Chapter 2
Generalized Spaces

In this chapter, we present some generalized spaces and their properties for the main
results in this chapter.

2.1 Random Normed Spaces

Random (probabilistic) normed spaces were introduced by Serstnev in 1962 [242]
by means of a definition that was closely modelled on the theory of (classical)
normed spaces, and used to study the problem of best approximation in statistics. In
the sequel, we shall adopt usual terminology, notation and conventions of the theory
of random normed spaces, as in [9, 10, 148, 241].

Definition 2.1.1 A Menger probabilistic metric space (or random metric spaces) is
atriple (X, F, T), where X is a nonempty set, T is a continuous ¢-norm and F is a
mapping from X x X into D such that, if Fy , denotes the value of F at a point
(x,y) € X x X, the following conditions hold: for all x, y, z in X,

(PM1) Fy y(t) =&o(t) for all £ > O if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t)§
(PM3) Fy (t+s)>T(Fxy(t), Fy,(s)) forallx,y,ze X andt,5 > 0.

Definition 2.1.2 [242] A random normed space (briefly, a RN-space) or a Serstnev
(Sherstnev) probabilistic normed space (briefly, a Serstnev PN-space) is a triple
(X, u, T), where X is a vector space, T is a continuous ¢-norm and p is a mapping
from X into D7 such that the following conditions hold:

(RNT1) py(t) =¢o(t) for all ¢ > 0 if and only if x =0 (0 is the null vector in X);

(RN2) pex() = MX(l‘i_l) forall x € X and a # 0;

(RN3) pryqyy(t +5) = T(ux(t), uy(s)) forall x,y € X and ¢, s > 0, where p, de-
notes the value of 1 at a point x € X.
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Note that a triangular function T : AT x AT — A% is a binary operation on A™
which is associative, commutative and nondecreasing in each argument and has &g
as the unit, that is, forall F, G, H € AT,

t(¢(F,G),H) = t(F,©(G, H)),
(F,G) = ©(G,F),
t(F,e0) = F,

F<G = ©(F.H)<1(G,H).

The continuity of a triangular function means the continuity with respect to the
topology of weak convergence in A™. Triangular functions are recursively defined
by ! =7 and

T (F1, . Fop) = 1 ("N (F1L o, B, Fagl)

for each n > 2.
Typical continuous triangular functions are as follows:

7 (F,G)(x) = sup T(F(s), G()),
S+I=x

and

or+(F, G) = inf T*(F(s), G(1)),

where T is a continuous ¢-norm, that is, a continuous binary operation on [0, 1] that
is commutative, associative, nondecreasing in each variable and has 1 as the identity
element and T* is a continuous 7-conorm, that is, a continuous binary operation on
[0, 1] which is related to the continuous f-norm 7' through 7*(x,y) =1 —T(1 —
x,1—y).

Examples of such f-norms and 7-conorms are M and M*, respectively, defined
by

M (x,y) =min(x, y)
and
M*(x,y) = max(x, y).
Let 71 and 15 be two triangular functions. Then 7; dominates t, (which is denoted
by 71 > 1p) if, for all Fy, F>, G, G2 € AT,
t1(n2(F1. G1). 12(F2. G2)) = 1a(71(F1., F2), 11(G 1. G2)).

In 1993, Alsina, Schweizer and Sklar gave a new definition of a probabilistic
normed space [9] as follows:

A probabilistic normed space (briefly, PN-space) is a quadruple (V, v, 7, t*),
where V is a real vector space, T, T* are continuous triangulares functions and v
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is a mapping from V — AT such that, for all p,q € V, the following conditions
hold:

(PN1) v, =¢gg if and only if p =6, where 0 is the null vector in V;
(PN2) v_p,=v,forall peV;
(PN3) vpyg = 1(vp,vy) forall p,g e V;
(PN4) v, < t*(Vap, V(1—q)p) forall a € [0, 1].
If the inequality (PN4) is replaced by the equality v, = Ty (Vap, V(1—a)p), then
the PN-space (V, v, 7, 7¥) is called a Serstnev probabilistic normed space or a ran-

dom normed space (see Definition 2.1.2) and, as a consequence, we have the fol-
lowing condition stronger than (N2):

x
Vip(X) =, <m>

forall pe V,A#0and x € R.

Example 2.1.3 Let (X, || - ||) be a linear normed spaces. Define a mapping

o {0, ift <0,
Mx = .
m, ift > 0.

Then (X, u, Tp) is a random normed space. In fact, (RN1) and (RN2) are obvious.
Now, we show (RN3).

t N
t+lxll s + 11yl
I I
1+ B gy DT
t s
1 I

[T Iyl
I+ 1+

1

I+l
1+ t+s

1

llx+yll
1 + t+s

t+s
t+s+ x4+l

= xty (T +5)

Tp(ﬂx(t)v My(s)) =

IA

IA

IA

forall x,y € X and #, s > 0. Also, (X, i, Tjr) is a random normed space.
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Example 2.1.4 Let (X, || - ||) be a linear normed spaces. Define a mapping

oo ift <0,
Rt =0 - e w0,

Then (X, u, Tp) is a random normed space. In fact, (RN1) and (RN2) are obvious
and so, now, we show (RN3).

lxli+lyl
:e_( s )

<o D
= Uxty(t+5)

forall x,y € X and ¢, s > 0. Also, (X, i, Tpr) is a random normed space.

Example 2.1.5 [164] Let (X, | - |) be a linear normed space. For all x € X, define a

mapping

max{l — 2L 0}, ifz >0,
)= !
#(0) {o, i <0.

Then (X, u, Tr) is a RN-space (this was essentially proved by Musthari in [179],
see also [213]). Indeed, we have

Ixll
1t

Max () = px (%)

for all x € X and ¢t > 0. Next, for any x, y € X and ¢, s > 0, we have

ux(@)=1 0 = x=0

for all # > 0 and, obviously,

llx + yll
Mxyy( +5) =maxql— ﬁ’o

= max 1—||x+y||,0}

t+s

— max] 1 — ||L+L||,o}
r+s r+s

x Y
Zmaxy I —[|= = [=I.0
t N



2.1 Random Normed Spaces 15
= TL(Mx(t)a My(s))~
Let ¢ be a function defined on the real field R into itself with the following
properties:

(@) ¢(—1)=¢@) forallt e R;
(®) (1) =1;
(¢) ¢ 1is strictly increasing and continuous on [0,00), ¢(0) = 0 and

Examples of such functions are as follows:
t2n

It +1

e =11, e =t (pe(0,00), @)=
forallteRandn > 1.

Definition 2.1.6 [97] A random @-normed space is a triple (X, v, T), where X is
a real vector space, T is a continuous 7-norm and v is a mapping from X into D
such that the following conditions hold:

(¢-RN1) v, (t) =¢eo(z) for all + > 0 if and only if x =O0;
(¢-RN2) vy (1) = vx(ﬁ) forall xin X, @ # 0 and ¢ > 0;
(@-RN3) vyqy(t+5) =T (ve(2),vy(s)) forall x,y e X and z,5 > 0.

Example 2.1.7 [165] An important example is the space (X, v, Ty), where
(X, || - II”) is a p-normed space and

(1) 0, ift <0,
U —_— '
) e pe@11, ifr>0.

(¢-RN1) and (¢p-RN2) are obvious and so we show (¢-RN3). In fact, let v, () <
vy (s). Then we have

P x|P
Iyl < llxll

s t

forany x,ye X
Now, if x =y, we have t <s. Thus, otherwise, we have

xI?  xne xIIP P
llx]] +|| I le I +||y||

t t t s

P p
llx|l +2||y||
t+s r+s

p
MRS
- t+s

>2
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and so

p p
1_|_||x|| zl+”x+y” ’
t t+s
which implies that v, (f) < vy4y(z +5). Hence, vy (f +5) = Ty (v (2), vy (s)) for
allx,ye X andt,s >0.

