauchy sequence in Y .

Theorem 2.2.19 Every compact RN-space is separable.
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Proof Let (X,μ,T ) be a compact RN-space. Let r ∈ (0,1) and t > 0. Since X is
compact, there exist x1, x2, . . . , xn in X such that

X =
n⋃

i=1

Bxi
(r, t).

In particular, for each n ≥ 1, we can choose a finite subset An of X such that

X =
⋃

a∈An

Ba

(
rn,

1

n

)

in which rn ∈ (0,1). Let

A =
⋃

n≥1

An.

Then A is countable.
Now, we claim that X ⊂ A. Let x ∈ X. Then, for each n ≥ 1, there exists an ∈ An

such that x ∈ Ban(rn,
1
n
). Thus, {an} converges to the point x ∈ X. But, since

an ∈ A for all n ≥ 1, x ∈ A and so A is dense in X. Therefore, X is separable.
This completes the proof. �

Definition 2.2.20 Let X be a nonempty set and (Y, ν, T ′) be an RN-space. Then
a sequence {fn} of functions from X to Y is said to be converge uniformly to a
function f from X to Y if, for any r ∈ (0,1) and t > 0, there exists n0 ≥ 1 such that

νfn(x)−f (x)(t) > 1 − r

for all n ≥ n0 and x ∈ X.

Definition 2.2.21 A family F of functions from an RN-space (X,μ,T ) to a com-
plete RN-space (Y, ν, T ′) is said to be equicontinuous if, for any r ∈ (0,1) and t > 0,
there exist r0 ∈ (0,1) and t0 > 0 such that

μx−y(t0) > 1 − r0 =⇒ νf (x)−f (y)(t) > 1 − r

for all f ∈F .

Lemma 2.2.22 Let {fn} be an equicontinuous sequence of functions from an RN-
space (X,μ,T ) to a complete RN-space (Y, ν, T ′). If {fn} converges for each point
of a dense subset D of X, then {fn} converges for each point of X and the limit
function is continuous.

Proof Let s ∈ (0,1) and t > 0 be given. Then we can find r ∈ (0,1) such that

T ′2(1 − r,1 − r,1 − r) > 1 − s.
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Since F = {fn} is an equicontinuous family, for any r ∈ (0,1) and t > 0, there exist
r1 ∈ (0,1) and t1 > 1 such that, for each x, y ∈ X,

μx−y(t1) > 1 − r1 =⇒ νfn(x)−fn(y)

(
t

3

)
> 1 − r

for all fn ∈F . Since D is dense in X, there exists

y ∈ Bx(r1, t1) ∩ D

and {fn(y)} converges for the point y. Since {fn(y)} is a Cauchy sequence, for any
r ∈ (0,1) and t > 0, there exists n0 ≥ 1 such that

νfn(y)−fm(y)

(
t

3

)
> 1 − r

for all m,n ≥ n0. Now, for any x ∈ X, we have

νfn(x)−fm(x)(t)

≥ T ′2
(

νfn(x)−fn(y)

(
t

3

)
, νfn(y)−fm(y)

(
t

3

)
, νfm(x)−fm(y)

(
t

3

))

≥ T ′2(1 − r,1 − r,1 − r)

> 1 − s.

Hence, {fn(x)} is a Cauchy sequence in Y . Since Y is complete, fn(x) converges
and so let f (x) = limfn(x).

Now, we claim that f is continuous. Let so ∈ 1 − r and t0 > 0 be given. Then we
can find r0 ∈ 1 − r such that

T ′2(1 − r0,1 − r0,1 − r0) > 1 − s0.

Since F is equicontinuous, for any r0 ∈ (0,1) and t0 > 0, there exist r2 ∈ (0,1) and
t2 > 0 such that

μx−y(t2) > 1 − r2 =⇒ νfn(x)−fn(y)

(
t0

3

)
> 1 − r0

for all fn ∈ F . Since fn(x) converges to f (x), for any r0 ∈ (0,1) and t0 > 0, there
exists n1 ≥ 1 such that

νfn(x)−f (x)

(
t0

3

)
> 1 − r0.

Also, since fn(y) converges to f (y), for any r0 ∈ (0,1) and t0 > 0, there exists
n2 ≥ 1 such that

νfn(y)−f (y)

(
t0

3

)
> 1 − r0
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for all n ≥ n2. Now, for all n ≥ max{n1, n2}, we have

νf (x)−f (y)(t0)

≥ T ′2
(

νf (x)−fn(x)

(
t0

3

)
, νfn(x)−fn(y)

(
t0

3

)
, νfn(y)−f (y)

(
t0

3

))

≥ T ′2(1 − r0,1 − r0,1 − r0)

> 1 − s0.

Therefore, f is continuous. This completes the proof. �

Theorem 2.2.23 (Ascoli–Arzela Theorem) Let (X,μ,T ) be a compact RN-space
and (Y, ν, T ′) be a complete RN-space. Let F be an equicontinuous family of func-
tions from X to Y . If {fn} is a sequence in F such that

{
fn(x) : n ∈N

}

is a compact subset of Y for any x ∈ X, then there exists a continuous function f

from X to Y and a subsequence {gn} of {fn} such that {gn} converges uniformly to
f on X.

Proof Since (X,μ,T ) be a compact RN-space, by Theorem 2.2.19, X is separable.
Let

D = {xi : i = 1,2, . . .}
be a countable dense subset of X. By hypothesis, for each i ≥ 1,

{
fn(xi) : n ≥ 1

}

is compact subset of Y . Since every L-fuzzy metric space is first countable space,
every compact subset of Y is sequentially compact. Thus, by standard argument,
we have a subsequence {gn} of {fn} such that {gn(xi)} converges for each i ≥ 1.
Thus, by Lemma 2.2.22, there exists a continuous function f from X to Y such that
{gn(x)} converges to f (x) for all x ∈ X.

Now, we claim that {gn} converges uniformly to a functions f on X. Let s ∈
(0,1) and t > 0 be given. Then we can find r ∈ (0,1) such that

T ′2(1 − r,1 − r,1 − r) > 1 − s.

