Semiparametric Inference on the Absolute Risk
Reduction and the Restricted Mean
Survival Difference

Song Yang

Abstract For time-to-event data, when the hazards may be non-proportional, in
addition to the hazard ratio, the absolute risk reduction and the restricted mean
survival difference can be used to describe the time-dependent treatment effect. The
absolute risk reduction measures the direct impact of the treatment on event rate or
survival, and the restricted mean survival difference provides a way to evaluate
the cumulative treatment effect. However, in the literature, available methods are
limited for flexibly estimating these measures and making inference on them. In this
article, point estimates, pointwise confidence intervals and simultaneous confidence
bands of the absolute risk reduction and the restricted mean survival difference
are established under a semiparametric model that can be used in a sufficiently
wide range of applications. These methods are motivated by and illustrated for data
from the Women’s Health Initiative estrogen plus progestin clinical trial.

Introduction

Comparison of two groups of survival data has wide applications in life testing,
reliability studies, and clinical trials. Often the two sample proportional hazards
model of Cox [4] is assumed and a single value of the hazard ratio is used to
describe the group difference. When the hazard ratio is possibly time-dependent,
a conventional approach is to give a hazard ratio estimate over each of a few
time periods, by fitting a piece-wise proportional hazards model. Alternatively, a
“defined” time-varying covariate can be used in a Cox regression model, resulting
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in a parametric form for the hazard ratio function (e.g. [6], Chap. 6). With these
approaches, it may not be easy to pre-specify the partition of the time axis or the
parametric form of the hazard ratio function.

In Yang and Prentice [22], a short-term and long-term hazards model was
proposed. Assume absolutely continuous failure times and label the two groups
control and treatment, with hazard functions A¢(z) and Ar(¢), respectively. Then
the short-term and long-term hazards model postulates that

1
T e B4 (e*ﬁl — e*ﬁZ)SC(t)

Ar (1) Ac(t), t <, (D

where f31, [, are scalar parameters, Sc is the survivor function of the control
group, and

7o = sup{x: ./(;xlc(t)dt < oo}, 2)

Under this model, lim o A7(t)/Ac(t) = €, limsq Ar(r)/Ac(t) = eP>. Thus
various patterns of the hazard ratio can be realized, including proportional hazards,
no initial effect, disappearing effect, and crossing hazards. In particular, model (1)
includes the proportional hazards model and the proportional odds model as special
cases. There is no need to specify a partition of the time axis or a parametric form of
the hazard ratio function. For this model, Yang and Prentice [22] proposed a pseudo-
likelihood method for estimating the parameters, and Yang and Prentice [23] studied
inference procedures on the hazard ratio function. Extension of model (1) to the
regression setting was also studied for current status data in Tong et al. [20].

In situations with non-proportional hazards, the hazard ratio is useful for
assessing temporal trend of the treatment effect, but it may not directly translate
to the survival experience. For example, the hazard ratio may be less than 1 in
a region where there is no improvement in the survival probability. Also, there
is no simple nonparametric estimator as a reference when comparing different
estimators of the hazard ratio function. In the Women’s Health Initiative estrogen
plus progestin clinical trial [10,21], the hazard ratio function was decidedly non-
proportional for the outcomes of coronary heart disease, venous thromboembolism,
and stroke. While the estimated hazard ratios from Prentice et al. [16] and Yang
and Prentice [23] are in good agreement with each other for the outcomes of
coronary heart disease and venous thromboembolism, they indicate somewhat
different hazard ratio shapes for stroke. Under the piece-wise Cox model with the
partition of 0-2, 2-5, and 5+ years (the partition used in [16]), the hazard ratio has
an upside down U-shape. On the other hand, under the piece-wise Cox model using
the partition of 0-3, 3-6, and 6+ years (a plausible partition since the maximum
follow-up time was almost 9 years), the hazard ratio has a U-shape. The result
from Yang and Prentice [23] shows a hazard ratio that is slightly decreasing over
time. Thus for stroke, the temporal trend of the hazard ratio is portrayed somewhat
differently under these models. These hazard ratio estimates are displayed in Fig. 1.
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Fig. 1 Estimated hazard ratio for the WHI clinical trial stroke data: Solid line—Model (1); Dashed
line—Piece-wise Cox model with cut points at 2 and 5 years; Dash-dotted lines—Piece-wise Cox
model with cut points at 3 and 6 years

To help compare these different results, one can consider the absolute risk
reduction by the treatment. Figure 2 displays various estimators of the absolute
risk reduction. From Fig. 2, several observations can be made. Between the two
piece-wise Cox models with different partitions, the partition with cut points 2 and
5 years results in a better agreement with the Kaplan-Meier [7] based estimator for
the early to middle portion of the data range. The other partition results in a better
agreement with the Kaplan-Meier based estimator for the range beyond 6 years.
The estimator based on model (1) is a good compromise between the results from
the two partitions. One more comparison of these models can be made through the
restricted mean survival difference, displayed in Fig. 3. The different estimators are
closer to each other and are also smoother. For the piece-wise Cox models, the
partition with cut points 2 and 5 years results in an estimator that is closer to the
Kaplan-Meier estimator for early part of the data range, but has a more noticeable
deviation near the end. Again the estimator based on model (1) results in a good
compromise between the two partitions.

