CHAPTER 2

Hilbert Spaces

1. Introduction

Fourier series played a significant role in the development of Hilbert spaces and
other aspects of abstract analysis. The theory of Hilbert spaces returns the favor
by illuminating much of the information about Fourier series. We first develop
enough information about Hilbert spaces to allow us to regard Fourier series as
orthonormal expansions. We prove that (the symmetric partial sums of) the Fourier
series of a square-integrable function converges in L2. From this basic result we
obtain corollaries such as Parseval’s formula and the Riemann—Lebesgue lemma.
We prove Bernstein’s theorem: the Fourier series of a Holder continuous function
(with exponent greater than %) converges absolutely. We prove the spectral theorem
for compact Hermitian operators. We include Sturm-Liouville theory to illustrate
orthonormal expansion. We close by discussing spherical harmonics, indicating one
way to pass from the circle to the sphere. These results leave one in awe at the
strength of nineteenth-century mathematicians.

The ideas of real and complex geometry combine to make Hilbert spaces a
beautiful and intuitive topic. A Hilbert space is a complex vector space with a
Hermitian inner product and corresponding norm, making it into a complete met-
ric space. Completeness enables a deep connection between analytic and geometric
ideas. Polarization, which holds only for complex vector spaces, also plays a signif-
icant role.

2. Norms and Inner Products

Let V be a vector space over the complex numbers. In order to discuss conver-
gence in V, it is natural to use norms to compute the lengths of vectors in V. In
Chap. 3, we will see the more general concept of a semi-norm.

DEFINITION 2.1 (Norm). A norm on a (real or) complex vector space V is a
function v — ||v|| satisfying the following three properties:

(1) |Jv]] > 0 for all nonzero v.
(2) |lev|] = || ||v]| for all ¢ € C and all v € V.
(3) (The triangle inequality) ||v + w|| < ||v|| + ||w]| for all v,w € V.

Given a norm || ||, we define its corresponding distance function by
d(u,v) = [lu = vl| (1)
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46 2. HILBERT SPACES

The function d is symmetric in its arguments v and v, its values are nonnegative,
and its values are positive when u # v. The triangle inequality

[lu = ¢l < fJu = ol| + [lv = (]|

follows immediately from the triangle inequality for the norm. Therefore, d defines
a distance function in the metric space sense (defined in the appendix) and (V,d)
is a metric space.

DEFINITION 2.2. A sequence {z,} in a normed vector space V' converges to z
if ||z, — 2|| converges to 0. A series Y zj, converges to w if the sequence {>_7_, 2}
of partial sums converges to w.

Many of the proofs from elementary real analysis extend to the setting of metric
spaces and even more of them extend to normed vector spaces. The norm in the
Hilbert space setting arises from an inner product. The norm is a much more
general concept. Before we give the definition of Hermitian inner product, we recall
the basic example of complex Euclidean space. Figures.2.1-2.3 provide geometric
intuition.

ExaMPLE 2.1. Let C™ denote complex Euclidean space of dimension n. As a
set, C™ consists of all n-tuples of complex numbers; we write z = (z1,...,2z,) for a
point in C™. This set has the structure of a complex vector space with the usual
operations of vector addition and scalar multiplication. The notation C" includes
the vector space structure, the Hermitian inner product defined by (2.1), and the
squared norm defined by (2.2). The Euclidean inner product is given by

n
(2 w) = 3 277, (2.1)
j=1
and the Euclidean squared norm is given by
12112 = (2, 2). (22)
Properties (1) and (2) of a norm are evident. We establish property (3) below.

The Euclidean norm on C” determines by (1) the usual Euclidean distance
function. A sequence of vectors in C™ converges if and only if each component
sequence converges; hence C" is a complete metric space. See Exercise 2.6.

DEFINITION 2.3 (Hermitian inner product). Let V' be a complex vector space.
A Hermitian inner product on V' is a function ( , ) from V x V to C satisfying the
following four properties. For all u,v,w € V, and for all c € C:
(1) (u+v,w) = (u,w) + (v, w).
(2) {cu,v) = c(u,v).
(3) (u,v) = (v,u). (Hermitian symmetry)
(4) (u,u) >0 for u # 0. (Positive definiteness)

Three additional properties are consequences:
o (u,v+w) = (u,v) + (u,w).
o (u,cv) = ¢{u,v).
e (0,w) =0 for all w € V. In particular, (0,0) = 0.
Positive definiteness provides a technique for verifying that a given z equals 0.
We see from the above that z = 0 if and only if (z,w) =0 for all w in V.
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DEFINITION 2.4. The norm || || corresponding to the Hermitian inner product
(', ) is defined by
ol = v/ (v, v).

A Hermitian inner product determines a norm, but most norms do not come
from inner products. See Exercise 2.5.

EXERCISE 2.1. Verify the three additional properties of the inner product.

ztHtw

FIGURE 2.1. Proof of the Cauchy—Schwarz inequality

FI1GURE 2.2. Triangle inequality

THEOREM 2.1 (The Cauchy-Schwarz and triangle inequalities). Let V' be a
complex vector space, let { , ) be a Hermitian inner product on V, and let ||v|| =
V{(v,v). The function || || defines a norm on V' and the following inequalities hold
for all z,w e V:

{2, w) < I2]] [|wl] (3)
[z + wl| < [2[] + [[w]]. (4)

PROOF. The first two properties of a norm are evident. The first follows from
the positive definiteness of the inner product. To prove the second, it suffices to
show that |c|?||v||? = ||cv||?. This conclusion follows from

[levl|* = (v, ev) = e{v, cv) = [e]*(v,0) = |ef* [Jv][*.
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Note that we have used the linearity in the first slot and the conjugate linearity in
the second slot. The third property of a norm is the triangle inequality (4).

We first prove the Cauchy—Schwarz inequality (3). For all t € C, and for all z
and w in V,

0 < ||z + twl|[* = [[2]]* + 2Re(z, tw) + [t*||w]]*. (5)

Think of z and w as fixed, and let ¢ be the quadratic Hermitian polynomial in ¢ and
t defined by the right-hand side of (5). The values of ¢ are nonnegative; we seek its
minimum value by setting its differential equal to 0. (Compare with Exercise 1.13.)
We use subscripts to denote the derivatives with respect to ¢ and . Since ¢ is real
valued, we have ¢ = 0 if and only if ¢y = 0. From (5) we find

¢ = (z,w) +t|wl]*.

When w = 0 we get no useful information, but inequality (3) is true when
w = 0. To prove (3) when w # 0, we may set

t=_<271§>
o]
in (5) and conclude that
2 2 2
T L g [ ) )
<=2 e = I = e (©)

Inequality (6) yields
{2, w)[* < []2]]?||wl[?,
from which (3) follows by taking square roots.
To establish the triangle inequality (4), we begin by squaring its left-hand side:

Iz +wl[* = [|2][* + 2Re(z, w) + [[w][*. (7)
Since Re(z, w) < |{z,w)|, the Cauchy—Schwarz inequality yields

Iz +wl® = ||2]* + 2Re(z, w) + [Jw][* < [|2]* + 2l|2]] [Jwll + [[wl|* = (2] + |[w]])*.

Taking the square root of each side gives the triangle inequality and completes the
proof that y/(v,v) defines a norm on V. O

In the proof, we noted the identity (7). This (essentially trivial) identity has
two significant corollaries.

THEOREM 2.2. Let V be a complex inner product space. The following hold:
Pythagorean theorem: (z,w) =0 implies ||z + w||> = ||z]|> + ||Jw]|*.
Parallelogram law: ||z 4+ w||? + ||z — w||? = 2(]|z|]* + |[w][?).

PROOF. The Pythagorean theorem is immediate from (7), because (z, w) = 0
implies that Re((z,w)) = 0. The parallelogram law follows from (7) by adding the
result in (7) to the result of replacing w by —w in (7). O

The two inequalities from Theorem 2.1 have many consequences. We use them
here to show that the inner product and norm on V are (sequentially) continuous
functions.
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PROPOSITION 2.1 (Continuity of the inner product and the norm). Let V' be
a complex vector space with Hermitian inner product and corresponding norm. Let
{zn} be a sequence that converges to z in V. Then, for all w € V, the sequence of
inner products (z,,w) converges to (z,w). Furthermore, ||z,|| converges to ||z||.

PRrROOF. By the linearity of the inner product and the Cauchy—-Schwarz inequal-
ity, we have
[(zn, w) = (z,w0)| = [(2n — 2, 0)| < ||z — 2]| [Jw]|. (8)
Thus, when z,, converges to z, the right-hand side of (8) converges to 0, and therefore
so does the left-hand side. Thus the inner product (with w) is continuous.
The proof of the second statement uses the triangle inequality. From it we
obtain the inequality ||z]| < ||z — 2zn|| + ||2x|| and hence

21| = [lznll <12 = 2n]|-

Interchanging the roles of z, and z gives the same inequality with a negative sign
on the left-hand side. Combining these inequalities yields

21 = Tzall T < {12 = 2nll;

from which the second statement follows. O

Suppose that > v, converges in V. For all w € V, we have

<Z Up, W) = Z(vn, w).

n n
This conclusion follows by applying Proposition 2.1 to the partial sums of the series.
We will often apply this result when working with orthonormal expansions.
Finite-dimensional complex Euclidean spaces are complete in the sense that
Cauchy sequences have limits. Infinite-dimensional complex vector spaces with
Hermitian inner products need not be complete. By definition, Hilbert spaces are
complete.

DEFINITION 2.5. A Hilbert space H is a complex vector space, together with
a Hermitian inner product whose corresponding distance function makes H into a
complete metric space.

EXERCISE 2.2. Prove the Cauchy—Schwarz inequality in R™ by writing
llz|[?[|y]|* — [{z,y)|? as a sum of squares. Give the analogous proof in C™.

EXERCISE 2.3. Prove the Cauchy-Schwarz inequality in R™ using Lagrange
multipliers.

EXERCISE 2.4. Let H be an inner product space. We showed, for all z and w
in #H, that (9) holds:

12+ wl® + [z — wl* = 2]|2]]* + 2[w]*. (9)
Why is this identity called the parallelogram law?

EXERCISE 2.5 (Difficult). Let V' be a real or complex vector space with a norm.
Show that this norm comes from an inner product if and only if the norm satisfies
the parallelogram law (9). Comment: Given the norm, one has to define the inner
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product somehow and then prove that the inner product satisfies all the necessary
properties. Use a polarization identity such as (19) to get started.

We give several examples of Hilbert spaces. We cannot verify completeness in
the last example without developing the Lebesgue integral. We do, however, make
the following remark. Suppose we are given a metric space that is not complete. We
may form its completion by considering equivalence classes of Cauchy sequences in
a manner similar to defining the real numbers R as the completion of the rational
numbers Q. Given an inner product space, we may complete it into a Hilbert space.
The problem is that we wish to have a concrete realization of the limiting objects.

ExaMPLE 2.2. (Hilbert Spaces)
(1) Complex Euclidean space C™ is a complete metric space with the distance
function given by d(z,w) = ||z — w||, and hence it is a Hilbert space.
(2) 12. Let a = {a,} denote a sequence of complex numbers. We say that a is
square-summable, and we write a € [?, if ||a]|3 = Y, |a,|? is finite. When
a,b € 12 we write

(a,b)s = Z a,b,

for their Hermitian inner product. Exercise 2.6 requests a proof that 12 is
a complete metric space; here d(a,b) = ||a — b]|2.

(3) A2?(B1). This space consists of all complex analytic functions f on the
unit disk By in C such that [, |f[*dzdy is finite. The inner product is
given by

(f,9) = | fgdedy.
1

(4) L?(Q). Let Q be an open subset of R™. Let dV denote Lebesgue measure
in R". We write L?(€2) for the complex vector space of (equivalence classes
of) measurable functions f : Q — C for which [, |f(x)[?dV (x) is finite.
When f and g are elements of L?(Q), we define their inner product by

(f.9) = /Q F@)g@dv (x).

The corresponding norm and distance function make L?(2) into a
complete metric space, so L2(€2) is a Hilbert space. See [F1] for a proof of
completeness.

EXERCISE 2.6. Verify that C™ and [? are complete.

EXERCISE 2.7. Let V be a normed vector space. Show that V is complete if
and only if whenever ) ||v,|| converges, then ) wv, converges. Compare with
Exercise 1.5.

3. Subspaces and Linear Maps

A subspace of a vector space is a subset that is itself a vector space under
the same operations of addition and scalar multiplication. A finite-dimensional
subspace of a Hilbert space is necessarily closed (in the metric space sense), whereas
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infinite-dimensional subspaces need not be closed. A closed linear subspace of a
Hilbert space is complete and therefore also a Hilbert space. Let B be a bounded
domain in C™. Then A%(B) is a closed subspace of L?(B) and thus a Hilbert space.

Next we define bounded linear transformations or operators. These mappings
are the continuous functions between Hilbert spaces that preserve the vector space
structure.

DEFINITION 2.6. Let H and H’ be Hilbert spaces. A function L : H — H' is
called linear if it satisfies properties (1) and (2). Also, L is called a bounded linear
transformation from H to H' if L satisfies all three of the following properties:

(1) L(z1 + 22) = L(21) 4+ L(22) for all z; and 25 in H.
(2) L(cz) =cL(z) for all z € H and all ¢ € C.
(3) There is a constant C such that ||L(2)|| < C||z|| for all z € H.

We write L(H,H') for the collection of bounded linear transformations from #H
to H' and L(H) for the important special case when H = H’. In this case, I denotes
the identity linear transformation, given by I(z) = z. Elements of L(H) are often
called bounded operators on H. The collection of bounded operators is an algebra,
where composition plays the role of multiplication.

