
Chapter 2
Linear Programming

Since G.B. Dantzig first proposed the simplex method around 1947, linear
programming, as an optimization method of maximizing or minimizing a linear
objective function subject to linear constraints, has been extensively studied and,
with the significant advances in computer technology, widely used in the fields of
operations research, industrial engineering, systems science, management science,
and computer science.

In this chapter, after an overview of the basic concepts of linear programming
via a simple numerical example, the standard form of linear programming and
fundamental concepts and definitions are introduced. The simplex method and the
two-phase method are presented with the details of the computational procedures.
By reviewing the procedure of the simplex method, the revised simplex method,
which provides a computationally efficient implementation, is also discussed. Asso-
ciated with linear programming problems, dual problems are formulated, and duality
theory is discussed which also leads to the dual simplex method.

2.1 Algebraic Approach to Two-Dimensional Linear
Programming

In Sect. 1.1, we have presented a graphical method for solving the two-dimensional
production planning problem of Example 1.1.

Minimize the opposite of the linear total profit

z D �3x1 � 8x2

subject to the linear inequality constraints
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8 2 Linear Programming

2x1 C 6x2 � 27

3x1 C 2x2 � 16

4x1 C x2 � 18

and nonnegativity conditions for all decision variables

x1 � 0; x2 � 0:

Since in multiple dimensions more than two the graphical method used in
Sect. 1.1 cannot be applied, it becomes necessary to develop an algebraic method. In
this section, as a prelude to the development of the general theory, consider an alge-
braic approach to two-dimensional linear programming problems for understanding
the basic ideas of linear programming. To do so, by introducing the amounts, x3

.� 0/, x4 .� 0/, and x5 .� 0/, of unused (idle) materials for M1, M2, and M3,
respectively, and converting the inequalities into the equalities, the problem with
the equation �3x1 � 8x2 � z D 0 for the objective function can then be stated as
follows:

Find values of xj � 0, j D 1; 2; 3; 4; 5 so as to minimize z, satisfying the
augmented system of linear equations

2x1 C 6x2 C x3 D 27

3x1 C 2x2 C x4 D 16

4x1 C x2 C x5 D 18

�3x1 � 8x2 �z D 0:

9
>>=

>>;

(2.1)

In (2.1), setting x1 D x2 D 0 yields x3 D 27, x4 D 16, x5 D 18, and z D 0,
which corresponds to the extreme point A in Fig. 1.1. Now, from the fourth equation
of (2.1) for the objective function, we see that any increase in the values of x1 and x2

from 0 to positive would decrease the value of the objective function z. Considering
that the profit of P2 is larger than that of P1 (in the above formulation, the opposite of
the profit is smaller), choose to increase x2 from 0 to a positive value, while keeping
x1 D 0. In Fig. 1.1, this corresponds to the movement from the extreme point A

to E along the edge AE. From (2.1), if x2 can be made positive, the values of x3,
x4, and x5 decrease. However, since x3, x4, and x5 cannot become negative, the
increase amount of x2 is restricted by the first three equations of (2.1). In the first
three equations of (2.1), remaining x1 D 0, the values of x2 to be increased are
restricted to at most 27=6 D 4:5, 16=2 D 8, and 18=1 D 18, respectively. Hence,
the largest permissible value of x2 not yielding the negative values of x3, x4, and x5

is the smallest of 4.5, 8, and 18, that is, 4.5. Increasing the values of x2 from 0 to 4.5
yields x3 D 0, which implies that the available amount of material M1 is used up.

Dividing the first equation of (2.1) by the coefficient 6 of x2 and eliminating x2

from the second, third, and fourth equations yields
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1

3
x1 C x2 C 1

6
x3 D 4:5

7

3
x1 � 1

3
x3 C x4 D 7

11

3
x1 � 1

6
x3 C x5 D 13:5

�1

3
x1 C 4

3
x3 �z D 36:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(2.2)

In (2.2), setting x1 D x3 D 0 yields x2 D 4:5, x4 D 7, x5 D 13:5, and z D �36.
This implies the resulting point .x1; x2/ D .0; 4:5/ corresponds to the extreme point
E and the value of the objective function z is decreased from 0 to �36.

Next, from the fourth equation of (2.2), keeping x3 D 0, by increasing the
value of x1 from 0 to positive, the value of z can be decreased. This corresponds to
the movement from the extreme point E to D along the edge ED in Fig. 1.1. From
the first three equations of (2.2), to keep the values of x2, x4, and x5 nonnegative, the
values of x1 to be increased are restricted to at most 4:5=.1=3/ D 13:5, 7=.7=3/ D
3, and 13:5=.11=3/ ' 3:682, respectively. Hence, increasing the values of x2 from
0 to 3, the smallest among them, yields x4 D 0, which implies that the available
amount of material M2 is used up.

Dividing the second equation of (2.2) by the coefficient 7/3 of x1 and eliminating
x1 from the first, third, and fourth equations yields

x2 C 3

14
x3 � 1

7
x4 D 3:5

x1 � 1

7
x3 C 3

7
x4 D 3

5

14
x3 � 11

7
x4 C x5 D 2:5

9

7
x3 C 1

7
x4 �z D 37:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(2.3)

In (2.3), setting x3 D x4 D 0 yields x1 D 3, x2 D 3:5, x5 D 2:5, and z D �37,
which corresponds to the extreme point D in Fig. 1.1, and the value of z is decreased
from �36 to �37.

From the fourth equation of (2.3), both coefficients of x3 and x4 are positive. This
means that increasing the value of x3 or x4 increases the value of z. Therefore, the
minimum of z is �37, that is, the maximum of the total profit is 37 million yen, and
the production numbers of products P1and P2 are 3 and 3.5 tons, respectively.
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2.2 Typical Examples of Linear Programming Problems

Thus far, we have outlined linear programming through the two-dimensional
production planning problem, which can be generalized as the following production
planning problem with n decision variables.

Example 2.1 (Production planning problem). A manufacturing company has fixed
amounts of m different resources at its disposal. These resources are used to
produce n different commodities. The company knows that to produce one unit
of commodity j , aij units of resource i are required. The total number of units of
resource i available is bi . It also knows that a profit per unit of commodity j is cj .
It desires to produce a combination of commodities which will maximize the total
profit.

Let xj denote a decision variable for the production amount of commodity j .
Since the amount of resource i that is used must be less than or equal to the
available number bi of units of resource i , we have, for each i D 1; 2; : : : ; m, a
linear inequality

ai1x1 C ai2x2 C � � � C ainxn � bi :

As a negative xj has no appropriate interpretation, it is required that xj � 0, j D
1; 2; : : : ; n. The profit arising from producing xj units of commodity j is calculated
as cj xj . Our formulation is represented as a linear programming problem where the
linear profit function

c1x1 C c2x2 C � � � C cnxn (2.4)

is maximized subject to the linear inequality constraints

a11x1 C a12x2 C � � � C a1nxn � b1

a21x1 C a22x2 C � � � C a2nxn � b2

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn � bm

9
>>=

>>;

(2.5)

and nonnegativity conditions for all decision variables

xj � 0; j D 1; 2; : : : ; n: (2.6)

˙

Compared with such a production planning problem maximizing the linear
objective function of the total profit subject to the linear inequality constraints
in a direction of the less than or equal to symbol �, the following diet problem
minimizing the linear objective function of the total cost subject to the linear
inequality constraints in a direction of the greater than or equal to symbol � is well
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known as a nearly symmetric one. It should be noted here that both of the problems
have the nonnegativity conditions for all decision variables xj � 0, j D 1; : : : ; n.

Example 2.2 (Diet problem). How can we determine the most economical diet that
satisfies the basic minimum nutritional requirements for good health? Assume n

different foods are available at the market and the selling price for food j is cj

per unit. Moreover, there are m basic nutritional ingredients for the human body,
and at least bi units of nutrient i are required everyday to achieve a balanced diet
for good health. In addition, assume that each unit of food j contains aij units of
nutrient i . The problem is to determine the most economical diet that satisfies the
basic minimum nutritional requirements.

For this problem, let xj , j D 1; : : : ; n denote a decision variable for the number
of units of food j in the diet, and then it is required that xj � 0, j D 1; : : : ; n. The
total amount of nutrient i

ai1x1 C ai2x2 C � � � C ainxn

contained in the purchased foods must be greater than or equal to the daily
requirement bi of nutrient i . Thus, the economic diet can be represented as a linear
programming problem where the linear cost function

c1x1 C c2x2 C � � � C cnxn (2.7)

is minimized subject to the linear constraints

a11x1 C a12x2 C � � � C a1nxn � b1

a21x1 C a22x2 C � � � C a2nxn � b2

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn � bm

9
>>=

>>;

(2.8)

and nonnegativity conditions for all decision variables

xj � 0; j D 1; 2; : : : ; n: (2.9)

˙

To develop a better understanding, as a simple numerical example of the diet
problem, we present the following diet problem with two decision variables and
three constraints.

Example 2.3 (Diet problem with 2 decision variables and 3 constraints). A house-
wife is planning a menu by utilizing two foods F1 and F2 containing three nutrients
N1, N2, and N3 in order to meet the nutritional requirements at a minimum cost.

Each 1 g (gram) of the food F1 contains 1 mg (milligram) of N1, 1 mg of N2, and
2 mg of N3; and each 1 g of the food F2 contains 3 mg of N1, 2 mg of N2, and 1
mg of N3. The recommended amounts of the nutrients N1, N2, and N3 are known
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Table 2.1 Data for two foods diet problem

Food F1 (g) Food F2 (g) Minimum requirement

Nutrient N1 (mg) 1 3 12
Nutrient N2 (mg) 1 2 10
Nutrient N3 (mg) 2 1 15
Price (thousand yen) 4 3

to be at least 12 mg, 10 mg, and 15 mg, respectively. Also, it is known that the costs
per gram of the foods F1 and F2 are, respectively, 4 and 3 thousand yen. These data
concerning the nutrients and foods are summarized in Table 2.1.

The housewife’s problem is to determine the purchase volumes of foods F1 and
F2 which minimize the total cost satisfying the nutritional requirements for the
nutrients N1, N2, and N3.