Since F is equicontinuous, there exist r1 ∈ (0,1) and t1 > 0 such that

μx−y(t1) > 1 − r1 =⇒ νgn(x),gn(y)

(
t

3

)
> 1 − r
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for all n ≥ 1. Since X is compact, by Theorem 2.2.17, f is uniformly continuous.
Hence, for any r ∈ (0,1) and t > 0, there exist r2 ∈ (0,1) and t2 > 0 such that

μx−y(t2) > 1 − r2 =⇒ νf (x)−f (y)

(
t

3

)
> 1 − r

for all x, y ∈ X. Let r0 = min{r1, r2} and t0 = min{t1, t2}. Since X is compact and
D is dense in X, we have

X =
k⋃

i=1

Bxi
(r0, t0)

for some k ≥ 1. Thus, for any x ∈ X, there exists i, i ≤ i ≤ k, such that

μx−xi
(t0) > 1 − r0.

But, since r0 = min{r1, r2} and t0 = min{t1, t2}, we have, by the equicontinuity of F ,

νgn(x)−gn(xi )

(
t

3

)
> 1 − r

and we also have, by the uniform continuity of f ,

νf (x)−f (xi )

(
t

3

)
> 1 − r.

Since {gn(xj )} converges to f (xj ), for any r ∈ (0,1) and t > 0, there exists n0 ≥ 1
such that

νgn(xj )−f (xj )

(
t

3

)
> 1 − r

for all n ≥ n0. Now, for all x ∈ X, we have

νgn(x)−f (x)(t)

≥ T ′2
(

νgn(x)−gn(xi )

(
t

3

)
, νgn(xi )−f (xi )

(
t

3

)
, νf (xi )−f (x)

(
t

3

))

≥ T ′2(1 − r,1 − r,1 − r)

> 1 − s.

Therefore, {gn} converges uniformly to a function f on X. This completes the
proof. �

We recall that a subset A is said R-bounded in (X,μ,T ), if there exist t0 > 0 and
r0 ∈ (0,1) such that μx(t0) > 1 − r0 for all x ∈ A.

Lemma 2.2.24 A subset A of R is R-bounded in (R,μ,T ) if and only if it is
bounded in R.
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Proof Let A be a subset in R which is R-bounded in (R,μ,T ). Then there exist
t0 > 0 and r0 ∈ (0,1) such that μx(t0) > 1 − r0 for all x ∈ A. Thus, we have

t0 ≥ Er0,μ(x) = |x|Er0,μ(1).

Now, Er0,μ(1) �= 0. If we put k = t0
Er0,μ(1)

, then we have |x| ≤ k for all x ∈ A,

that is, A is bounded in R.
The converse is easy to see. This completes the proof. �

Lemma 2.2.25 A sequence {βn} is convergent in an RN-space (R,μ,T ) if and only
if it is convergent in (R, | · |).

Proof Let βn → β in R. Then, by Lemma 2.2.15(1), we have

Eλ,μ(βn − β) = |βn − β|Eλ,μ(1) → 0.

Thus, by Lemma 2.2.15 (3), βn
μ→ β .

Conversely, let βn
μ→ β . Then, by Lemma 2.2.15,

lim
n→+∞|βn − β|Eλ,μ(1) = lim

n→+∞Eλ,μ(βn − β) = 0.

Now, Eλ,μ(1) �= 0 and so βn → β in R. This completes the proof. �

Corollary 2.2.26 If a real sequence {βn} is R-bounded, then it has at least one limit
point.

Lemma 2.2.27 A subset A of R is R-bounded in (R,μ,T ) if and only if it is
bounded in R.

Proof Let the subset A is R-bounded in (R,μ,T ). Then there exist t0 > 0 and
r0 ∈ (0,1) such that

μx(t0) > 1 − r0

for all x ∈ A and so

t0 ≥ Er0,μ(x) = |x|Er0,μ(1).

Now, Er0,μ(1) �= 0. If we put k = t0
Er0,μ(1)

, then we have |x| ≤ k for all x ∈ A,

i.e., A is bounded in R.
The converse is easy. This completes the proof. �

Definition 2.2.28 A triple (Rn,Φ,T ) is called an random Euclidean normed space
if T is a continuous t-norm and Φx(t) is a random Euclidean norm defined by

Φx(t) =
n∏

j=1

μxj
(t),
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where
∏n

j=1 aj = T ′n−1
(a1, . . . , an), T ′ 	 T , x = (x1, . . . , xn), t > 0 and μ is a

random norm.

For example, let Φx(t) = exp(
‖x‖
t

)−1, μxj
(t) = exp(

|xj |
t

)−1 and T = min. Then
we have Φx(t) = minj μxj

(t) or, equivalently, ‖x‖ = maxj |xj |.

Lemma 2.2.29 Suppose that the hypotheses of Definition 2.2.28 are satisfied. Then
(Rn,Φ,T ) is an RN-space.

Proof The properties of (RN1) and (RN2) follow immediately from the definition.
For the triangle inequality (RN3) suppose that x, y ∈ X and t, s > 0. Then we have

T
(
Φx(t),Φy(s)

) = T

(
n∏

j=1

Pxj
(t),

n∏

j=1

Pyj
(s)

)

= T
(
T ′n−1(Px1(t), . . . ,Pxn(t)

)
, T ′n−1(Py1(t), . . . ,Pyn(t)

))

≤ T ′n−1(
T

(
Px1(t),Py1(t)

)
, . . . , T

(
Pxn(t),Pyn(t)

))

≤ T ′n−1(Px1+y1(t + s), . . . ,Pxn+yn(t + s)
)

=
n∏

j=1

Pxj +yj
(t + s)

= Φx+y(t + s).

This completes the proof. �

Lemma 2.2.30 Suppose that (Rn,Φ,T ) is a random Euclidean normed space and
A is an infinite and R-bounded subset of Rn. Then A has at least one limit point.