Properties (1) and (2) define the linearity of L. Property (3) guarantees the
continuity of L; see Lemma 2.1 below. The infimum of the set of constants C'
that work in (3) provides a measurement of the size of the transformation L; it is
called the norm of L and is written ||L||. Exercise 2.9 justifies the terminology. An
equivalent way to define ||L]|| is the formula

L)
IIL|| = sup :
{z#0} [ 2]]
The set L(H,H') becomes a complete normed vector space. See Exercise 2.9.
We next discuss the relationship between boundedness and continuity for linear
transformations.

LEMMA 2.1. Assume L : H — H’ is linear. The following three statements are
equivalent:
(1) There is a constant C > 0 such that, for all z,
[1Lz2]| < Cll=]l.
(2) L is continuous at the origin.

(3) L is continuous at every point.

ProOOF. It follows from the e-0 definition of continuity at a point and the linear-
ity of L that statements (1) and (2) are equivalent. Statement (3) implies statement
(2). Statement (1) and the linearity of L imply statement (3) because

ILz = Lwl| = [|L(z = w)[| < C]z — w|.

We associate two natural subspaces with a linear mapping.

DEFINITION 2.7. For L € L(H,H’), the nullspace N'(L) is the set of v € H for
which L(v) = 0. The range R(L) is the set of w € H’ for which there is a v € H
with L(v) = w.
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DEFINITION 2.8. An operator P € L(H) is a projection if P? = P.

Observe (see Exercise 2.11) that P? = P if and only if (I — P)? = I — P. Thus
I — P is also a projection if P is. Furthermore, in this case, R(P) = N(I — P) and
H =R(P)+ N(P).

Bounded linear functionals, that is, elements of £(H, C), are especially impor-
tant. The vector space of bounded linear functionals on H is called the dual space
of H. We characterize this space in Theorem 2.4 below.

DEFINITION 2.9. A bounded linear functional on a Hilbert space H is a bounded
linear transformation from A to C.

One of the major results in pure and applied analysis is the Riesz lemma,
Theorem 2.4 below. A bounded linear functional on a Hilbert space is always given
by an inner product. In order to prove this basic result, we develop material on
orthogonality that also particularly illuminates our work on Fourier series.

EXERCISE 2.8. For L € L(H,H'), verify that N'(L) is a subspace of H and
R(L) is a subspace of H'.

EXERCISE 2.9. With ||L|| defined as above, show that L(H) is a complete
normed vector space.

EXERCISE 2.10. Show by using a basis that a linear functional on C" is given
by an inner product.

EXERCISE 2.11. Let P be a projection. Verify that I — P is a projection, that
R(P) =N(I — P), and that H = R(P) + N (P).

4. Orthogonality

Let H be a Hilbert space, and suppose z,w € H. We say that z and w are
orthogonal if (z,w) = 0. The Pythagorean theorem indicates that orthogonality
generalizes perpendicularity and provides geometric insight in the general Hilbert
space setting. The term “orthogonal” applies also for subspaces. Subspaces V' and
W of H are orthogonal if (v,w) = 0 for all v € V and w € W. We say that z is
orthogonal to V if (z,v) = 0 for all v in V, or equivalently, if the one-dimensional
subspace generated by z is orthogonal to V.

Let V and W be orthogonal closed subspaces of a Hilbert space; V & W denotes
their orthogonal sum. It is the subspace of H consisting of those z that can be
written z = v4+w, where v € V and w € W. We sometimes write z = v @ w in order
to emphasize orthogonality. By the Pythagorean theorem, |[v@®w||? = ||v]|> +||w]||?.
Thus v & w = 0 if and only if both v = 0 and w = 0.

We now study the geometric notion of orthogonal projection onto a closed
subspace. The next theorem guarantees that we can project a vector w in a Hilbert
space onto a closed subspace. This existence and uniqueness theorem has diverse
corollaries.

THEOREM 2.3. Let V' be a closed subspace of a Hilbert space H. For each w
in M, there is a unique z € V' that minimizes ||z — w||. This z is the orthogonal
projection of w onto V.
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o F4

FI1GURE 2.3. Orthogonal projection

ProoF. Fix w. If w € V, then the conclusion holds with z = w. In general,
let d = inf,ev||z — w||. Choose a sequence {z,} such that z, € V for all n and
[|zn, — w]|| tends to d. We will show that {z,} is a Cauchy sequence, and hence
it converges to some z. Since V is closed, z is in V. By continuity of the norm
(Proposition 2.1), ||z — w|| = d.

By the parallelogram law, we express ||z, — 2 ||? as follows:
|20 = 2l [*=1| (20 —w) + (w—2n) [|* =2 | 20— w][* +2| [ — 2| [* = || (20— 0) = (w2 ) ||*.
The last term on the right-hand side is
I )

2
Since V is a subspace, the midpoint Z"Jr% lies in V' as well. Therefore, this term
is at least 4d?, and we obtain

0 < ||2n = 2ml||* < 2||2n — w||* + 2||w — 2| |* — 4d°. (10)

As m and n tend to infinity, the right-hand side of (10) tends to 2d?+2d? —4d? = 0.
Thus, {z,} is a Cauchy sequence in H and hence converges to some z in V.

It remains only to show uniqueness. Given a pair of minimizers z and ¢, let d2,
denote the squared distance from their midpoint to w. By the parallelogram law,
we may write

Al

z+¢ z—¢ z—¢
2d% = ||z — wl|* + |I¢ — w|]* = 2|~ —wlf? +2||T||2 = 2d;, +2||T||2'

Thus d? > dfn. But d is minimal. Hence d,,, = d and thus { = z. O

COROLLARY 2.1. Let V be a closed subspace of a Hilbert space H. For each
w € H, there is a unique way to write w = v+ (¢ = v @ (, wherev € V and ( is
orthogonal to V.

PROOF. Let v be the projection of w onto V' guaranteed by Theorem 2.3. Since
w = v+ (w—v), the existence result follows if we can show that w — v is orthogonal
to V. To see the orthogonality, choose u € V. Then consider the function f of one
complex variable defined by

FO) = 1lv+ Au—w||*.
By Theorem 2.3, f achieves its minimum at A = 0. Therefore, for all A,

0 < f(N) = f(0) = 2Re(v — w, ) + |A]?||ul*. (11)
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We claim that (11) forces (v — w,u) = 0. Granted the claim, we note that v is an
arbitrary element of V. Therefore, v — w is orthogonal to V, as required.

To prove the claim, thereby completing the proof of existence, we note that
(v —w,u) is the (partial) derivative of f with respect to X at 0 and hence vanishes
at a minimum of f.

The uniqueness assertion is easy; we use the notation for orthogonal sum. Sup-
pose w =v® ¢ =v" @, as in the statement of the Corollary. Then

0=w—w=(w—v)& ()
from which we obtain v = v’ and ¢ = (. O

COROLLARY 2.2. Let V be a closed subspace of a Hilbert space H. For each
w € H, let Pw denote the unique z € V guaranteed by Theorem 2.3; Pw is also the
v guaranteed by Corollary 2.1. Then the mapping w — P(w) is a bounded linear
transformation satisfying P?> = P. Thus P is a projection.

PROOF. Both the existence and uniqueness assertions in Corollary 2.1 matter
in this proof. Given w; and ws in H, by existence, we may write w; = Pw; & (4
and wy = Pws @ (2. Adding gives

w1+ wy = (Pw1 & (1) + (Pw2 ® G2) = (Pwy + Pws) © (G + ¢2). (12)

The uniqueness assertion and (12) show that Pw; + Pws is the unique element of
V' corresponding to wy + wy guaranteed by Corollary 2.1; by definition this element
is P(wy + wsy). By uniqueness Pwy + Pwy = P(w; + w2), and P is additive. In a
similar fashion, we write w = Pw & ¢ and hence

cw = ¢(Pw) @ (.

Again by uniqueness, ¢(Pw) must be the unique element corresponding to cw guar-
anteed by Corollary 2.1; by definition this element is P(cw). Hence cP(w) = P(cw).
We have now shown that P is linear.

To show that P is bounded, we note from the Pythagorean theorem that ||w||? =
[|Pwl|? + [IC][?, and hence || Pw|| < [Jw]].

Finally we show that P2 = P. For z = v @ (, we have P(z) = v = v® 0. Hence

P%(2) = P(P(2)) = P(v®0) =v = P(z).
O

Theorem 2.3 and its consequences are among the most powerful results in the
book. The theorem guarantees that we can solve a minimization problem in diverse
infinite-dimensional settings, and it implies the Riesz representation lemma.

Fix w € H, and consider the function from H to C defined by Lz = (z, w).
Then L is a bounded linear functional. The linearity is evident. The boundedness
follows from the Cauchy—Schwarz inequality; setting C' = ||w|| yields |L(z)| < C||z||
for all z € H.

The following fundamental result of F. Riesz characterizes bounded linear func-
tionals on a Hilbert space; a bounded linear functional must be given by an inner
product. The proof relies on projection onto a closed subspace.
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THEOREM 2.4 (Riesz lemma). Let H be a Hilbert space and suppose that L €
L(H,C). Then there is a unique w € H such that

L(2) = (z,w)

for all z € H. The norm ||L|| of the linear transformation L equals ||w]|.

PROOF. Since L is bounded, its nullspace N (L) is closed. If N (L) = H, we
take w = 0, and the result is true.

Suppose that A(L) is not H. Theorem 2.3 implies that there is a nonzero
element wq orthogonal to N(L). To find such a wp, choose any nonzero element
not in N'(L) and subtract its orthogonal projection onto N (L).

Let z be an arbitrary element of H. For a complex number «, we can write

z = (z — awp) + awy.

Note that L(z — awg) = 0 if and only if o = % For each z, we therefore let

_ L
¥ = Tluyy-
Since wy is orthogonal to N'(L), computing the inner product with wy yields

L(2)

Frug ol (13)

(2, wo) = azwo||* =
From (13) we see that

L(z) = (z, WZU#—L(U)O»

and the existence result is proved. An explicit formula for w holds:

wy ——
w = ———L(wp).
[[wol[?
The uniqueness for w is immediate from the test we mentioned earlier. If
(¢, w — w'") vanishes for all ¢, then w — w’ = 0.

It remains to show that ||L|| = |Jw]||. The Cauchy—Schwarz inequality yields

1L = sup [{z,w)] < |Jw]].
I1z[]=1

Choosing HTwH for z yields

{w, w)

)Izmzllwll-

w
LI = [ L(5—
[l

Combining the two inequalities shows that ||L|| = ||w]]. O

EXERCISE 2.12. Fix w with w # 0. Define P(v) by

B (v, w)
PO = e

Verify that P? = P.
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EXERCISE 2.13. Let H = L?[—1,1]. Recall that f is even if f(—z) = f(x) and
fis odd if f(—x) = —f(x). Let V. be the subspace of even functions and V, the
subspace of odd functions. Show that V, is orthogonal to V.

EXERCISE 2.14. A hyperplane in H is a level set of a nontrivial linear functional.
Assume that w # 0. Find the distance between the parallel hyperplanes given by
(z,w) = ¢1 and (z,w) = ca.

EXERCISE 2.15. Let b = {b;} be a sequence of complex numbers, and suppose
there is a positive number C' such that

oo _ oo N
> abi| < CO a2
=1 =1

for all a € I2. Show that b € [? and that > [b;|? < C?. Suggestion: Consider the
map that sends a to " a;b;.

5. Orthonormal Expansion

We continue our general discussion of Hilbert spaces by studying orthonormal
expansions. The simplest example comes from basic physics. Let v = (a,b,¢) be a
point or vector in R3. Physicists write v = ai + bj + ck, where i, j, k are mutually
perpendicular vectors of unit length. Mathematicians write the same equation as
v = aey + bes + ces; here e; = (1,0,0) =i, e2 = (0,1,0) = j, and e3 = (0,0,1) = k.
This equation expresses v in terms of an orthonormal expansion:

aej + bes + ces = (a,b,¢) = v = (v,e1)e1 + (v,ea)es + (v, e3)es.

Orthonormal expansion in a Hilbert space abstracts this idea. Fourier series
provide the basic example, where the functions z — ™ are analogous to mutually
perpendicular unit vectors.

We assume here that a Hilbert space is separable. This term means that the
Hilbert space has a countable dense set; separability implies that the orthonormal
systems we are about to define are either finite or countably infinite sets. All the
specific Hilbert spaces mentioned or used in this book are separable. Some of the
proofs given tacitly use separability even when the result holds more generally.

DEFINITION 2.10. Let S = {z,} be a finite or countably infinite collection of
elements in a Hilbert space H. We say that S is an orthonormal system in H if, for
each n we have ||z,||? = 1, and for each n,m with n # m, we have (2, z,) = 0.
We say that S is a complete orthonormal system if, in addition, (z, z,) = 0 for all
n implies z = 0.

PROPOSITION 2.2 (Bessel’s inequality). Let S = {z,} be a countably infinite
orthonormal system in H. For each z € H, we have

Dz z)l® < Il (14)
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PrOOF. Choose z € H. By orthonormality, for each positive integer IV, we
have

N N
0< Iz =Y (2 z)zall? = |I21* = D [z, 20) [ (15)
n=1 n=1

Define a sequence of real numbers ry = ry(z) by

N
v =3 [z )
n=1

By (15), ry is bounded above by ||z||> and nondecreasing. Therefore, it has a limit
r = r(z). Bessel’s inequality follows. (]

PROPOSITION 2.3 (Best approximation lemma). Let S = {z,} be an orthonor-
mal system (finite or countable) in H. Let V be the span of S. Then, for each
z € H and each w €V,

Iz =D {2 z0) 2l < |12 = wl].

PROOF. The expression Y (z,z,)z, equals the orthogonal projection of z
onto V. Hence the result follows from Theorem 2.3. O

The limit 7(z) of the sequence in the proof of Bessel’s inequality equals ||z|[?
for each z if and only if the orthonormal system S is complete. This statement is
the content of the following fundamental theorem. In general, r(z) is the squared
norm of the projection of z onto the span of the z;.