Let xj denote a decision variable for the number of units of food Fj to
be purchased, and then we can formulate the corresponding linear programming
problem minimizing the linear cost function

4x1 C 3x2 (2.10)

subject to the linear constraints

x1 C 3x2 � 12

x1 C 2x2 � 10

2x1 C x2 � 15

9
=

;
(2.11)

and nonnegativity conditions for all variables

x1 � 0; x2 � 0: (2.12)

˙

2.3 Standard Form of Linear Programming

In order to deal with such nearly symmetrical production planning problems and
diet problems in a unified way, the standard form of linear programming is defined
as follows:

The standard form of linear programming is to minimize the linear objective
function

z D c1x1 C c2x2 C � � � C cnxn (2.13)
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subject to the linear equality constraints

a11x1 C a12x2 C � � � C a1nxn D b1

a21x1 C a22x2 C � � � C a2nxn D b2

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn D bm

9
>>=

>>;

(2.14)

and nonnegativity conditions for all decision variables

xj � 0; j D 1; 2; : : : ; n; (2.15)

where the aij , bi , and cj are fixed real constants. In particular, bi is called a right-
hand side constant, and cj is sometimes called a cost coefficient in a minimization
problem, while called a profit coefficient in a maximization one.

In this book, the standard form of linear programming is written in the following
form:

minimize z D c1x1 C c2x2 C � � � C cnxn

subject to a11x1 C a12x2 C � � � C a1nxn D b1

a21x1 C a22x2 C � � � C a2nxn D b2

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn D bm

xj � 0; j D 1; 2; : : : ; n;

9
>>>>>>>=

>>>>>>>;

(2.16)

or using summation notation, it is compactly rewritten as

minimize z D
nX

j D1

cj xj

subject to
nX

j D1

aij xj D bi ; i D 1; : : : ; m

xj � 0; j D 1; : : : ; n:

9
>>>>>>=

>>>>>>;

(2.17)

By introducing an n dimensional row vector c, an m � n matrix A, an n

dimensional column vector x, and an m dimensional column vector b, the standard
form of linear programming can be then written in a more compact vector–matrix
form as follows:

minimize z D cx
subject to Ax D b

x � 0;

9
=

;
(2.18)
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where

c D .c1; c2; : : : ; cn/; (2.19)

A D

2

6
6
6
4

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

am1 am2 � � � amn

3

7
7
7
5

; x D

0

B
B
B
@

x1

x2

:::

xn

1

C
C
C
A

; b D

0

B
B
B
@

b1

b2

:::

bm

1

C
C
C
A

; (2.20)

and 0 is an n dimensional column vector with zero components.
Moreover, by denoting the j th column of an m � n matrix A by

pj D

0

B
B
B
@

a1j

a2j

:::

amj

1

C
C
C
A

; j D 1; 2; : : : ; n (2.21)

and writing A D Œ p1 p2 � � � pn �; the standard form linear programming (2.16) can
also be represented in column form:

minimize z D c1x1 C c2x2 C � � � C cnxn

subject to p1x1 C p2x2 C � � � C pnxn D b
xj � 0; j D 1; 2; : : : ; n:

9
=

;
(2.22)

In the standard form of linear programming (2.16), the objective function

z D c1x1 C c2x2 C � � � C cnxn

can be treated as just another equation, i.e.,

� z C c1x1 C c2x2 C � � � C cnxn D 0; (2.23)

and by including it in an augmented system of equations, the problem can then be
stated as follows:

Find values of the nonnegative decision variables x1 � 0; x2 � 0; : : : ; xn � 0 so
as to minimize z, satisfying the augmented system of linear equations

a11x1 C a12x2 C � � � C a1nxn D b1

a21x1 C a22x2 C � � � C a2nxn D b2

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn D bm

�z C c1x1 C c2x2 C � � � C cnxn D 0:

9
>>>>>=

>>>>>;

(2.24)

It should be noted here that the standard form of linear programming deals with a
linear minimization problem with nonnegative decision variables and linear equality
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constraints. We introduce a mechanism to convert any general linear programming
problem into the standard form. A linear inequality can be easily converted into an
equality. When the i th constraint is represented as

nX

j D1

aij xj � bi ; i D 1; 2; : : : ; m; (2.25)

by adding a nonnegative slack variable xnCi � 0 such that

nX

j D1

aij xj C xnCi D bi ; i D 1; 2; : : : ; m; (2.26)

the inequality (2.25) becomes the equality (2.26).
Similarly, if the i th constraint is

nX

j D1

aij xj � bi ; i D 1; 2; : : : ; m; (2.27)

by subtracting a nonnegative surplus variable xnCi � 0 such that

nX

j D1

aij xj � xnCi D bi ; i D 1; 2; : : : ; m; (2.28)

we can also transform the inequality (2.27) into the equality (2.28). It should
be noted here that both the slack variables and the surplus variables must be
nonnegative in order that the inequalities (2.25) and (2.27) are satisfied for all
i D 1; 2; : : : ; m.

If, in the original formulation of the problem, some decision variable xk is
not restricted to be nonnegative, it can be replaced with the difference of two
nonnegative variables, i.e.,

xk D xC
k � x�

k ; xC
k � 0; x�

k � 0: (2.29)

If an objective function is to be maximized, we simply multiply the objective
function by �1 to convert a maximization problem into a minimization problem.

Recall that, in the algebraic method for the production planning problem of
Example 1.1, multiplying the objective function by �1 and introducing the three
nonnegative slack variables x3, x4, and x5 yields the following standard form of
linear programming:

minimize z D �3x1 � 8x2

subject to 2x1 C 6x2 C x3 D 27

3x1 C 2x2 C x4 D 16

4x1 C x2 C x5 D 18

xj � 0; j D 1; 2; 3; 4; 5:

9
>>>>>=

>>>>>;

(2.30)
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For the general production planning problem with n decision variables, by
introducing the m nonnegative slack variables xnCi .� 0/, i D 1; : : : ; m, it can
be converted into the following standard form of linear programming:

minimize c1x1 C c2x2 C � � � C cnxn

subject to a11x1 C a12x2 C � � � C a1nxn CxnC1 D b1

a21x1 C a22x2 C � � � C a2nxn CxnC2 D b2

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn CxnCm D bm

xj � 0; j D 1; 2; : : : ; n; n C 1; : : : ; n C m:

9
>>>>>>>=

>>>>>>>;

(2.31)

Similarly, for the diet problem with n decision variables, introducing the m

nonnegative surplus variables xnCi .� 0/, i D 1; : : : ; m yields the following
standard form of linear programming:

minimize c1x1 C c2x2 C � � � C cnxn

subject to a11x1 C a12x2 C � � � C a1nxn �xnC1 D b1

a21x1 C a22x2 C � � � C a2nxn �xnC2 D b2

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn �xnCm D bm

xj � 0; j D 1; 2; : : : ; n; n C 1; : : : ; n C m:

9
>>>>>>>=

>>>>>>>;

(2.32)

The basic ideas of linear programming are to first detect whether solutions
satisfying equality constraints and nonnegativity conditions exist and, if so, to find
a solution yielding the minimum value of z.

However, in the standard form of linear programming (2.16) or (2.18), if there is
no solution satisfying the equality constraint, or if there exists only one, we do not
need optimization. Also, if any of the equality constraints is redundant, i.e., a linear
combination of the others, it could be deleted without changing any solutions of the
system. Therefore, we are mostly interested in the case where the system of linear
equations (2.16) is nonredundant and has an infinite number of solutions.

For that purpose, assume that the number of variables exceeds the number of
equality constraints, i.e.,

n > m (2.33)

and the system of linear equations is linearly independent, i.e.,

rank.A/ D m: (2.34)

Under these assumptions, we introduce a number of definitions for the standard
form of linear programming (2.16) or (2.18).1

1These assumptions, introduced to establish the principle theoretical results, will be relaxed in
Sect. 2.5 and are no longer necessary when solving general linear programming problems.



2.3 Standard Form of Linear Programming 17

Definition 2.1 (Feasible solution). A feasible solution to the linear programming
problem (2.16) is a vector x D .x1; x2; : : : ; xn/T which satisfies the linear equalities
and the nonnegativity conditions of (2.16).2

Definition 2.2 (Basis matrix). A basis matrix is an m � m nonsingular submatrix
formed by choosing some m columns of the rectangular matrix A. Observe that A

contains at least one basis matrix due to rank.A/ D m.

Definition 2.3 (Basic solution). A basic solution to the linear programming prob-
lem (2.16) is a solution obtained by setting n � m variables (called nonbasic
variables) equal to zeros and solving for the remaining m variables (called basic
variables). A basic solution is also a unique vector determined by choosing a basis
matrix from the m�n matrix A and solving the resulting square, nonsingular system
of equations for the m variables. The set of all basic variables is called the basis.

Definition 2.4 (Basic feasible solution). A basic feasible solution to the linear
programming problem (2.16) is a basic solution which satisfies not only the linear
equations but also the nonnegativity conditions of (2.16), that is, all basic variables
are nonnegative. Observe that at most m variables can be positive by Definition 2.3.

Definition 2.5 (Nondegenerate basic feasible solution). A nondegenerate basic
feasible solution to the linear programming problem (2.16) is a basic solution with
exactly m positive xj , that is, all basic variables are positive.

Definition 2.6 (Optimal solution). An optimal solution to the linear programming
problem (2.16) is a feasible solution which also minimizes z in (2.16). The
corresponding value of z is called the optimal value.

The number of basic solutions is the number of ways that m variables are selected
from a group of n variables, i.e.,

nCm D nŠ

.n � m/ŠmŠ
:

Example 2.4 (Basic solutions). Consider the basic solutions of the standard form of
the linear programming (2.30) discussed in Example 1.1.

Choosing x3, x4, and x5 as basic variables, we have the corresponding basic
solution .x1; x2; x3; x4; x5/ D .0; 0; 27; 16; 18/ which is a nondegenerate basic
feasible solution and corresponds to the extreme point A in Fig. 1.1. After making
another choice of x1, x2, and x4 as basic variables, solving

2x1 C 6x2 D 27

3x1 C 2x2 C x4 D 16

4x1 C x2 D 18

2In this book, the superscript T denotes the transpose operation for a vector or a matrix.
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yields x1 D 81=22, x2 D 36=11, and x4 D �35=22. The resulting basic solution
.x1; x2; x3; x4; x5/ D .81=22; 36=11; 0; �35=22; 0/ is not feasible.