Definition 2.1.8 Let © and v be measure and non-measure distribution function
from X x (0, +00) to [0, 1], respectively, such that u, (t) + v, () <1forall x € X
and ¢ > 0, where X is a real vector space. The triple (X, P, ,,7T) is said to be
an intuitionistic random normed space (briefly, IRN-space) if X is a real vector
space, 7 is a continuous ¢-representable and P, , is a mapping X x (0, +-00) — L*
satisfying the following conditions: forall x,y € X and ¢, s > 0,

(IRN1) Py v(x,0) =0p+;
(IRN2) Py »(x,t) =1+ if and only if x = 0;
(IRN3) Py v(ax, 1) =P, (x, ’I) for all o # 0;

Tal

(IRN4) Puy(x+y,t+5) = T (Puy(x, 1), Puw(y, $)).

In this case, Py, is called an intuitionistic random norm, where
Pu,v(x’ 1) = (/‘Lx(t)’ Vx(t))-

Definition 2.1.9 A lattice random normed space (LRN-space shortly) is a triple
(X, u, Tp), where X is a vector space and u is a mapping from X into Dj such that
the following conditions hold:

(LRN1) px(t) =1, forall > 0 if and only if x = 0;
(LRN2) iy (t) = py (&) forall x in X, o # 0 and t > 0;

Jee]

(LRN3) fiyyy(t+5) =1 Ta(ux (@), y(s)) forall x,y € X and ¢, s > 0.
We note that, from (LRN2), u_,(¢) = u,(¢) forall x € X and ¢t > 0.

Example 2.1.10 Let L =[O0, 1] x [0, 1] and the operation <;, be defined by:
L={(a1,a): (a1,a2) €[0,1] x [0, 1] aj +az < 1},
(a1,a2) <p (b1,by) <= a1<b, ;a>b

for all a = (a1, az),b = (b1, by) € L. Then (L, <p) is a complete lattice (see [49]).
In this complete lattice, we denote its units by Oz = (0, 1) and 17 = (1, 0).

Let (X, || - ||) be a normed linear space. Let T (a, b) = (min{ay, b1}, max{ay, by})
for all a = (a1, a2), b= (b1, b2) € [0, 1] x [0, 1] and u be a mapping defined by

t [lx] )
7 (t)=< ,
! t+lxl” ¢+ llx]]

forall t € RT. Then (X, i, 7) is a lattice random normed space.
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2.2 Random Topological Structures
In this section, we give some topological structures of random normed spaces.

Definition 2.2.1 Let (X, i, T) be an RN-space. We define the open ball B, (r,t)
and the closed ball B,[r, t] with center x € X and radius O <r < 1 for all # > 0 as
follows:

B, (r,t) = {y €X iy >1 —r},
Bilrtl={yeX : pay()=1-r},

respectively.
Theorem 2.2.2 Let (X, i, T) be an RN-space. Every open ball By (r, t) is open set.

Proof Let B,(r,t) an open ball with center x and radius r for all # > 0. Let y €
B, (r,t). Then puy_y(t) > 1 —r. Since pyx—y(t) > 1 —r, there exists 7y € (0, ¢) such
that py_y(t9) > 1 — 7. Put rg = px y(t0). Since r9 > 1 — r, there exists s € (0, 1)
such that rg > 1 —s > 1 —r. Now, for any r¢ and s such that ro > 1 — s, there exists
r1 € (0, 1) such that T'(rg, r1) > 1 — 5. Consider the open ball By(1 —r1,t —1p).

Now, we claim that By (1 —r1,7—19) C Bx(r, ). Infact,letz € By(1—r1, 1t —19).
Then py_,(t —1tp) > r1 and so

Mx—z () > T(//Lx_y(to), My—z(t — t()))

> T(ro,r1)
>1—5
>1-—r.

Thus, z € By(r,t) and hence By(1 — ry,t — fo) C By (r,t). This completes the
proof. 0

Now, different kinds of topologies can be introduced in a random normed space
[241]. The (r, t)-topology is introduced by a family of neighborhoods

{B.(r, t)}xeX,t>0,re(0,1)'

In fact, every random norm p on X generates a topology ((r, t)-topology) on X
which has as a base the family of open sets of the form

{B.(, t)}xeX,l>0,rE(0,l)'

Remark 2.2.3 Since {Bx(%, %) :n > 1} is a local base at x, the (r, #)-topology is
first countable.
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Theorem 2.2.4 Every RN-space (X, u, T) is a Hausdorft space.

Proof Let (X, u, T) be an RN-space. Let x and y be two distinct points in X and
t>0.Then 0 < py—y(¢) < 1. Putr =y (r). For each rq € (r, 1), there exists rq

such that T'(ry, r1) > ro. Consider the open balls B, (1 —r1, 5) and By(1 —ry, §).
Then, clearly, B, (1 —ri, §) N By (1 —ry, §) = @. In fact, if there exists

t t
ZEBX<1—V1,§>QB)7<1—V1,§>,

r= foy(t)

1 (e (4)0(3)

>T(r1,r1)

then we have

=10
>r,

which is a contradiction. Hence (X, i, T') is a Hausdorff space. This completes the
proof. g

Definition 2.2.5 Let (X, i, T) be an RN-space. A subset A of X is said to be R-
bounded if there existt > 0 and r € (0, 1) such that pt,_y(t) > 1 —r forall x, y € A.

Theorem 2.2.6 Every compact subset A of an RN-space (X, i, T) is R-bounded.

Proof Let A be a compact subset of an RN-space (X, u,T). Fixt>0,0<r <
1 and consider an open cover {B,(r,t) : x € A}. Since A is compact, there exist
X1,X2,...,X, € A such that

n
Ac| By,

i=1
Letx,y e A. Then x € By, (r,t) and y € ij (r,t) for some i, j > 1. Thus we have
Mx—x; (1) > 1 —rand py_; (1) > 1 —r. Now, let

a=min{uy ;@) :1<i,j<n}.
Then we have o > 0 and
My (31) = T (e, (1), pxy ) (1), fhy—s; (1))

>T20=r1-ra)

>1-—y.
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Taking ¢ = 3¢, it follows that p,_,(¢") > 1 — s for all x,y € A. Hence A is R-
bounded. This completes the proof. g

Remark 2.2.7 In an RN-space (X, u,T), every compact set is closed and R-
bounded.

Definition 2.2.8 Let (X, i, T') be an RN-space.

(1) A sequence {x,} in X is said to be convergent to a point x € X if, for any € > 0
and XA > 0, there exists a positive integer N such that

:ux,,—x(e) >1—-A

whenever n > N.
(2) A sequence {x,} in X is called a Cauchy sequence if, for any € > 0 and A > 0,
there exists a positive integer N such that

Py (€) > 1 =2

whenevern >m > N.
(3) An RN-space (X, u, T') is said to be complete if every Cauchy sequence in X
is convergent to a point in X.

Theorem 2.2.9 [241] If (X, u, T) is an RN-space and {x,} is a sequence such that
Xp — X, then limy, o0 hy, (1) = [y (¢) almost everywhere.

Theorem 2.2.10 Let (X, i, T) be an RN-space such that every Cauchy sequence in
X has a convergent subsequence. Then (X, u, T) is complete.

Proof Let {x,} be a Cauchy sequence in X and {x;,} be a subsequence of {x,} which
converges to a point x € X.
Now, we prove that x, — x. Let 7 > 0 and € € (0, 1) such that

TA—-r,1—r)>1-—c¢.
Since {x,} is a Cauchy sequence, there exists ng > 1 such that

Mxm—xn(t) >1—r

for all m, n > ny. Since x;, — x, there exists a positive integer i, such that i, > ng

and
t
Moxi, —x 3 >1-r
Then, if n > ng, we have

t t
Mx,,fx(t) = T(Mx,,x,-p (§>, H/xipx<§>>
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>T(l—r,1—r)

>1—e.
Therefore, x, — x and hence (X, u, T) is complete. This completes the proof. [
Lemma 2.2.11 Ler (X, i, T) be an RN-space. If we define
Fy y(1) = px—y(1)

forallx,y € X andt > 0, then F is a random (probabilistic) metric on X, which is
called the random (probabilistic) metric induced by the random norm (1.