THEOREM 2.5 (Orthonormal expansion). An orthonormal system S = {z,} is
complete if and only if, for each z € H, we have

z= Z(z,zn>zn (16)

PROOF. The cases where S is a finite set or where # is finite-dimensional are
evident. Assume then that H is infinite dimensional and S is a countably infinite
set. We first verify that the series in (16) converges. Fix z € H, and put

N
Tn = Z(z, Zn)Zn.
n=1
Define 7y as in the proof of Bessel’s inequality. For N > M, observe that
N N
ITn =TulP =1l D (mzzllP= Y szl =rv—ru.  (17)
n=M+1 n=M+1

Since {rxy} converges, it is a Cauchy sequence of real numbers. By (17), {Tn} is a
Cauchy sequence in H. Since H is complete, Ty converges to some element w of
H, and w =Y (z, 2, )2y, the right-hand side of (16). Note that (w, z,,) = (z, z,,) for
each n, so z — w is orthogonal to each z,.

We can now establish both implications. Suppose first that S is a complete
system. Since z — w is orthogonal to each z,, we have z — w = 0. Thus (16)
holds. Conversely, suppose that (16) holds. To show that S is a complete system,
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we assume that (z, z,) = 0 for all n and hope to show that z = 0. This conclusion
follows immediately from (16). O

EXERCISE 2.16. Verify (15).

EXERCISE 2.17. Let H = L?([0,1]) with the usual inner product. Let V be
the span of 1 and z. Find the orthogonal projection of 2 onto V. Do the same
problem if H = L*([-1,1]).

EXERCISE 2.18. Let H = L%([—1,1]) with the usual inner product. Apply the

Gram-—Schmidt process (see [G]) to orthonormalize the polynomials 1, z, 2%, z3.

EXERCISE 2.19. A sequence {f,} in a Hilbert space H converges weakly to f
if, for each g € H, the sequence {(f,,g)} converges to (f,g). Put H = L*([0,27]).
Put fn(x) = sin(nz). Show that {f,} converges weakly to 0, but does not converge
to 0.

EXERCISE 2.20. Assume H is infinite dimensional. Show that a sequence of
orthonormal vectors does not converge, but does converge weakly to 0.

6. Polarization

In a Hilbert space, we can recover the Hermitian inner product from the squared
norm. In addition, for each linear operator L, we can recover (Lz,w) for all z,w
from knowing (Lz, z) for all z. See Theorem 2.6. The corresponding result for real
vector spaces with inner products fails.

To introduce these ideas, let m be an integer with m > 2. Recall, for a complex
number a # 1, the sum of the finite geometric series:

1—a™
1—a’
When a is an m-th root of unity, the sum is zero. A primitive m-th root of unity
is a complex number w such that w™ = 1, but no smaller positive power equals 1.
The set of powers w’ for j =0,1,...,m — 1 forms a cyclic group I' of order m.

Let z,( be elements of a Hilbert space H. Let w be a primitive m-th root of
unity and consider averaging the m complex numbers 7||z + v(||? as 7 varies over
I". Since each group element is a power of w, this average equals

l+a+a®+ - +a™ =

1 m—1
- J Jol12
=3 Wl + i
j=0
The next proposition gives a simple expression for the average.
PROPOSITION 2.4 (Polarization identities). Let w be a primitive m-th root of

unity. For m > 3, we have

m—1

(50 = 3 wllz + i (18)

Jj=0

For m = 2, the right-hand side of (18) equals 2Re(z,().
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PROOF. We prove (18) below when m = 4, leaving the general case to the
reader. g

For m > 3, each identity in (18) expresses the inner product in terms of squared
norms. It is both beautiful and useful to recover the inner product from the squared
norm. The special case of (18) where m = 4, and thus w = 4, arises often. We state
it explicitly and prove it:

Az, C) = Iz + (I +illz +iCl]? =[]z = ¢II* — ]| — ic[[*. (19)
To verify (19), observe that expanding the squared norms gives both equations:
4Re(z,¢) = [lz + | ]z = ¢I]?

4Re(z,iC) = ||2 + i¢|[* — || — ic][*.
Observe for a € C that Re(—ia) = Im(a). Thus, multiplying the second equation
by i, using i(—¢) = 1, and then adding the two equations give (19).
In addition to polarizing the inner product, we often polarize expressions in-
volving linear transformations.

THEOREM 2.6 (Polarization identities for operators). Let L € L(H). Let w be
a primitive m-th root of unity.

(1) For m > 3, we have

% WH(L(z +wi¢), 2z 4+ wiC). (20)
7=0
(2) Form =2, we have
(Lz,¢) + (L(, 2) = %(<L(z +0,z2+¢) = (L(z=(),2 = Q). (21)

(3) Suppose in addition that (Lv,v) is real for allv € H. Then, for all z and ¢,

(Lz, () = (LG, 2).
(4) Suppose (Lz,z) =0 for all z. Then L =0.

PRrOOF. To prove (20) and (21), expand each (L(z + w’(),z + w’/() using the
linearity of L and the defining properties of the inner product. Collect similar terms,
and use the above comment about roots of unity. For m > 3, all terms inside the
sum cancel except for m copies of (Lz,(). The result gives (20). For m = 2, the
coefficient of (L(, z) does not vanish, and we obtain (21). Thus statements (1) and
(2) hold.

To prove the third statement, we apply the first for some m with m > 3 and
w™ = 1; the result is

,_.

m—

m—1
1 1 . .
il i J I\ = — I (W™ m—j
_m WH{L(z+ W),z +wi¢) = -~ g w 24 C), w724+ ().
Jj=0 J=0
(22)
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Change the index of summation by setting [ = m — j. Also observe that

w™! =w. Combining gives the first equality in (23) below. Finally, because (Lv,v)

is real and w® = w™, we obtain the second equality in (23):

Z L(¢ +w'2),( + w'z) = (I¢, ). (23)

We have now proved the third statement.

The fourth statement follows from (20); each term in the sum on the right-hand
side of (20) vanishes if (Lw,w) = 0 for all w. Thus (Lz,{) = 0 for all {. Hence
Lz =0 for all z, and thus L = 0. O

The reader should compare these results about polarization with our earlier
results about Hermitian symmetric polynomials.

EXERCISE 2.21. Give an example of a linear map of R? such that (Lu,u) =0
for all u but L is not 0.

7. Adjoints and Unitary Operators

Let I denote the identity linear transformation on a Hilbert space H. Let
L € L(H). Then L is called invertible if there is a bounded linear mapping 7" such
that LT = TL = I. If such a T exists, then T is unique and written L~!. We
warn the reader (see the exercises) that, in infinite dimensions, LT = I does not
imply that L is invertible. When L is bounded, injective, and surjective, the usual
set-theoretic inverse is also linear and bounded.

Given a bounded linear mapping L, the adjoint of L is written L*. It is defined
as follows. Fix v € H. Consider the map v — (Lu,v) = ¢,(u). It is obviously a
linear functional. It is also continuous because

|60 ()| = [(Lu, 0)| < [[Lul| [[o]| < [[ul[ [[L]] [Jo]| = e||u]l, (24)

where the constant c is independent of u. By Theorem 2.4, there is a unique w, € H
for which ¢,(u) = (u,w,). We denote w, by L*v. It is easy to prove that L* is
itself a bounded linear mapping on H, called the adjoint of L.

The following properties of adjoints are left as exercises:

PROPOSITION 2.5. Let L, T € L(H). The following hold:

(1) L* : H — H is linear.

(2) L* is bounded. (In fact ||L*|| = ||L]|.)

(3) (L*)* = L.

(4) (Lu,v) = (u, L*v) for all u,v.

(5) (LT)" =T"L".
PRrROOF. See Exercise 2.22. O
EXERCISE 2.22. Prove Proposition 2.5.

DEFINITION 2.11. A bounded linear transformation L on a Hilbert space H is

called Hermitian or self-adjoint if L = L*. It is called unitary if it is invertible and
L*=L""
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The following simple but beautiful result characterizes unitary transformations:

PROPOSITION 2.6. The following are equivalent for L € L(H):
(1) L is surjective and preserves norms: ||Lul|> = ||u]|* for all u.

(2) L is surjective and preserves inner products: (Lu, Lv) = (u,v) for all u,v.
(3) L is unitary: L* = L1,

Proor. If L € L(H), then (Lu,Lv) = (u,v) for all u,v if and only if
(u, L*Lv) = (u,v) for all u,v and thus if and only if (u,(L*L — I)v) = 0 for
all w,v. This last statement holds if and only if (L*L — I)v = 0 for all v. Thus
L*L = I. If L is also surjective, then L* = L~', and therefore the second and third
statements are equivalent.

The second statement obviously implies the first. It remains to prove the subtle
point that the first statement implies the second or third statement. We are given
(L*Lz,z) = (z,2) for all z. Hence ((L*L —I)z,z) = 0. By part 4 of Theorem 2.6,
L*L — I = 0, and the second statement holds. If L is also surjective, then L is
invertible and hence unitary. O

The equivalence of the first two statements does not require L to be surjective.
See the exercises for examples where L preserves inner products, but L is not
surjective and hence not unitary.

PROPOSITION 2.7. Let L € L(H). Then
N(L) =R(L")*
N(L*) = R(L)*.
PRrOOF. Note that L*(z) = 0 if and only if (L*z,w) = 0 for all w, if and only
if (z, Lw) = 0 for all w, and if and only if z 1 R(L). Thus, the second statement

holds. When L € L(H), it is easy to check that (L*)* = L. See Exercise 2.22. The
first statement then follows from the second statement by replacing L with L*. O

EXERCISE 2.23. If L : C™" — C" and L = L*, what can we conclude about the
matrix of L with respect to the usual basis (1,0,...,0), ..., (0,0,...,1)?

EXERCISE 2.24. Suppose U is unitary and Uz = Az for z # 0. Prove that
|A| = 1. Suppose L is Hermitian and Lz = Az for z # 0. Prove that X is real.

EXERCISE 2.25. Let L : {2 — [? be defined by
L(Zl,ZQ,. ) = (0721722,. )
Show that ||Lz||2 = ||z||2 for all z but that L is not unitary.

EXERCISE 2.26. Give an example of a bounded linear L : H — H that is
injective but not surjective and an example that is surjective but not injective.

EXERCISE 2.27. Let V' be the vector space of all polynomials in one variable.
Let D denote differentiation and J denote integration (with integration constant
0). Show that DJ = I but that JD # I. Explain.

EXERCISE 2.28. Give an example of an operator L for which ||L?|| # ||L||*.
Suppose L = L*; show that ||L?|| = ||L||*.
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We close this section with an interesting difference between real and complex
vector spaces, related to inverses, polarization, and Exercise 2.21. The formula (*)
below interests the author partly because, although no real numbers satisfy the
equation, teachers often see it on exams.

DEFINITION 2.12. A real vector space V' admits a complex structure if there is
a linear map J : V' — V such that J? = —1.

It is easy to show (Exercise 2.30) that a finite-dimensional real vector space
admits a complex structure if and only if its dimension is even. The linear trans-
formation J : R? — R? corresponding to the complex structure is given by the

matrix
0 -1
J= (1 . ) |
PROPOSITION 2.8. Let V' be a vector space over R. Then there are invertible
linear transformations A, B on 'V satisfying

(A+B)t=A"14B? (*)
if and only if V' admits a complex structure.
PRrROOF. Invertible A, B satisfying (*) exist if and only if
I=(A+B) A '+B Y)Y=I4+BA'+1+AB L.

Put C = BA™!. The condition (*) is therefore equivalent to finding C' such that
0 =1+ C+ C~', which is equivalent to 0 = I + C + C2%. Suppose such C' exists.
Put J = \%(I—i— 2C'). Then we have
1 1 1
J? = S+ 20)* = §(1+40+402) = g(—3I+4(I+ C+0C?)=-1I.

Hence V' admits a complex structure. Conversely, if V' admits a complex structure,
then J exists with J2 = —I. Put C = =123 then [ 4 C + C2 = 0. O

COROLLARY 2.3. There exist n by n matrices satisfying (*) if and only if n is
even.

EXERCISE 2.29. Explain the proof of Proposition 2.8 in terms of cube roots of
unity.

EXERCISE 2.30. Prove that a finite-dimensional real vector space with a com-
plex structure must have even dimension. Hint: Consider the determinant of J.

8. A Return to Fourier Series

The specific topic of Fourier series motivated many of the abstract results about
Hilbert spaces, and it provides one of the best examples of the general theory. In
return, the general theory clarifies the subject of Fourier series.

Let h be (Riemann) integrable on the circle and consider its Fourier series
S h(n)e™*. Recall that its symmetric partial sums Sy are given by

N
Sn(h)(x) = Z h(n)ei®.
n=—N
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When h is sufficiently smooth, Sy (h) converges to h. See, for example, Theorem 2.8.
We show next that Sy (h) converges to h in L?. Rather than attempting to prove
convergence at each point, this result considers an integrated form of convergence.

THEOREM 2.7. Suppose [ is integrable on the circle. Then ||Sn(f)— f|lzz — 0.

PRrROOF. Given ¢ > 0 and an integrable f, we first approximate f to within
5 in the L? norm by a continuous function g. Then we approximate g by a trig
polynomial p to within §. See below for details. These approximations yield

1 =pllze <11 = gllee +llg =plle < 5 + 5 =< (25)
Once we have found this p, we use orthogonality as in Theorem 2.3. Let N be
at least as large as the degree of p. Let Vv denote the (2N + 1)-dimensional (hence
closed) subspace spanned by the functions e?® for |n| < N. By Theorem 2.3, there
is a unique element w of Vy minimizing ||f — w||z2. That w is the partial sum
SN (f), namely, the orthogonal projection of f onto V.
By Proposition 2.3, we have

Lf = Sn(Hllz> < IIf = pllz- (26)

for all elements p of Viy. Take p to be the polynomial in (25) and take N at least
the degree of p. Combining (26) and (25) then gives

f = Sn(Ollzz < If = pllzz < (If = gllzz + [lg — pllrz <€ (27)

It therefore suffices to verify that the two above approximations are valid.