Proof Let {x(m)} be an infinite sequence in A. Since A is R-bounded, so is
{x(m)}m≥1. Therefore, there exist t0 > 0 and r0 ∈ (0,1) such that

1 − r0 < Φx(t0)

for all x ∈ A, which implies that Er0,Φ(x) ≤ t0. However, we have

Er0,Φ(x) = inf
{
t > 0 : 1 − r0 < Φx(t)

}

= inf

{

t > 0 : 1 − r0 <

n∏

j=1

μxj
(t)

}

≥ inf
{
t > 0 : 1 − r0 < μxj

(t)
}

= Er0,μ(xj )
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for each 1 ≤ j ≤ n. Therefore, |xj | ≤ k in which k = t0
Er0,μ(1)

, that is, the real se-

quences {x(m)
j } for each j ∈ {1, . . . , n} are bounded. Hence, there exists a subse-

quence {x(mk1 )

1 } which converges to x1 in A with respect to the random norm μ.

The corresponding sequence {x(mk1 )

2 } is bounded and so there exists a subsequence

{x(mk2 )

2 } of {x(mk1 )

2 } which converges to x2 with respect to the random norm μ.
Continuing like this, we find a subsequence {x(mk)} converging to x = (x1, . . . ,

xn) ∈ R
n. This completes the proof. �

Lemma 2.2.31 Let (Rn,Φ,T ) be a random Euclidean normed space. Let {Q1,

Q2, . . .} be a countable collection of nonempty subsets in R
n such that Qk+1 ⊆ Qk ,

each Qk is closed and Q1 is R-bounded. Then
⋂∞

k=1 Qk is nonempty and closed.

Proof Using the above lemma, the proof proceeds as in the classical case (see The-
orem 3.25 in [15]). �

We call an n-dimensional ball Bx(r, t) a rational ball if x ∈ Q
n, r0 ∈ (0,1) and

t ∈Q
+.

Theorem 2.2.32 Let (Rn,Φ,T ) be a random Euclidean normed space in which T

satisfies (1.1.2). Let G = {A1,A2, . . .} be a countable collection of n-dimensional
rational open balls. If x ∈R

n and S is an open subset of Rn containing x, then there
exists Ak ∈ G such that x ∈ Ak ⊆ S for some k ≥ 1.

Proof Since x ∈ S and S is open, there exist r ∈ (0,1) and t > 0 such that
Bx(r, t) ⊆ S. By (1.1.2), we can find η ∈∈ (0,1) such that 1 − r < T (1 − η,1 − η).
Let {ξk}nk=1 be a finite sequence such that 1 − η <

∏n
k=1(1 − ξk) and x =

(x1, . . . , xn). Then we can find y = (y1, . . . , yn) ∈ Q
n such that (1 − ξk) <

μxk−yk
( t

2 ). Therefore, we have

1 − η <

n∏

k=1

(1 − ξk) ≤ Φx−y

(
t

2

)
=

n∏

k=1

μxk−yk

(
t

2

)

and so x ∈ By(η, t
2 ).

Now, we prove that By(η, t
2 ) ⊆ Bx(r, t). Let z ∈ By(η, t

2 ). Then Φy−z(
t
2 ) > 1−η

and hence

1 − r < T (1 − η,1 − η) ≤ T

(
Φx−y

(
t

2

)
,Φy−z

(
t

2

))
≤ Φx−z(t).

On the other hand, there exists t0 ∈ Q such that t0 < t
2 and x ∈ By(η, t0) ⊆

By(η, t
2 ) ⊆ Bx(r, t) ⊆ S. Now, By(η, t0) ∈ G. This completes the proof. �

Corollary 2.2.33 In a random Euclidean normed space (Rn,Φ,T ) in which T sat-
isfies (1.1.2), every closed and R-bounded set is compact.
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Proof The proof is similar to the proof of Theorem 3.29 in [15]. �

Corollary 2.2.34 Let (Rn,Φ,T ) be a random Euclidean normed space in which T

satisfies (1.1.2) and S ⊆ R
n. Then S is compact set if and only if it is R-bounded

and closed.

Corollary 2.2.35 The random Euclidean normed space (Rn,Φ,T ) is complete.

Proof Let {xm} be a Cauchy sequence in the random Euclidean normed space
(Rn,Φ,T ). Since

Eλ,Φ(xn − xm) = inf
{
t > 0 : Φxn−xm(t) > 1 − λ

}

= inf

{

t > 0 :
n∏

j=1

Pxm,j −xn,j
(t) > 1 − λ

}

≥ inf
{
t > 0 : Pxm,j −xn,j

(t) > 1 − λ
}

= Eλ,P (xm,j − xn,j ) = |xm,j − xn,j |Eλ,P (1),

the sequence {xm,j } for each j = 1, . . . , n is a Cauchy sequence in R and so it
convergent to xj ∈R. Then, by Lemma 2.2.15, the sequence {xm,j } is convergent in
RN-space (R,μ,T ).

Now, we prove that {xm} convergent to x = (x1, . . . , xn). In fact, we have

lim
m

Φxm−x(t) = lim
m

n∏

j=1

Pxm,j −xj
(t) = T ′n−1

(1, . . . ,1) = 1.

This completes the proof. �

2.3 Random Functional Analysis

In this section, we discuss some important results dealing with topological isomor-
phisms and also give the proofs of Open Mapping Theorem, Closed Graph Theo-
rem and some other fundamental theorems in the framework of Random Functional
Analysis.