In this article, we consider making semiparametric inference on the absolute
risk reduction and the restricted mean survival difference for two sample time-to-
event data, under model (1). The absolute risk reduction is directly related to the
survival experience, and is a commonly used measure in epidemiological studies.
The restricted mean survival time has been used as a summary measure in various
works when the hazards are non-proportional. The restricted mean survival time
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Fig. 2 Estimated absolute risk reduction for the WHI clinical trial stroke data: Solid line—Model
(1); Dotted line: Kaplan-Meier; Dashed line—Piece-wise Cox model with cut points at 2 and 5
years; Dash-dotted lines—Piece-wise Cox model with cut points at 3 and 6 years
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Fig. 3 Estimated mean restricted survival difference for the WHI clinical trial stroke data: Solid
line—Model (1); Dotted line: Kaplan-Meier; Dashed line—Piece-wise Cox model with cut points
at 2 and 5 years; Dash-dotted lines—Piece-wise Cox model with cut points at 3 and 6 years



Semiparametric Inference on the Absolute Risk Reduction. .. 27

up to ¢ can be thought of as the ‘z-year life expectancy’, and it approaches the
unrestricted mean survival time as ¢ approaches infinity. In clinical trials where the
trial often ends after a pre-specified follow-up period, the restricted mean survival
time is a more appropriate measure than the unrestricted mean survival time. In
the subsequent development, the estimates, point-wise confidence intervals and
simultaneous confidence bands of the absolute risk reduction and the restricted
mean survival difference will be established under model (1). Such semiparametric
inference procedures are sufficiently flexible for many applications, due to the
various properties of model (1) mentioned before. These confidence intervals and
confidence bands can be used to capture and graphically present the treatment effect.
We illustrate these visual tools through applications to the clinical trial data from the
Women’s Health Initiative.

There have been various works in the literature that are related to the problems
considered here. Recently Schaubel and Wei [18] considered the restricted mean
survival difference and other measures under dependent censoring. Royston and
Parmar [17] considered inference on the restricted mean survival time by extending
standard survival models to accommodate a wide range of baseline distributions.
In both works, point-wise confidence intervals are constructed. In earlier works,
Dabrowska et al. [5] introduced a relative change function defined in terms of
cumulative hazards and found simultaneous bands for this function under the
assumption of proportional hazards. Parzen et al. [13] constructed nonparametric
simultaneous confidence bands for the survival probability difference. Cheng
et al. [3] proposed pointwise and simultaneous confidence interval procedures for
the survival probability under semiparametric transformation models. Zucker [24]
and Chen and Tsiatis [2] compared the restricted mean survival time between two
groups using Cox proportional hazards models. McKeague and Zhao [11] proposed
simultaneous confidence bands for ratios of survival functions via the empirical
likelihood method.

The article is organized as follows. In section “The Estimators and Their
Asymptotic Properties” the short-term and long-term hazard ratio model and the
parameter estimator are described. Pointwise confidence intervals are established
for the absolute risk reduction and the restricted mean survival difference under
the model. In section “Simultaneous Confidence Bands”, simultaneous confidence
bands are developed for the absolute risk reduction and the restricted mean sur-
vival difference. Simulation results are presented in section “Simulation Studies”.
Application to the stroke data from the Women’s Health Initiative trial is given in
section “Application”. Some discussions are given in section “Discussion”.

The Estimators and Their Asymptotic Properties

Let T7,---, T, be the pooled lifetimes of the two groups, with 13,--- ,T,, ny <n,
constituting the control group having the survivor function Sc¢. Let Cy,---,C,
be the censoring variables, and Z; = I(i > ny), i = 1,---,n, where I(-) is the



28 S. Yang

indicator function. The available data consist of the independent triplets (X;, 6;,7;),
i=1,...,n, where X; = min(7;,C;) and &; = I(T; < C;). We assume that T;, C;
are independent given Z;. The censoring variables (C;’s) need not be identically
distributed, and in particular the two groups may have different censoring patterns.
For t < 1y with 7y defined in (2), let R(¢) be the odds function 1/S¢(¢) — 1 of the
control group. The model of Yang and Prentice [22] can be expressed as

1 dR(1)

li(t):e*ﬁlzi—ke‘*&ZiR(t) dt )

i=1,....nt <7,

where A;(¢) is the hazard function for 7; given Z;.
Let St be the survivor function of the treatment group. Then the absolute risk
reduction is

D(t) = Sr(t) — Sc(r).

This function is positive if the treatment reduces the event rate and negative if the
treatment increases the event rate. Under model (1), @(¢) depends on the parameter
B = (B1,B2)" and the baseline function R(¢), where “7*> denotes transpose. Yang
and Prentice [22] studied a pseudo likelihood estimator B of B which we describe
below.

Let T < 19 be such that

n
lim Y 1(X; > 1) >0, 3)
"=l

with probability 1. For ¢ < 7, define

A _ _ ;7:1 5,'671’22"1()(,‘ = S)
P(t’b) - H(l 2?:11(}([ Z S) )7

s<t

5/.. - 1 ! p,(s,b) 1t b7 :
ki:b) = ﬁ(r;b)/o 2:?:11(X,»2s)d(,~:216’e T <),

where P_(s;b) denotes the left continuous (in s) version of P(s;b).