Lemma 2.2.12 A random (probabilistic) metric F which is induced by a random
norm on a RN-space (X, i, T) has the following properties: for all x,y,z € X and
scalar a # 0,

(D Fx+z,y+z(t) = Fx,y(t);
2 Fozx.oty(t) = Fx,y(ﬁ)-

Proof We have the following:

Frtzytz2(8) = xt2)—(v+2) () = tx—y (£) = Fx (1)

and, also,

t t
Focx,ay(t) = Max—ay(t) = MHx—y (m) = Fx,y(m)-

Therefore, we have (1) and (2). This completes the proof. O

Lemma 2.2.13 If (X, u, T') is an RN-space, then we have

(1) The function (x,y) — x + y is continuous;
(2) The function (a, x) — ax is continuous.

Proof If x, — x and y, — y as n — 00, then we have

t t
I’L(xn'i'}'n)_(x'f'y)(t) z T<MX)1_X(§)’ I'Lyn_y<§>> -1

as n — oo. This proves (1).
Now, if x, - x and o, — o as n — o0, where «,, # 0, then we have

Moy x,—ax ) = Moty (xp,—x)+x (0t —at) )

t t
Z T(/"(’an(xnx) <§)Mx(a,,a) <§>>
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t t
= T(“(z—)“(ﬁ» -l

as n — oo. This proves (2). This completes the proof. 0

Definition 2.2.14 An RN-space (X, i, T) is called a random Banach space when-
ever X is complete with respect to the random metric induced by random norm.

Lemma 2.2.15 Ler (X, i, T) be an RN-space and define
Ep,.:X—RTU{0)
by
Ey (x)= inf{t >0:ux(@)>1-— A}
forall . € (0,1) and x € X. Then we have

(1) Ey ulax)=|a|Ey ,(x) forall x € X and o € R;
(2) If T satisfies (1.1.2), then, for any a € (0, 1), there exists B € (0, 1) such that

Ey i+ +x0) SEx p(x1) + -+ Enpu(xn)
forall x,y e X;
(3) A sequence {x,} is convergent with respect to the random norm w if and only if

Ej . (xy — x) — 0. Also, the sequence {x,} is a Cauchy sequence with respect
to the random norm  if and only if it is a Cauchy sequence with Ej, ;.

Proof For (1), we have
Ej pax) =inf{t > 0: gy (t) > 1 — A}

t
:inf{t>0:ux<—) >1—A}
||

= |a|inf{r > 0: s (1) > 1 — 1}

= |a|Ey, ,(x).
For (2), by (1.1.2), for all « € (0, 1), we can find X € (0, 1) such that
T ' =a,.... 1= >1—a.
Thus, we have

Mxi4-+x, (Ek,u(xl) +---+ EA,/L(xn) + nS)
ZL Tnil(“xl (EA,M(XI) + 5)’ cre I’an (E)\vp(x”) + 8))
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ST —h,...,1—2)

>]1 -«
for all § > 0, which implies that
Equ(x1 4 4x,) <E) u(x1) + -+ Ey u(xn) +né.
Since § > 0 is arbitrary, we have
Egpuxi+---+xp) < E) (x1)+ -+ Ej 1 (xp).

For (3), since u is continuous, Ej ,(x) is not an element of the set {r > 0:
Ux(t) > 1— A} forall x € X with x # 0. Hence, we have

Hiy—x(M) >1—A <= E  (x,—x)<7n
for all n > 0. This completes the proof. 0

Definition 2.2.16 A function f from a RN-space (X, u, T') to aRN-space (Y, v, T')
is said to be uniformly continuous if, for all r € (0,1) and ¢ > 0, there exist
ro € (0, 1) and 9 > 0 such that

/Lx_y([()) >1—-r9p = Vf(x),f(y)(t) >1—r
Theorem 2.2.17 (Uniform Continuity Theorem) If f is continuous function from

a compact RN-space (X, u, T) to an RN-space (Y, v, T'), then f is uniformly con-
tinuous.

Proof Lets € (0,1) and t > 0 be given. Then we can find r € (0, 1) such that
T'"d—=r,1=r)>1—s.

Since f : X — Y is continuous, for any x € X, we can find r, € (0, 1) and ¢, > 0
such that

t
Ur—y(tx) >1—ry = Uf(x)f(y)(§> >1-r
But r, € (0, 1) and then we can find s, < r, such that

T(A—=s¢,1—5)>1—r,.

[1.(0 ) s cx]

Since X is compact and
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is an open covering of X, there exist x1, x2, ..., x¢ in X such that

k
Iy,
X = LJ]Bxi <Sxi, %)
=

. L by .

Put so = minsy; and fp =min—~-, i =1,2,...,k. For any x,y € X, if px_,(#p) >
Iy. . .

1 — 50, then ,ux_y(%) > 1 —sy,. Since x € X, there exists x; € X such that

f,
Mox—x; 7 > 1 —sy.

t
Vf(x),f(xi)<§) >1—r

Ty, .
My—x; (tx,-) = T(Mxy <%>, Mx—x; (%))

> T(l — Sx;» 1 _SX,')

Hence, we have

Now, note that

>1—ry.

Therefore, we have

t
Vf(y>—f<x,-><§) >1—r

and so
Vrw-rm@) = T(Vf(x)—f(xf) <%> V)= f @) <%>>
>T(A—r,1—7r)
>1—s.
Therefore, f is uniformly continuous. This completes the proof. g

Remark 2.2.18 Let f be an uniformly continuous function from an RN-space
(X, u, T) to an RN-space (Y, v, T"). If {x,,} is a Cauchy sequence in X, then { f (x,)}
is also a Cauchy sequence in Y.

Theorem 2.2.19 Every compact RN-space is separable.
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Proof Let (X, u, T) be a compact RN-space. Let r € (0, 1) and ¢ > 0. Since X is
compact, there exist xy, x2, ..., X, in X such that

X = LnJ By (7,1).

i=1
In particular, for each n > 1, we can choose a finite subset A, of X such that

S

ach,

in which r, € (0, 1). Let
A= U A,.
n>1

Then A is countable.
Now, we claim that X C A. Let x € X. Then, for each n > 1, there exists a, € A,
such that x € By, (4, %). Thus, {a,} converges to the point x € X. But, since

a, € A foralln > 1, x € A and so A is dense in X. Therefore, X is separable.
This completes the proof. g

Definition 2.2.20 Let X be a nonempty set and (Y, v, T') be an RN-space. Then
a sequence { f,} of functions from X to Y is said to be converge uniformly to a
function f from X to Y if, for any r € (0, 1) and # > 0, there exists ng > 1 such that

Vi @—fo @ >1—r

foralln > ngand x € X.

Definition 2.2.21 A family F of functions from an RN-space (X, u, T') to a com-
plete RN-space (Y, v, T') is said to be equicontinuous if, for any r € (0, 1) and 7 > 0,
there exist rg € (0, 1) and 9 > 0 such that

Hx—y(t0) >1—r0 = viw)-rm@>1-r

forall f e F.

Lemma 2.2.22 Let {f,,} be an equicontinuous sequence of functions from an RN-
space (X, i, T) to a complete RN-space (Y, v, T'). If { f,,} converges for each point
of a dense subset D of X, then {f,} converges for each point of X and the limit
function is continuous.