Choosing x1, x2, and x5 as basic variables, we solve

2x1 C 6x2 D 27

3x1 C 2x2 D 16

4x1 C x2 C x5 D 18;

and then we have a basic feasible solution .x1; x2; x3; x4; x5/ D .3; 3:5; 0; 0; 2:5/.
It corresponds to the extreme point D in Fig. 1.1 which is an optimal solution. ˙

2.4 Simplex Method

For generalizing the basic ideas of linear programming grasped in the algebraic
approach to the two-dimensional production planning problem of Example 1.1, con-
sider the following linear programming problem with basic variables x1; x2; : : : ; xm:

Find values of x1 � 0; x2 � 0; : : : ; xn � 0 so as to minimize z, satisfying the
augmented system of linear equations

x1 C Na1;mC1xmC1 C Na1;mC2xmC2 C � � � C Na1nxn D Nb1

x2 C Na2;mC1xmC1 C Na2;mC2xmC2 C � � � C Na2nxn D Nb2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
xm C Nam;mC1xmC1 C Nam;mC2xmC2 C � � � C Namnxn D Nbm

�z C NcmC1xmC1 C NcmC2xmC2 C � � � C Ncnxn D �Nz:

9
>>>>>=

>>>>>;

(2.35)
As in the previous section, here it is assumed that n > m and the system

of m equality constrains is nonredundant. As with the augmented system of
equations (2.35), a system of linear equations in which each of the variables
x1; x2; : : : ; xm has a coefficient of unity in one equation and zeros elsewhere is called
a canonical form or a basic form. In a canonical form, the variables x1; x2; : : : ; xm

and .�z/ are called basic variables, and the remaining variables xmC1; xmC2; : : : ; xn

are called nonbasic variables. In such a canonical form, observing that .�z/ always
is a basic variable, with no further notice, only x1; x2; : : : ; xm are called basic
variables.

It is useful to set up such a canonical form (2.35) in tableau form as shown in
Table 2.2. This table is called a simplex tableau, in which only the coefficients of
the algebraic representation in (2.35) are given.

From the canonical form (2.35) or the simplex tableau given in Table 2.2, it
follows directly that a basic solution with basic variables x1; x2; : : : ; xm becomes

x1 D Nb1; x2 D Nb2; : : : ; xm D Nbm; xmC1 D xmC2 D � � � D xn D 0 (2.36)
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Table 2.2 Simplex tableau

Basis x1 x2 � � � xm xmC1 xmC2 � � � xn Constants

x1 1 Na1;mC1 Na1;mC2 � � � Na1n
Nb1

x2 1 Na2;mC1 Na2;mC2 � � � Na2n
Nb2

:
:
:

: : :
:
:
:

:
:
: � � � :

:
:

:
:
:

xm 1 Nam;mC1 Nam;mC2 � � � Namn
Nbm

�z NcmC1 NcmC2 � � � Ncn �Nz

and the value of the objective function is

z D Nz: (2.37)

If

Nb1 � 0; Nb2 � 0; : : : ; Nbm � 0; (2.38)

then the solution .x1; : : : ; xm; xmC1; : : : ; xn/ D . Nb1; : : : ; Nbm; 0; : : : ; 0/ is a basic
feasible solution. In this case, the corresponding canonical form (tableau) is called a
feasible canonical form (tableau). If, for one or more i , Nbi D 0 holds, then it is said
that the basic feasible solution is degenerate.

As an example that we can directly formulate a feasible canonical form, consider
the production planning problem of Example 2.1. For this problem, by introducing
m slack variables xnCi � 0, i D 1; 2; : : : ; m and multiplying the objective function
by �1 to convert the maximization problem into a minimization problem, the
following canonical form is obtained:

a11x1 C a12x2 C � � � C a1nxn C xnC1 D b1

a21x1 C a22x2 C � � � C a2nxn C xnC2 D b2

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am;2x2 C � � � C amnxn C xnCm D bm

c1x1 C c2x2 C � � � C cnxn �z D 0:

9
>>>>>=

>>>>>;

(2.39)

In this formulation, by using the m slack variables xnC1; xnC2; : : : ; xnCm as basic
variables, it is evident that (2.39) is a canonical form, and then the corresponding
basic solution is

x1 D x2 D � � � D xn D 0; xnC1 D b1; : : : ; xnCm D bm: (2.40)

From the fact that the right-hand side constant bi means the available amount of
resource i , it should be nonnegative, i.e., bi � 0, i D 1; 2; : : : ; m, and therefore this
canonical form is feasible.
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In contrast, for the diet problem of Example 2.2, introducing m surplus variables
xnCi � 0, i D 1; 2; : : : ; m and then multiplying both sides of the resulting
constraints by �1 yields a basic solution

x1 D x2 D � � � D xn D 0; xnC1 D �b1; : : : ; xnCm D �bm: (2.41)

Unfortunately, however, since bi � 0, i D 1; 2; : : : ; m, this operation cannot lead a
feasible canonical form.

In the following discussions of this section, assume that the canonical form (2.35)
is feasible. That is, starting with the canonical form (2.35) with the basic solution

x1 D Nb1; x2 D Nb2; : : : ; xm D Nbm; xmC1 D xmC2 D � � � D xn D 0;

we assume that this basic solution is feasible, i.e.,

Nb1 � 0; Nb2 � 0; : : : ; Nbm � 0:

From the last equation in (2.35), we have

z D Nz C NcmC1xmC1 C NcmC2xmC2 C � � � C Ncnxn:

Since xmC1 D xmC2 D � � � D xn D 0, one finds z D Nz. This equation provides
even more valuable information than this. By merely glancing at the numbers Ncj ,
j D m C 1; m C 2; : : : ; n, one can tell if this basic feasible solution is optimal or
not. Furthermore, one can find a better basic feasible solution if it is not optimal.
Consider first the optimality of the canonical form, given by the following theorem.

Theorem 2.1 (Optimality test). In the feasible canonical form (2.35), if all
coefficients NcmC1, NcmC2, : : :, Ncn of the last equation are nonnegative, i.e.,

Ncj � 0; j D m C 1; m C 2; : : : ; n; (2.42)

then the basic feasible solution is optimal.

Proof. The last equation of (2.35) can be rewritten as

z D Nz C NcmC1xmC1 C NcmC2xmC2 C � � � C Ncnxn:

The nonbasic variables xmC1; xmC2; : : : ; xn are presently zeros, and they are
restricted to be nonnegative. If Ncj � 0 for j D m C 1; m C 2; : : : ; n, then from
Ncj xj � 0, j D mC1; mC2; : : : ; n, increasing any xj cannot decrease the objective
function z. Thus, since any change in the nonbasic variables cannot decrease z, the
present solution must be optimal. �

The coefficient Ncj of xj in (2.35) represents the rate of change of z with respect
to the nonbasic variable xj . From this observation, the coefficient Ncj is called the
relative cost coefficient or, alternatively, the reduced cost coefficient.
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The optimality condition (2.42) is sometimes referred to as the optimality
criterion or the simplex criterion. The feasible canonical form satisfying the
optimality criterion is called the optimal canonical form or the optimal basic form,
and the simplex tableau satisfying the optimality criterion is also called the optimal
tableau.

Note that since Ncj D 0 for all basic variables, the optimality criterion (2.42)
could also be stated simply as Ncj � 0 for all j D 1; 2; : : : ; n in place of Ncj � 0 for
all j D m C 1; : : : ; n.

In addition to the optimality, the relative cost coefficients can also tell if there
are multiple optima. Assume that for all nonbasic variables xj , Ncj � 0, and for
some nonbasic variable xk , Nck D 0. In that case, if the increase of xk does not
violate the constraints, there are multiple optima because no change in z results.
Hence, the following theorem can be derived.

Theorem 2.2 (Unique optimal solution). In the feasible canonical form (2.35), if
Ncj > 0 for all nonbasic variables, then the basic feasible solution is the unique
optimal solution.

Of course, if, for some nonbasic variable xj , Ncj < 0, then z can be decreased
by increasing xj . Consider a method for finding better solutions than the current
nonoptimal solution.

If there is at least one negative coefficient, say Ncj < 0, then, under the assumption
of nondegeneracy, i.e., Nbi > 0 for all i , it is always possible to generate another basic
feasible solution with an improved value of the objective function. If there are two
or more negative coefficients, we choose a variable xs with the smallest relative cost
coefficient

Ncs D minNcj <0
Ncj (2.43)

and increase the value of xs .
Although this choice may not lead to the greatest possible decrease in z (since

only a limited extent of increase of xs may be allowed), it is at least intuitively a good
rule for choosing a variable to be made a basic one. It is the one used in practice
today because (i) it is simple and (ii) it generally leads to an optimal solution in
fewer iterations than just choosing any Ncs < 0.

After a nonbasic variable xs is selected to be a basic one, we increase the value
of xs from zero, holding the other nonbasic variables zeros. Observe the effect of
this operation on the current basic variables. From (2.35), each of the current basic
variables can be represented as a function of xs:

x1 D Nb1 � Na1sxs

x2 D Nb2 � Na2sxs

� � � � � � � � � � � �
xm D Nbm � Namsxs

z D Nz C Ncsxs:

9
>>>>>=

>>>>>;

(2.44)
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Since the coefficient Ncs of the last equation in (2.44) is negative, i.e., Ncs < 0,
increasing the value of xs decreases the value of z. The only factor limiting the
increase of xs is that all of the variables x1; x2; : : : ; xm must be nonnegative. In other
words, keeping the feasibility of the solution requires

xi D Nbi � Naisxs � 0; i D 1; 2; : : : ; m: (2.45)

However, if all the coefficients Nais , i D 1; 2; : : : ; m are nonpositive, i.e.,

Nais � 0; i D 1; 2; : : : ; m; (2.46)

then xs can increase infinitely. Hence since Ncs < 0, from the last equation of (2.44),
it follows that

z D Nz C Ncsxs ! �1:

Thus, we have the following theorem.

Theorem 2.3 (Unboundedness). If in the feasible canonical form (2.35), for some
nonbasic variable xs , the coefficients Nais , i D 1; 2; : : : ; m are nonpositive and the
coefficient Ncs is negative, i.e.,

Nais � 0; i D 1; 2; : : : ; m; and Ncs < 0; (2.47)

then the optimal value is unbounded.