Let L(B,R) be the likelihood function of § under model (1) when the function
R(t) is known, with the corresponding score vector S(8,R) = dInL(B,R)/dp.
Define Q(b) = S(b,R)|g (g, (»)- Then the pseudo maximum likelihood estimator
B = (B1,B,)" of B is the zero of Q(b).

Once ﬁ is obtained, R() can be estimated by R(z; ﬁ) Thus under model (1), the
absolute risk reduction @(¢) can be estimated by

. T R 1
O@t)={1+e PPR By - —— )
1+R(1: )
In Appendix 1, we show that ®(t) is strongly consistent for @() under model (1).
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To study the distributional properties of (f)(t), let
Un(t) = V/n(®(1) = @(1)), 1 < 7.

Let &(t) = 1+R(t),E(r) = e P + e PR(1),&o(r) = 1 + R(1:B),E() = e P +
e P2R(1;B), and define

1 .
Alt) = (e P e PR, B))T
(t) g(z)( R(1:B))

_ [TA(s)K1(s)Ka(s) e’ﬂ2_ 1 s
B0 = [ Ewbiip) B0 &) RO

In Appendix 1, it will be shown that, with probability 1,

By = % [Hm@+otam)+ X [Hml)+o(n}ama), S

i<ny i>ng

uniformly in # < 7 and i < n, where

.ul(t) - E(I)K([) + K t)u
pale) = A(r)’f;((t’)) n m,’;(t()’;ﬁ 50), ©®
/ I(X, R(s) i=1 n
e 1= |

By Lemma A3 of Yang and Prentice [22],

Vi(R(1:B) —R(1)) =

VldM + 2/ Vsz @)

i>ny

\/— ’ z<n1
where

_ &P (1:p)
K )

vi(t)
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Let A7 be the cumulative hazard function of the treatment group and define

O =R R e
p() = ) FEE s B r( - £y
For 1 < T, define the process
Un(1) = DT\(/%)Q (I'SZRl /0 pndu; +i>2m /0 adM;)
+%(z’§ﬁ /0 t vldM,»—l-i;l /O I VodM;). (8)

With the representations for Q(B) and /n(R(t;8) — R(t)), in Appendix 2 it
will be shown that U, is asymptotically equivalent to U, which converges weakly
to a zero-mean Gaussian process U*. The weak convergence of U, thus follows.
The limiting covariance function o (s,7) of U* involves the derivative vector
dR(t;B)/dB and the derivative matrix in Q. Although analytic forms of these
derivatives are available, they are quite complicated and cumbersome. Here we
approximate them by numerical derivatives. For the functions C(z), D(t), u(z),
12(t), vi (1), va(t), define corresponding C(¢), D(t), ... by replacing B with 3, R(¢)
with R(r;8), Sr(r) and A () with model based estimators, and dR(t; 8)/dB with
the numerical derivatives. Similarly, let Q be the numerical approximation of €.
Simulation studies show that the results are fairly stable with respect to the choice
of the jump size in the numerical derivatives, and that the choice of n~ Y2 works
well. With these approximations, the covariation process 0o (s,¢), s <t < 7, can be
estimated by

+ /. n(e*321+e*f321?(w,3 ) )OI D(r)
A s 02 (w)K; (w)dR(w; B)
+C(S)C(t)(/0 n(l —‘,—]?(W,B )
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T n(e=Br +eBaR(w; B)) )

) €))

For a fixed 7y < 7, from the above results, an asymptotic 100(1 — )% confidence

interval for ®(ty) is D(to) F Za/2V/ B (to,10) /1, Where z4 5 is the 100(1 — ¢ /2)%
percentile of the standard normal distribution.
Now let us look at the restricted mean survival difference

t t
Y(r) = / Sr(s)ds — / Sc(s)ds.
Jo Jo
Under model (1), ¥(z) is estimated by
~ t ~
W(1) = / b (s)ds,
Jo

for @(r) in (4). In Appendix 1, it will be shown that ‘IA—’(Z) is a strongly consistent
estimator for ¥(z).
For t < 7 define

and
%mzfmwm

for U, in (8). Exchanging the order of integration yields

i = RZOEL0s Fumamon+ 3 [ we0na o)

i<ng i>ny

+% 3 /O ") [vtC(x)dde[(w)

i<,
1 t t
+7i>2nl /O Va(w) / C ) dxdM;(w). (10)

In Appendix 2, it will be shown that the process V,,(¢) is asymptotically equivalent
to the process V,(¢) which converges weakly to the zero-mean Gaussian process
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V*(t) = [§U*(s)ds. Thus V,(t) also converges weakly to V*(¢). The covariation
process Oy (s,1) of V*(r) can be consistently estimated by

i (w)al (w)Ki (w)dR(w; B)
w(s,1) /DT dQ/ 1( R B)
)

s vl(w)Kl(w) s A 2dBOw: B
+/O T Ry UL Lo aR0sB)

C W)k s o
b n(e P+ e PaR(w; ﬁ>>(/wc<’“>dX>2dR<w,l3>

+ SﬁT(x)de () (WK
0 o n(l+R(w;B

+ / BT dn [ F2OV0E0) ke B

+/DT dx.Q/ A (w 1+R 3)() /:C(X)dxdlé(Wﬁ)