Theorem 2.3.1 Let {x1, . . . , xn} be a linearly independent set of vectors in vector
space X and (X,μ,T ) be an RN-space. Then there exist c �= 0 and an RN-space
(R,μ′, T ) such that, for every choice of the n real scalars α1, . . . , αn,

μα1x1+···+αnxn(t) ≤ μ′
c
∑n

j=1 |αj |(t). (2.3.1)
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Proof Put s = |α1| + · · · + |αn|. If s = 0, all αj ’s must be zero and so (2.3.1) holds
for any c. Let s > 0. Then (2.3.1) is equivalent to the inequality that we obtain from
(2.3.1) by dividing by s and putting βj = αj

s
, that is,

μβ1x1+···+βnxn

(
t ′
) ≤ μ′

c

(
t ′
)
, (2.3.2)

where t ′ = t
s

and
∑n

j=1 |βj | = 1. Hence, it suffices to prove the existence of c �= 0
and the random norm μ′ such that (2.3.2) holds. Suppose that this is not true. Then
there exists a sequence {ym} of vectors

ym = β1,mx1 + · · · + βn,mxn,

n∑

j=1

|βj,m| = 1,

such that

μym(t) → 1

as m → ∞ for any t > 0. Since
∑n

j=1 |βj,m| = 1, we have |βj,m| ≤ 1 and so, by the
Lemma 2.2.24, the sequence of {βj,m} is R-bounded. According to Corollary 2.2.26,
{β1,m} has a convergent subsequence. Let β1 denote the limit of the subsequence and
let {y1,m} denote the corresponding subsequence of {ym}. By the same argument,
{y1,m} has a subsequence {y2,m} for which the corresponding of real scalars β

(m)
2

convergence. Let β2 denote the limit. Continuing this process, after n steps, we
obtain a subsequence {yn,m}m≥1 of {ym} such that

yn,m =
n∑

j=1

γj,mxj ,

where
∑n

j=1 |γj,m| = 1, and γj,m → βj as m → ∞. By the Lemma 2.2.15 (2), for
any α ∈ (0,1), there exists λ ∈ (0,1) such that

Eα,μ

(

yn,m −
n∑

j=1

βjxj

)

= Eα,μ

(
n∑

j=1

(γj,m − βj )xj

)

≤
n∑

j=1

|γj,m − βj |Eλ,μ(xj ) → 0

as m → ∞. By Lemma 2.2.15 (3), we conclude

lim
m→∞yn,m =

n∑

j=1

βjxj ,

where
∑n

j=1 |βj | = 1, and so all βj cannot be zero. Put y = ∑n
j=1 βjxj . Since

{x1, . . . , xn} is a linearly independent set, we have y �= 0. Since μym(t) → 1, by the
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assumption, we have μyn,m(t) → 1. Hence, we have

μy(t) = μ(y−yn,m)+yn,m(t)

≥ T (μy−yn,m t/2),μyn,m(t/2)) → 1

and so y = 0, which is a contradiction. This completes the proof. �

Definition 2.3.2 Let (X,μ,T ) and (X, ν,T ′) be two RN-spaces. Then two random

norms μ and ν are said to be equivalent whenever xn
μ→ x in (X,μ,T ) If and only

if xn
ν→ x in (X, ν,T ′).

Theorem 2.3.3 In a finite dimensional vector space X, every two random norms μ

and ν are equivalent.

Proof Let dimX = n and {v1, . . . , vn} be a basis for X. Then every x ∈ X has

a unique representation x = ∑n
j=1 αjvj . Let xm

μ→ x in (X,μ,T ), but, for each
m ≥ 1, suppose that xm has a unique representation, that is,

xm = α1,mv1 + · · · + αn,mvn.

By Theorem 2.3.1, there exist c �= 0 and the random norm μ′ such that (2.3.1) holds.
thus we have

μxm−x(t) ≤ μ′
c
∑n

j=1 |αj,m−αj |(t) ≤ μ′
c|αj,m−αj |(t).

Now, if m → ∞, then we have

μxm−x(t) → 1

for all t > 0 and hence |αj,m − αj | → 0 in R.
On the other hand, by the Lemma 2.2.15 (2), for any α ∈ (0,1), there exists

λ ∈ (0,1) such that

Eα,ν(xm − x) ≤
n∑

j=1

|αj,m − αj |Eλ,ν(vj ).

Since |αj,m − αj | → 0, we have xm
ν→ x in (X, ν,T ′). Therefore, with the same

argument, xm → x in (X, ν,T ′) imply xm → x in (X,μ,T ). This completes the
proof. �

Definition 2.3.4 A linear operator Λ : (X,μ,T ) → (Y, ν, T ′) is said to be random
bounded if there exists a constant h ∈R− {0} such that, for all x ∈ X and t > 0,

νΛx(t) ≥ μhx(t). (2.3.3)
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Note that, by Lemma 2.2.15 and the last definition, we have

Eλ,ν(Λx) = inf
{
t > 0 : νΛx(t) > 1 − λ

}

≤ inf
{
t > 0 : μx

(
t/|h|) > 1 − λ

}

= |h| inf
{
t > 0 : μx(t) > 1 − λ

}

= |h|Eλ,μ(x).

Theorem 2.3.5 Every linear operator Λ : (X,μ,T ) → (Y, ν, T ′) is random bound-
ed if and only if it is continuous.

Proof By (2.3.3), every random bounded linear operator is continuous.
Now, we prove the converse. Let the linear operator Λ be continuous, but is not

random bounded. Then, for each n ≥ 1, there exists xn ∈ X such that Eλ,ν(Λxn) ≥
nEλ,μ(pn).

If we let

yn = xn

nEλ,μ(xn)
,

then it is easy to see yn → 0, but {Λyn} do not tend to 0. This completes the proof. �

Definition 2.3.6 A linear operator Λ : (X,μ,T ) → (Y, ν, T ′) is an random topo-
logical isomorphism if Λ is one-to-one, onto and both Λ, Λ−1 are continuous. The
RN-spaces (X,μ,T ) and (Y, ν, T ′) for which such a Λ exists are said to be random
topologically isomorphic.

Lemma 2.3.7 A linear operator Λ : (X,μ,T ) → (Y, ν, T ′) is random topological
isomorphism if Λ is onto and there exist constants a, b �= 0 such that

μax(t) ≤ νΛx(t) ≤ μbx(t).