Proof Lets € (0,1) and t > 0 be given. Then we can find r € (0, 1) such that

T/2(1—r,1—r,1—r)>1—s.
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Since F = { f} is an equicontinuous family, for any r € (0, 1) and ¢ > 0, there exist
r1 € (0, 1) and #; > 1 such that, foreach x, y € X,

t
Px—y(t)) >1—r1 = an(X)fn(y)<§)>1_r

for all f,, € F. Since D is dense in X, there exists
Y€ Bx(ri,t1)ND

and { f;,(y)} converges for the point y. Since {f, ()} is a Cauchy sequence, for any
r €(0,1) and ¢ > 0, there exists ng > 1 such that

1
V.n(,sr)—.f;n(y)(g) >1—r

for all m,n > ng. Now, for any x € X, we have

V£, ()= fiu () ()

= 72( 4 ! ! !
- Jn ()= fu () 3 ’ vfn(y)_fm(y) 3 ’ me(x)—fm()’) 3

>T?(1—r,1=r1-r)
>1—s.

Hence, {f,(x)} is a Cauchy sequence in Y. Since Y is complete, f,(x) converges
and so let f(x) =1lim f,(x).

Now, we claim that f is continuous. Let s, € 1 —r and 79 > 0 be given. Then we
can find ro € 1 — r such that

T?(1—rg,1—rp, 1 —rg) > 1 — s0.
Since F is equicontinuous, for any rg € (0, 1) and 7y > 0, there exist r, € (0, 1) and

t» > 0 such that

)
Mx—y(2) >1—r2 = anm—fn(y)(g) >1-ro

for all f,, € F. Since f,(x) converges to f(x), for any ro € (0, 1) and 79 > 0, there
exists 71 > 1 such that

1o
Y fy ()= f () (g) > 1 —ro.

Also, since f,(y) converges to f(y), for any ro € (0, 1) and ¢y > 0, there exists
ny > 1 such that

fo
V()= f () (g) >1-ro
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for all n > ny. Now, for all n > max{n, n,}, we have

Vi) —f(y (o)

5 to ) fo
>T' <Vf(x)f,,(x) <§>’ V)= fu () <§)’ ViD= (§>>

> T2 —ro, 1 —ro, 1 —rp)

>1— S0-
Therefore, f is continuous. This completes the proof. g

Theorem 2.2.23 (Ascoli—Arzela Theorem) Let (X, u, T) be a compact RN-space
and (Y, v, T') be a complete RN-space. Let F be an equicontinuous family of func-
tions from X to Y. If { fu} is a sequence in F such that

{f,,(x):neN}

is a compact subset of Y for any x € X, then there exists a continuous function f
from X to Y and a subsequence {g,} of { f} such that {g,} converges uniformly to
fonX.

Proof Since (X, u, T) be a compact RN-space, by Theorem 2.2.19, X is separable.
Let

D={x:i=12,..)

be a countable dense subset of X. By hypothesis, for each i > 1,

{fn(xi) n= 1}

is compact subset of Y. Since every £-fuzzy metric space is first countable space,
every compact subset of Y is sequentially compact. Thus, by standard argument,
we have a subsequence {g,} of {f,} such that {g,(x;)} converges for each i > 1.
Thus, by Lemma 2.2.22, there exists a continuous function f from X to Y such that
{gn(x)} converges to f(x) forall x € X.

Now, we claim that {g,} converges uniformly to a functions f on X. Let s €
(0, 1) and r > 0 be given. Then we can find r € (0, 1) such that

T?°A—=r1—r1—r)>1—s.

Since F is equicontinuous, there exist ; € (0, 1) and #; > 0 such that

t
Pyt >1=r = Vgn<x>,gn<y)(§)>1—r
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for all n > 1. Since X is compact, by Theorem 2.2.17, f is uniformly continuous.
Hence, for any r € (0, 1) and ¢ > 0, there exist , € (0, 1) and #, > 0 such that

t
/Lx_y(l‘z) >1l—-rn = vf(x)_f(y)<§) >1—-r

for all x, y € X. Let ro = min{ry, r2} and typ = min{z;, t»}. Since X is compact and
D is dense in X, we have

k
X = U By; (ro. 10)

i=1

for some k > 1. Thus, for any x € X, there exists i, i <i <k, such that

Mx—x; (fo) > 1 —ro.

But, since ro = min{ry, 2} and 7o = min{¢1, 2}, we have, by the equicontinuity of F,

t
Vgn(x>—gn<xi><§) >1—r

and we also have, by the uniform continuity of f,

t
"f(x)—f(xi)<§) >1-r

Since {g,(x;)} converges to f(x;), for any r € (0, 1) and ¢ > 0, there exists ng > 1
such that

t
Vgn(x‘,»)fu,-)(g) >1—r

for all n > ng. Now, for all x € X, we have

Ve, (x)— f(x) ()

- t t t
= Vg (¥)—gn (x7) 3 » Ve (xi)— f (xi) 3 V(i) —f(x) 3

>T?A—=r1—r1—r)

>1—s.

Therefore, {g,} converges uniformly to a function f on X. This completes the
proof. g

We recall that a subset A is said R-bounded in (X, u, T), if there exist 7o > 0 and
ro € (0, 1) such that u,(t9) > 1 — rq for all x € A.

Lemma 2.2.24 A subset A of R is R-bounded in (R, u, T) if and only if it is
bounded in R.
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Proof Let A be a subset in R which is R-bounded in (R, u, T'). Then there exist
to > 0 and rg € (0, 1) such that u,(f9) > 1 — ro for all x € A. Thus, we have
10 = Ery, 1 (x) = x| Epg,pu(1).

Now, E; (1) #0. If we put k =

that is, A is bounded in R.
The converse is easy to see. This completes the proof. O

_ z(;(]), then we have |x| < k for all x € A,
Qs

Lemma 2.2.25 A sequence {B,} is convergent in an RN-space (R, ., T') if and only
if it is convergent in (R, | - |).

Proof Let B, — B in R. Then, by Lemma 2.2.15(1), we have
Ey (Bn — B) =1Bn — BIE), u(1) > 0.

Thus, by Lemma 2.2.15 (3), B, = B.
Conversely, let g, 5 B. Then, by Lemma 2.2.15,

im 16y — BIEx (D)= lm Ej . (Br—B)=0.

n— 400
Now, Ej , (1) #0 and so B, — B in R. This completes the proof. U

Corollary 2.2.26 If a real sequence {B,} is R-bounded, then it has at least one limit
point.

Lemma 2.2.27 A subset A of R is R-bounded in (R, u, T) if and only if it is
bounded in R.

Proof Let the subset A is R-bounded in (R, u, T). Then there exist 79 > 0 and
ro € (0, 1) such that
px(to) > 1 —ro
for all x € A and so
10 = Ery 1 (x) = [x]Epy, 1 (1).
Now, Ej, (1) # 0. If we put k =

i.e., A is bounded in R.
The converse is easy. This completes the proof. g

X0 then we have |x| <k for all x € A,
Erg (D)

Definition 2.2.28 A triple (R”, @, T) is called an random Euclidean normed space
if T is a continuous ¢-norm and @, (¢) is a random Euclidean norm defined by

@, (1) =[] 1 ),

j=1
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where ]_['I'.:laj = T’"_l(al,...,a,,), T">T,x=(x1,...,xp), t >0and u is a
random norm.

For example, let @, (t) = exp(”’;—”)_l, Mx; (1) = exp(lxt—jl)_1 and 7T = min. Then
we have @, (1) = min; py,; () or, equivalently, ||x| = max; |x;]|.

Lemma 2.2.29 Suppose that the hypotheses of Definition 2.2.28 are satisfied. Then
(R™, @, T) is an RN-space.

Proof The properties of (RN1) and (RN2) follow immediately from the definition.
For the triangle inequality (RN3) suppose that x, y € X and ¢, s > 0. Then we have

T(®:(1), Dy(s)) =T (]_[ Pe, ). [Py, (s))
j=1 j=1

=T(T" (P @), ... Pey @), T" Py, (@), ..., Py, (1))
< 7" NT(Py (1), Py @), ..., T(Ps, (1), Py, (1))

<" (Peyin (t 4 5)s oo Prygy (E +5))

=[Py, +5)
j=1

= (prry(t +5).