/DT )dxOd fi2 (W) V2 (W)K> (w) /
0 n( ﬁ1—|—e ﬁz[é(w B))

“Cw)dxdR(w,B) (1)

w

From these results, an asymptotic 100(1 — o) % confidence interval for ¥(zy) can
be obtained as ‘¥ (1) F 2¢,/2+/ O (0, 20) /-

Simultaneous Confidence Bands

To make simultaneous inference on @(¢) over a time interval I = [a,b] C [0, 1],
let wy(7) be a data-dependent function that converges in probability to a bounded
function w*(¢) > 0, uniformly in ¢ over I. Then U, /w, converges weakly U*/w*.
If ¢¢ is the upper ath percentile of sup,c; |U*/w*|, an asymptotic 100(1 — a)%
simultaneous confidence band for @ (), ¢ € I, can be obtained as

(@00 - 2, sy )

It is difficult to obtain ¢, analytically. One obvious alternative would be the
bootstrapping method. However, it is very time-consuming. More discussion on this
will be given later on the application to data from the Women’s Health Initiative
estrogen plus progestin clinical trial. Here a normal resampling approximation
will be used. Lin et al. [8] used the normal resampling approximation to simulate
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the asymptotic distribution of sums of martingale residuals for checking the Cox
regression model. This approach reduces computing time significantly, and has been
used in many works, including Lin et al. [9], Cheng et al. [3], Tian et al. [19], and
Peng and Huang [14].

Fort < 7, let Ni(r) = 81(X; <t), i=1,--- ,n, and define the process

0,(t) = DT (1)Q

(3, ["maen+ 3 [ st

i<ny i>np*

S

o

+%(Z ./(: d(eiNi)+ Y, /0’ bad(eiNi))

i<ny i>ny

= (02 (Y &bl (X)I(Xi < T)+ Y, €difla(Xi)I(X; < 7))

i<ng i>ny

>
~
~—

5

oy

+ (t (z €0V (X)I(X; <1)+ z €0 (X)I(X; <t)), (12)

i<ng i>ny

g

where €;, i = 1,...,n, are independent standard normal variables that are also
independent of the data.

Conditional on (X;,&;,Z;), i = 1,...,n, U, is a sum of n independent variables at
each time point. In Appendix 2, it will be shown that U, given the data converges
weakly to U*. It follows that sup,.;|U,(t)/wn(t)| given the data converges in
distribution to sup,c; |U*(¢)/w*(t)|. Therefore, ¢y can be estimated empirically
from a large number of realizations of the conditional distribution of sup,, |U /w|
given the data.

Motivated from recommendations in the literature for confidence bands of the
survivor function and the cumulative hazard function in the one sample case, several
choices of the weight w,, can be considered. The choice w,(t) = /6 (t,t) results
in equal precision bands [12], which differ from pointwise confidence intervals in
that cq replaces zq/5. The choice wy(t) = 1+ 6¢(t,¢) results in the Hall-Wellner
type bands recommended by Bie et al. [1], which often have narrower widths in
the middle of data range and wider widths near the extremes of data range [8].
One could also consider the unweighted version with wy,(¢) = 1. Compared with the
previous two choices, this choice does not require 6¢(,t), and hence is easier to
implement.

To obtain simultaneous confidence bands for ¥(r), again consider the weighted
process V,,(¢)/wy(t) which converges weakly to the limiting process V*/w*. If & is
the upper octh percentile of sup,; [V*/w*|, an asymptotic 100(1 — o¢)% simultane-
ous confidence band for ¥(¢), ¢ € I, can be obtained as
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To approximate the critical value ¢y, for t < 7, define the process

. fODT
V(r) = 202 002 //.leeN +2/uzdezv)
l<”l >ny
2/0 /c Ydxd(e;N;(w))
l<nl
Z/v2 / x)dxd (eiNi(w))
l>n1 w
DT (1Q N .
) (Z €0 (XHI(X; < 1)+ 2 €0ifL(X)HI(X; < 1))
\/ﬁ i<nj i>ng
t A
265V1 X<t)/C(x)dx
l<n1 Xi
t A
2 €80 (X)I(X; < t)/ C(x)dx, (13)
l>ﬂ1 Xi
where €;, i = 1,...,n, are independent standard normal variables that are also

independent of the data. In Appendix 2, the process V, (t) given the data is shown
to converge weakly to V*(¢). Thus ¢, can be approximated empirically from a large
number of realizations of the conditional distribution of sup;c(, ) |V (¢)/wn| given

the data. Similarly to the case for U,, the weight function w, can be chosen to yield
equal precision, Hall-Wellner type, and unweighted confidence bands.