Proof By the hypothesis, Λ is random bounded and, by last theorem, is continuous.
Since Λx = 0 implies that

1 = νΛx(t) ≤ μx

(
t

|b|
)

and so x = 0, it follows that Λ is one-to-one. Thus Λ−1 exists and, since

νΛx(t) ≤ μbx(t)

is equivalent to

νy(t) ≤ μbΛ−1y(t) = μΛ−1y

(
t

|b|
)
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or

ν 1
b
y
(t) ≤ μΛ−1y(t),

where y = Λx, we see that Λ−1 is random bounded and, by last theorem, is con-
tinuous. Therefore, Λ is an random topological isomorphism. This completes the
proof. �

Corollary 2.3.8 Ever random topologically isomorphism preserves completeness.

Theorem 2.3.9 Every linear operator Λ : (X,μ,T ) → (Y, ν, T ′), where dimX <

∞, but other is not necessarily finite dimensional, is continuous.

Proof If we define

ηx(t) = T ′(μx(t), νΛx(t)
)
, (2.3.4)

where T ′ 	 T . Then (X,η,T ) is an RN-space since (RN1) and (RN2) are immedi-
ate from the definition and, for the triangle inequality (RN3),

T
(
ηx(t), ηz(s)

) = T
[
T ′(μx(t), νΛx(t)

)
, T ′(μz(s), νΛz(s)

)]

≤ T ′[T
(
μx(t),μz(s)

)
T

(
νΛx(t), νΛz(s)

)]

≤ T ′(μx+z(t + s), νΛ(x+z)(t + s)
)

= ηx+z(t + s).

Now, let xn
μ→ x. Then, by Theorem 2.3.3, xn

η→ x, but, by (2.3.3), since

νΛx(t) ≥ ηx(t),

we have Λxn
ν→ Λx. Hence, Λ is continuous. This completes the proof. �

Corollary 2.3.10 Every linear isomorphism between finite dimensional RN-spaces
is a topological isomorphism.

Corollary 2.3.11 Every finite dimensional RN-space (X,μ,T ) is complete.

Proof By Corollary 2.3.10, (X,μ,T ) and (Rn,Φ,T ) are random topologically iso-
morph. Since (Rn,Φ,T ) is complete and every random topological isomorphism
preserves completeness, (X,μ,T ) is complete. �

Definition 2.3.12 Let (V ,μ,T ) be an RN-space, W be a linear manifold in V and
Q : V → V/W be the natural mapping with Qx = x + W . For any t > 0, we define

μ̄(x + W, t) = sup
{
μx+y(t) : y ∈ W

}
.
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Theorem 2.3.13 Let W be a closed subspace of an RN-space (V ,μ,T ). If x ∈ V

and ε > 0, then there exists x′ ∈ V such that

x′ + W = x + W, Eλ,μ

(
x′) < E ¯λ,μ(x + W) + ε.

Proof By the properties of sup, there always exists y ∈ W such that

Eλ,P (x + y) < E ¯λ,μ(x + W) + ε.

Now, it is enough to put x′ = x + y. �

Theorem 2.3.14 Let W be a closed subspace of an RN-space (V ,μ,T ) and μ̄ be
given in the above definition. Then we have

(1) μ̄ is an RN-space on V/W ;
(2) μ̄Qx(t) ≥ μx(t);
(3) If (V ,μ,T ) is an random Banach space, then so is (V/W, μ̄, T ).

Proof (1) It is clear that μ̄x+W(t) > 0. Let μ̄x+W(t) = 1. By the definition, there
exists a sequence {xn} in W such that μx+xn(t) → 1. Thus, x + xn → 0 or, equiva-
lently, xn → (−x) and since W is closed, x ∈ W and x + W = W , the zero element
of V/W . Now, we have

μ̄(x+W)+(y+W)(t) = μ̄(x+y)+W(t)

≥ μ(x+m)+(y+n)(t)

≥ T
(
μx+m(t1),μy+n(t2)

)

for all m,n ∈ W , x, y ∈ V and t1 + t2 = t . Now, if we take the sup, then we have

μ̄(x+W)+(y+W)(t) ≥ T
(
μ̄x+W(t1), μ̄y+W(t2)

)
.

Therefore, μ̄ is random norm on V/W .
(2) By Definition 2.3.12, we have

μ̄Qx(t) = μ̄x+W(t) = sup
{
μx+y(t) : y ∈ W

} ≥ μx(t).

Note that, by Lemma 2.2.15,

Eλ,μ̄(Qx) = inf
{
t > 0 : μ̄Qx(t) > 1 − λ

}

≤ inf
{
t > 0 : μx(t) > 1 − λ

}

= Eλ,μ(x). (2.3.5)

(3) Let {xn + W } be a Cauchy sequence in V/W . Then there exists n0 ∈ N such
that, for each n ≥ n0,

Eλ,μ̄

(
(xn + W) − (xn+1 + W)

) ≤ 2−n.
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Let y1 = 0 and choose y2 ∈ W such that

Eλ,μ

(
x1 − (x2 − y2), t

) ≤ Eλ,μ̄

(
(x1 − x2) + W

) + 1

2
.

However, E ¯λ,μ((x1 − x2) + W) ≤ 1
2 and so Eλ,μ(x1 − (x2 − y2)) ≤ ( 1

2 )2.
Now, suppose that yn−1 has been chosen. Then choose yn ∈ W such that

Eλ,μ

(
(xn−1 + yn−1) − (xn + yn)

) ≤ Eλ,μ̄

(
(xn−1 − xn) + W

) + 2−n+1.

Hence, we have

Eλ,μ

(
(xn−1 + yn−1) − (xn + yn)

) ≤ 2−n+2.

However, by Lemma 2.2.15, for each positive integer m > n and λ ∈ (0,1), there
exists γ ∈ (0,1) such that

Eλ,μ

(
(xm + ym) − (xn + yn)

) ≤ Eγ,μ

(
(xn+1 + yn+1) − (xn + yn)

) + · · ·
+ Eγ,μ

(
(xm + ym) − (xm−1 + ym−1)

)

≤
m∑

i=n

2−i .

By Lemma 2.2.15, {xn + yn} is a Cauchy sequence in V . Since V is complete, there
exists x0 in V such that xn + yn → x0 in V .

On the other hand, we have

xn + W = Q(xn + yn) → Q(x0) = x0 + W.