If, however, at least one Nais is positive, then xs cannot be increased indefinitely
since eventually some basic variable, say xi , will decrease beyond zero and become
negative. From (2.44), xi becomes zero when the coefficient Nais is positive and xs

raises to Nbi = Nais , i.e.,

xs D
Nbi

Nais

; Nais > 0: (2.48)

The value of xs is maximized under the condition of the nonnegativity of the
basic variables xi , i D 1; 2; : : : ; m, and it is given by

minNais>0

Nbi

Nais

D
Nbr

Nars

D ™: (2.49)

The basic variable xr determined by (2.49) then becomes nonbasic, and instead, the
nonbasic variable xs becomes basic. That is, xr becomes zero while xs increases
from zero to Nbr= Nars D ™ .� 0/. Also, from the last equation of (2.44), the value of
objective function z decreases by j Ncsxsj D j Ncs™j.

A new canonical form in which xs is selected as a basic variable in place of xr can
be easily obtained by pivoting on Nars , which is called the pivot element determined
by (2.43) and (2.49). That is, finding Ncs D min Ncj <0 Ncj tells us that the pivot term
is in column s, and finding the minimum Nbr= Nars of all the ratios Nbi = Nais such that
Nais > 0 tells us that it is in row r .

Fundamental to linear programming is a pivot operation defined as follows.
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Definition 2.7 (Pivot operation). A pivot operation consists of m elementary steps
for replacing a linear system with an equivalent system in which a specified variable
has a coefficient of unity in one equation and zeros elsewhere. The detailed steps
are as follows:

(i) Select the nonzero element ars in row (equation) r and column s, which is
called the pivot element.

(ii) Replace the r th equation with the r th equation multiplied by 1=ars .
(iii) For each i D 1; 2; : : : ; m except i D r , replace the i th equation with the sum

of the i th equation and the replaced r th equation multiplied by �ais .

In linear programming, pivot operations are sometimes counted by the term
“cycle.” Now, a pivot operation on Nars.¤ 0/ is performed to the feasible canonical
form

x1 C Na1;mC1xmC1 C � � � C Na1sxs C � � � C Na1nxn D Nb1

x2 C Na2;mC1xmC1 C � � � C Na2sxs C � � � C Na2nxn D Nb2

� � � � � � � � � � � � � � � � � � � � �
xr C Nar;mC1xmC1 C � � � C Narsxs C � � � C Narnxn D Nbr

� � � � � � � � � � � � � � � � � � � � �
xm C Nam;mC1xmC1 C � � � C Namsxs C � � � C Namnxn D Nbm

�z C NcmC1xmC1 C � � � C Ncsxs C � � � CNcnxn D �Nz;

9
>>>>>>>>>=

>>>>>>>>>;

(2.50)

where Nbi � 0, i D 1; 2; : : : :m, and then we have the new canonical form

x1 C Na�
1rxr C Na�

1;mC1xmC1 C� � �C 0 C� � �C Na�
1nxn D Nb�

1

x2 C Na�
2rxr C Na�

2;mC1xmC1 C� � �C 0 C� � �C Na�
2nxn D Nb�

2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Na�

rrxr C Na�
r;mC1xmC1 C� � �Cxs C� � �C Na�

rnxn D Nb�
r

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Na�

mrxr Cxm C Na�
m;mC1xmC1 C� � �C 0 C� � �C Na�

mnxn D Nb�
m

Nc�
r xr �z C Nc�

mC1xmC1 C� � �C 0 C� � �C Nc�
n xn D�Nz�;

9
>>>>>>>>>=

>>>>>>>>>;

(2.51)

where the superscript � is added to a revised coefficient, and the revised coefficients
for j D r; m C 1; m C 2; : : : ; n are calculated as follows:

Na�
rj D Narj

Nars

; Nb�
r D

Nbr

Nars

; (2.52)

Na�
ij D Naij � Nais

Narj

Nars

; Nb�
i D Nbi � Nais

Nbr

Nars

; i D 1; 2; : : : ; mI i ¤ r; (2.53)

Nc�
j D Ncj � Ncs

Narj

Nars

; �Nz� D �Nz � Ncs

Nbr

Nars

: (2.54)
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Table 2.3 Pivot operation on Nars

Cycle Basis x1 � � � xr � � � xm xmC1 � � � xs � � � xn Constants

` x1 1 Na1;mC1 � � � Na1s � � � Na1n
Nb1

:
:
:

: : :
:
:
:

:
:
:

:
:
:

:
:
:

xr 1 Nar;mC1 � � � Œ Nars� � � � Narn
Nbr

:
:
:

: : :
:
:
:

:
:
:

:
:
:

:
:
:

xm 1 Nam;mC1 � � � Nams � � � Namn
Nbm

�z NcmC1 � � � Ncs � � � Ncn �Nz
` C 1 x1 1 Na�

1r Na�
1;mC1 � � � 0 � � � Na�

1n
Nb�
1

:
:
:

: : :
:
:
:

:
:
:

:
:
:

:
:
:

xs Na�
rr Na�

r;mC1 � � � 1 � � � Na�
rn

Nb�
r

:
:
:

: : :
:
:
:

:
:
:

:
:
:

:
:
:

xm Na�
mr 1 Na�

m;mC1 � � � 0 � � � Na�
mn

Nb�
m

�z Nc�
r � � � Nc�

mC1 � � � 0 � � � Nc�
n �Nz�

Na�
rj D Narj

Nars
; Nb�

r D Nbr

Nars

Na�
ij D Naij � Nais

Narj

Nars
D Naij � Nais Na�

rj ; Nb�
i D Nbi � Nais

Nbr

Nars
D Nbi � Nais

Nb�
r .i ¤ r/

Nc�
j D Ncj � Ncs

Narj

Nars
D Ncj � Ncs Na�

rj ; �Nz� D �Nz � Ncs
Nbr

Nars
D �Nz � Ncs

Nb�
r

Since the pivot element Nars is determined by (2.43) and (2.49), it is expected that
the new canonical form (2.51) with basic variables x1; x2; : : : ; xr�1; xs; xrC1; : : : ; xm

also becomes feasible. This fact can be formally verified as follows.
It is obvious that Nb�

r D Nbr= Nars � 0. For i .i ¤ r/ such that Nais > 0, from (2.49),
it follows that

Nb�
i D Nbi � Nais

Nars

Nbr D Nais

 Nbi

Nais

�
Nbr

Nars

!

� 0;

and for i .i ¤ r/ such that Nais � 0, one finds that

Nb�
i D Nbi � Nais

Nars

Nbr � 0:

Hence, it holds that Nb�
i � 0 for all i , and then (2.51) is a feasible canonical form.

The pivot operation on Nars replacing xr with xs as a new basic variable can be
summarized in Table 2.3.

As described so far, starting with a feasible canonical form and updating it
through a series of pivot operations, the simplex method seeks for an optimal
solution satisfying the optimality criterion or the unboundedness information. The
procedure of the simplex method, starting with a feasible canonical form, can be
summarized as follows.
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Procedure of the Simplex Method

Start with a feasible canonical form (simplex tableau).

Step 1 If all of the relative cost coefficients are nonnegative, i.e., Ncj � 0 for all
indices j of the nonbasic variables, then the current solution is optimal, and stop.
Otherwise, by using the relative cost coefficients Ncj , find the index s such that

minNcj <0
Ncj D Ncs:

Step 2 If all of the coefficients in column s are nonpositive, i.e., Nais � 0 for all
indices i of the basic variables, then the optimal value is unbounded, and stop.

Step 3 If some of Nais are positive, find the index r such that

minNais>0

Nbi

Nais

D
Nbr

Nars

D ™:

Step 4 Perform the pivot operation on Nars for obtaining a new feasible canonical
form (simplex tableau) with xs replacing xr as a new basic variable. The
coefficients of the new feasible canonical form after pivoting on Nars ¤ 0 are
calculated as follows:

(i) Replace row r (the r th equation) with row r multiplied by 1= Nars (divide
row r by Nars), i.e.,

Na�
rj D Narj

Nars

; Nb�
r D

Nbr

Nars

:

(ii) For each i D 1; 2; : : : ; m except i D r , replace row i (the i th equation)
with the sum of row i and the revised row r multiplied by �Nais , i.e.,

Na�
ij D Naij � Nais Na�

rj ; Nb�
i D Nbi � Nais

Nb�
r :

(iii) Replace row m C 1 (the .m C 1/th equation for the objective function) with
the sum of row m C 1 and the revised row r multiplied by �Ncs , i.e.,

Nc�
j D Ncj � Ncs Na�

rj ; �Nz� D �Nz � Ncs
Nb�
r :

Return to step 1.

It should be noted here that when multiple candidates exist for the index s of the
variable entering the basis in step 1 or the index r of the variable leaving the basis
in step 3, for the sake of convenience, we choose the smallest index.
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Table 2.4 Simplex tableau for Example 1.1

Cycle Basis x1 x2 x3 x4 x5 Constants

0 x3 2 [6] 1 27
x4 3 2 1 16
x5 4 1 1 18

�z �3 �8 0

1 x2 1/3 1 1/6 4.5
x4 [7/3] �1=3 1 7
x5 11/3 �1=6 1 13.5

�z �1=3 4/3 36

2 x2 1 3/14 �1=7 3.5
x1 1 �1=7 3/7 3
x5 5/14 �11=7 1 2.5
�z 9/7 1/7 37

Example 2.5 (Simplex method for the production planning problem of Example 1.1).
Using the simplex method, solve the production planning problem in the standard
form given in Example 1.1:

minimize z D �3x1 � 8x2

subject to 2x1 C 6x2 C x3 D 27

3x1 C 2x2 C x4 D 16

4x1 C x2 C x5 D 18

xj � 0; j D 1; 2; 3; 4; 5:

Introducing the slack variables x3, x4, and x5 and using them as the basic
variables, we have the initial basic feasible solution

x1 D x2 D 0; x3 D 27; x4 D 16; x5 D 18;

which is shown at cycle 0 of the simplex tableau given in Table 2.4.
At cycle 0, since the minimum of Nc1 and Nc2 is

min .�3; �8/ D �8 < 0;

x2 becomes a new basic variable. The minimum ratio, min Nai2>0
Nbi = Nai2, is calcu-

lated as

min

�
27

6
;

16

2
;

18

1

�

D 27

6
D 4:5;

and then x3 becomes a nonbasic variable. From s D 2 and r D 1, the pivot element
is 6 bracketed by [ ] in Table 2.4. After the pivot operation on 6, the result at cycle
1 is obtained.
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Table 2.5 Simplex tableau with multiple optima