Given f integrable, by Lemma 1.6 we can find a continuous g such that sup(|g|) <
sup(|f]|) = M and such that ||f — g||z: is as small as we wish. Since

1 27 sup f_g 2
1=l = 5= [ 1r—gPar < U= [T gjar < ontjp—glin, 9
T Jo ™ 0

we may choose g to bound the expression in (28) by §.
Now g is given and continuous on the circle. By Corollary 1.8, there is a trig
polynomial p such that ||g — p|[z~ < §. Therefore,

1 27
or [ l9ta) = pl@)Pdz <lg = ol
T Jo
Hence [|g—p||z2 < § as well. We have established both approximations used in (25)
and hence the conclusion of the theorem. g

llg—pll7. =

COROLLARY 2.4 (Parseval’s formula). If f is integrable on the circle, then
Do = 11£117=- (29)

PROOF. By the orthonormality properties of the functions x — €%, f —Sn(f)
is orthogonal to Viy. By the Pythagorean theorem, we have

N
1£172 = 1If = Sn(DIIF2 + ISv (D72 = 1 = Sn(H)l[72 + D_IF ). (30)
—N

Letting N tend to infinity in (30) and using Theorem 2.7 give (29). O
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COROLLARY 2.5 (Riemann—Lebesgue lemma). If f is integrable on the circle,
then limy,| o f(n) = 0.

PROOF. The series in (29) converges; hence its terms tend to 0. O
Polarization has several applications to Fourier series. By (29), if f and g are

integrable on the circle S1, then S7|f|? = ||f]]2. and similarly for g. It follows by
polarization that

Foe =3 Fnim) == [ f@)g@de = {f,q)z (31)

T o 0
COROLLARY 2.6. If f and g are integrable on the circle, then (31) holds.
COROLLARY 2.7. The map f — F(f) from L*(SY) to I? satisfies the relation

<]:f7]:g>2 = <fag>L2'

The analogue of this corollary holds for Fourier transforms on R, R"”, or in even
more abstract settings. Such results, called Plancherel theorems, play a crucial role
in extending the definition of Fourier transform to objects (called distributions)
more general than functions. See Chap. 3.

THEOREM 2.8. Suppose f is continuously differentiable on the circle. Then its
Fourier series converges absolutely to f.

PROOF. By Lemma 1.8, we have f(n) = I'0) for # 0. We first apply the

in

Parseval identity to the Fourier series for f’, getting

or [ 1@z = ST 1F ) = S f), (32)

Then we use the Cauchy-Schwarz inequality on S| f(n)| to get

. A 1 A A 1.1 A 1
Y 1) = 1f(0)] +ZE nlfn) < If )1+ —3)? O i)z, (33)
By (32), the second sum on the right-hand side of (33) converges. The sum }_, £
also converges and can be determined exactly using Fourier series. See Exercise 2.31.
Since each partial sum is continuous and the partial sums converge uniformly,

the limit is continuous. By Corollary 1.10, the Fourier series converges absolutely
to f. O

EXERCISE 2.31. Compute the Fourier series for the function f defined by f(z) =

(m —x)? on (0,2m). Use this series to show that > 7 | 1 = %2.

EXERCISE 2.32. Find > 7 | (:112)71. Suggestion: Find the Fourier series for x?
on (—m, 7).
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9. Bernstein’s Theorem

We continue by proving a fairly difficult result. We include it to illustrate
circumstances more general than Theorem 2.8 in which Fourier series converge
absolutely and uniformly.

DEFINITION 2.13. Let f : S' — C be a function and suppose o > 0. We say
that f satisfies a Holder condition of order « if there is a constant C such that

|f(z) = f(y)] < Clz —y|* (34)
for all ,y. Sometimes we say f is Holder continuous of order a.
By the mean value theorem from calculus, a differentiable function satisfies the

inequality

[f(x) = f(y)] < suplf'(H)] |2 —yl.
Hence, if f’ is bounded, f satisfies a Holder condition with « = 1. Note also that
a function satisfying (34) must be uniformly continuous.

THEOREM 2.9. Suppose f is Hélder continuous on the circle of order a and
o> % Then the Fourier series for f converges absolutely and uniformly.

Proor. The Holder condition means that there is a constant C such that
inequality (34) holds. We must somehow use this condition to study

> Ifm)l.
neZz

The remarkable idea here is to break up this sum into dyadic parts and estimate
differently in different parts. For p a natural number, let R, denote the set of n € Z
for which 2P~! <'|n| < 2P. Note that there are 2” integers in R,. We have

DI =1fO)1+)> > 1)l (35)
neZz P neR,

In each R,, we can use the Cauchy-Schwarz inequality to write

2

SimI< | D FmlP ] @) (36)

neRr, neR,

At first glance the factor 2% looks troublesome, but we will nonetheless verify con-
vergence of the Fourier series.
Let g be defined by gp(z) = f(z 4+ h) — f(z — h). The Holder condition gives

lgn(@)|* < C?|20]** = C'[n|*?,

and integrating we obtain

llgnllz= < C'Inf*.
By the Parseval-Plancherel theorem (Corollary 2.7), for any h, we have

S g () = llgnll3e < >, (37)
nez
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Now we compute the Fourier coefficients of g, relating them to f. Using the
definition directly, we get

~ 1 o —inT
o) = o= [ () = flo =) e
T Jo
Changing variables in each term and recollecting give
~ 1 o —zny inh 1 o —iny ,—inh - £
gn(n) = o— | flye dy — o= [ fly)e”" e ""dy = 2isin(nh) f(n).
7 Jo 27

Hence, we have

|G (n)]? = dsin®(nh)| f(n)[*.
Putting things together, we obtain, with a new constant c,

sin®(nh)|f(n)|* = Igh <7 Z |G (n)]* < clh|*. (38)

Also we have

> 1FmE = 3 (f)sin? = Y i e (9

neR, neR, sm neR,
Put h = . Then Z < |n|h < % and hence § < sin %(nh) < 1. Using sin®(nh) > z
n (39), we get
A 1 R
S e <t S g (40)
neR, neR,
For h = 54+, we have
~ ™ e —2a
lgn(n)]* < Crl g [ < G272 (41)

Combining (40), (41), and (36) (note the exponent % there) gives

Y@= £+ > [f ) <|f0) +C ) 27725, (42)

nez P nER, p
The series on the right-hand side of (42) is of the form ) 2P, where z = 2 =
If « > 1, then |z| < 1, and this series converges. O

The conclusion of the theorem fails if f satisfies a Holder condition of order %
See [K].

10. Compact Hermitian Operators

Fourier series give but one of many examples of orthonormal expansions. In
this section, we establish the spectral theorem for compact Hermitian operators.
Such operators determine complete orthonormal systems consisting of eigenvectors.
In the next section, we apply this result to Sturm—Liouville equations. These second-
order ordinary differential equations with homogeneous boundary conditions played
a major role in the historical development of operator theory and remain significant
in current applied mathematics, engineering, and physics.
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An operator on a Hilbert space is compact if it can be approximated (in norm)
arbitrarily well by operators with finite-dimensional range. We mention this char-
acterization for the intuition it provides. The precise definition, which also applies
in the context of complete normed vector spaces, involves subsequences. In older
literature, compact operators are called completely continuous.

DEFINITION 2.14. Suppose L € L(H). Then L is compact if whenever {z,} is
a bounded sequence in H, then {L(z,)} has a convergent subsequence.

By the Bolzano—Weierstrass theorem (see Theorem 5.2), each bounded sequence
in C? has a convergent subsequence. Hence an operator with finite-dimensional
range must be compact. A constant multiple of a compact operator is compact.
The sum of two compact operators is compact. We check in Proposition 2.10 that
the composition (on either side) of a compact operator with a bounded operator
is compact. On the other hand, the identity operator is compact only when the
Hilbert space is finite dimensional. Proposition 2.13 gives one of many possible
proofs of this last statement.

We will use the following simple characterization of compact operators. See
[D1] for many uses of the method. The two statements in the proof are equivalent,
with different values of €. In the statement, we write f for an element of H to
remind us that we are typically working on function spaces.

PROPOSITION 2.9. Suppose L € L(H). Then L is compact if (and only if), for
each € > 0, there are compact operators K. and T, such that either of the following
(equivalent) statements holds:

LI < ell £l + K]
LA < ell 1P + 1 TefI>-

PRrROOF. Assuming the first inequality, we prove that L is compact. The proof
assuming the second inequality is similar. Let {f,} be a bounded sequence; we may
assume that ||f,|| < 1. For each positive integer m, we set ¢ = L in the inequality.
We obtain a sequence {L,,} of compact operators. Thus each sequence {L,,(f.)}
has a convergent subsequence. By the Cantor diagonalization trick, there is a single
subsequence { fp, } such that {L,,(fn,)} converges for all m. By the inequality, for
each m, we have

L(fri) = LUl = 1L (fri = fa)l] < (%)ank = full + 1B (Faie = fr)I

Given ¢ > 0, we can bound the first term by g by choosing - < %. Since { Ly, (fn, )}
converges, it is Cauchy; we can therefore bound the second term by g by picking
ny, and n; sufficiently large. Therefore, the sequence {L(f,,)} is also Cauchy in H.
Since H is complete, {L(fy,)} converges, and thus L is compact. O

If we know that L is compact, then we may choose K. or T, equal to L. The
point of Proposition 2.9 is the converse statement. We can often prove compactness
by proving an inequality, instead of dealing with subsequences. We illustrate with
several examples, which can of course also be proved using subsequences.

PROPOSITION 2.10. Suppose L € L(H) and L is compact. If M,T € L(H),
then ML and LT are compact.
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Proor. That LT is compact follows directly from the definition of compactness.
If {z,} is a bounded sequence, then {T'z,} also is, and hence {L(T'z,)} has a con-
vergent subsequence. Similarly, M L is compact.

That M L is compact can also be proved using Proposition 2.9 as follows. Given
€> 0, put ¢ = e Put K = [|M]|| L; then K is compact. We have

IMLz|| < [[M]] [|L2]] < [[MI(e|l2]] + || L2]]) < ell2l] + [ K 2]
By Proposition 2.9, M L is also compact. (]

PROPOSITION 2.11. Let {L,} be a sequence of operators with lim, ||L,—L|| = 0.
If each L,, is compact, then L is also compact.

PROOF. Given € > 0, we can find an n such that ||L — L,|| < e. Then we write
LA < L = La) I+ [ Ln (I < €l 1]+ L (H)]]-
The result therefore follows from Proposition 2.9. O

A converse of Proposition 2.11 also holds; each compact operator is the limit
in norm of a sequence of operators with finite-dimensional ranges. We can also use
Proposition 2.9 to prove the following result.

THEOREM 2.10. Assume L € L(H). If L is compact, then L* is compact.
Furthermore, L is compact if and only if L*L is compact.

PRrROOF. See Exercise 2.35. O

EXERCISE 2.33 (Small constant large constant trick). Given e > 0, prove that
there is a C¢. > 0 such that

(@, 9)] < ellz]|* + CellylI*.

EXERCISE 2.34. Prove that the second inequality in Proposition 2.9 implies
compactness.

EXERCISE 2.35. Prove Theorem 2.10. Use Proposition 2.9 and Exercise 2.23 to
verify the if part of the implication.

Before turning to the spectral theorem for compact Hermitian operators, we
give one of the classical types of examples. The function K in this example is called
the integral kernel of the operator T'. Such integral operators arise in the solutions
of differential equations such as the Sturm-Liouville equation.

PROPOSITION 2.12. Let H = L*([a,b]). Assume that (z,t) — K(x,t) is con-
tinuous on [a,b] X [a,b]. Define an operator T on H by

b
1) = [ KG.0f@d
Then T is compact. (The conclusion holds under weaker assumptions on K.)

PROOF. Let {f,} be a bounded sequence in L?([a,b]). The following estimate
follows from the Cauchy—-Schwarz inequality:

T(fa)(x) = T(fa)(y)]* < sup|K (2, t) — K(y,1)]?|| ful[72-
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Since K is continuous on the compact set [a,b] X [a, b], it is uniformly continuous.
It follows that the sequence {T'(f,)} is equi-continuous and uniformly bounded.
By the Arzela—Ascoli theorem, there is a subsequence of {T'(f,)} that converges
uniformly. In particular, this subsequence converges in L?. Hence, {T(f,)} has a
convergent subsequence, and thus 7' is compact.

EXERCISE 2.36. Suppose that the integral kernel in Proposition 2.12 satisfies
[P 1K (2, t)|dt < Cand [ |K(z,t)|dz < C. Show that T € £(#) and that ||T]| < C.

A compact operator need not have any eigenvalues or eigenvectors.

EXAMPLE 2.3. Let L : I — [? be defined by
Z9 Z3

L(Zlsza"') = (052173535"

).

Think of L as given by an infinite matrix with sub-diagonal entries 1, %, %, .... Then
L is compact but has no eigenvalues.

EXERCISE 2.37. Verify the conclusions of Example 2.3.

Compact Hermitian operators, however, have many eigenvectors. In fact, by
the spectral theorem, there is a complete orthonormal system of eigenvectors.
Before proving the spectral theorem, we note two easy results about eigenvectors
and eigenvalues.

PROPOSITION 2.13. An eigenspace of a compact operator corresponding to a
nonzero eigenvalue must be finite dimensional.

PROOF. Assume that L is compact and L(z;) = Az; for a sequence of orthogo-
nal unit vectors z;. Since L is compact, L(z;) = Az; has a convergent subsequence.
If XA # 0, then z; has a convergent subsequence. But no sequence of orthogonal unit
vectors can converge. Thus A = 0. 0

PROPOSITION 2.14. The eigenvalues of a Hermitian operator are real, and the
etgenvectors corresponding to distinct eigenvalues are orthogonal.