Therefore, every Cauchy sequence {xn + W } is convergent in V/W and so V/W

is complete. Thus (V/W, μ̄, T ) is a random Banach space. This completes the
proof. �

Theorem 2.3.15 Let W be a closed subspace of an RN-space (V ,μ,T ). If two of
the spaces V , W and V/W are complete, then so is the third one.

Proof If V is a random Banach space, then so are V/W and W . Hence, the fact that
needs to be checked is that V is complete whenever both W and V/W are complete.
Suppose that W , V/W are random Banach spaces and {xn} is a Cauchy sequence
in V . Since

Eλ,μ̄

(
(xn − xm) + W

) ≤ Eλ,μ(xn − xm)

for each m,n ≥ 1, the sequence {xn + W } is a Cauchy sequence in V/W and so
converges to y + W for some y ∈ W . Thus, there exists n0 ≥ 1 such that, for each
n ≥ n0,

Eλ,μ̄

(
(xn − y) + W

)
< 2−n.
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Now, by the last theorem, there exist a sequence {yn} in V such that

yn + W = (xn − y) + W, Eλ,μ(yn) < Eλ,μ̄

(
(xn − y) + W

) + 2−n.

Thus, we have

lim
n→∞Eλ,μ(yn) ≤ 0

and so, by Lemma 2.2.15, μyn(t) → 1 for any t > 0, that is, limn→∞ yn = 0. There-
fore, {xn − yn − y} is a Cauchy sequence in W and so it is convergent to a point
z ∈ W . This implies that {xn} converges to z + y and hence V is complete. This
completes the proof. �

Theorem 2.3.16 (Open Mapping Theorem) If T is a random bounded linear op-
erator from a RN-space (V ,μ,T ) onto an RN-space (V ′, ν, T ), then T is an open
mapping.

Proof The theorem will be proved by the following steps:
Step 1: Let E be a neighborhood of the 0 in V . We show that 0 ∈ (T (E))o. Let

W be a balanced neighborhood of 0 such that W + W ⊂ E. Since T (V ) = V ′ and
W is absorbing, it follows that V ′ = ∩nT (nW) and so there exists n0 ≥ 1 such that
T (n0W) has a nonempty interior. Therefore, we have

0 ∈ (
T (W)

)o − (
T (W)

)o
.

On the other hand, we have

(
T (W)

)o − (
T (W)

)o ⊂ T (W) − T (W) = T (W) + T (W)

⊂ T (E).

Thus, the set T (E) includes the neighborhood (T (W))o − (T (W))o of 0.
Step 2: We show 0 ∈ (T (E))o. Since 0 ∈ E and E is an open set, there exist

0 < α < 1 and t0 ∈ (0,∞) such that B0(α, t0) ⊂ E. However, 0 < α < 1 and so a
sequence {εn} can be found such that

T m−n(1 − εn+1, . . . ,1 − εm) → 1

and

1 − α < lim
n

T n−1(1 − ε1,1 − εn),

in which m > n.
On the other hand, 0 ∈ T (B0(εn, t ′n)), where t ′n = 1

2n t0, and so, by Step 1, there
exist 0 < σn < 1 and tn > 0 such that

B0(σn, tn) ⊂ T
(
B0

(
εn, t ′n

))
.
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Since the set {B0(r,1/n)} is a countable local base at zero and t ′n → 0 as n → ∞,
tn and σn can be chosen such that tn → 0 and σn → 0 as n → ∞.

Now, we show that

B0(σ1, t1) ⊂ (
T (E)

)o
.

Suppose that y0 ∈ B0(, σ1, t1). Then y0 ∈ T (B0(ε1, t
′
1)) and so for any 0 < σ2

and t2 > 0, the ball By0(σ2, t2) intersects T (B0(ε1, t
′
1)). Therefore, there exists

x1 ∈ B0(ε1, t
′
1) such that T x1 ∈ By0(σ2, t2), that is,

νy0−T x1(t2) > 1 − σ2

or, equivalently,

y0 − T x1 ∈ B0(σ2, t2) ⊂ T
(
B0

(
ε1, t

′
1

))
.

By the similar argument, there exist x2 ∈ B0(ε2, t
′
2) such that

νy0−(T x1+T x2)(t3) = ν(y0−T x1)−T x2(t3) > 1 − σ3.

If this process is continued, it leads to a sequence {xn} such that

xn ∈ B0
(
εn, t

′
n

)
, ν

y0−∑n−1
j=1 T xj

(tn) > 1 − σn.

Now, if n,m ≥ 1 and m > n, then we have

μ∑n
j=1 xj −∑m

j=n+1 xj
(t) = μ∑m

j=n+1 xj
(t)

≥ T m−n
(
μxn+1(tn+1),μxm(tm)

)
,

where tn+1 + tn+2 + · · · + tm = t . Put t ′0 = min{tn+1, tn+2, . . . , tm}. Since t ′n → 0,
there exists n0 ≥ 1 such that 0 < t ′n ≤ t ′0 for all n > n0. Therefore, for all m > n, we
have

T m−n
(
μxn+1

(
t ′0

)
,μxm

(
t ′0

)) ≥ T m−n
(
μxn+1

(
t ′n+1

)
,μxm

(
t ′m

))

≥ T m−n(1 − εn+1,1 − εm)

and so

lim
n→∞μ∑m

j=n+1 xj
(t) ≥ lim

n→∞T m−n(1 − εn+1,1 − εm) = 1,

that is,

μ∑m
j=n+1 xj

(t) → 1

for all t > 0. Thus, the sequence {∑n
j=1 xj } is a Cauchy sequence and so the series

{∑∞
j=1 xj } converges to a point x0 ∈ V since V is a complete space. For any fixed
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t > 0, there exists n0 ≥ 1 such that t > tn for all n > n0 since tn → 0. Thus, we have

ν
y0−T (

∑n−1
j=1 xj )

(t) ≥ ν
y0−T (

∑n−1
j=1 xj )

(tn)

≥ 1 − σn

and so

ν
y0−T (

∑n−1
j=1 xj )

(t) → 1.