Cycle Basis x1 x2 x3 x4 x5 Constants

0 x3 2 [6] 1 27
x4 3 2 1 16
x5 4 1 1 18

�z �1 �3

1 x2 1/3 1 1/6 4.5
x4 [7/3] �1=3 1 7
x5 11/3 �1=6 1 13.5

�z 0 1/2 13.5

2 x2 1 3/14 �1=7 3.5
x1 1 �1=7 3/7 3
x5 5/14 �11=7 1 2.5

�z 1/2 0 13.5

At cycle 1, since the negative relative cost coefficient is only �1=3, x1 becomes
a basic variable. Since

min

�
4:5

1=3
;

7

7=3
;

13:5

11=3

�

D 7

7=3
D 3;

7/3 bracketed by [ ] becomes the pivot element. After the pivot operation on 7/3, the
result at cycle 2 is obtained. At cycle 2, all of the relative cost coefficients become
positive, and then the following optimal solution is obtained:

x1 D 3; x2 D 3:5 .x3 D x4 D 0; x5 D 2:5/; z D �37

The above optimal solution corresponds to the extreme point D in Fig. 1.1. ˙

Example 2.6 (Example with multiple optima). To show a simple linear program-
ming problem having multiple optima, consider the following modified production
planning problem in which the coefficients of x1 and x2 in the original objective
function given in Example 1.1 are changed to 1 and 3, respectively:

minimize z D �x1 � 3x2

subject to 2x1 C 6x2 C x3 D 27

3x1 C 2x2 C x4 D 16

4x1 C x2 C x5 D 18

xj � 0; j D 1; 2; 3; 4; 5

:

By using the simplex method, at cycle 1 in Table 2.5, an optimal solution

x1 D 0; x2 D 4:5 .x3 D 0; x4 D 7; x5 D 13:5/; z D �13:5
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is obtained, observing the relative cost coefficient of x1 is zero, which means that the
value of the objective function is unchanged even if x1 becomes positive, provided
that it is not violating the constraints. Replacing x1 with x4 as a basic variable yields
an alternative optimal solution

x1 D 3; x2 D 3:5 .x3 D x4 D 0; x5 D 2:5/; z D �13:5

giving the same value of the objective function. It should be noted here that the
optimal solutions obtained in cycles 1 and 2, respectively, correspond to the extreme
points E and D in Fig. 1.1, and all of the points on the line segment ED are also
optimal. ˙

2.5 Two-Phase Method

The simplex method requires a basic feasible solution as a starting point. Such a
starting point is not always easy to find, and in fact none will exist if the constraints
are inconsistent. Phase I of the simplex method finds an initial basic feasible solution
or derives the information that no feasible solution exists. Phase II then proceeds
from this starting point to an optimal solution or derives the information that the
optimal value is unbounded. Both phases use the procedure of the simplex method
given in the previous section.

Phase I starts with a linear programming problem in the standard form (2.24),
where all the constants bi are nonnegative. For this purpose, if some bi is negative,
multiply the corresponding equation by �1. In order to set up an initial feasible
solution for phase I, the linear programming problem in the standard form is
augmented with a set of nonnegative variables xnC1 � 0, xnC2 � 0, : : :, xnCm � 0,
so that the problem becomes as follows:

Find values of xj � 0, j D 1; 2; : : : ; n; n C 1; : : : ; n C m so as to minimize z,
satisfying the augmented system of linear equations

a11x1 C a12x2 C � � � C a1nxn CxnC1 D b1 .� 0/

a21x1 C a22x2 C � � � C a2nxn CxnC2 D b2 .� 0/

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn CxnCm D bm .� 0/

c1x1 C c2x2 C � � � C cnxn �z D 0:

9
>>>>>=

>>>>>;

(2.55)

The newly introduced nonnegative variables xnC1 � 0, xnC2 � 0, : : :, xnCm � 0

are called artificial variables.
In the canonical form (2.55), using the artificial variables xnC1; xnC2; : : : ; xnCm

as basic variables, the following initial basic feasible solution is directly obtained:

x1 D x2 D � � � D xn D 0; xnC1 D b1 � 0; : : : ; xnCm D bm � 0: (2.56)
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Although a basic feasible solution to (2.55) such as (2.56) is not always feasible
to the original system, basic feasible solutions to (2.55) such that all the artificial
variables xnC1; xnC2; : : : ; xnCm are equal to zeros are also feasible to the original
system. Thus, one way to find a basic feasible solution to the original system is to
start from the initial basic solution (2.56) and use the simplex method to drive a
basic feasible solution such that all the artificial variables are equal to zeros. This
can be done by minimizing a function of the artificial variables

w D xnC1 C xnC2 C � � � C xnCm (2.57)

subject to the equality constraints (2.55) and the nonnegativity conditions for all
variables. By its very nature, the function (2.57) is sometimes called the infeasibility
form.

That is, the phase I problem is to find values of x1 � 0; x2 � 0; : : : ; xn � 0,
xnC1 � 0; : : : ; andxnCm � 0 so as to minimize w, satisfying the augmented system
of linear equations

a11x1C a12x2C� � �C a1nxnCxnC1 Db1 .� 0/

a21x1C a22x2C� � �C a2nxn CxnC2 Db2 .� 0/

� � � � � � � � � � � � � � � � � � � � �
am1x1Cam2x2C� � �Camnxn CxnCm Dbm .� 0/

c1x1C c2x2C� � �C cnxn �z D 0

xnC1CxnC2C � � �CxnCm �wD 0:

9
>>>>>>>=

>>>>>>>;

(2.58)

Since the artificial variables are nonnegative, the function w which is the sum of
the artificial variables is obviously larger than or equal to zero. In particular, if the
optimal value of w is zero, i.e., w D 0, then all the artificial variables are zeros, i.e.,
xnCi D 0 for all i D 1; 2; : : : ; m. In contrast, if it is positive, i.e., w > 0, then no
feasible solution to the original system exists because some artificial variables are
not zeros and then the corresponding original constraints are not satisfied. Given an
initial basic feasible solution, the simplex method generates other basic feasible
solutions in turn, and then the end product of phase I must be a basic feasible
solution to the original system if such a solution exists.

It should be mentioned that a full set of m artificial variables may not be
necessary. If the original system has some variables that can be used as initial basic
variables, then they should be chosen in preference to artificial variables. The result
is less work in phase I.

For obtaining an initial basic feasible solution through the minimization of w
with the simplex method, it is necessary to convert the augmented system (2.58)
into the canonical form with the row of �w, where w must be expressed by the
current nonbasic variables x1; x2; : : : ; xn. Since from (2.58) the artificial variables
are represented by using the nonbasic variables, i.e.,

xnCi D bi � ai1x1 � ai2x2 � � � � � ainxn; i D 1; 2; : : : ; m;
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(2.57) can be rewritten as

w D
mX

iD1

xnCi D
mX

iD1

0

@bi �
nX

j D1

aij xj

1

A D
mX

iD1

bi �
nX

j D1

 
mX

iD1

aij

!

xj ; (2.59)

which is now expressed by the nonbasic variables x1; x2; : : : ; xn. Defining

w0 D
mX

iD1

bi .� 0/; dj D �
mX

iD1

aij ; j D 1; 2; : : : ; n; (2.60)

the row of �w is compactly expressed as

� w C d1x1 C d2x2 C � � � C dnxn D �w0: (2.61)

In this way, the augmented system (2.58) is converted into the following initial
feasible canonical form for phase I with the row of �w in which the artificial
variables xnC1; xnC2; : : : ; xnCm are selected as basic variables:

a11x1 C a12x2 C � � � C a1nxn CxnC1 D b1 .� 0/

a21x1 C a22x2 C � � � C a2nxn CxnC2 D b2 .� 0/

� � � � � � � � � � � � � � � � � � � � �
am1x1 C am2x2 C � � � C amnxn CxnCm D bm .� 0/

c1x1 C c2x2 C � � � C cnxn �z D 0

d1x1 C d2x2 C � � � C dnxn �w D �w0:

9
>>>>>>>=

>>>>>>>;

(2.62)

Now it becomes possible to solve the phase I problem as given by (2.62) using
the simplex method. Finding the pivot element Nars by using the rule

Nds D minNdj <0

Ndj (2.63)

and

Nbr

Nars

D minNais>0

Nbi

Nais

(2.64)

and performing the pivot operation on it, we minimize the objective function w in
phase I. When

Ndj � 0; j D 1; : : : ; n; n C 1; : : : ; n C mI w D 0; (2.65)

all the artificial variables become zeros. In this case, if all the artificial variables
become nonbasic ones, an initial basic feasible solution to the original problem is



2.5 Two-Phase Method 31

obtained. Hence, after eliminating all the artificial variables together with the row
of �w, initiate phase II of the simplex method for minimizing the original objective
function z.

In the two-phase method, phase I finds an initial basic feasible solution or derives
the information that no feasible solution exists, and phase II then proceeds from this
starting point to an optimal solution or derives the information that the optimal value
is unbounded.

Whenever the original system contains redundancies and often when degenerate
solutions occur, artificial variables will remain in the basis at the end of phase I.
Thus, it is necessary to prevent their values from becoming positive in phase II. One
possible way is to drop all nonartificial variables whose relative cost coefficients for
w are positive and all nonbasic artificial variables before starting phase II. To see
this, we note that the equation for w at the end of phase I satisfies

nCmX

j D1

Ndj xj D w � w0; (2.66)

where Ndj � 0 and w0 D 0 since feasible solutions to the original problem
exist. For feasibility, w must remain zero in phase II, which means that every xj

corresponding to Ndj > 0 must be zero; hence, all such xj can be set equal to
zero and eliminated from further consideration in phase II. We can also drop any
nonbasic artificial variables because we no longer need to consider them. That is,
eliminate the columns of the artificial variables leaving from the basis and those of
nonbasic variable xj with dj > 0 in the optimal simplex tableau of phase I. Due to
this operation, the objective function w of phase I will not become positive again,
and also the values of the artificial variables remaining in the basis will not become
positive in phase II. This means that basic solutions generated in phase II are always
feasible.

dj D �
mX

iD1

aij ; �w0 D �
mX

iD1

bi

Before summarizing the procedure of the two-phase method, the following useful
remarks are given. In the simplex tableau, it is customary to omit the artificial
variable columns because these, once dropped from the basis, can be eliminated
from further consideration. Moreover, if the pivot operations for minimizing w in
phase I are also simultaneously performed on the row of �z, the original objective
function z will be expressed in terms of nonbasic variables at each cycle. Thus, if an
initial basic feasible solution is found for the original problem, the simplex method
can be initiated immediately on z. Therefore, the row of �z is incorporated into the
pivot operations in phase I.