Simulation Studies

For stable moderate sample behavior, the range of the simultaneous confidence
bands for both @(¢) and ¥(r) needs to be restricted. Through a series of simulation
studies, a data-dependent range was found to result in good performance for
moderate samples. The range is obtained by truncating at the 25th percentile of
the uncensored data at the lower end, and truncating at the 5th largest uncensored
observation at the upper end. By this truncation, the confidence bands are given in
a range where a reasonable amount of data are available. Also, in the estimating
procedures, the function £(z;b) is replaced by an asymptotically equivalent form

For simulation studies reported here and for the real data application in sec-
tion “Application”, T was set to include all data in calculating . All numerical
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Table 1 Empirical coverage probabilities of the three types of simultaneous confidence bands
HW, EP, and UW, for the absolute risk reduction @ and the restricted mean survival difference ¥,
under model (1), based on 1,000 repetitions

()] b4

Hazard ratio  Censoring (%) n HW EP Uuw HW EP uw

09112 10 100 0968 0.963 0974 0964 0974 0.955
30 0968 0.963 0974 0956 0972  0.946
50 0950 0.949 0953 0957 0977 0.956
10 200 0961 0964 0958 0951 0965 0.944
30 0954 0955 0966 0949 0963 0.944
50 0940 0942 0945 0940 0962  0.937
10 400 0954 0958 0962 0952 0964 0.950
30 0961 0961 0967 0951 0969  0.946
50 0949 0945 0954 0949 0962 0.945

1.210.8 10 100 0951 0946 0962 0953 0964 0.938
30 0951 0947 0969 0959 0979 0.956
50 0930 0930 0949 0962 0973  0.960
10 200 0956 0956 0955 0952 0969 0.947
30 0960 0957 0962 0953 0972  0.949
50 0942 0933 0947 0943 0960  0.940
10 400 0958 0952 0958 0955 0968 0.944
30 0954 0955 0954 0949 0966 0.951
50 0951 0950 0956 0.948 0.961 0.947

computations were done in Matlab. Some representative results are given in
Table 1, where lifetime variables were generated with R(¢) chosen to yield the
standard exponential distribution for the control group. The values of 3 were
(log(0.9),log(1.2)) and (log(1.2),l0og(0.8)), representing 1/3 increase or decrease
over time from the initial hazard ratio, respectively. The censoring variables were
independent and identically distributed with the log-normal distribution, where the
normal distribution had mean ¢ and standard deviation 0.5, with ¢ chosen to achieve
various censoring rates. The data were split into the treatment and control groups
by a 1:1 ratio. The empirical coverage probabilities were obtained from 1,000
repetitions, and for each repetition, the critical values cy and &, were calculated
empirically from 1,000 realizations of relevant conditional distributions. For both
@(t) and Y (¢), the equal precision bands, Hall-Wellner type bands and unweighted
bands are denoted by EP, HW and UW respectively.

Note that with 1,000 repetitions and 1.96,/0.95-0.05/1,000 = 0.0135, we
expect the empirical coverage probabilities to be mostly greater than 0.9365. In
Table 1, the empirical coverage probabilities are greater than 0.9365 for all but three
cases. Those three cases occurred for @(t), with 50% censoring and smaller sample
sizes. The phenomenon disappeared when n = 400. Various additional simulation
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Table 2 Empirical coverage probabilities of the three types of simultaneous confidence bands
HW, EP, and UW, for the absolute risk reduction @ and the restricted mean survival difference ¥,
under a monotone hazard ratio model, based on 1,000 repetitions

D b

Hazard ratio Censoring (%) n HW EP uw HW EP uw

09112 10 100 0973 0977 0975 0964 0975 0.955
30 0983 0983 0987 0971 0984  0.963
50 0969 0973 0971 0967 0986  0.965
10 200 0967  0.951 0.961 0955 0967 0.937
30 0966 0965 0975 0956 0971 0.950
50 0956 0964 0962 0966 0978  0.965
10 400 0956 0916 0978 0.963 0965 0.948
30 0967 0962 0975 0961 0972  0.956
50 0984 0982 0979 0970 0984  0.969

1.210.8 10 100 0974 0970 0979 0964 0975 0.953
30 0.971 0.964 0980 0965 0.983 0.964
50 0.966  0.971 0978 0976 0989 0974
10 200 0959 0930 0965 0945 0962 0944
30 0.971 0972 0971 0947 0967 0937
50 0.960 0957 0969 0963 0986  0.961
10 400 0935 0.872 0975 0960 0968  0.953
30 0962 0959 0976 0953 0971 0.952
50 0966 0958 0982 0961 0974 0.958

studies indicated that the proposed procedures performed well for sample size close
to 100 and up, with moderate censoring. Under heavy censoring, the results were
still good with uncensored observations close to 50 and up in each treatment group.

To check how robust the procedures are against violation of model assumptions,
various monotone hazard ratio models were also considered alternative to the
model (1). The results indicated that the proposed procedures continued to perform
well. For example, in Table 2, the control group lifetime variables were standard
exponential. The hazard ratio was linear from O to the 90th percentile of the standard
exponential, and continuous and constant afterwards. The initial and end hazard
ratios again were (0.9, 1.2) and (1.2, 0.8) respectively, and the censoring variables
were the same as before. It can be seen from Table 2 that the confidence bands
performed satisfactorily.