Therefore, we have

y0 = lim
n→∞T

(
n−1∑

j=1

xj

)

= T

(

lim
n→∞

n−1∑

j=1

xj

)

= T x0.

But, we have

μx0(t0) = lim
n→∞μ∑n

j=1 xj
(t0)

≥ T n
(

lim
n→∞

(
μx1

(
t ′1

)
,μxn

(
t ′n

)))

≥ lim
n→∞T n−1(1 − ε1, . . . ,1 − εn)

> 1 − α.

Therefore, x0 ∈ B0(α, t0).
Step 3: Let G be an open subset of V and x ∈ G. Then we have

T (G) = T x + T (−x + G) ⊃ T x + (
T (−x + G)

)o
.

Hence, T (G) is open since it includes a neighborhood of each of its point. This
completes the proof. �

Corollary 2.3.17 Every one-to-one random bounded linear operator from a ran-
dom Banach space onto a random Banach space has a random bounded converse.

Theorem 2.3.18 (Closed Graph Theorem) Let T be a linear operator from a ran-
dom Banach space (V ,μ,T ) into a random Banach space (V ′, ν, T ). Suppose that,
for every sequence {xn} in V such that xn → x and T xn → y for some elements
x ∈ V and y ∈ V ′, it follows that T x = y. Then T is random bounded.

Proof For any t > 0, x ∈ X and y ∈ V ′, define

Φ(x,y)(t) = T ′(μx(t), νy(t)
)
,

where T ′ 	 T .
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First, we show that (V × V ′,Φ,T ) is a complete RN-space. The properties of
(RN1) and (RN2) are immediate from the definition. For the triangle inequality
(RN3), suppose that x, z ∈ V , y,u ∈ V ′ and t, s > 0. Then we have

T
(
Φ(x,y)(t),Φ(z,u)(s)

) = T
[
T ′(μx(t), νy(t)

)
, T ′(μz(s), νu(s)

)]

≤ T ′[T
(
μx(t),μz(s)

)
, T

(
νy(t), νu(s)

)]

≤ T ′(μx+z(t + s), νy+u(t + s)
)

= Φ(x+z,y+u)(t + s).

Now, if {(xn, yn)} is a Cauchy sequence in V ×V ′, then, for any ε > 0 and t > 0,
there exists n0 ≥ 1 such that

Φ(xn,yn)−(xm,ym)(t) > 1 − ε

for all m,n > n0. Thus, for all m,n > n0, we have

T ′(μxn−xm(t), νyn−ym(t)
) = Φ(xn−xm,yn−ym)(t)

= Φ(xn,yn)−(xm,ym)(t)

> 1 − ε.

Therefore, {xn} and {yn} are Cauchy sequences in V and V ′, respectively, and there
exist x ∈ V and y ∈ V ′ such that xn → x and yn → y and so (xn, yn) → (x, y).
Hence, (V × V ′,Φ,T ) is a complete RN-space. The remainder of the proof is the
same as the classical case. This completes the proof. �

2.4 Non-Archimedean Random Normed Spaces

By a non-Archimedean field we mean a field K equipped with a function (valuation)
| · | from K into [0,∞) such that

(1) |r| = 0 if and only if r = 0;
(2) |rs| = |r||s|;
(3) |r + s| ≤ max{|r|, |s|} for all r, s ∈K.

Clearly, |1| = |−1| = 1 and |n| ≤ 1 for all n ≥ 1. By the trivial valuation, we
mean the mapping | · | taking everything but 0 into 1 and |0| = 0.

Let X be a vector space over a field K with a non-Archimedean nontrivial valu-
ation | · |, that is, there exists a0 ∈ K such that |a0| is not in {0,1}.

The most important examples of non-Archimedean spaces are p-adic numbers.
In 1897, Hensel [106] discovered the p-adic numbers as a number theoretical ana-
logue of power series in complex analysis. Fix a prime number p. For any nonzero
rational number x, there exists a unique integer nx ∈ Z such that x = a

b
pnx , where a

and b are integers not divisible by p. Then |x|p := p−nx defines a non-Archimedean
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norm on Q. The completion of Q with respect to the metric d(x, y) = |x − y|p is
denoted by Qp , which is called the p-adic number field.

A function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if it satisfies the
following conditions:

(NAN1) ‖x‖ = 0 if and only if x = 0;
(NAN2) for any r ∈K, x ∈ X, ‖rx‖ = |r|‖x‖;
(NAN3) the strong triangle inequality (ultrametric), namely,

‖x + y‖ ≤ max
{‖x‖,‖y‖}

for all x, y ∈ X.

Then (X,‖ · ‖) is called a non-Archimedean normed space.
Due to the fact that

‖xn − xm‖ ≤ max
{‖xj+1 − xj‖ : m ≤ j ≤ n − 1

}

for all n,m ≥ 1 with n > m, a sequence {xn} is a Cauchy sequence in X if and only
if {xn+1 − xn} converges to zero in a non-Archimedean normed space.

By a complete non-Archimedean normed space, we mean one in which every
Cauchy sequence is convergent.

Definition 2.4.1 A non-Archimedean random normed space (briefly, non-Archime-
dean RN-space) is a triple (X,μ,T ), where X is a linear space over a non-
Archimedean field K, T is a continuous t-norm, and μ is a mapping from X into
D+ such that the following conditions hold:

(NA-RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;
(NA-RN2) μαx(t) = μx(

t
|α| ) for all x ∈ X, t > 0 and α �= 0;

(NA-RN3) μx+y(max{t, s}) ≥ T (μx(t),μy(s)) for all x, y, z ∈ X and t, s ≥ 0.

It is easy to see that, if (NA-RN3) holds, then so is

(RN3) μx+y(t + s) ≥ T (μx(t),μy(s)).

Example 2.4.2 As a classical example, if (X,‖ · ‖) is a non-Archimedean normed
linear space, then the triple (X,μ,TM), where

μx(t) =
{

0, if t ≤ ‖x‖,
1, if t > ‖x‖,

is a non-Archimedean RN-space.