PRrROOF. Assume Lf = Af and f # 0. We then have

MNP = (Lff) = (£ L7 f) = (f, L) = (f. M) = AlIfIP.

Since || f||> # 0, we conclude that A = \.
The proof of the second statement amounts to polarizing the first. Thus we
suppose Lf = Af and Lg = pug where A # p. We have, as pu is real,

My g) = (Lf,9) = (f, Lg) = u(f, 9)-
Hence 0 = (A — p)(f, g) and the second conclusion follows. O
PROPOSITION 2.15. Suppose L € L(H) is Hermitian. Then
IL|| = sup [(Lz,z)|. (43)

[1z]|=1
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PROOF. Let a equal the right-hand side of (43). We prove both inequalities:
a < ||L|| and ||L|| < a. Since |(Lz, z)| < ||Lz|| ||2||, we see that
o= sup (L2, 2)] < Sup |[Lz]] = ||L]].
z||=1 z||=1
The opposite inequality is harder. It uses the polarization identity (21) and the
parallelogram law (9). We first note, by Theorem 2.6, that o = 0 implies L = 0.
Hence we may assume « # 0. Since L is Hermitian, it follows that

(Lz,w) = (z, Lw) = (Lw, z).
Applying this equality in (21), we obtain, for all z, w,
4Re(Lz,w) = (L(z + w), z + w) — (L(z — w), z — w).
Using (L, ¢) < a|[¢||* and the parallelogram law, we obtain
ARe(Lz,w) < ofllz +wl|* + |1z — wl[*) = 2a(][][* + [Jw]]). (44)
Set w = £2 in (44) to get

AP IILZII
(0%

20(|l2l1* + —5—).

Simplifying shows that this inequality is equivalent to 2HLZH < 2al|z||?, which
implies ||Lz||?> < o?||z||>. Hence ||L]| < a. O

THEOREM 2.11 (Spectral theorem). Suppose L € L(H) is compact and Her-
mitian. Then there is a complete orthonormal system consisting of eigenvectors of
L. FEach eigenspace corresponding to a nonzero eigenvalue is finite dimensional.

PROOF. The conclusion holds if L is the zero operator; we therefore ignore this
case and assume ||L|| > 0.

The first fact needed is that there is an eigenvalue A with |A| = ||L||. Note also,
since L is Hermitian, that in this case A is real and thus A = %||L||. In the proof,
we write « for £||L|[; in general only one of the two values works.

Because L is Hermitian, the subtle formula (43) for the norm of L holds. We
let {2, } be a sequence on the unit sphere such that |(Lz,, z,)| converges to ||L||.
Since L is compact, we can find a subsequence (still labeled {z,}) such that L(z,)
converges to some w.

We will show that ||w|| = ||L|| and also that az, converges to w. It follows that
2, converges to z = £. Then we have a unit vector z for which Lz = w = a2, and
hence the first required fact will hold.

To see that ||w|| = ||L||, we prove both inequalities. Since the norm is contin-
uous and ||z,|| = 1, we obtain

[|wl| = Tim || Lz, || < [|L]].

To see the other inequality, note that |(Lz,, z,)| is converging to ||L|| and L(z,) is
converging to w. Hence |(w, z,)| is converging to ||L|| as well. We then have

L[| = lim [(w, z,)| < [|w]].

Thus [w]] = ||L].
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Next we show that az, converges to w. Consider the squared norm
1L(20) — oz||* = [|L(2)|* — a2Re(Lz,, z) + [IL]*.

The right-hand side converges to ||w||> — 2||L||* + ||L||* = 0. Therefore, the left-
hand side converges to 0 as well, and hence w = lim(az, ). Thus z, itself converges
to z = . Finally

L(z) =lim(L(z,)) = w = az.
We have found an eigenvector z with eigenvalue a = +||L||. By Proposition 2.13, the
eigenspace F, corresponding to « is finite dimensional and thus a closed subspace
of H.

Once we have found one eigenvalue A\, we consider the orthogonal complement
Ei‘l of the eigenspace Ey,. Then E/t is invariant under L, and the restriction
of L to this subspace remains compact and Hermitian. We repeat the procedure,
obtaining an eigenvalue Ao. The eigenspaces Fy, and E), are orthogonal. Con-
tinuing in this fashion, we obtain a nonincreasing sequence of (absolute values of)
eigenvalues and corresponding eigenvectors. Each eigenspace is finite dimensional,
and the eigenspaces are orthogonal. We normalize the eigenvectors to have norm 1;
hence there is a bounded sequence {z;} of eigenvectors. By compactness, {L(z;)}
has a convergent subsequence. Since L(z;) = A;z;, also {);z;} has a convergent
subsequence. A sequence of orthonormal vectors cannot converge; the subsequence
cannot be eventually constant because each eigenspace is of finite dimension. The
only possibilities are that there are only finitely many nonzero eigenvalues, or that
the eigenvalues A; tend to 0.

Finally we establish completeness. Let M denote a maximal collection of or-
thonormal eigenvectors, including those with eigenvalue 0. Since we are assuming H
is separable, we may assume the eigenvectors are indexed by the positive integers.
Let P, denote the projection onto the span of the first n eigenvectors. We obtain

n

Pn(C) = Z<C7 Zj>2j'
j=1
Therefore
IL(Pn(C)) = L(OI < max(jzni1) | Az] [[C]]- (45)
Since the eigenvalues tend to zero, (45) shows that L(P,({)) converges to L(().
Hence we obtain the orthonormal expansion for w in the range R(L) of L:
w=L(¢) = (¢, 2)\z. (46)
j=1
The nullspace N (L) is the eigenspace corresponding to eigenvalue 0, and hence
any element of A/(L) has an expansion in terms of vectors in M. Finally, for any
bounded linear map L, Proposition 2.7 guarantees that N'(L) & R(L*) = H. If also
L = L*, then N(L) ® R(L) = H. Therefore, 0 is the only vector orthogonal to M,
and M is complete. O

EXERCISE 2.38. Try to give a different proof of (43). (In finite dimensions, one
can use Lagrange multipliers.)

EXERCISE 2.39. Show that L*L is compact and Hermitian if L is compact.
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REMARK 2.1. The next several exercises concern commutators of operators.

DEFINITION 2.15. Let A, B be bounded operators. Their commutator [A, B] is
defined by AB — BA.

EXERCISE 2.40. Let A, B, C be bounded operators, and assume that [C, A] and
[C, B] are compact. Prove that [C, AB] is also compact. Suggestion: Do some easy
algebra and then use Proposition 2.10.

EXERCISE 2.41. For a positive integer n, express [A, B"] as a sum of n terms
involving [A, B]. What is the result when [A, B] = I?

EXERCISE 2.42. Use the previous exercise to show that there are no bounded
operators satisfying [A, B] = I. Suggestion: Compute the norm of [4, B"] in two
ways and let n tend to infinity.

EXERCISE 2.43. Suppose that (Lz,z) > 0 for all z and that ||L]| < 1. Show
that ||[I — L|| < 1.

EXERCISE 2.44. Assume L € £(#). Show that L is a linear combination of two
Hermitian operators.

EXERCISE 2.45. Fill in the following outline to show that a Hermitian operator
A is a linear combination of two unitary operators. Without loss of generality, we
may assume |[A|| < 1. If =1 < a <1, put b = 1 —a? Then a = $((a +ib) +
(a — b)) is the average of two points on the unit circle. We can analogously write
the operator A as the average of unitary operators A + ¢B and A — iB, if we can
find a square root of I — A2, Put L = I — A?. We can find a square root of L as
follows. We consider the power series expansion for /1 — z and replace z by AZ.
In other words, v/I — C' makes sense if ||C|| < 1. You will need to know the sign of
the coefficients in the expansion to verify convergence. Hence VI = /T — (I — L)
makes sense.

We close this section with a few words about unbounded operators. This term
refers to linear mappings, defined on dense subsets of a Hilbert space, but not
continuous.

Suppose D is a dense subset of a Hilbert space H and L is defined and linear
on D. If L were continuous, then L would extend to a linear mapping on H. Many

important operators are not continuous. Differentiation % is defined and linear on

in

a dense set in L2([0,27]), but it is certainly not continuous. For example, {<—}

mn

inw
€

converges to 0 in L?, but %( —) = e"® whose L? norm equals 1 for each n. To
apply Hilbert space methods to differential operators, we must be careful.

Let L : D(L) C H — H be an unbounded operator. The domain D(L*) of
the adjoint of L is the set of v € H such that the mapping v — (Lu,v) is a
continuous linear functional. By the Riesz lemma, there is then a unique w such
that (Lu,v) = (u,w). We then put L*(v) = w. It can happen that the domain of
L* is not dense in H.

We say that an unbounded (but densely defined) operator L is Hermitian if
(Lz,w) = (2, Lw)
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for all z and w in the domain of L. We say that L is self-adjoint if D(L) = D(L*)
and the two maps agree there. Thus, L is Hermitian if Lz = L*z when both are
defined and self-adjoint if also D(L) = D(L*). Tt often happens, with a given
definition of D(L), that L* agrees with L on D(L), but L is not self-adjoint. One
must increase the domain of L, thereby decreasing the domain of L*, until these
domains are equal, before one can use without qualification the term self-adjoint.

EXERCISE 2.46 (Subtle). Put L = i-L on the subspace of differentiable func-
tions f in L2([0,1]) for which f(0) = f(1) = 0. Show that (Lf g) = (f,Lg),
but that L is not self-adjoint. Can you state precisely a domain for L making it
self-adjoint? Comment: Look up the term absolutely continuous and weaken the

boundary condition.

11. Sturm—Liouville Theory

Fourier series provide the most famous example of orthonormal expansion, but
many other orthonormal systems arise in applied mathematics and engineering. We
illustrate by considering certain differential equations known as Sturm—Liouville
equations. Mathematicians from the nineteenth century were well aware that many
properties of the functions sine and cosine have analogues when these functions
are replaced by linearly independent solutions of a second-order linear ordinary
differential equation. In addition to orthonormal expansions, certain oscillation
issues generalize as well. We prove the Sturm separation theorem, an easy result,
to illustrate this sort of generalization, before we turn to the more difficult matter
of orthonormal expansion.

Consider a second-order linear ordinary differential equation y” + qy’ +ry = 0.
Here ¢ and r are continuous functions of x. What can we say about the zeroes of
solutions? Figure 2.4 illustrates the situation for cosine and sine. Theorem 2.12
provides a general result.

y y" +y=0

—-1.0F

FIGURE 2.4. Sturm separation
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THEOREM 2.12 (Sturm separation theorem). Let y1 and ys be linearly
independent (twice differentiable) solutions of y" + qy’ + ry = 0. Suppose that
a < B and «a,B are consecutive zeroes of y1. Then there is a unique x in the
interval (o, B) with y2(x) = 0. Hence the zeroes of y1 and y2 alternate.

PRroOF. Consider the expression W (z) = yi(x)yh(z) — y2(z)y; (z), called the
Wronskian. We claim that it does not vanish. Assuming the claim, W has only one
sign. We evaluate W at « and S, obtaining —y2(a)y; (a) and —y2(5)y;(5); these
expressions must have the same sign. In particular, ¥} does not vanish at these
points. Also, the values y](a) and yj(8) must have opposite signs because « and
B are consecutive zeroes of y;. Hence the values of y2(a) and y2(8) have opposite
signs. By the intermediate value theorem, there is an x in between o and § with
y2(x) = 0. This = must be unique, because otherwise the same reasoning would
find a zero of y; in between the two zeroes of y3. Since o and [ are consecutive
zeroes of y;, we would get a contradiction.

It remains to show that W is of one sign. We show more in Lemma 2.2. [l

LEMMA 2.2. Suppose y1 and yo both solve L(y) = y" + qy’ + ry = 0. Then y;
and yo are linearly dependent if and only if W vanishes identically. Also y1 and yo
are linearly independent if and only if W vanishes nowhere.

PROOF. Suppose first that W (zg) = 0. Since W (zy) is the determinant of the
matrix of coefficients, the system of equations

(e ) (1) = (0)

has a nontrivial solution (c1, ¢2). Since L is linear, the function y = ¢;y1 + cays also
satisfies L(y) = 0. Since y(z9) = 3/(x0) = 0, this solution y is identically 0. (See
the paragraph after the proof.) Therefore, the matrix equation holds at all z, the
functions y; and yo are linearly dependent, and W is identically 0.

Suppose next that W is never zero. Consider a linear combination c1y1 + cay2
that vanishes identically. Then also ¢1y] + coy) vanishes identically, and hence

Y1 Y2\ (e _ (O

vi va) \c2 0/
Since W is the determinant of the matrix here and W(x) # 0 for all z, the only
solution is ¢; = ¢o = 0. Therefore, y; and y- are linearly independent. O

In the proof of Lemma 2.2, we used the following standard fact. The second-
order linear equation Ly = 0, together with initial conditions y(x¢) and y'(zo), has
a unique solution. This result can be proved by reducing the second-order equation
to a first-order system. Uniqueness for the first-order system can be proved using
the contraction mapping principle in metric spaces. See [Ro].

We now turn to the more sophisticated Sturm-Liouville theory. Consider the
following second-order differential equation on a real interval [a,b]. Here y is the
unknown function; p, ¢, w are fixed real-valued functions, and the o; and 3; are
real constants. These constants are subject only to the constraint that both (SL.1)
and (SL.2) are nontrivial. In other words, neither o + o nor 3?2 + 33 is 0. This
condition makes the equation into a boundary value problem. Both endpoints of the
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interval [a, b] matter. The functions p’, ¢, w are assumed to be continuous, and the
functions p and w are assumed positive:

(py') + qy+ dwy =0 (SL)
ary(a) + azy’(a) =0 (SL.1)
Bry(b) + Bay' (b) = 0. (SL.2)

REMARK 2.2. It is natural to ask how general the Sturm—Liouville equation is
among second-order linear equations. Consider any second-order ODE of the form
Py’ +Qy' + Ry =0, where P # 0. We can always put it into the Sturm-Liouville
form by the following typical trick from ODE, called an integrating factor. We
multiply the equation by an unknown function v and figure out what « must be to
put the equation in Sturm—Liouville form:

0 =uPy" +uQy' +uRy = (py') +ry.