Following the above discussions, the procedure of the two-phase method can be
summarized as follows.
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Table 2.6 Initial tableau of two-phase method

Basis x1 x2 � � � xj � � � xn Constants

xnC1 a11 a12 � � � a1j � � � a1n b1

xnC2 a21 a22 � � � a2j � � � a2n b2

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

xnCi ai1 ai2 � � � aij � � � ain bi

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

xnCm am1 am2 � � � amj � � � amn bm

�z c1 c2 � � � cj � � � cn 0

�w d1 d2 � � � dj � � � dn �w0

Procedure of Two-Phase Method

Phase I Starting with the simplex tableau in Table 2.6, perform the simplex
method with the row of �w as an objective function in phase I, where the pivot
element is not selected from the row of �z, but the pivot operation is performed
to the row of �z. When an optimal tableau is obtained, if w > 0, no feasible
solution exists to the original problem. Otherwise, i.e., if w D 0, proceed to
phase II.

Phase II After dropping all columns of xj such that Ndj > 0 and the row of �w,
perform the simplex method with the row of �z as the objective function in
phase II.

Example 2.7 (Two-phase method for diet problem with two decision variables).
Using the two-phase method, solve the diet problem in the standard form given
in Example 2.3.

minimize z D 4x1 C 3x2

subject to x1 C 3x2 � x3 D 12

x1 C 2x2 � x4 D 10

2x1 C x2 � x5 D 15

xj � 0; j D 1; 2; 3; 4; 5:

After introducing artificial variables x6, x7, and x8 as basic variables in phase I,
the two-phase method starts from cycle 0 as shown in Table 2.7, and then the value
of w becomes zero, i.e., w D 0 at cycle 3. In this example, when phase I has finished
at cycle 3, since all of the relative cost coefficients of the row of �z are positive,
phase II also finishes. Thus, an optimal solution

x1 D 6:6; x2 D 1:8 .x3 D 0; x4 D 0:2; x5 D 0/ z D 31:8

is obtained. ˙
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Table 2.7 Simplex tableau of two-phase method for Example 2.3

Cycle Basis x1 x2 x3 x4 x5 Constants

0 x6 1 [3] �1 12
x7 1 2 �1 10
x8 2 1 �1 15

�z 4 3 0

�w �4 �6 1 1 1 �37

1 x2 1/3 1 �1=3 4
x7 [1/3] 2/3 �1 2
x8 5/3 1/3 �1 11

�z 3 1 �12

�w �2 �1 1 1 �13

2 x2 1 �1 1 2
x1 1 2 �3 6
x8 �3 [5] �1 1

�z �5 9 �30

�w 3 �5 1 �1

3 x2 1 �0:4 0.2 1.8
x1 1 0.2 �0:6 6.6
x4 �0:6 1 �0:2 0.2

�z 0.4 1.8 �31:8

�w 0 0 0

Example 2.8 (Example of infeasible problem with two decision variables and
four constraints). As an example of simple infeasible problem, consider a linear
programming problem in the standard form for the diet problem of Example 2.7
including the additional inequality constraint

4x1 C 5x2 � 8:

Introducing a slack variable x6, the problem is converted into the following
standard form of linear programming:

minimize z D 4x1 C 3x2

subject to x1 C 3x2 � x3 D 12

x1 C 2x2 � x4 D 10

2x1 C x2 � x5 D 15

4x1 C 5x2 C x6 D 8

xj � 0; j D 1; 2; 3; 4; 5; 6:

Using the slack variable x6 and the artificial variables x7, x8, and x9 as initial
basic variables, phase I of the simplex method is performed. As shown in Table 2.8,
phase I is terminated at cycle 1 because of d1 > 0, d3 > 0, d4 > 0, d5 > 0, and
d6 > 0. However, from w D 27:4 > 0, no feasible solution exists to this problem.
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Table 2.8 Infeasible simplex tableau

Cycle Basis x1 x2 x3 x4 x5 x6 Constants

0 x7 1 3 �1 12
x8 1 2 �1 10
x9 2 1 �1 15
x6 4 [5] 1 8

�z 4 3 0

�w �4 �6 1 1 1 �37

1 x7 �1:4 �1 �0:6 7.2
x8 �0:6 �1 �0:4 6.8
x9 1.2 �1 �0:2 13.4
x2 0.8 1 0.2 1.6

�z 1.6 �0:6 �4:8

�w 0.8 1 1 1 1.2 �27:4

It should be noted here that since the slack variable x6 is used as a basic variable,
the row of �w is calculated only from the rows of x7, x8, and x9 in cycle 0. For
example, d1 D �.1 C 1 C 2/ D �4. ˙

Example 2.9 (Example of artificial variables left in the basis). As an example
where artificial variables remain as a part of basic variables, consider the following
problem:

minimize z D 3x1 C x2 C 2x3

subject to x1 C x2 C x3 D 10

3x1 C x2 C 4x3 � x4 D 30

4x1 C 3x2 C 3x3 C x4 D 40

xj � 0; j D 1; 2; 3; 4:

Using the artificial variables x5, x6, and x7 as basic variables, phase I of the
simplex method is performed. As shown in Table 2.9, phase I is terminated with
w D 0 at cycle 1. However, the artificial variables x6 and x7 still remain in the basis
as a part of basic variables. Since Nd2 D 3 > 0, after dropping the columns of x2 and
the row of �w, phase II of the simplex method is performed. At cycle 3, an optimal
solution

x1 D 0; x2 D 0; x3 D 10; x4 D 10; .x5 D 0; x6 D 0; x7 D 0/ z D 20

is obtained. ˙

The procedure of the simplex method considered thus far provides a means of
going from one basic feasible solution to another one such that the objective function
z is lower than the previous value of z if there is no degeneracy or at least equal to it
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Table 2.9 Example of artificial variables left in the basis

Cycle Basis x1 x2 x3 x4 Constants

0 x5 [1] 1 1 10
x6 3 1 4 �1 30
x7 4 3 3 1 40

�z 3 1 2 0 0

�w �8 �5 �8 0 �80

1 x1 1 1 1 10
x6 �2 [1] �1 0
x7 �1 �1 1 0

�z 0 �2 �1 0 �30

�w 0 3 0 0 0
2 x1 1 [1] 10

x3 1 �1 0
x7 0

�z 0 0 �1 �30

3 x4 1 1 10
x3 1 1 10
x7 0

�z 1 0 0 �20

(as can occur in the degenerate case). It continues until (i) the condition of optimality
test (2.42) is satisfied, or (ii) the information of unboundedness on the optimal value
is provided. Therefore, in case of no degeneracy, the following convergence theorem
can be easily understood.

Theorem 2.4 (Finite convergence of simplex method (nondegenerate case)).
Assuming nondegeneracy at each iteration, the simplex method will terminate in
a finite number of iterations.

Proof. Since the number of basic feasible solutions is at most nCm and it is finite,
the algorithm of the simplex method fails to finitely terminate only if the same basic
feasible solution repeatedly appears. Such repetition implies that the value of the
objective function z is the same. Under nondegeneracy, however, since each value
of z is lower than the previous, no repetition can occur and therefore the algorithm
finitely terminates. �

Recall that there is at least one basic variable whose value is zero in a degenerate
basic feasible solution. Such degeneracy may occur in an initial feasible canonical
form, and it is also possible that after some pivot operations in the procedure of the
simplex method, degenerate basic feasible solution may occur.

For example, in step 3 of the procedure of the simplex method, if the minimum
of f Nbi = Nais for all i j Nais > 0g is attained by two or more basic variables, i.e.,
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minNais>0

Nbi

Nais

D ™ D
Nbr1

Nar1s

D
Nbr2

Nar2s

; (2.67)

either xr1 or xr2 can be removed from the basis and the other remains in the basis.
In either case, both xr1 and xr2 become zeros, i.e.,

xr1 D Nbr1 � Nar1s™ D 0

xr2 D Nbr2 � Nar2s™ D 0:

�

(2.68)

Thus, since there is at least one basic variable whose value is zero, the new basic
feasible solution is degenerate.

This in itself does not undermine the feasibility of the solution. However, if at
some iteration a basic feasible solution is degenerate, the value of objective function
z could remain the same for some number of subsequent iterations. Moreover, there
is a possibility that after a series of pivot operations without decrease of z, the same
basis appears, and then the simplex method may be trapped into an endless loop
without termination. This phenomenon is called cycling or circling.3

The following example given by H.W. Kuhn shows that the simplex method
could be trapped into the cycling problem if the smallest index is used as tie breaker.

Example 2.10 (Kuhn’s example of cycling). As an example of cycling, consider the
following problem given by H.W. Kuhn:

minimize z D � 2x4 � 3x5 C x6 C 12x7

subject to x1 � 2x4 � 9x5 C x6 C 9x7 D 0

x2 C 1

3
x4 C x5 � 1

3
x6 � 2x7 D 0

x3 C 2x4 C 3x5 � x6 � 12x7 D 2

xj � 0; j D 1; 2; : : : ; 7

:

Using x1, x2, and x3 as the initial basic variables and performing the simplex
method, we have the result shown in Table 2.10. Observing that the tableau of cycle
6 is completely identical to that of cycle 0 in Table 2.10, one finds that cycling
occurs. ˙

To avoid the trap of cycling, some means to prevent the procedure from cycling
is required. Observe that in the absence of degeneracy the objective function
values in a series of iterations of the simplex method form a strictly decreasing
monotone sequence that guarantees the same basis does not repeatedly appear. With
a degenerate basic solution, the sequence is no longer strictly decreasing. To prevent
the procedure from revisiting the same basis, we need to incorporate another rule to
keep a strictly monotone decreasing sequence.