Example 2.4.3 Let (X,‖ · ‖) be a non-Archimedean normed linear space. Define

μx(t) = t

t + ‖x‖
for all x ∈ X and t > 0. Then (X,μ,TM) is a non-Archimedean RN-space.
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Definition 2.4.4 Let (X,μ,T ) be a non-Archimedean RN-space. Let {xn} be a se-
quence in X.

(1) The sequence {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞μxn−x(t) = 1

for all t > 0. In this case, the point x is called the limit of the sequence {xn}.
(2) The sequence {xn} in X is called a Cauchy sequence if, for any ε > 0 and

t > 0, there exists n0 ≥ 1 such that, for all n ≥ n0 and p > 0,

μxn+p−xn(t) > 1 − ε.

(3) If each Cauchy sequence in X is convergent, then the random normed space
is said to be complete and the non-Archimedean RN-space (X,μ,T ) is called a
non-Archimedean random Banach space.

Remark 2.4.5 [168] Let (X,μ,TM) be a non-Archimedean RN-space. Then we
have

μxn+p−xn(t) ≥ min
{
μxn+j+1−xn+j

(t) : j = 0,1,2, . . . , p − 1
}
.

Thus, the sequence {xn} is a Cauchy sequence in X if, for any ε > 0 and t > 0, there
exists n0 ≥ 1 such that, for all n ≥ n0,

μxn+1−xn(t) > 1 − ε.

2.5 Fuzzy Normed Spaces

Now, we define the concept of fuzzy normed spaces and give some examples of
these spaces. Here the t -norms notation is denoted by ∗.

Definition 2.5.1 The triple (X,M,∗) is called a fuzzy metric space if X is an arbi-
trary set, ∗ is a continuous t -norm and M is a fuzzy set on X2 × (0,∞) satisfying
the following conditions: for all x, y, z ∈ X and t, s > 0,

(FM1) M(x,y,0) > 0;
(FM2) M(x,y, t) = 1 for all t > 0 if and only if x = y;
(FM3) M(x,y, t) = M(y,x, t);
(FM4) M(x,y, t) ∗ M(y, z, s) ≤ M(x, z, t + s) for all t, s > 0;
(FM5) M(x,y, ·) : (0,∞) → [0,1] is continuous.

Definition 2.5.2 The triple (X,N,∗) is called a fuzzy normed space if X is a vector
space, ∗ is a continuous t -norm and N is a fuzzy set on X × (0,∞) satisfying the
following conditions: for all x, y ∈ X and t, s > 0,

(FN1) N(x, t) > 0;
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(FN2) N(x, t) = 1 if and only if x = 0;
(FN3) N(αx, t) = N(x, t/|α|) for all α �= 0;
(FN4) N(x, t) ∗ N(y, s) ≤ N(x + y, t + s);
(FN5) N(x, ·) : (0,∞) → [0,1] is continuous;
(FN6) limt→∞ N(x, t) = 1.

Lemma 2.5.3 Let N be a fuzzy norm. Then we have

(1) N(x, t) is nondecreasing with respect to t for all x ∈ X;
(2) N(x − y, t) = N(y − x, t).

Proof Let t < s. Then k = s − t > 0 and we have

N(x, t) = N(x, t) ∗ 1 = N(x, t) ∗ N(0, k) ≤ N(x, s),

which proves (1).
To prove (2), we have

N(x − y, t) = N
(
(−1)(y − x), t

) = N

(
y − x,

t

| − 1|
)

= N(y − x, t).

This completes the proof. �

Example 2.5.4 Let (X,‖ · ‖) be a normed linear space. Define a ∗ b = ab or a ∗ b =
min(a, b) and

N(x, t) = ktn

ktn + m‖x‖
for all k,m,n ∈ R

+. Then (X,N,∗) is a fuzzy normed space. In particular, if k =
n = m = 1, then we have

N(x, t) = t

t + ‖x‖ ,

which is called the standard fuzzy norm induced by the norm ‖ · ‖.

Lemma 2.5.5 Let (X,N,∗) be a fuzzy normed space. If we define

M(x,y, t) = N(x − y, t),

then M is a fuzzy metric on X, which is called the fuzzy metric induced by the fuzzy
norm N .

We can see that both definition and properties on fuzzy normed spaces are very
similar to those of random normed spaces. Then X equipped with μx(t) = N(x, t)

and T = ∗ can be regarded as a RN-space.
Now, we extend the definition of fuzzy metric space. In fact, we extend the range

of fuzzy sets to arbitrary lattice.
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Definition 2.5.6 The triple (X,P,T ) is called an L-fuzzy normed space (briefly,
LF -normed space) if X is a vector space, T is a continuous t-norm on L and P is
an L-fuzzy set on X × (0,+∞) satisfying the following conditions: for all x, y ∈ X

and t, s ∈ (0,+∞),

(LFN1) P(x, t) >L 0L;
(LFN2) P(x, t) = 1L if and only if x = 0;
(LFN3) P(αx, t) = P(x, t

|α| ) for any α �= 0;
(LFN4) T (P(x, t),P(y, s)) ≤L P(x + y, t + s);
(LFN5) P(x, ·) : (0,∞) → L is continuous;
(LFN6) limt→∞ P(x, t) = 1L.

In this case, P is called an L-fuzzy norm (briefly, LF -norm). If P = Pμ,ν

is an intuitionistic fuzzy set and the t-norm T is t-representable, then the triple
(X,Pμ,ν,T ) is said to be an intuitionistic fuzzy normed space (briefly, IF-normed
space).

Example 2.5.7 Let (X,‖ · ‖) be a normed linear space. Denote T (a, b) = (a1b1,

min(a2 + b2,1)) for all a = (a1, a2), b = (b1, b2) ∈ L∗ and let M , N be the fuzzy
sets on X × (0,∞) defined as follows:

PM,N(x, t) =
(

htn

htn + m‖x‖ ,
m‖x‖

htn + m‖x‖
)

for all t, h,m,n ∈R
+. Then (X,PM,N,T ) is an IF-normed space.
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