To compare efficiency against the non-parametric alternatives based on the
Kaplan-Meier estimators, for estimating @(¢) and ¥(¢) at various time points, the
mean squared errors of the model based estimators and the Kaplan-Meier estimators
were examined under model (1) in various simulation studies. Typically the model
based estimators have smaller mean squared errors, more so for @(r) than for ¥(¢).
Also, the efficiency is higher under heavy censoring and for time points closer to the
upper tail region. This is because the Kaplan-Meier becomes increasingly unstable
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Table 3 Ratio of mean squared errors of the model based estimators over the Kaplan-meier
estimators, for @(r) and ¥(¢) under model (1), at t = 0.5,1,1.5 respectively, based on 1,000
repetitions

D b

Hazard ratio  Censoring (%) n 0.5 1 1.5 0.5 1 1.5

09112 10 100  0.6019 0.6731 0.6286 0.6341 0.7978 0.8470
30 0.5527 0.6025 0.5248 0.5960 0.7303 0.7717
50 0.4676 0.4008 0.2447 0.5232 0.6149 0.5872
10 200 0.6438 0.7090 0.6865 0.6795 0.8436 0.9099
30 0.5920 0.6436 0.5513 0.6368 0.7763  0.8407
50 0.5150 0.4403 0.2672 0.5802 0.6744 0.6682
10 400 0.6831 0.7191 0.6800 0.6975 0.9000 0.9530
30 0.6321 0.6357 0.5425 0.6747 0.8271 0.8563
50 0.5523  0.4222 02789 0.6255 0.7205 0.6777

1.210.8 10 100 0.6251 0.6509 0.6203 0.7195 0.8275 0.8349
30 0.5897 0.6278 0.5613 0.6850 0.7825 0.8037
50 04778 04180 0.2631 0.5662 0.6434 0.6182
10 200 0.6650 0.7035 0.6902 0.7324 0.8535 0.8930
30 0.6322 0.6648 0.5816 0.6982 0.8088 0.8467
50 0.5434 0.4837 0.2893 0.6099 0.6992 0.7015
10 400 0.7085 0.7081 0.6992 0.7432 0.8973 0.9289
30 0.6753 0.6742 0.6079 0.7226 0.8560 0.8794
50 0.6015 0.4661 03010 0.6458 0.7595 0.7256

near upper tail region and under heavy censoring. Some representative results are
given in Table 3, in terms of the ratio of the mean squared errors of the model based
estimators over the Kaplan-Meier estimators, under configurations the same as those
for Table 1.

Application

For the Women’s Health Initiative (WHI) randomized controlled trial of combined
(estrogen plus progestin) postmenopausal hormone therapy, an elevated coronary
heart disease risk was reported, with overall unfavorable health benefits versus risks
over an average of 5.6 year study period [10, 21]. Few research reports have stim-
ulated as much public response, since preceding observational research literature
suggested a 40-50% reduction in coronary heart disease incidence among women
taking postmenopausal hormone therapy. Analysis of the WHI observational study
shows a similar discrepancy with the WHI clinical trial for coronary heart disease,
stroke, and venous thromboembolism, even after adjusting for confounding factors
in the observational study. Following control for time from estrogen-plus-progestin
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Fig. 4 Simultaneous 95% confidence bands of the absolute risk reduction for the WHI clinical
trial stroke data: Solid line—equal precision confidence band; Dashed line—Hall-Wellner type
confidence band; Dash-dotted lines—unweighted confidence band; Dotted line: Estimated absolute
risk reduction

initiation and confounding, hazard ratio estimates were rather similar between
the clinical trial and observational study components of WHI, although there was
evidence of some remaining difference for stroke [16].

In the introduction, it was mentioned that for stroke, the estimated absolute risk
reduction based on model (1) provides a good compromise between the results from
the two partitioning approaches under the piece-wise Cox model. Let us illustrate
the methods developed in the previous sections with the stroke data from the
WHI clinical trial. Among the 16,608 postmenopausal women (n; = 8,102), there
were 151 and 107 events observed in the treatment and control group respectively,
implying about 98% censoring, primarily by the trial stopping time. Fitting model
(1) to this data set, we get § = (0.32,—1.69)”. Plots of the model based survival
curves and the Kaplan-Meier curves for the two groups show that the model is
reasonable. The residual plot as mentioned in Yang and Prentice [23] also indicates
a good model fit. These plots are not displayed here to save space. The three 95%
simultaneous confidence bands for the absolute risk reduction are given in Fig.4.
From Fig. 4, it can be seen that both the Hall-Wellner type band and the unweighted
band maintain a roughly constant width through the data range considered. In
comparison, the equal precision band has width gradually increasing as the standard
error of the estimated absolute risk reduction increases over time. Also, the width of
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Fig. 5 95% equal precision confidence band and pointwise 95% confidence intervals of the
absolute risk reduction for the WHI clinical trial stroke data: Solid line—equal precision confidence
band; Dashed line—pointwise 95% confidence intervals; Dotted line: Model based estimator of the
absolute risk reduction; Dash-dotted lines—Kaplan-Meier estimator of the absolute risk reduction

the equal precision band is narrower that those of the Hall-Wellner type band and the
unweighted band through most of the range. Similar phenomena are often present
in other applications not reported here. Thus it is recommended that the equal
precision band be used in making inference on the absolute risk reduction under
model (1). Note that the simple bootstrap method for approximating ¢, when w, =1
is already much more computationally intensive than the the normal resampling
approximation. With wy, (1) = \/6¢(t), the bootstrap method would require one
more level of bootstrapping samples, thus further increasing the computational
burden. In comparison, once 6 (f) is obtained with the martingale structure, the
normal resampling approximation only needs a small additional computation and
programming cost. Similar remarks are also applicable to the case with the restricted
mean survival difference.