3In his famous 1963 book, G.B. Dantzig adopted the term “circling” for avoiding possible
confusion with the term “cycle,” which was used synonymously with iteration.
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Table 2.10 Simplex tableau for Kuhn’s example of cycling

Cycle Basis x1 x2 x3 x4 x5 x6 x7 Constants

0 x1 1 �2 �9 1 9 0
x2 1 1/3 [1] �1=3 �2 0
x3 1 2 3 �1 �12 2

�z �2 �3 1 12 0
1 x1 1 9 [1] �2 �9 0

x5 1 1/3 1 �1=3 �2 0
x3 �3 1 1 0 �6 2

�z 3 �1 0 6 0
2 x4 1 9 1 �2 �9 0

x5 �1=3 �2 1 1/3 [1] 0
x3 �1 �12 1 2 3 2

�z 1 12 �2 �3 0
3 x4 �2 �9 1 9 [1] 0

x7 �1=3 �2 1 1/3 1 0
x3 0 �6 1 �3 1 2

�z 0 6 3 �1 0
4 x6 �2 �9 1 9 1 0

x7 1/3 [1] �1=3 �2 1 0
x3 2 3 1 �1 �12 2

�z �2 �3 1 12 0
5 x6 [1] �2 �9 1 9 0

x2 1/3 1 �1=3 �2 1 0
x3 1 1 0 �6 -3 2

�z �1 0 6 3 0
6 x1 1 �2 �9 1 9 0

x2 1 1/3 [1] �1=3 �2 0
x3 1 2 3 �1 �12 2

�z �2 �3 1 12 0

Several methods besides the random choice rule exist for avoiding cycling in
the simplex method. Among them, a very simple and elegant (but not necessarily
efficient) rule due to Bland (1977) is theoretically interesting. Bland’s rule is
summarized as follows:

(i) Among all candidates to enter the basis, choose the one with the smallest index.
(ii) Among all candidates to leave the basis, choose the one with the smallest index.

The procedure of the simplex method incorporating Bland’s anticycling rule, just
specifying the choice of both the entering and leaving variables, can now be given
in the following.
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Procedure of Simplex Method Incorporating Bland’s Rule

Step 1B If all of the relative cost coefficients are nonnegative, i.e., Ncj � 0 for all
indices j of the nonbasic variables, then the current solution is optimal, and stop.
Otherwise, by using the relative cost coefficients Ncj , find the index s such that

min
˚
j j Ncj < 0

� D s: .j W nonbasic/

That is, if there are two or more indices j such that Ncj < 0 for all indices of
the nonbasic variables, choose the smallest index s as the index of a nonbasic
variable newly entering the basis.

Step 2 If all of the coefficients in column s are nonpositive, i.e., Nais � 0 for all
indices i of the basic variables, then the optimal value is unbounded, and stop.

Step 3B If some of Nais are positive, find the index r such that

minNais>0

Nbi

Nais

D
Nbr

Nars

D ™:

If there is a tie in the minimum ratio test, choose the smallest index r as the index
of a basic variable leaving the basis.

Step 4 Perform the pivot operation on Nars for obtaining a new feasible canonical
form with xs replacing xr as a basic variable. Return to step 1B.

It is interesting to note here that the use of Bland’s rule for cycling prevention
can be proven by contradiction on the basis of the following observation.

In a degenerate pivot operation, if some variable xq enters the basis, then xq

cannot leave the basis until some other variable with a higher index than q, which
was nonbasic when xq entered, also enters the basis. If this holds, then cycling
cannot occur because in a cycle any variable that enters must also leave the basis,
which means that there exists some highest indexed variable that enters and leaves
the basis. This contradicts the foregoing monotone feature.4

In practice, however, such a procedure is found to be unnecessary because the
simplex procedure generally does not enter a cycle even if degenerate solutions
are encountered. However, an anticycling procedure is simple, and therefore many
codes incorporate such a procedure for the sake of safety.

Example 2.11 (Simplex method incorporating Bland’s rule for Kuhn’s example).
Apply the simplex method incorporating Bland’s rule to the example given by Kuhn.
After only two pivot operations, the algorithm stops, and the result is shown in
Table 2.11. At cycle 2 in Table 2.11, degeneracy is ended, and an optimal solution

x1 D 2; x2 D 0; x3 D 0; x4 D 2; x5 D 0; x6 D 2; x7 D 0; z D �2

is obtained. ˙

4The interested reader should refer to the solution of Problem 2.8 for a full discussion of the proof.
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Table 2.11 Simplex tableau incorporating Bland’s rule

Cycle Basis x1 x2 x3 x4 x5 x6 x7 Constants

0 x1 1 �2 �9 1 9 0
x2 1 [1/3] 1 �1=3 �2 0
x3 1 2 3 �1 �12 2

�z �2 �3 1 12 0
1 x1 1 6 �3 �1 �3 0

x4 3 1 3 �1 �6 0
x3 �6 1 �3 [1] 0 2

�z 6 3 �1 0 0
2 x1 1 0 1 �6 �3 2

x4 �3 1 1 0 �6 2
x6 �6 1 �3 1 0 2

�z 0 1 0 0 2

2.6 Revised Simplex Method

In performing the simplex method, all the information contained in the tableau is
not necessarily used. Only the following items are needed:

Information Needed for Updating the Simplex Tableau

(i) Using the relative cost coefficients Ncj , find the index s such that

minNcj <0
Ncj D Ncs:

(ii) Assuming Ncs < 0, we require the elements of the sth column (pivot column)

Nps D . Na1s; Na2s; : : : ; Nams/
T

and the values of the basic variables

Nb D . Nb1; Nb2; : : : ; Nbm/T :

By using these values, the quotients

Nbr

Nars

D minNais>0

Nbi

Nais

are calculated for finding the index r . Then, a pivot operation is performed on
Nars for updating the tableau.
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From the above discussion, note that only one nonbasic column Nps in the current
tableau is required. Since there are many more columns than rows in a linear
programming problem, dealing with all the columns Npj wastes much computation
time and computer storage. A more efficient procedure is to calculate first the
relative cost coefficients Ncj and then the pivot column Nps from the data of the original
problem. The revised simplex method does precisely this, and the inverse of the
current basis matrix is what is needed to calculate them.

We assume again that the m � n rectangular matrix A D Œp1 p2 � � � pn� for
the constraints has the rank of m and n > m. Moreover, we assume that a linear
programming problem in the standard form is feasible. A basis matrix B is defined
as an m�m nonsingular submatrix formed by selecting some m linearly independent
columns from the n columns of matrix A. Note that matrix A contains at least one
basis matrix B due to rank.A/ D m and n > m.

For notational simplicity, without loss of generality, assume that the basis matrix
B is formed by selecting the first m columns of matrix A, i.e.,

B D Œ p1 p2 � � � pm �: (2.69)

Let

xB D .x1; x2; : : : ; xm/T and cB D .c1; c2; : : : ; cm/ (2.70)

be the corresponding vectors of basic variables and coefficients of the objective
function, respectively. Note that cB is a row vector. The vector xB satisfies

BxB D b; (2.71)

and one finds that

xB D B�1b D Nb: (2.72)

Assume that the basis matrix B is feasible, i.e.,

xB � 0: (2.73)

As shown earlier, it is convenient to deal with the objective function z as the
.m C 1/th equation and keep the variable �z in the basis. This augmented system
can be written in column form as follows:

nX

j D1

 
pj

cj

!

xj C
 

0
1

!

.�z/ D
 

b
0

!

: (2.74)

By using the corresponding basis xB D .x1; x2; : : : ; xm/T , .�z/ and the nonbasis
xN D .xmC1; : : : ; xn/T , (2.74) is also rewritten as
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"
p1 p2 � � � pm 0
c1 c2 � � � cm 1

# 
xB

�z

!

C
"

pmC1 � � � pn

cmC1 � � � cn

#

xN D
 

b
0

!

: (2.75)

Since the basis matrix B is feasible, the .m C 1/ � .m C 1/ matrix

OB D
"

p1 p2 � � � pm 0
c1 c2 � � � cm 1

#

D
"

B 0
cB 1

#

(2.76)

is also a feasible basis matrix for the enlarged system (2.74). It is easily verified by
direct matrix multiplication that the inverse of OB is

OB�1 D
"

B�1 0

�cBB�1 1

#

: (2.77)

Such an .mC1/�.mC1/ matrix OB is called an enlarged basis matrix and its inverse
OB�1 is called an enlarged basis inverse matrix.

Introducing a simplex multiplier vector

  D . 1;  2; : : : ;  m/ D cBB�1 (2.78)

associated with the basis matrix B , the enlarged basis inverse matrix OB�1 is written
more compactly as

OB�1D
"

B�1 0

�  1

#

: (2.79)

Premultiplying the enlarged system (2.75) by OB�1, (2.75) becomes as

"
I 0

0T 1

# 
xB

�z

!

C OB�1

"
pmC1 � � � pn

cmC1 � � � cn

#

xN D OB�1

 
b

0

!

(2.80)

which results in the following canonical form:

 
xB

�z

!

C
nX

j DmC1

 
Npj

Ncj

!

xj D
 Nb

�Nz

!

; (2.81)

or equivalently



42 2 Linear Programming

2

6
6
6
4

x1

x2

: : :

xm

3

7
7
7
5

C
nX

j DmC1

Npj xj D

0

B
B
B
@

Nb1Nb2

:::
Nbm

1

C
C
C
A

�z C
nX

j DmC1

Ncj xj D �Nz;

9
>>>>>>>>=

>>>>>>>>;

(2.82)

where

 
Npj

Ncj

!

D OB�1

 
pj

cj

!

D
"

B�1 0

�  1

# 
pj

cj

!

D
 

B�1pj

cj �  pj

!

; (2.83)

 Nb
�Nz

!

D OB�1

 
b
0

!

D
"

B�1 0

�  1

# 
b

0

!

D
 

B�1b

� b

!

: (2.84)

In particular, from (2.83), the updated column vector of the coefficients is
represented as

Npj D B�1pj ; (2.85)

and the relative cost coefficient is

Ncj D cj �  pj : (2.86)

These two formulas are fundamental to calculation in the revised simplex method,
and as seen in (2.85) and (2.86), Ncj and Npj , which are used in each iteration of the
simplex method, can be calculated by using the original coefficients cj and pj given
in the initial simplex tableau, provided that the enlarged basis inverse matrix OB�1, or
equivalently the basis inverse matrix B�1 and the simplex multipliers   are given.