To make this equation hold, we need uP = p and u() = p’. Hence we require

)
b=
putting the equation in the form (SL).

. . Q . Q .
which yields p = e/ 7. Hence, if we choose u = %ef P, we succeed in

The following lemma involving the Wronskian gets used in an important inte-
gration by parts below, and it also implies that each eigenspace is one dimensional.
Note that the conclusion also holds if we replace g by g, because all the parameters
in (SL), (SL.1), and (SL.2) are real.

LEMMA 2.3. If f and g both satisfy (SL.1) and (SL.2), then
f(a)g'(a) = f'(a)g(a) = f(b)g'(b) — f'(b)g(b) = 0. (47)
PROOF. Assume both f and g satisfy the conditions in (SL). We then can write
f) ) (Br) _ (0
G o) () =) (48)

and similarly for the values at a and the ;. Equations (SL.1) and (SL.2) are
nontrivial; hence (48) and its analogue for a have nontrivial solutions, and each of

the matrices /
(o 7o)
) S

)
(f (b ' b)>
g(b)  g'(b)
has a nontrivial nullspace. Hence, each determinant vanishes. O

COROLLARY 2.8. Suppose f and g both solve the same (SL) equation. Then f
and g are linearly dependent.

PROOF. By Lemma 2.3, the two expressions in (47) vanish. But these expres-
sions are Wronskian determinants. By Lemma 2.2, the two solutions are linearly
independent if and only if their Wronskian determinant is (everywhere) nonzero. [
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Later we use one more fact about the Wronskian.

LEMMA 2.4. Assume u,v both solve the Sturm—Liouville equation (py') +qy =0.
Let W = wv' —u'v. Then pW is constant. If u,v are linearly independent, then this
constant s nonzero.

PRrROOF. We want to show that (p(uv’ —u'v))’ = 0. Computing the expression,
without any assumptions on w, v, gives

pluv” —u"v) + p'(uwv’ — u'v).
Since u and v satisfy the equation, we also have
pu” +p'u 4+ qu=0
pv” 4+ p'v' 4+ qu = 0.
Multiply the first equation by v, the second by u, and then subtract. We get
p(u v —uw") +p'(u'v —uw') =0,

which is what we need. The last statement follows immediately from Lemma 2.2.
O

Each A for which (SL) admits a nonzero solution is called an eigenvalue of the
problem, and each nonzero solution is called an eigenfunction corresponding to this
eigenvalue. The terminology is consistent with the standard notions of eigenvalue
and eigenvector, as noted in Lemma 2.5 below. In general, when the elements of
a vector space are functions, one often says eigenfunction instead of eigenvector.
Corollary 2.8 thus says that the eigenspace corresponding to each eigenvalue is one
dimensional.

To connect the Sturm—Liouville setting with Fourier series, take p = 1, ¢ = 0,
and w = 1. We get the familiar equation

Y+ Ay =0,

whose solutions are sines and cosines. For example, if the interval is [0, 7], and we
assume that (SL.1) and (SL.2) give y(0) = y(7) = 0, then the eigenvalues are m?
for positive integers m. The solutions are y,,(x) = sin(mz).

Sturm-Liouville theory uses the Hilbert space H = (L?([a, b]), w), consisting of
(equivalence classes of) square-integrable measurable functions with respect to the
weight function w. The inner product is defined by

b [R—
(. G)w = / F@)g@w(z)ds.

Although the Sturm-Liouville situation is much more general than the equation
y" 4+ Ay = 0, the conclusions in the following theorem are remarkably similar to the
results we have proved about Fourier series:

THEOREM 2.13. Consider the Sturm—Liouville equation (SL) with boundary
conditions (SL.1) and (SL.2). There is a countable collection of real eigenvalues
Aj tending to oo with Ay < Ay < .... For each eigenvalue, the corresponding
eigenspace is one dimensional. The corresponding eigenfunctions ¢; are orthog-
onal. After dividing each ¢; by a constant, we assume that these eigenfunctions
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are orthonormal. These eigenfunctions form a complete orthonormal system for H.
If f is continuously differentiable on [a,b], then the series

oo

> (Fr bi)ws(x) (49)

j=1
converges to f(x) at each point of (a,b).

Proving this theorem is not easy, but we will give a fairly complete proof. We
begin by rephrasing everything in terms of an unbounded operator L on H. On an
appropriate domain, L is defined by

b= (2 (o) 1) -

The domain D(L) contains all twice continuously differentiable functions satisfying
the (SL) boundary conditions. Eigenvalues of the Sturm-Liouville problem corre-
spond to eigenvalues of this operator L.

LEMMA 2.5. Equation (SL) is equivalent to Ly = Ay.
PROOF. Left to the reader. O

PROPOSITION 2.16. The operator L is Hermitian. In other words, if f and g are
twice continuously differentiable functions on [a,b] and satisfy (SL.1) and (SL.2),
then

<qug>w = <f7 Lg>w~ (51)

ProOOF. The proof amounts to integrating by parts twice and using the bound-
ary conditions. One integration by parts gives

b —
whaho = [ o (o 0 @) + )] @) ) gua)ds

w(x)

b
—— [ (505 @) + a1 (@)) ey
‘ b - b -
0@ @@ [ @@ G2)

We integrate the middle term by parts, and stop writing the variable z, to obtain

o b d o b
Lhgl=-p fal 40 17~ [ 1508 do- [ argdn. (3)

After multiplying and dividing by w, the integrals in (53) become

- e il + [

a

b J—
[ (5 o)+ ) was = .29 (54)
The boundary terms in (53) become
p(@) (@) @)~ f'(@)g(@)) |- (55)

Since both f and g satisfy the homogeneous boundary conditions, the term in (55)
vanishes by Lemma 2.3 (using g instead of g). Hence (Lf, g)w = {f, Lg)w- O
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In order to proceed with Sturm-Liouville theory, we must introduce some
standard ideas in operator theory. These ideas are needed because differential oper-
ators such as L are defined on only a dense subspace of the Hilbert space and they
cannot be extended continuously to the whole space.

Let H be a Hilbert space and let L : D(L) C H — H be a densely defined linear
operator. For each complex number z, consider the operator L — zI.

DEFINITION 2.16. The complex number z is said to be in the spectrum of L if
(L — 2I)~! does not exist as a bounded linear operator. Otherwise z is said to be
in the resolvent set of L, and (L — 2I)~! is called the resolvent of L at z.

Thus, when z is in the resolvent set, (L — zI)~! exists and is bounded. The
equation (L — 2I)71f = uf is then equivalent to f = (L — 2I)(uf) and hence also
to Lf = (2 + %)f Thus, to find the eigenvalues of L, we can study the resolvent
(L — zI)~!. If L is Hermitian and we choose a real k in the resolvent set for L,
then (L — kI)~! is Hermitian. For L as in the Sturm-Liouville setup, the resolvent
is a compact operator. In general, an unbounded operator L on a Hilbert space has
compact resolvent if there is a z for which (L — zI)~! is compact. A generalization
of Theorem 2.13 holds when L is self-adjoint and has compact resolvent.

In order to prove Theorem 2.13, we need to know that the resolvent (L —kI)~!
is compact. We will use Green’s functions.

11.1. The Green’s Function. In this subsection, we construct the Green’s
function G in a fashion often used in physics and engineering. It will follow that a
complete orthonormal system exists in the Sturm—Liouville setting. Let L be the
operator defined in (50).

First we find a solution u to Lu = 0 that satisfies the boundary condition at
a. Then we find a solution v to Lv = 0 that satisfies the boundary condition at b.
We put

¢ =p(@)W(z) = p(a)(u(z)'(z) — ' (z)v(z)). (56)
By Lemma 2.4, when v and v are linearly independent, ¢ is a nonzero constant.

We then define the Green’s function as follows. Put G(z,t) = Lu(t)v(z) for
t <z and G(z,t) = Lu(z)v(t) for t > z. Then G extends to be continuous when
x =t. Thus Lu = 0 and Lv = 0. The following important theorem and its proof
illustrate the importance of the Green’s function:

THEOREM 2.14. Consider the Sturm—Liouville equation (SL). Let L be the Her-
mitian operator defined by (50). Let u be a solution to Lu = 0 satisfying boundary
condition (SL.1) and v a solution to Lv = 0 with boundary condition (SL.2). As-
sume u and v are linearly independent, and define ¢ by (56). Given f continuous,

define y by

x b b
y(x):% / u(:z:)(vfw)(t)dt—l—% / o(@) (wfw)(t)dt = / Gl () dt.  (57)

Then y is twice differentiable and Ly = f.
PROOF. We start with (57) and the formula (58) for L:

_ /
Ly="2y Ly 1, (58)
w w w
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We apply L to (57) using the fundamental theorem of calculus and compute.
The collection of terms obtained where we differentiate past the integral must van-
ish because u,v satisfy Lu = Lv = 0. The remaining terms arise because of the
fundamental theorem of calculus. The first time we differentiate we get

 (wop)(2) — = (wop)(x) = 0.

The minus sign arises because the second integral goes from x to b, rather than
from b to x.
The next time we differentiate we obtain the term

%(uzv — uvg) fw,

with all terms evaluated at x. The term in parentheses is minus the Wronskian.
By Lemma 2.4, the entire expression simplifies to —(fw)(z). When we multiply by
=1, from formula (58) of L, this expression becomes f(z). We conclude, as desired,
that Ly = f. Since u, v are twice differentiable, p is continuously differentiable, and
w, f are continuous, it follows that y is twice differentiable. O

Things break down when we cannot find linearly independent u and v, and the
Green’s function need not exist. In that case, we must replace L by L — kI for a
suitable constant k. The following example illustrates several crucial points:

EXAMPLE 2.4. Consider the equation Ly = y” = 0 with 3/(0) = ¢/(1) = 0.
The only solutions to Lu = 0 are constants and hence linearly dependent. If ¢
satisfies (56), then ¢ = 0. We cannot solve Ly = f for general f. Suppose that
y'(0) =¢'(1) = 0 and that y” = f. Integrating twice, we then must have

y(z) —y(0)+[ /tf(s)dsdt.

By the fundamental theorem of calculus, 3(0) = 0 and /( fo s)ds. If fo fis
not 0, then we cannot solve the equation Ly = f. In this case 0is an e1genvalue for
L, and hence, L~! does not exist. The condition fol f = 0 means that the function
f must be orthogonal to the constants.

To finish the proof of the Sturm—Liouville theorem, we need to show that there is
areal k such that (L—kI)~! exists as a bounded operator. This statement holds for
all k sufficiently negative, but we omit the proof. Assuming this point, we can find
linearly independent u and v satisfying the equation, with u satisfying the boundary
condition at a and v satisfying it at b. We conbtruct the Green’s function for L — kI
as above. We write (L —kI)~ f f(#)G(z,t)dt. Since G is continuous on the
rectangle [a,b] X [a,b], (L — kI) is compact, by Proposmon 2.12. Theorem 2.11
then yields the desired conclusions.

We can express things in terms of orthonormal expansion. Let L be the operator
defined in (50). Given f, we wish to solve the equation Lg = f. Let {¢;} be the
complete orthonormal system of eigenfunctions for (L — kI)~!. This system exists
because (L — kI)~! is compact and Hermitian. We expand ¢ in an orthonormal
series as in (49), obtaining

Z/ w(t)dt 6().
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Differentiating term by term yields
o0 b
(Lg)(x) = f(x) =) (/ g(t)¢j(f)w(t)df> Ajdi(@).
j=1 \’e

The function f also has an orthonormal expansion:

=) b _
fa) =3 ( / f<t>¢j<t>w<t>dt> 6;(a).

a

We equate coefficients to obtain

b2 4 (VDD b
o) = | 2%?3@10@)1‘@) at= [ G@oroun @ (o)

We summarize the story. Assume that (L — kI)~! has a continuous Green’s
function. Then (L — kI)~! is compact and Hermitian, and a complete orthonormal
system of eigenfunctions exists. Decompose the Hilbert space into eigenspaces Ey ;.
If h € Ey, we have (L — kI)h = A\jh. Note that no \; equals 0. Thus, restricted to
E);, we can invert L — kI by

(L —kI)"Y(h) = /\ih.

j
We invert in general by inverting on each eigenspace and adding up the results.
Things are essentially the same as in Sect.4 of Chap. 1, where we solved a linear
system when there was an orthonormal basis of eigenvectors. In this setting, we see
that the Green’s function is given by

j=1 J

We consider the simple special case where Ly = —y” on the interval [0, 1] with
boundary conditions y(0) = y(1) = 0. For each positive integer m, there is an
eigenvalue m2m?, corresponding to the normalized eigenfunction ﬁsin(mmc). In

this case, G(x,t) has the following expression:

G(%t):{:z:(l—t) a:<t}' (60)

t(l—x) x>t

We can check this formula directly by differentiating twice the relation
1

y(:z:)_(l—:zr)/owtf(t) dt—i—a:/ (1—1)f(t) dt.

Of course, we discovered this formula by the prescription from Theorem 2.14. The
function x is the solution vanishing at 0. The function 1—x is the solution vanishing

at 1. See Fig.2.5. Using orthonormal expansion, we have another expression for
G(z,1):

Gla,t) =2 i sin(mmz) sin(mwt)'

m2m?2

m=1
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x(1-t) t(1-x)

G(x,t)
FIGURE 2.5. Green’s function for the second derivative

See [F2, G] for many computational exercises involving Green’s functions for
Sturm-Liouville equations and generalizations. See also [GS] for excellent intuitive
discussion concerning the construction of the Green’s function and its connections
with the Dirac delta function.