This completes the proof. g

Lemma 2.2.30 Suppose that (R", @, T) is a random Euclidean normed space and
A is an infinite and R-bounded subset of R". Then A has at least one limit point.

Proof Let {x"™} be an infinite sequence in A. Since A is R-bounded, so is
{x(’")}mzl. Therefore, there exist g > 0 and rg € (0, 1) such that

1—ryg< P, (t())
for all x € A, which implies that E,, ¢ (x) < 9. However, we have

Eyo(x)=inf{t >0:1—ro < d,(1)}
n
=infir>0:1—-ry< Huxj(f)
j=1
>inf{r > 0:1—ro < py, (1))

= Ero,;t(-xj)
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for each 1 < j < n. Therefore, |x;| < k in which k = %, that is, the real se-
r(). L

quences {xﬁ.m)} for each j € {1,...,n} are bounded. Hence, there exists a subse-

quence {ximk')} which converges to x; in A with respect to the random norm .

The corresponding sequence {xémkl)} is bounded and so there exists a subsequence

{xémkz)} of {ximk1 )} which converges to x, with respect to the random norm .

Continuing like this, we find a subsequence {x ")} converging to x = (x1, ...,
xp) € R". This completes the proof. O

Lemma 2.2.31 Let (R*, ®,T) be a random Euclidean normed space. Let {Q1,
Q32, ...} be a countable collection of nonempty subsets in R" such that Q41 < Ok,
each Qy is closed and Q1 is R-bounded. Then ﬂ,fil Qk is nonempty and closed.

Proof Using the above lemma, the proof proceeds as in the classical case (see The-
orem 3.25 in [15]). Il

We call an n-dimensional ball By (r, t) a rational ball if x € Q", ro € (0, 1) and

teQt.

Theorem 2.2.32 Let (R"*, @, T) be a random Euclidean normed space in which T
satisfies (1.1.2). Let G = {A1, A, ...} be a countable collection of n-dimensional
rational open balls. If x € R" and S is an open subset of R" containing x, then there
exists Ay € G such that x € Ay C S for some k > 1.

Proof Since x € S and S is open, there exist » € (0,1) and ¢ > 0 such that
By (r,t) € S.By(1.1.2), wecan find n €€ (0, 1) suchthat 1 —r < T(1 —n,1 —n).
Let {&}7_, be a finite sequence such that 1 — n < [Tie; (1 — &) and x =
(x1,...,%x,). Then we can find y = (y1,...,ys) € Q" such that (1 — &) <
x,—y (5). Therefore, we have

l1-n< 1_[(1 —&) < q)x)*(%) = l_[ Mox—yi (%)
k=1

k=1

and so x € By(n, §).
Now, we prove that By (1, §) € By(r, 7). Letz € By (7, §). Then @, _.(5) > 1—1p
and hence

l=r<T—-nl-n)=< T(qjx—y'(%)v ‘py—z<%)> < Dy (1).

On the other hand, there exists fy € Q such that 7y < % and x € By(n,1) C

By(n, %) C By (r,t) € §. Now, By(n, tp) € G. This completes the proof. Il

Corollary 2.2.33 In a random Euclidean normed space (R", @, T) in which T sat-
isfies (1.1.2), every closed and R-bounded set is compact.
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Proof The proof is similar to the proof of Theorem 3.29 in [15]. 0

Corollary 2.2.34 Let (R*, @, T) be a random Euclidean normed space in which T
satisfies (1.1.2) and S CR". Then S is compact set if and only if it is R-bounded
and closed.

Corollary 2.2.35 The random Euclidean normed space (R", @, T) is complete.

Proof Let {x,,} be a Cauchy sequence in the random Euclidean normed space
(R", &, T). Since

Eyo(xp—xm) = inf{t >0: Py, (t)>1— A}

n
=inflr>0:[] Py, ;@O >1-2
j=1

> inf{t >0: Py, j—x,,; ) >1— k}

= EA,P(xm,j _xn,j) = |xm,j _xn,j|Ek,P(1)a

the sequence {x,, ;} for each j =1,...,n is a Cauchy sequence in R and so it
convergent to x; € R. Then, by Lemma 2.2.15, the sequence {x,,,;} is convergent in
RN-space (R, u, T).

Now, we prove that {x,,} convergent to x = (x1, ..., x,). In fact, we have

n
. . m—1
lim @5, (1) =11nr1n]_[7>xm./._xj(z) =7"'1,....,)=1.
j=1

This completes the proof. g

2.3 Random Functional Analysis

In this section, we discuss some important results dealing with topological isomor-
phisms and also give the proofs of Open Mapping Theorem, Closed Graph Theo-
rem and some other fundamental theorems in the framework of Random Functional
Analysis.

Theorem 2.3.1 Let {x1,...,x,} be a linearly independent set of vectors in vector
space X and (X, u, T) be an RN-space. Then there exist ¢ # 0 and an RN-space
(R, u', T) such that, for every choice of the n real scalars ay, ..., ay,

Moy +tayx, (1) < MLZ?:] ‘a”(t)- (2.3.1)
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Proof Puts = |ai| +---+ |a,|. If s =0, all «;’s must be zero and so (2.3.1) holds
for any c. Let s > 0. Then (2.3.1) is equivalent to the inequality that we obtain from
(2.3.1) by dividing by s and putting 8; = %, that is,

B x4t (1) < (1), (2.3.2)

where 1’ = % and 27:1 |81 = 1. Hence, it suffices to prove the existence of ¢ # 0
and the random norm " such that (2.3.2) holds. Suppose that this is not true. Then
there exists a sequence {y,, } of vectors

n
ymzﬂl,mxl'i‘"""ﬂn,mxn» Z|,Bj,rn|=1,
j=1

such that

[y, (1) = 1

as m — oo for any # > 0. Since Z’;Zl |Bj,ml =1, we have |8 ,,] <1 and so, by the
Lemma 2.2.24, the sequence of {8; ;»} is R-bounded. According to Corollary 2.2.26,
{B1.m} has a convergent subsequence. Let B denote the limit of the subsequence and
let {y1,,} denote the corresponding subsequence of {y;}. By the same argument,
{y1.m} has a subsequence {y» ,} for which the corresponding of real scalars ,Bém)
convergence. Let B, denote the limit. Continuing this process, after n steps, we

obtain a subsequence {y,,u}m>1 of {y»} such that

n
Yn,m = Z VjmXj,
Jj=1

where Z?:l lvjml =1, and yj, — B; as m — 0o. By the Lemma 2.2.15 (2), for
any « € (0, 1), there exists A € (0, 1) such that

Ea,u()’n,m - Zﬁﬂﬁ) =Eupu (Z(Vj,m - ,Bj)xj>

j=1 j=1
n
<D Wim = BilEsu(xj) > 0
j=1
as m — oo. By Lemma 2.2.15 (3), we conclude
n
mli—>mooyn’m = Zﬂjxj,
j=1

where »%_;|B;| = 1, and so all B; cannot be zero. Put y =} _, B;x;. Since
{x1,...,x,} is a linearly independent set, we have y # 0. Since uy,, (1) — 1, by the
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assumption, we have uy, , (r) — 1. Hence, we have

My (t) = M(}’_Yn,m)"!‘.\’n.m (t)
> T (y— gyt /2)s Ly (1/2)) = 1

and so y = 0, which is a contradiction. This completes the proof. O

Definition 2.3.2 Let (X, u, T) and (X, v, T") be two RN-spaces. Then two random
norms p and v are said to be equivalent whenever x, £ xin (X, u, T) If and only
if x, — x in X,v, T).

Theorem 2.3.3 In a finite dimensional vector space X, every two random norms |4
and v are equivalent.