To compare the point-wise confidence intervals and the simultaneous confidence
band, Fig.5 displays 95% point-wise confidence intervals and the simultaneous
confidence band for the stroke data. The simultaneous confidence band is slightly
wider than the point-wise confidence intervals and maintains the same rate of
inflation in width throughout the range. The confidence intervals and confidence
band indicate some evidence that the absolute risk reduction is negative in the
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Fig. 6 95% equal precision confidence band and pointwise 95% confidence intervals of the mean
restricted survival difference for the WHI clinical trial stroke data: Solid line—equal precision
confidence band; Dashed line—pointwise 95% confidence intervals; Dotted line: Model based
estimator of the mean restricted survival difference; Dash-dotted lines—Kaplan-Meier estimator
of the mean restricted survival difference

range of 4-7 years, but the evidence is not very strong. Figure 5 also includes the
Kaplan-Meier estimator. Between the semiparametric and nonparametric estima-
tors, The model based estimator is smoother, the Kaplan-Meier estimator is more
volatile and oscillates around the model based estimator. The model based estimator
captures the general decreasing trend in the absolute risk reduction, and averages out
the deviations from that trend, particularly in the range of 3.5 to 7 years.

For the restricted mean survival difference, Fig. 6 displays the estimator under
model (1), the 95% point-wise confidence intervals and simultaneous equal pre-
cision confidence band for the stroke data. Since the restricted mean survival
difference is a summary measure, the estimators are smoother compared with
those for the absolute risk reduction. Also, the semiparametric and nonparametric
estimators show a better agreement compared with the case for the absolute risk
reduction. Furthermore, the inflation of width by the band over the point-wise
confidence intervals is smaller compared with the situation in Fig. 5. This is possibly
because the restricted mean survival difference, a summary measure, may have
higher correlation at different time points compared with the absolute risk reduction
at those same time points. From Fig. 6, there is some evidence that the restricted
mean survival difference is negative towards the end of the data range.
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Discussion

We have studied the asymptotic properties of the estimators for the absolute
risk reduction and the restricted mean survival difference under the short-term
and long-term hazards model. Point-wise confidence intervals and simultaneous
confidence bands are developed for these measures. These procedures can have
a sufficiently wide range of applications because of the flexibility of the model.
In simulation studies, the confidence bands have good performance for moderate
samples. Among the versions with different weights, the equal precision confidence
band is recommended. It has width that is proportional to the standard error at each
time point and often results in narrower width in most of the data range. It also
demonstrates the inflation of the confidence interval width needed for simultaneous
inference. For the restricted mean survival difference, often the measure at a fixed
time, say fy years, with #y close to the maximum follow-up period of the clinical trial,
is of interest. In those situations, the point-wise confidence intervals may suffice.

Compared with the nonparametric methods based on the Kaplan-Meier estimator,
the semiparametric approach developed here produces more smooth estimators and
more stable behaviors, especially near the end of the data range. Thus it provides a
good alternative to the nonparametric approach should the model be appropriate.
The model also permits inference on the hazard ratio function, as described in
Yang and Prentice [23], where the nonparametric approach could result in wide
confidence intervals at the tail regions. When the model provides good fit to the
data, together the confidence intervals and bands on the hazard ratio, the absolute
risk reduction and the restricted mean survival difference, present good visual tools
for assessing the temporal pattern and cumulative effect of the treatment. It is also
of interest to extend the results here to epidemiological studies by considering the
regression setting and adjusting for covariate. These and other problems are worthy
of further exploration.

Acknowledgements The original version of this article has previously been published in Lifetime
Data Analysis in 2013.

Appendix 1: Consistency

Throughout the Appendices, we assume the following regularity conditions, which
is a little weaker than the conditions used in Yang and Prentice [22].

Condition 1. lim =L = p € (0,1).

n
Condition 2. The survivor function G; of C; given Z; is continuous and satisfies
1 1
=Y Gi(t)—= L, = Y, Gi(t) = I,
n i<ny n i>ny

uniformly for ¢ < 7, for some I, I3, and T < 7y such that Fj(r) >0, j=1,2.
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Condition 3. The survivor functions S¢ and St are absolutely continuous and
Sc(T) > 0.

Under these conditions, the strong law of large numbers implies that (3) is satisfied.
For ¢t < 7, define

L(t) = IiSc + IS7,
t t
U;(1;b) :/OHdFC—i—exp(—bj)/O LdFr, j=1,2,

' dUj(s;b)

aew) = [T =12

P(t:b) = exp{—As(£:b)}, R(t:b) = ﬁ/OIP(s;b)dAl (s:b),

L exp(—b.-)R-"’l(z‘;b) .
f?(t’b) o exp(—b1)+éxp(—bz)R(t;b)’ j=L2
fIT(1)ST(t)dR(t;b)
exp(—b1) +exp(—b2)R(t;b)

mi) = { [ FB0dr - [

and m(b) = (my(b),mz(b))’. We will also assume

Condition 4. The function m(b) is non-zero for b € 8 — {3 }, where % is a compact
neighborhood of 3.