EXERCISE 2.47. Assume 0 < z < 3. Put L = —(:£)2 on [0, 1] with boundary
conditions y(0) = y(1) = 0. Equate the two expressions for the Green’s function to
establish the identity

4 = (—D)sin((2r + 1)7)
] Z;) (2r + 1)

Prove that this identity remains true at x = %

EXERCISE 2.48. Consider the equation y” + Ay = 0 with boundary conditions
y(0) —y(1) = 0 and 3'(0) + ¢'(1) = 0. Show that every A is an eigenvalue. Why
doesn’t this example contradict Theorem 2.137 Hint: Look carefully at (SL.I)

and (SL.2).

EXERCISE 2.49. Suppose L € £(H) is Hermitian. Find lim,, . ||L"||%. Sug-
gestion: If L = L*, then ||L?|| = ||L]|*.

EXERCISE 2.50. Put the Bessel equation x2y” + xy’ + (A\22% — v?)y = 0 into
Sturm—Liouville form.

EXERCISE 2.51. Find the Green’s function for the equation Ly = z%y” — 2xy’ +
2y = f on the interval [1,2] with y(1) = y(2) = 0. (First put the equation in
Sturm-Liouville form.) How does the answer change if the boundary condition is
replaced by y'(1) = ¢'(2) = 0?7

11.2. Exercises on Legendre Polynomials. The next several exercises in-
volve the Legendre polynomials. These polynomials arise throughout pure and
applied mathematics. We will return to them in Sect. 13.

We first remind the reader of a method for finding solutions to linear ordinary
differential equations, called reduction of order. Consider a linear differential op-
erator L of order m. Suppose we know one solution f to Ly = g. We then seek
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a solution of the form y = wf for some unknown function u. The function «" will
then satisfy a homogeneous linear differential equation of order m — 1. We used a
similar idea in Sect.4.1 of Chap. 1, where we replaced a constant ¢ with a function
c(xz) when solving an inhomogeneous equation. We note, when m = 2, that the
method of reduction of order yields a first-order equation for u’ which can often be
solved explicitly.

EXERCISE 2.52. Verify that the method of reduction of order works as described
above.

EXERCISE 2.53. The Legendre equation (in Sturm—Liouville form) is
(1 —2*)y) +n(n+1)y =0. (61)
Find all solutions to (61) when n = 0 and when n = 1. Comment: When n = 1,

finding one solution is easy. The method of reduction of order can be used to find
an independent solution.

EXERCISE 2.54. Let n be a nonnegative integer. Show that there is a polynomial
solution P, to (61) of degree n. Normalize to make P,(1) = 1. This P, is called
the n-th Legendre polynomial. Show that an alternative definition of P, is given
for |z| <1 and [¢| < 1 by the generating function

V1 —2xt + V1—2zt+ 12 Z

Show that the collection of these polynomlals forms a complete orthogonal system

for L?([-1,1],dz). Show that ||P,||*> = 2n2+1. If needed, look ahead to the next

section for one method to compute these norms.

EXERCISE 2.55. Obtain the first few Legendre polynomials by applying the

Gram-Schmidt process to the monomials 1, z, 2%, 23, 2.

ExAMPLE 2.5. The first few Legendre polynomials (See Fig. 2.6):

o Py(z) =1.

o Pi(x) =u.

o Py(x) = 31“’2—1

o Py(z) = 52’ sz

o Py(z) = 359047301 +3

EXERCISE 2.56. Let P, be the n-th Legendre polynomial. Show that
(n+1)Pyy1(x) — (2n+ DzP,(x) + nP,_1(z) = 0.

Use the method of difference equations to find constants aj, such that

z) =Y ar(l+z)F 1 —a)"*
k=0

EXERCISE 2.57. Here is an alternative proof that the Legendre polynomials are
orthogonal. First show that P, = c,(4)"(z> — 1)". Then integrate by parts to

show that p
(Pas £) = eal=1)"{(@ = 1", ()" D)

In other words, f is orthogonal to P, if f is a polynomial of degree less than n.
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EXERCISE 2.58. Let P, denote a Legendre polynomial. Define the associated
Legendre functions with parameters [ and m by

PIMw) = (1= 2)F ()" i(z).
e Show when m is even that P/™ is a polynomial.
e Obtain a differential equation satisfied by F/™ by differentiating m-times
the Sturm-Liouville equation (61) defining F.
e Show that P/™(x) is a constant times a power of (1—2?) times a derivative
of a power of (1 — 2?).

The associated Legendre functions arise in Sect. 13 on spherical harmonics.

0
- Py(x)
Py(x)
0.5
-1.0 .5 L 0, 1.0
= Px) Py P P
-1.0F

FIGURE 2.6. Legendre polynomials

12. Generating Functions and Orthonormal Systems

Many of the complete orthonormal systems used in physics and engineering
are defined via the Gram-Schmidt process. Consider an interval I in R and the
Hilbert space L?(I,w(x)dz) of square-integrable functions with respect to some
weight function w. Starting with a nice class of functions, such as the monomials,
and then orthonormalizing them, one obtains various special functions. The Gram—
Schmidt process often leads to tedious computation.

Following the method of Exercise 2.54, we use generating functions to investi-
gate orthonormal systems. In addition to the Legendre polynomials, we give two
examples of importance in physics, the Laguerre polynomials and the Hermite poly-
nomials. We return to the Hermite polynomials in Chap. 3, where we relate them
to eigenfunctions of the Fourier transform.
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We will use a simple proposition relating orthonormal systems and generating
functions. We then show how the technique works for the Laguerre and Hermite
polynomials.

Before stating and proving this proposition, we discuss vector-valued convergent
power series. Let B denote the open unit disk in C. Let H be a Hilbert space; it is
often useful to consider complex analytic functions f: B — H.

Consider a power series A(z) = Y A, 2", where the coefficients A4, lie in H.
This series converges at the complex number z if its partial sums there form a
Cauchy sequence in H. We define a function A : B — H to be complex analytic if
there is a sequence {4, } in H such that the series

[o ]
g A, z"
n=0

converges to A(z) for all z in B. On compact subsets of B, the series converges in
norm, and we may therefore rearrange the order of summation at will.

PrOPOSITION 2.17. Let ‘H be a Hilbert space, and suppose A : B — H is
complex analytic with A(t) = Y7 Ant™. Then the collection of vectors {A,}
forms an orthonormal system in H if and only if, for all t € B,

1
AD|)P? = ——.
IAGIP = 77

Proor. Using the absolute convergence on compact subsets to order the sum-

mation as we wish, we obtain

o0

JA@P = D {(An, At (62)

m,n=0

Comparison with the geometric series yields the result: the right-hand side of (62)
equals 17—1‘”2 if and only if (A,,, A,,) equals 0 for n # m and equals 1 forn =m. O

DEFINITION 2.17. The formal series
o0
S L
n=0
is the ordinary generating function for the sequence {L,}. The formal series
o0
tn
> Lnsg
n!
n=0
is the exponential generating function for the sequence {L,}.

Explicit formulas for these generating functions often provide powerful insight
as well as simple proofs of orthogonality relations.

ExAMPLE 2.6 (Laguerre polynomials). Let H = L?([0,00),e %dz) be the
Hilbert space of square-integrable functions on [0, c0) with respect to the measure
e *dz. Consider functions L,, defined via their generating function by

Alz,t) = 3 La(@)t" = (1 — )V exp (fﬁ) .
n=0




12. GENERATING FUNCTIONS AND ORTHONORMAL SYSTEMS 85

Note that > 0 and [¢t| < 1. In order to study the inner products (L, L,,),
we compute ||A(z,t)||>. We will find an explicit formula for this squared norm;
Proposition 2.17 implies that the L,, form an orthonormal system.
We have
—at - —xt
|A(z,8)[2 = (1 — t) L exp <1—”3t) (1-%)Lexp < i ) .

1—t

Multiplying by the weight function e™ and integrating, we obtain

Az, ]2 = (1— )11 — 7)1 /OOO exp (—x(l T i)) de.

1—¢t 1-—%
Computing the integral on the right-hand side and simplifying shows that
1 1 1
Az, )| = - — = :
el = i 1r o & 1P

From Proposition 2.17, we see that {L,,} forms an orthonormal system in H.

The series defining the generating function converges for [¢| < 1, and each L,
is real valued. In Exercise 2.60, we ask the reader to show that the functions L,
satisfy the Rodrigues formula

e’ d " n_—x
L,(x) = o (E) (x"e™®) (63)
and hence are polynomials of degree n. They are called the Laguerre polynomials,
and they form a complete orthonormal system for L2([0,00),e %dz). Laguerre
polynomials arise in solving the Schrodinger equation for a hydrogen atom (Fig.
2.7).

Li®)  Lyx)

FIGURE 2.7. Laguerre polynomials
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A similar technique works for the Hermite polynomials, which arise in many
problems in physics, such as the quantum harmonic oscillator. See pp. 120-122 in
[GS]. We discuss these polynomials at the end of Chap.3. One way to define the
Hermite polynomials is via the exponential generating function

exp(2at —17) = > Hp(x (64)

The functions H,, are polynomials and form an orthogonal set for H=L2(R, e~*" dx).
With this normalization, the norms are not equal to unity. In Exercise 2.62, the
reader is asked to study the Hermite polynomials by mimicking the computations
for the Laguerre polynomials. Other normalizations of these polynomials are also

common. Sometimes the weight function used is e2 . The advantage of our
normalization is Theorem 3.9.

The technique of generating functions can also be used to find normalizing
coefficients. Suppose, such as in the Sturm—Liouville setting, that the collection
{fn} for n > 0 forms a complete orthogonal system. We wish to find ||f,||L2.
Assume that we have found the generating function

= Z fu(x)t"
n=0

explicitly. We may assume ¢ is real. Taking L2 norms (in z), we discover that || f,,
must be the coefficient of t*" in the series expansion of ||B(z, t)||%..

We illustrate this result by solving part of Exercise 2.54. The generating func-
tion for the Legendre polynomials is known to be

1
V1—2at+ 12

By elementary calculus, its L? norm on [—1,1] is found to satisfy

12

B(z,t) =

1B )3 = 1 (log(1 +1) ~log(1 — ).

Expanding log(1 £ ¢) in a Taylor series shows that

t2n

1B, 0|3 = 22 —

Hence ||P,[|3. = ﬁ
EXERCISE 2.59. Fill in the details from the previous paragraph.

EXERCISE 2.60.

(1) With L,, as in Example 2.6, verify the Rodrigues formula (63). Suggestion:
Write the power series of the exponential on the right-hand side of (63)
and interchange the order of summation.

(2) Show that each L, is a polynomial in z. Hint: The easiest way is to
use (1).

(3) Prove that {L,,} forms a complete system in L ([0,00), e %dx).
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EXERCISE 2.61. For x > 0, verify that

I

"0 n+ 0 +
Suggestion: Integrate the relation

—xIs

1—s

Z Ly (x)s™ = (1 —s)"" exp( )
n=0

over the interval [0, 1] and then change variables in the integral.

EXERCISE 2.62 (Hermite polynomials). Here H,, is defined by (64).
(1) Use (64) to find a simple expression for

Z Hy,(z)t" Z H,,(z)s™.
n=0 m=0

(2) Integrate the result in (1) over R with respect to the measure e~ da.
se to show that the Hermite polynomials form an orthogonal system
3) U 2 h h he H ite poly ials fi hog 1 sy
with

||Hal? = 27nly/7.
(4) Prove that the system of Hermite polynomials is complete in L?(R, e‘w2dx).

EXERCISE 2.63. Replace the generating function used for the Legendre polyno-
mials by (1 — 2zt +2)~* for A > —% and carry out the same steps. The resulting
polynomials are the wultraspherical or Gegenbauer polynomials. Note that the Le-
gendre polynomials are the special case when \ = % See how many properties of

the Legendre polynomials you can generalize.

13. Spherical Harmonics

We close this chapter by discussing spherical harmonics. This topic provides
one method to generalize Fourier series on the unit circle to orthonormal expansions
on the unit sphere. One approach to spherical harmonics follows a thread of history,
based on the work of Legendre. This approach relates the exercises from Sect. 11
on Legendre polynomials to elementary physics and relies on spherical coordinates
from calculus. Perhaps the most elegant approach, given in Theorems 2.15 and 2.16,
uses spaces of homogeneous polynomials. We discuss both approaches.

Let S? denote the unit sphere in real Euclidean space R?. Let A denote the
Laplace operator Z?:l a%zj." We would like to find a complete orthonormal system
for L?(S?) whose properties are analogous to those of the exponentials e
unit circle. Doing so is not simple.