Proof Let dimX = n and {vy,...,v,} be a basis for X. Then every x € X has
a unique representation x = Z’;’:l ajv;. Let xp, X xin (X, u, T), but, for each

m > 1, suppose that x,,, has a unique representation, that is,
Xm =,V + -+ + Oy Uy

By Theorem 2.3.1, there exist ¢ # 0 and the random norm p’ such that (2.3.1) holds.
thus we have

W= (O = o5 O S Hlfag a1 ()

1ljm
Now, if m — o0, then we have
Moy —x () = 1

for all £ > 0 and hence |« — ;| — O0in R.
On the other hand, by the Lemma 2.2.15 (2), for any « € (0, 1), there exists
X € (0, 1) such that

n
Eoy(Gim —X) <) lajm — 0| Ep oy (v)).
Jj=1
Since |atj, — aj| — 0, we have x;, 5 xin (X, v, T'"). Therefore, with the same

argument, x,, — x in (X, v, T’) imply x,, — x in (X, u, T). This completes the
proof. O

Definition 2.3.4 A linear operator A : (X, u, T) — (Y, v, T') is said to be random
bounded if there exists a constant 2 € R — {0} such that, for all x € X and ¢ > 0,

Vax () = i (1) (2.3.3)
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Note that, by Lemma 2.2.15 and the last definition, we have

E; v (Ax) = inf{t >0:v,(2) > 1 —A}
<inf{t > 0: puy(t/|h]) > 1 — 1}
= |hlinf{r > 0: e (r) > 1 — A}
= |h|Ex,pu(x).

Theorem 2.3.5 Every linear operator A : (X, i, T) — (Y, v, T') is random bound-
ed if and only if it is continuous.

Proof By (2.3.3), every random bounded linear operator is continuous.
Now, we prove the converse. Let the linear operator A be continuous, but is not
random bounded. Then, for each n > 1, there exists x, € X such that E; ,(Ax,) >

nEA,,u(pn)~
If we let

Yo = Xn
=
nE)L,;L(xn)’

then it is easy to see y, — 0, but { Ay, } do not tend to 0. This completes the proof. []

Definition 2.3.6 A linear operator A : (X, u, T) — (Y, v, T') is an random topo-
logical isomorphism if A is one-to-one, onto and both A, A~! are continuous. The
RN-spaces (X, i, T) and (Y, v, T") for which such a A exists are said to be random
topologically isomorphic.

Lemma 2.3.7 A linear operator A : (X, u, T) — (Y, v, T') is random topological
isomorphism if A is onto and there exist constants a, b # 0 such that

Max (@) S vax(t) < ppx (1),

Proof By the hypothesis, A is random bounded and, by last theorem, is continuous.
Since Ax = 0 implies that

I =vpx(®) < //Lx<|;_|>

and so x = 0, it follows that A is one-to-one. Thus A~! exists and, since

Vax (1) < ppx (1)

is equivalent to
t
vy(t) < Mb/rly(f) =Ma-ly m
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or
U%y(t) S /’LA*ly(t)v

where y = Ax, we see that A~! is random bounded and, by last theorem, is con-
tinuous. Therefore, A is an random topological isomorphism. This completes the
proof. g

Corollary 2.3.8 Ever random topologically isomorphism preserves completeness.

Theorem 2.3.9 Every linear operator A : (X, u, T) — (Y, v, T'), where dimX <
00, but other is not necessarily finite dimensional, is continuous.

Proof If we define

nx (1) = T/(Hx (), VAx(t))’ (2.34)

where T’ >> T. Then (X, n, T) is an RN-space since (RN1) and (RN2) are immedi-
ate from the definition and, for the triangle inequality (RN3),

T(nx (1), 12(8)) = T[T (1x (1), vax (1)), T' (112(5), vz (5)) ]
< T[T (1 (@), 112(8)) T (vax (1), va:(5)) |
< T (pxgz(t+ ), VAGt2) (E +5))
= N+ (F +5).

Now, let x,, £x. Then, by Theorem 2.3.3, x,, A x, but, by (2.3.3), since
Vax () = nx (1),
we have Ax, — Ax. Hence, A is continuous. This completes the proof. 0

Corollary 2.3.10 Every linear isomorphism between finite dimensional RN-spaces
is a topological isomorphism.

Corollary 2.3.11 Every finite dimensional RN-space (X, v, T) is complete.
Proof By Corollary 2.3.10, (X, u, T) and (R", @, T) are random topologically iso-
morph. Since (R”, @, T) is complete and every random topological isomorphism

preserves completeness, (X, i, T) is complete. O

Definition 2.3.12 Let (V, u, T') be an RN-space, W be a linear manifold in V and
Q :V — V /W be the natural mapping with Qx = x 4+ W. For any ¢ > 0, we define

fi(x + W, 1) = sup{ ey (1) 1y € W}
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Theorem 2.3.13 Let W be a closed subspace of an RN-space (V,u,T). If x € V
and € > 0, then there exists x' € V such that

X' +W=x+W, Epu(x) < By (x+ W) +e.
Proof By the properties of sup, there always exists y € W such that
Eypx+y) < E)»’-M(x + W) +e.
Now, it is enough to put x’ = x + y. O

Theorem 2.3.14 Let W be a closed subspace of an RN-space (V, , T) and [n be
given in the above definition. Then we have

(1) @ is an RN-space on V/W;

(2) ox(t) = pux(2);
3) If (V,u,T) is an random Banach space, then so is (V/W, 1, T).

Proof (1) It is clear that iy4+w (z) > 0. Let iy+w (¢) = 1. By the definition, there
exists a sequence {x,} in W such that pyy,, (#) — 1. Thus, x + x, — 0 or, equiva-
lently, x,, — (—x) and since W is closed, x € W and x + W = W, the zero element
of V/W. Now, we have

RGAwW)++w) () = Bty +w (£)
Z H(x4m)+(y+n) )

= T(Mx+m (1) fy+n (t2))

forallm,ne W, x,y eV and t; 4+ t, =t. Now, if we take the sup, then we have

AW o4+ w) ) = T (xgw (1), fyrw (12)).

Therefore, t is random norm on V/W.
(2) By Definition 2.3.12, we have

fix (t) = fLxtw (1) = sup{ ey y (1) 1y € W} =y (0).
Note that, by Lemma 2.2.15,
E; 1(Qx) = inf{t >0:jige(t)>1 —/\}
<inf{r>0:pc(t) > 1 -1}
=E; ,(x). (2.3.5)

(3) Let {x;, + W} be a Cauchy sequence in V/W. Then there exists ng € N such
that, for each n > ny,

Ek,ﬁ((xn + W) — (1 + W)) <27
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Let y; =0 and choose y, € W such that
1
Exuﬁl—O&—yﬂJ)SEmﬂwl—n)+W)+5.

However, E; -, (x| — x2) + W) < 3 and so Ej, ,(x1 — (x2 — y2)) < (3)*.
Now, suppose that y,_1 has been chosen. Then choose y, € W such that

EA,M((Xn—l + Y1) — (xn + yn)) < Ek,ﬁ((xn_] —xp) + W) + 2—n+1.
Hence, we have
Ek,/t((xn—l + yn—1) — (xp + )’n)) < 9—n+2

However, by Lemma 2.2.15, for each positive integer m > n and A € (0, 1), there
exists y € (0, 1) such that

Eyu ((xm + ym) — (X0 + Yn)) = Ey,,u((xn-i-l + Ynt+1) — (o + yn)) +o
+ Ey,u((xm + Ym) — (km—1+ )’mfl))

By Lemma 2.2.15, {x, 4+ y,} is a Cauchy sequence in V. Since V is complete, there
exists xo in V such that x, + y, — xo in V.
On the other hand, we have

X+ W =00, +y) = OQxo) =x0+ W.

Therefore, every Cauchy sequence {x, + W} is convergent in V/W and so V/W
is complete. Thus (V/W, i, T) is a random Banach space. This completes the
proof. d

Theorem 2.3.15 Let W be a closed subspace of an RN-space (V, u, T). If two of
the spaces V., W and V /W are complete, then so is the third one.