Theorem 1. Suppose that Conditions 1-4 hold. Then, (i) the zero B of Q(b) in A
is strongly consistent for B; (ii) ®(t) is strongly consistent for ®(t), uniformly for
1 €[0,7], and P (1) is strongly consistent for ¥ (t), uniformly on t € [0,7]; (iii) Q
converges almost surely to a limiting matrix Q2*.

Proof. Under Conditions 1-3, the limit of Y| I(X; > t)/n is bounded away from
zeroont € [0, 7. Thus, with probability 1,

?:1 S[eiijiI(X,‘ = l)
X 6l (X > 1)

—0,j=12, (14)

uniformly for 7 € [0,7] and b € Z. From this, one also has, with probability 1,
|AP(t;b)| = 0, |AR(t;b)| — 0, (15)

uniformly for ¢z € [0, 7] and b € A, where A indicates the jump of the function in 7.
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Define the martingale residuals

R(ds;b)

— 1<i<n.
e 01Zi 4 e=02ZiR(s5;b)’

Mi(t;b) =5iI(X,' St)— /OII(X,‘ >s)

From (12) and (13), and the fundamental theorem of calculus, it follows that, with
probability 1,

mm-i[wmw+mnmwm, (16)

uniformly int < 7, b € % and i < n, where f; = (fu,fzi)T, with

Zieiblz" f (l‘b) . Zieibzz"]é(t;b)
o7t o (b)) T R )

fii(t:b) =

From the strong law of large numbers ([15], p. 41) and repeated use of Lemma A1
of Yang and Prentice [22], one obtain, with probability 1,

B(1;b) — P(1;b), R(t:b) — R(t:b), O(b)/n — m(b), (17)

uniformlyinz < 7 anq b € 4. From these results and Condition 4, one obtains the
strong consistency of §, @(¢) and ¥ (¢), and almost sure convergence of €.
Appendix 2: Weak Convergence

For C(t), D(t), ui(t),u2(t), vi(t), va(2), let C*(r), D*(¢), etc. be their almost sure
limit. In addition, let L; be the almost sure limit of K /n, j=1,2.For 0 <s,t < 7, let

O (s,1)
*T
X .U1.U1 s " #T oy
= DT (s) / ST 1 dR / — 272 1,dR)QTD*(t
) o e PRD ) (t)
V*Z
C*(s)C* (¢ dR —=—J»dR
+C(s) / 1+R L +/o e P14 e PR L>dR)
v 1;v;
C* (0D (s) / 1 lL / _ Vs e
+ 1+R pap YLl
+C (5D (1 Q*/ MV 1L R+ [ —H2V g, (18)
0 e P +e PR
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and

o (s,1)

—/D*T )dxQ* /‘u11+R Li(w)dR(w)

T W (w) o [y
i mm(wﬁm(w))ﬂ r /O D (x)dx

+ OS lvleR /c* )dx)2 L1 (w)dR(w)
| e L € e Latir

+/ DT (x)dxQ2* / “HR*(W /c* )dx)Ly (w)dR(w)

+ / SD*T(x)de* OI %( / t C*(x)dx)LrdR(w)

/UTdQ/”HR /b*mmmwm

- 0 mw)vi(w) S
+ /0 DT [ fﬁf+e—%(./w C* (x)dx) Lo (w)dR(w). (19)

Theorem 2. Suppose that Conditions 1-4 hold and that the matrix Q% is non-
singular. Then, (i) U, is asymptotically equivalent to the process U, in (8) which
converges weakly to a zero-mean Gaussian process U* on [0, 7|, with covariance
function 6¢(s,t) in (18). In addition, U, (s) given the data converges weakly to the
same limiting process U*. (ii) V,(t) is asymptotically equivalent to the process V,
in (11) which converges weakly to the zero-mean Gaussian process [§U*(s)ds on
t € [0,7], with covariance function oy (s,t) in (19). The process [} V,(s)ds given the
data also converges weakly to the same limiting process jé U*(s)ds.

Proof. (i) As in the proof for Theorem A2 (ii) in Yang and Prentice [22], from the
strong embedding theorem and (16), Q(f)/+/n can be shown to be asymptotically
normal. Now Taylor series expansion of Q(b) around 3 and the non-singularity of
Q* imply that \/n(B — B) is asymptotically normal. From the /z- boundedness

of B,

IR(1;B)
p

uniformly in # < 7. These results, some algebra and Taylor series expansion together
show that U, is asymptotically equivalent to U,. Similarly to the proof of the

Va(R(:B) = R(1:p)) =

V(B = B) +op(1),
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asymptotic normality of Q(B)/+/n, one can show that U, converges weakly to
a zero-mean Gaussian process. Denote the limiting process by U*. From the
martingale integral representation of U, it follows that the covariation process of

U*

is given by o(s,t) in (18), which can be consistently estimated by &(s,?) in (9).

By checking the tightness condition and the convergence of the finite-dimensional
distributions, it can be shown that U, (s) given the data also converges weakly to U*.

(ii) From the results in (i), the assertions on V,, and V, follow.
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