Recall that Newton’s law of gravitation and Coulomb’s law of electric charge
both begin with a potential function. Imagine a mass or charge placed at a single
point p in real Euclidean space R3. The potential at x due to this mass or charge
is then a constant times the reciprocal of the distance from x to p. Let us suppose

nT

on the
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that the mass or charge is located at the point (0,0,1). The potential at the point
x = (21, x2,23) is then (See Fig. 2.8)
c c

=2l V@t + (@12

(65)

FI1GURE 2.8. The colatitude ¢

We wish to express (65) in spherical coordinates. We write

x = (21, x2,x3) = (pcos(#)sin(¢), psin(0)sin(¢), pcos(¢))

where p is the distance to the origin, 6 is the usual polar coordinate angle in the
(x1,x2) plane measuring longitude, and ¢ is the colatitude. Thus, 0 < 6§ < 2,
whereas 0 < ¢ < w. These conventions are common in calculus books, but the
physics literature often interchanges 6 and ¢. Also, sometimes r is used instead of
p. In many sources, however, r is reserved for its role in cylindrical coordinates,
and thus 72 = 22 + y2.
Writing (65) in spherical coordinates we obtain
c c

I[x — pl| - V14 p2 —2pcos(¢)

The denominator in (66) is the same expression as in the generating function for the
Legendre polynomials P, from Exercise 2.54, with ¢ replaced by p and x replaced
by cos(@). Therefore, we can rewrite (66) as follows:

(66)

CZP cos(9))]|x|["™. (67)

IX—pII

The potential function from (65) is harmonic away from p. We leave the com-
putation to Exercise 2.64. We write the Laplace operator in spherical coordinates:

AU = Ggn 1) + s SL ) + oo, (69

We attempt to solve the Laplace equation A(f) = 0 using separation of vari-
ables, generalizing Exercise 1.57. Thus we assume that

f(p,0,9) = A(p)B(¢)C(0). (69)
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Plugging (69) into the Laplace equation yields the equation

1 1
0= (p*A’'BC), + ——(sin(¢)AB'C)y + ——ABC". 70
(p )P sm(gb) (Sln(¢) )¢ sin2 ((b) ( )
After dividing by ABC, we obtain
2 1 i 1 I 1
pe A" +2pA B B 1 C
0=(— )+ — +cot(¢p) = + —5——. 71
( Y )+B+CO(¢)B+sin2(¢)O (71)

The first fraction in (71) depends on p; the other terms do not. Hence there is a
constant A such that

PP A" +2pA = \A. (72)
Furthermore, we also have
B/I B/ .9 Cl/ .9
(§ + cot(¢)§> sin®(¢) + = —Asin® (o). (73)

The only solutions to the (72) for A that are continuous at zero are A(p) = cp' for
nonnegative integers [. It follows that A = (I 4 1).

Now we look at (73). Again by grouping the 6 and ¢ terms separately, we
obtain two equations:

O = (74)
sin?(¢) (f + cot(¢)% + )\) = L. (75)

Now (74) must be periodic in 6. Hence p is the square of an integer k. We see
that C(6) = ce’™™®. Also (75) becomes

B// B/
. 2 b= b _ 2
sin®(¢) ( B + cot(¢) B —l—)\) k°. (76)
Simplifying (76) leads to the equation
2
B" +cot(¢)B" + (I(1+1) — #)B =0. (77)
2(9)

Equation (77) evokes the differential equation defining the Legendre polynomials.
In fact, if we make the substitution z = cos(¢), then (77) is precisely equivalent
(See Exercise 2.66) to the equation

(1 —2*)By, — 228, + <l(l +1) — &) B =0. (78)

The solutions PF to (78) are the associated Legendre functions from Ex-
ercise 2.58 when k£ > 0 and related expressions when k£ < 0. The function
e PF(cos(¢)) is the spherical harmonic Y}*(6, ). The integer parameter k varies
from — to [, yielding 2/ + 1 independent functions. The functions p'e®*® PF(cos(¢))
are harmonic. The functions Y;* are not themselves harmonic in general; on the
sphere each Y/C is an eigenfunction of the Laplacian with eigenvalue —I(I + 1).

A Wikipedia page called Table of spherical harmonics lists these Ylk, including
the normalizing constants, for 0 <[ < 10 and all corresponding k£ . The functions
Y} and Y are orthogonal, on L?(S?), unless k = a and [ = b. These functions
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form a complete orthogonal system for L?(S?). Remarkable additional properties
whose discussion is beyond the scope of this book hold as well.

We next approach spherical harmonics via homogeneous polynomials. Things
are simpler this way but perhaps less useful in applied mathematics.

We will work in R, although we will write some formulas explicitly when n = 3.
Let x = (x1,...,2,) denote the variables. A polynomial p(x) is homogeneous of
degree k if p(tx) = t*p(x). Homogeneous polynomials are therefore determined
by their values on the unit sphere. It is often useful to identify a homogeneous
polynomial p(x) with the function

p(x)
P6I = e

which is defined in the complement of the origin, agrees with p on the sphere, and
is homogeneous of degree 0. See Proposition 2.18. For each m, we write H,, for the
vector space of homogeneous harmonic polynomials of degree m. In Theorem 2.16,
we will compute the dimension of H,,. When n = 3, its dimension turns out
be 2m + 1. We obtain spherical harmonics by restricting harmonic homogeneous
polynomials to the unit sphere.

ExaMpLE 2.7. Put n = 3. When m = 1, the harmonic polynomials z, y, z form
a basis for H;. For m = 2, the following five polynomials form a basis for Ho:

.,Ty
e 12
° Yz
o 22 4 y? — 222
o 12 —2y% + 22

Note that the harmonic polynomial —2x2 +y2 + 22 is linearly dependent on the last
two items in the list.

It will be as easy to work in R” as it is in R3. We write v - w for the usual
inner product of v, w in R™. We assume n > 2.

Let V,,, denote the vector space of homogeneous polynomials of degree m in
the variable x in R". We regard H,,, as a subspace of V;,. The dimension of V,
is the binomial coefficient (m:fl_ 1). We have a map M : V,;, — V12 given by
multiplication by ||x||?>. The Laplace operator A maps the other direction. These
operators turn out to be adjoints. See Theorem 2.16.

We begin with a remarkable formula involving the Laplacian on harmonic, ho-
mogeneous polynomials on R™. The function P in Proposition 2.18 below is homo-
geneous of degree 0, and hence its Laplacian is homogeneous of degree —2. This
observation explains why we must divide by ||x||? in (79).

PROPOSITION 2.18. Let p be a harmonic, homogeneous polynomial of degree |
on R™. Qutside the origin, consider the function P defined by

Plx) = p(x)

BN

Then we have

A(P) = —I(l+n—2)—=. (79)

P(x)
[l I?
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Restricted to the sphere, P defines an eigenfunction of the Laplacian with eigenvalue
—l(l4+n—2). When n = 3, P is therefore a linear combination of the spherical
harmonics Ylk with =1 < k <.

PROOF. See Exercise 2.72 for the computation yielding (79). The second state-
ment follows from (79) by putting ||x||? equal to 1. The last statement follows from
the discussion just after (78). O

Consider the Hilbert space L?(S™" 1), where S"~! is the unit sphere in n-
dimensions, and n > 2. In order to integrate over the unit sphere, we use n-
dimensional spherical coordinates. We put x = pv, where p = ||x|| and v lies on
the unit sphere. We then can write the volume form dV on R" as

dV(x) = p"tdp do(v).

Let f be a function on R"™. Away from 0, we define a function F' by
X
F(x) = f(57) = f(v).
[l

The function F' satisfies F(tx) = F(x) when ¢ > 0. Such a function is called
positive homogeneous of degree 0. We note a special case of Euler’s formula for such
functions, when F' is differentiable. See Exercise 2.71 for a more general statement.

PROPOSITION 2.19. Assume F is differentiable and F(tx) = F(x) for t > 0
and all x. Then dF (x)-x = 0.

PROOF. Apply 4 to the equation F(tx) = F(x) and set ¢ = 1. O

Let x be a smooth function on R with the following properties:
(1) x(0) =0.
(2) x(t) tends to 0 as t tends to infinity.
(3) ;7 x(t*)t"~'dt = 1. (Here n is the dimension.)
Given a smooth function w, we wish to compute f gn—1 wdo. Because of prop-
erty (3) of x, the integration formula (80) holds. It allows us to express integrals
over the sphere as integrals over Euclidean space:

b4 ° ne
[ xtiPoEav = [ [T e wwydot) = [ wdo. (50
Rn ||| sn=1Jo Sn—1
The other two properties of y will be useful in an integration by parts.

THEOREM 2.15. For k # 1, the subspaces Hy and H; are orthogonal in
L2(Sm 1.

PRrROOF. Given harmonic homogeneous polynomials f of degree k and g of de-
gree [, let F' and G be the corresponding homogeneous functions of degree 0 defined
above. By Proposition 2.18, these functions are eigenfunctions of the Laplacian on
the sphere, with distinct eigenvalues. We claim that the Laplacian is Hermitian:

AF G do = F AG do. (81)
Sn—1 Sn—1

Given the claim, eigenfunctions corresponding to distinct eigenvalues are orthogo-
nal. Thus harmonic, homogeneous polynomials of different degrees are orthogonal
on the unit sphere.
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It remains to prove (81). We may assume that G is real. Let
"0
W=AFG—-F AG = Z(E)(F%G ~ FG,,).
j=1

We integrate by parts in (80), moving each -2-. Note that a%(||x||2) = 2x;.

Ox j

X
W do = / X(XIPW (S av
Snfl Rn

- _/n Z(FIJ’G_ FGI]‘)X/(||X||2)2IJ' dav. (82)

The last term in (82) is zero by Proposition 2.19, because F and G are positive
homogeneous of degree 0. Thus A is Hermitian. O

It is convenient to define particular inner products on the spaces V,,, which
differ from the usual inner product given by integration. By linearity, to define
the inner product on V,,, it suffices to define the inner product of monomials. We
illustrate for n = 3. Put

(xy2¢, 2P 2%y, =0 (83)
unless a = A, b = B, and ¢ = C. In this case, we put [[z%y°2¢[[7, = alble!. The
generalization to other dimensions is evident:

n n
T =515, = ]t
j=1 j=1

Thus distinct monomials are decreed to be orthogonal.

THEOREM 2.16. The mapping M : V,, — V4o is the adjoint of the mapping
A Vipo — Vi In other words,

<Mfug>Vm+2 = <f7 Ag>Vm (84)

Hence the image of M is orthogonal to the harmonic space H,,12 and

Vinta = M(Vin) © Hppp.

m+n71) _ (m+n73

Furthermore, H,, is of dimension ( A A

is 2m + 1.

). When n = 3, this dimension

PROOF. To be concrete, we write out the proof when n = 3. By linearity, it
suffices to check (84) on monomials f = x%y?2¢ and g = 24y5 2%, where it follows
by computing both sides of (84) in terms of factorials. There are three possible
circumstances in which the inner product is not zero:

e (a,b,c)=(A-2,B,C)

e (a,b,c)=(A4,B-2,C)

e (a,b,c)=(A,B,C —2).
In the first case, we must check that (a + 2)lble! = A(A — 1)(A — 2)!BIC!, which
holds. The other two cases are similarly easy, and hence (84) holds.

Next, suppose that h is in the image of M and that ¢ is in the nullspace of A.
Then (84) gives

<hvg>Vm+2 = <Mf7 g>Vm+2 = <fa Ag>Vm = 0.
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The desired orthogonality thus holds and the direct sum decomposition follows.
Finally, the dimension of V,, is (m:;fl_ 1). Since M is injective, the dimension of the
image of M is the dimension of V,,,. The dimension of H,, 2 is therefore

m+n+1 m-+n-—1
n—1 n—1 '
When n = 3, the dimension of H,,, o therefore is

(m+4)(m+3) (m+2)(m+1)
5 — 5 = 2m + 5,

and hence the dimension of H,,, is 2m + 1. O

REMARK 2.3. The formula in Theorem 2.16 for the dimension of H,,, defines a
polynomial of degree n — 2 in m. See Exercise 2.75.

COROLLARY 2.9. On the sphere, we have V,, =H,, ®H,,, 2P ....

PROOF. The formula follows by iterating the equality V,,, = M (V,,—2) ® H,,
and noting that ||x||*> = 1 on the sphere. O

COROLLARY 2.10. Suppose f is continuous on the unit sphere. Then there is a
sequence of harmonic polynomials converging uniformly to f.

PROOF. This proof assumes the Stone—Weierstrass theorem to the effect that
a continuous function on a compact subset S of R" is the uniform limit on S of a
sequence of polynomials. We proved this result in Corollary 1.8 when S is the circle.
Given this theorem, the result follows from Corollary 2.9, because each polynomial
can be decomposed on the sphere in terms of harmonic polynomials. O

COROLLARY 2.11. The spherical harmonics form a complete orthogonal system
for L2(S?).

We illustrate Corollary 2.11 for m = 0 and m = 1, when n = 3. Of course 1}
is the span of the constant 1. Its image under M is the span of x? + % 4+ 22. The
space Hy is spanned by the five functions zy, zz, vz, x> + y? — 222, 2% — 292 + 2.
Each of these is orthogonal to 2% 4+ 32 + 22, which spans the orthogonal complement
of Hy. Next, V; is spanned by z,y, z. Its image under M is the span of x(x? +
y? + 22),y(2? + y% + 22),2(2% + y? + 2%). The space V3 has dimension ten. The
seven-dimensional space Hj is the orthogonal complement of the span of M (V7).

EXERCISE 2.64. Show that (65) defines a harmonic function away from (0,0, 1).
Use both Euclidean coordinates and spherical coordinates.

EXERCISE 2.65. Verify formula (68).

EXERCISE 2.66. Use the chain rule (and some computation) to show that (77)
and (78) are equivalent. Suggestion: First show that

Bgy = Buatl + Bags.

EXERCISE 2.67. For n = 3, express the harmonic polynomials of degree two
using spherical coordinates.

EXERCISE 2.68. For n = 3, find seven linearly independent harmonic polyno-
mials of degree three.
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EXERCISE 2.69 (Difficult). Analyze (78) fully in terms of Legendre polynomials.

EXERCISE 2.70. Verify (79) if p(z,y, 2) = 2% — y°.

EXERCISE 2.71. Verify Euler’s identity: If f is differentiable and homogeneous
of degree k£ on R"”, then
df (x) - x = kf(x).
Proposition 2.19 was the case k = 0. What is the geometric interpretation of the
result in this case?

EXERCISE 2.72. Verify (79). Euler’s identity is useful.

EXERCISE 2.73. Take n = 2, and regard R? as C. Consider the harmonic
polynomial Re(2?™). Give a much simpler proof of the analogue of formula (79)
using the formula A(u) = 4u,z from Sect. 11 of Chap. 1.

EXERCISE 2.74. Again regard R? as C. Write down a basis for the homogeneous
harmonic polynomials of degree m in terms of z and Z. Comment: The answer is
obvious!

EXERCISE 2.75. For n > 2, simplify the formula in Theorem 2.16 to show that
dim(H,,) is a polynomial of degree n — 2 in m.
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