Proof If V is arandom Banach space, then so are V/W and W. Hence, the fact that
needs to be checked is that V is complete whenever both W and V /W are complete.
Suppose that W, V/W are random Banach spaces and {x,} is a Cauchy sequence
in V. Since

Ek,ﬂ((xn — Xm) + W) =< EA,,u(xn — Xm)

for each m,n > 1, the sequence {x,, + W} is a Cauchy sequence in V/W and so
converges to y + W for some y € W. Thus, there exists ng > 1 such that, for each
n = no,

Ek,ﬁ((xn -y + W) <27
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Now, by the last theorem, there exist a sequence {y,} in V such that

Y+ W=0x,—y)+W, Ek,ﬂ(yn)<Ek,ﬁ((xn_)’)+W)+2_n-
Thus, we have
lim Ej; ,(y,) <0
n—>oo

and so, by Lemma 2.2.15, uy, (t) — 1 for any ¢ > 0, that is, lim,,_, o ¥, = 0. There-
fore, {x, — y» — y} is a Cauchy sequence in W and so it is convergent to a point
z € W. This implies that {x,} converges to z + y and hence V is complete. This
completes the proof. O

Theorem 2.3.16 (Open Mapping Theorem) If T is a random bounded linear op-
erator from a RN-space (V, ju, T) onto an RN-space (V',v, T), then T is an open
mapping.

Proof The theorem will be proved by the following steps:

Step I: Let E be a neighborhood of the 0 in V. We show that 0 € (T (E))°. Let
W be a balanced neighborhood of 0 such that W + W C E. Since T (V) =V’ and
W is absorbing, it follows that V' = N, T (nW) and so there exists ng > 1 such that
T (noW) has a nonempty interior. Therefore, we have

0e (TW))’ — (T(W))°.

On the other hand, we have

(TW))" —(TW))’ CTW)—TW)=T W)+ T (W)
CT(E).

Thus, the set T (E) includes the neighborhood (T (W))? — (T (W))? of 0.

Step 2: We show 0 € (T'(E))°. Since 0 € E and E is an open set, there exist
0 <a <1 and 7 € (0, 00) such that By(w, tp) C E. However, 0 <« < 1 and so a
sequence {€,} can be found such that

T" "1 —€psty ..y 1 —€) > 1
and
l—a<limT" '1—¢,1—¢),
n

in which m > n.
On the other hand, 0 € T (By(¢,, t},)), where t,/z = zi,lto, and so, by Step 1, there
exist 0 < 0, < 1 and 1, > 0 such that

Bo(0n. tn) C T (Bo(en. 1}))-



2.3 Random Functional Analysis 39

Since the set {By(r, 1/n)} is a countable local base at zero and 7, — 0 as n — oo,
t, and o, can be chosen such that #, — 0 and 0,, — 0 as n — oo.
Now, we show that

Bo(o1, 1) C (T(E))o.

Suppose that yg € Bo(,01,t1). Then yg € T (Bo(eq, tl’)) and so for any 0 < o»
and #, > 0, the ball By,(02,1;) intersects T(Bo(el,ti)). Therefore, there exists
x1 € Bo(er, t7) such that Tx| € By, (02, 12), that is,

Vyo—Tx; (22) > 1 =02
or, equivalently,
yo — Tx1 € By(02,12) C T (Bo (e, 17)).
By the similar argument, there exist x, € By (€3, té) such that
Vyo—(Tx1+Tx2) (13) = V(y—Tx1)~Tx, (13) > 1 — 03.

If this process is continued, it leads to a sequence {x,} such that
xn € Bo(en, 1), v at o (ty) > 1 —0,.
stn)s y0_2j=1 ij n n

Now, if n, m > 1 and m > n, then we have

DY REIES 3 IOy 3 IEL)
>7"" (,U«an (tn+1)s Mx, (tm)),

where t,41 4 ty12 + -+ 4ty =t Put (g = min{t,, 1 1, 42, ..., 1 ). Since 1, — 0,
there exists ng > 1 such that 0 < t,; < t(/) for all n > ng. Therefore, for all m > n, we
have

Tm_n (I’anJrl (t(/))’ 'u“xm (t(/))) Z Tm_" ('uxn+l (tr/l-‘rl)’ luxm (tr/n))
> T (1 — ens1, 1 — €m)
and so
nlingoMZ?:onj (t) = n]Ln;o Tmin(l — €n+1, 1- 6m) = 1’
that is,

MZ7=71+1 Xj (t) - 1

for all ¢ > 0. Thus, the sequence {Z;’-: 1 X;j} is a Cauchy sequence and so the series
{Z?‘;l X} converges to a point xo € V since V is a complete space. For any fixed
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t > 0, there exists ng > 1 such that ¢ > 1, for all n > ng since t,, — 0. Thus, we have

vYo—T(Z_';: Xj)(t) = vyo—T(Z_';;{ Xj)(t”)
>1-oy

and so

v)’o—T(Z;l;:Xj)(t) - L
Therefore, we have

n—1 n—1

Yo = nli)n;o T (X%x,) =T (nll)rglo 2)9;) = Txp.
j= ji=

But, we have

Mxo (f0) = nlglgo Iy x; (to)

= 7 1im (10 (1), 1, (7))

> lim 7" ' =€, ..., 1 —€)
n—0o0

>1—a.

Therefore, xo € By(a, tp).
Step 3: Let G be an open subset of V and x € G. Then we have

T(G)=Tx+T(—x+G) D Tx+ (T(—x+G))’.

Hence, T (G) is open since it includes a neighborhood of each of its point. This
completes the proof. O

Corollary 2.3.17 Every one-to-one random bounded linear operator from a ran-
dom Banach space onto a random Banach space has a random bounded converse.

Theorem 2.3.18 (Closed Graph Theorem) Let T be a linear operator from a ran-
dom Banach space (V, u, T) into a random Banach space (V', v, T). Suppose that,
for every sequence {x,} in V such that x, — x and Tx, — y for some elements
xeVandyeV', itfollowsthat Tx =y. Then T is random bounded.

Proof Forany t >0, x € X and y € V', define

Px (1) = T/(Mx(t)a Vy(t))’

where T’ > T.
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First, we show that (V x V', &, T) is a complete RN-space. The properties of
(RN1) and (RN2) are immediate from the definition. For the triangle inequality
(RN3), suppose that x,z € V, y,u € V' and ¢, s > 0. Then we have

T(Py) (), Py (8)) = T[T (1 (1), vy (1)), T' (122(5), vu (5)) ]
< T[T (ux(0), 122(8)), T (vy (1), v (5)) ]
S T (agz(E +8), Vyqu(t +5))
= Platzy+u) (T +5).

Now, if {(x,, yn)} is a Cauchy sequence in V x V', then, for any € > 0 and ¢ > 0,
there exists ng > 1 such that

¢(xann)_(xmst)(t) >1—e€

for all m, n > ng. Thus, for all m, n > ng, we have

T/(luxn_xm (t)’ vy;l_)’m (t)) = ¢(x)l_xmsYn_YIn)(t)
= ¢(xna)’n)_(xm!ym)(t)

>1—c€.

Therefore, {x,} and {y,} are Cauchy sequences in V and V’, respectively, and there
exist x € V and y € V’/ such that x,, — x and y, — y and so (x,, y,) — (x,y).
Hence, (V x V', @, T) is a complete RN-space. The remainder of the proof is the
same as the classical case. This completes the proof. d

2.4 Non-Archimedean Random Normed Spaces

By a non-Archimedean field we mean a field C equipped with a function (valuation)
| - | from K into [0, co) such that

(1) |r] =01if and only if » = 0;
@) Irsl=Irllsl;
3) |r +s| <max{|r]|, |s|} forall r,s € K.

Clearly, |1| = |—1] =1 and |n| <1 for all n > 1. By the trivial valuation, we
mean the mapping | - | taking everything but O into 1 and |0] = 0.

Let X be a vector space over a field K with a non-Archimedean nontrivial valu-
ation | - |, that is, there exists ag € K such that |ag| is not in {0, 1}.

The most important examples of non-Archimedean spaces are p-adic numbers.
In 1897, Hensel [106] discovered the p-adic numbers as a number theoretical ana-
logue of power series in complex analysis. Fix a prime number p. For any nonzero
rational number x, there exists a unique integer n, € Z such that x = 7 p"~, where a
and b are integers not divisible by p. Then |x|, := p™"* defines a non-Archimedean
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norm on Q. The completion of QQ with respect to the metric d(x, y) =[x — y|, is
denoted by Q,, which is called the p-adic number field.

A function || - || : X — [0, 00) is called a non-Archimedean norm if it satisfies the
following conditions:

(NAN1) ||x]| =0if and only if x = 0;
(NAN2) foranyr e K, x € X, ||rx| = |r|lix|l;
(NAN3) the strong triangle inequality (ultrametric), namely,

llx 4yl < max{llx|l, lylI}

forall x,y € X.
Then (X, || - ||) is called a non-Archimedean normed space.
Due to the fact that

0 — x|l <max{llxji1 —xjl:m < j<n—1}

for all n, m > 1 with n > m, a sequence {x,} is a Cauchy sequence in X if and only
if {x,4+1 — x,} converges to zero in a non-Archimedean normed space.

By a complete non-Archimedean normed space, we mean one in which every
Cauchy sequence is convergent.

Definition 2.4.1 A non-Archimedean random normed space (briefly, non-Archime-
dean RN-space) is a triple (X, u,T), where X is a linear space over a non-
Archimedean field /C, T is a continuous 7-norm, and p is a mapping from X into
D™ such that the following conditions hold:

(NA-RN1) py(t) =eo(t) for all ¢ > 0 if and only if x =0;
(NA-RN2) gy () = /Lx(lé—‘) forallx € X,t > 0and o # 0;
(NA-RN3) pyqy(max{t,s}) > T (ux(t), uy(s)) forallx,y,z € X and ¢, s > 0.

It is easy to see that, if (NA-RN3) holds, then so is
(RN3) Mgy (@ +8) =T (px (@), y(s)).

Example 2.4.2 As a classical example, if (X, || - ||) is a non-Archimedean normed
linear space, then the triple (X, u, T)s), where

0, ifr< x|,
1) =
mO=0 0 e el

is a non-Archimedean RN-space.

Example 2.4.3 Let (X, || - ||) be a non-Archimedean normed linear space. Define

) =
My (1) PR

forall x € X and t > 0. Then (X, u, Tyr) is a non-Archimedean RN-space.
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Definition 2.4.4 Let (X, u, T') be a non-Archimedean RN-space. Let {x,} be a se-
quence in X.
(1) The sequence {x,} is said to be convergent if there exists x € X such that

lim py,—x (1) =1
n—00

for all ¢ > 0. In this case, the point x is called the limit of the sequence {x,}.
(2) The sequence {x,} in X is called a Cauchy sequence if, for any ¢ > 0 and
t > 0, there exists ng > 1 such that, for all n > ng and p > 0,

Moy p—x, (1) > 1 — €.

(3) If each Cauchy sequence in X is convergent, then the random normed space
is said to be complete and the non-Archimedean RN-space (X, i, T) is called a
non-Archimedean random Banach space.

Remark 2.4.5 [168] Let (X, u, Tps) be a non-Archimedean RN-space. Then we
have

,ux,,_H,fx,,(t) 2 min{l"‘xn+j+lfxn+j(t) : J =Oa 1727 ceey p - 1}‘

Thus, the sequence {x,} is a Cauchy sequence in X if, for any ¢ > 0 and ¢t > 0, there
exists ng > 1 such that, for all n > ny,

Mxpyi—x, @) > 1 —€.

2.5 Fuzzy Normed Spaces

Now, we define the concept of fuzzy normed spaces and give some examples of
these spaces. Here the 7-norms notation is denoted by .

Definition 2.5.1 The triple (X, M, x) is called a fuzzy metric space if X is an arbi-
trary set, * is a continuous z-norm and M is a fuzzy set on X2 x (0, oo) satisfying
the following conditions: for all x, y,z € X and ¢, s > 0,

(FM1) M(x,y,0) > 0;

(FM2) M(x,y,t) =1 for all > 0 if and only if x = y;

(FM3) M(x,y,t)=M(y,x,1);

(FM4) M(x,y,t)«*M(y,z,8) <M(x,z,t+s) forallt,s > 0;
(FM5) M(x,y,-):(0,00) — [0, 1] is continuous.

Definition 2.5.2 The triple (X, N, %) is called a fuzzy normed space if X is a vector
space, * is a continuous 7-norm and N is a fuzzy set on X x (0, co) satisfying the
following conditions: for all x,y € X and ¢, s > 0,

(EN1) N(x,t) > 0;
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(FN2) N(x,t) =1 if and only if x = 0;

(FN3) N(ax,t) = N(x,t/|a|) forall a #0;
(FN4) N(x,t) * N(y,s) < N(x +y,t+5);
(FN5) N(x,-):(0,00) — [0, 1] is continuous;
(FN6) lim; oo N(x,1) =1.

Lemma 2.5.3 Let N be a fuzzy norm. Then we have
(1) N(x,t) is nondecreasing with respect to t for all x € X;
(2) Nx =y, 1) =N(y —x,1).
Proof Lett <s.Then k =s —t > 0 and we have
Nx,t)=N(x,t)* 1 =N(x,t)* N0, k) < N(x,s),
which proves (1).
To prove (2), we have

N(x—y,t)=N((—l)(y—x),t)=N<y—x, ):N(y—x,t).

t
| —1]
This completes the proof. g

Example 2.5.4 Let (X, | -||) be a normed linear space. Define a xb =abora*xb =
min(a, b) and
kt"
Nx,t)=———
kt" 4+ m||x||

for all k,m,n € RT. Then (X, N, ) is a fuzzy normed space. In particular, if k =
n =m = 1, then we have

N(x,t)

t
t+ lxll’

which is called the standard fuzzy norm induced by the norm || - ||.

Lemma 2.5.5 Let (X, N, x) be a fuzzy normed space. If we define
M(xﬂyvt)zN(-x_yvt)a

then M is a fuzzy metric on X, which is called the fuzzy metric induced by the fuzzy
norm N.

We can see that both definition and properties on fuzzy normed spaces are very
similar to those of random normed spaces. Then X equipped with uy(t) = N(x, t)
and 7" = * can be regarded as a RN-space.

Now, we extend the definition of fuzzy metric space. In fact, we extend the range
of fuzzy sets to arbitrary lattice.
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Definition 2.5.6 The triple (X, P, 7T) is called an L-fuzzy normed space (briefly,
LF-normed space) if X is a vector space, 7 is a continuous #-norm on £ and P is
an L-fuzzy set on X x (0, +00) satisfying the following conditions: for all x, y € X
and 1, s € (0, +00),

(LFN1) P(x,1) >1 Oz:

(LEN2) P(x,1) = 1. if and only if x = 0;
(LFN3) P(ax,t) =P(x, ﬁ) for any o # 0;
(LEN4) T(P(x,1), P(y,s)) <L P(x+ y,t +5);
(LFN5) P(x,-):(0,00) — L is continuous;
(LFN6) limy;— oo P(x, 1) = 1.

In this case, P is called an L-fuzzy norm (briefly, LF-norm). If P =P, ,
is an intuitionistic fuzzy set and the f-norm 7 is f-representable, then the triple
(X, Pu,v, T) is said to be an intuitionistic fuzzy normed space (briefly, IF-normed
space).

Example 2.5.7 Let (X, || - ||) be a normed linear space. Denote 7 (a, b) = (a;by,
min(ay + by, 1)) for all a = (ay, a2), b = (b1, by) € L* and let M, N be the fuzzy
sets on X x (0, o0) defined as follows:

h n
Par () :( ! m|x|| )

ht" +m||x||” ht" +m|x||

forallz,h,m,n € R*. Then (X, Py n, T) is an IF-normed space.
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