Now, assume that the smallest Ncs is found among the relative cost coefficients
Ncj calculated by (2.86) for all nonbasic variables and the corresponding column
vector Nps D . Na1s; : : : ; Nams/

T is obtained by (2.85). If the vector Nb of the values
of the basic variables is known at the beginning of each cycle, the pivot element
Nars is immediately determined. Furthermore, however, we need the inverse matrix
OB��1 of the revised enlarged basis matrix OB� corresponding to a new basis made

by replacing xr in the current basis with the new basic variable xs . From the current
.m C 1/ � .m C 1/ enlarged basis matrix

OB D
"

p1 � � � pr�1 pr prC1 � � � pm 0

c1 � � � cr�1 cr crC1 � � � cm 1

#

; (2.87)

by removing pr and cr and entering ps and cs instead, the new enlarged basis matrix
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OB� D
"

p1 � � � pr�1 ps prC1 � � � pm 0

c1 � � � cr�1 cs crC1 � � � cm 1

#

(2.88)

is obtained.
It can be shown that, without the direct calculations of inverse matrices,5 the

new enlarged basis inverse matrix OB��1 can be obtained from OB�1 by performing
the pivot operation on Nars in OB�1. Since OB��1 is the same as OB�1 except the r th
column, the product of OB�1 and OB� can be represented as

OB�1 OB� D

2

6
6
6
6
6
6
6
6
6
6
6
4

1 Na1s

: : :
:::

Nars

:::
: : :

Nams 1

Ncs 1

3

7
7
7
7
7
7
7
7
7
7
7
5

; (2.89)

where the r th column . Na1s; : : : ; Nars; : : : ; Nams; Ncs/
T D

 
Nps

Ncs

!

is OB�1

 
ps

cs

!

, and

the i column (i 6D r) is the .m C 1/ dimensional unit vectors such that the i th
element is one.

After introducing the .m C 1/ � .m C 1/ nonsingular square matrix

OE D

2

6
6
6
6
6
6
6
6
6
6
6
4

1 �Na1s= Nars

: : :
:::

1= Nars

:::
: : :

�Nams= Nars 1

�Ncs= Nars 1

3

7
7
7
7
7
7
7
7
7
7
7
5

(2.90)

that differs from the .m C 1/ � .m C 1/ unit matrix OI in only the r th column,
premultiplying (2.89) by OE yields

OE OB�1 OB� D OI : (2.91)

Hence, by postmultiplying both sides of (2.91) by OB��1, we have the new enlarged
basis inverse matrix

5Annoying calculations of the inverse matrix make no sense of the revised method.
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OB��1 D OE OB�1: (2.92)

Setting

OB��1 D
2

4
“�

ij 0

� �
j 1

3

5 ; OB�1 D
2

4
“ij 0

� j 1

3

5 (2.93)

and calculating the right-hand side of (2.92), we have

“�
rj D 1

Nars

“rj ; j D 1; 2; : : : ; m;

“�
ij D “ij � Nais

Nars

“rj ; i D 1; 2; : : : ; m; i ¤ r; j D 1; 2; : : : ; m;

� �
j D � j � Ncs

Nars

“rj ; j D 1; 2; : : : ; m:

9
>>>>>>>=

>>>>>>>;

(2.94)

This means that performing the pivot operation on Nars to the current enlarged basis
inverse matrix OB�1 gives the new enlarged basis inverse matrix OB��1.

By adding the superscript � to the values of Nb and Nz for the new enlarged basis
matrix OB� and premultiplying the enlarged system (2.75) corresponding to OB� by
OB��1, the right-hand side becomes as

 Nb�

�Nz�

!

D OB��1

 
b

0

!

D OE OB�1

 
b

0

!

D OE
 Nb

�Nz

!

: (2.95)

Each element of (2.95) is represented by

Nb�
r D

Nbr

Nars

;

Nb�
r D Nbi � Nais

Nars

Nbr ; .i ¤ r/

�Nz� D �Nz � Ncs

Nars

Nbr :

9
>>>>>>>=

>>>>>>>;

(2.96)

This also means that performing the pivot operation on Nars to the current Nb and �Nz
gives the new constants Nb� and �Nz�. As just described, since premultiplying the
current enlarged basis inverse matrix OB�1 and the right-hand side of (2.81) by OE
corresponds to a pivot operation, OE is called a pivot matrix or an elementary matrix.

Now, the procedure of the revised simplex method, starting with an initial basic
feasible solution, can be summarized as follows.
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Procedure of the Revised Simplex Method

Assume that the coefficients A, b, and c of the initial feasible canonical form and
the inverse matrix B�1 of the initial feasible basis are available.

Step 0 By using B�1, calculate

  D cBB�1; xB D Nb D B�1b; Nz D  b;

and put them in the revised simplex tableau shown in Table 2.12.
Step 1 Calculate the relative cost coefficients Ncj for all indices j of the nonbasic

variables by

Ncj D cj �  pj :

If all of the relative cost coefficients are nonnegative, i.e., Ncj � 0, then the current
solution is optimal, and stop. Otherwise, find the index s such that

minNcj <0
Ncj D Ncs:

Step 2 Calculate

Nps D B�1ps :

If all of the elements of Nps D . Na1s; Na2s; : : : ; Nams/
T are nonpositive, i.e., Nais � 0

for all indices i of the basic variables, then the optimal value is unbounded, and
stop.

Step 3 If some of Nais are positive, put the values of ONps D .Nps; Ncs/
T in the revised

simplex tableau of Table 2.12, and find the index r such that

Nbr

Nars

D minNais>0

Nbi

Nais

:

Step 4 Perform the pivot operation on Nars to B�1, � , Nb, and �Nz of Table 2.12,
and replace xr with xs as a new basic variable. The pivot operation for B�1

and �  is given by (2.94), and that for Nb and �Nz is also given by (2.96). After
updating the revised simplex tableau in Table 2.12, return to step 1.

It should be noted here that in the procedure of the revised simplex method, since

the .m C 1/th column of the enlarged basis inverse matrix OB�1 is always

 
0

1

!

; it

is recommended to neglect it and to use the revised simplex tableau without the
.m C 1/th column of OB�1 as given in Table 2.12.
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Table 2.12 Revised simplex
tableau Basis Basis inverse matrix Constants ONps

x1

:
:
:

xr B�1 Nb Nps

:
:
:

xm

�z �  �Nz Ncs

When starting the revised simplex method with phase I of the two-phase method,
the enlarged basis inverse matrix OB�1 can be considered as

OB�1 D
2

4
B�1 0 0
�  1 0

�¢ 0 1

3

5 ; (2.97)

where ¢ D .¢1; ¢2; : : : ; ¢m/ is a vector of the simplex multipliers for the objective
function w of phase I, and the initial enlarged basis inverse matrix OB�1 is an .m C
2/ � .m C 2/ unit matrix.

In phase I, the relative cost coefficients Ndj are calculated by

Ndj D dj � ¢pj ; .j W nonbasic/ (2.98)

and the pivot column is determined by minNdj <0

Ndj . Including the row of �w, the pivot

operations are performed according to step 4 in the procedure of the revised simplex
method. After eliminating the row of �w, i.e., the .m C 2/th row at the beginning
of phase II, the above-mentioned revised simplex method is continued.

Example 2.12 (Revised simplex method for production planning problem of Exam-
ple 1.1). Using the revised simplex method, solve the standard form of the
production planning problem of Example 1.1.

minimize z D �3x1 � 8x2

subject to 2x1 C 6x2 C x3 D 27

3x1 C 2x2 C x4 D 16

4x1 C x2 C x5 D 18

xj � 0; j D 1; 2; 3; 4; 5:

Employing the slack variables x3, x4, and x5 as basic variables, one finds that the
basis matrix B is a 3�3 unit matrix and its inverse B�1 is also the same unit matrix.
Thus, from (2.78) and (2.84), it follows that

  D cBB�1 D .0; 0; 0/; Nb D B�1b D b D .27; 16; 18/T ; Nz D  b D 0:
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Table 2.13 Revised simplex tableau of Example 1.1

Cycle Basis Basis inverse matrix Constants ONps

0 x3 1 27 [6]
x4 1 16 2
x5 1 18 1

�z 0 �8

1 x2 1/6 4.5 1/3
x4 �1=3 1 7 [7/3]
x5 �1=6 1 13.5 11/3

�z 4/3 36 �1=3

2 x2 3/14 �1=7 3.5
x1 �1=7 3/7 3
x5 5/14 �11=7 1 2.5

�z 9/7 1/7 37

Putting these values in the revised simplex tableau at cycle 0 of Table 2.13.
After calculating Ncj for nonbasic variables, the minimum of them is calculated

in order to select a new basic variable as follows:

Nc1 D c1 �  p1 D �3 � .0; 0; 0/

0

@
2

3

4

1

A D �3;

Nc2 D c2 �  p2 D �8 � .0; 0; 0/

0

@
6

2

1

1

A D �8;

minNcj <0
Ncj D .�3; �8/ D Nc2 D �8 < 0:

Since Nc2 is the minimum, x2 becomes a new basic variable. The corresponding
coefficient column vector Np2 is calculated as

Np2 D B�1p2 D
2

4
1 0 0

0 1 0

0 0 1

3

5

0

@
6

2

1

1

A D
0

@
6

2

1

1

A ;

and then it is filled in on the rightmost column of the revised simplex tableau. Since

min

 Nb3

Na32

;
Nb4

Na42

;
Nb5

Na52

!

D min

 
27

6
;

16

2
;

18

1

!

D 27

6
D 4:5;

x3 becomes a nonbasic variable, and it follows that the pivot element is Na32 D 6,
which is bracketed by Œ � in Table 2.13. After replacing x3 with x2 as a new basic
variable, the pivot operation on Na32 D 6 is performed to the basis inverse matrix and
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the constants at cycle 0 of Table 2.13, and the result of cycle 1 is obtained. These
values become B�1, � , b, and �Nz for the new basis matrix B D Œ p2 p4 p5 � and
the procedure returns to step 1.

From

Nc1 D c1 �  p1 D �3 �
�

�4

3
; 0; 0

�
0

@
2

3

4

1

A D �1

3

Nc3 D c3 �  p3 D 0 �
�

�4

3
; 0; 0

�
0

@
1

0

0

1

A D 4

3

minNcj <0
Ncj D Nc1 D �1

3
< 0;

x1 becomes a new basic variable. By using B�1 at cycle 1, Np1 is calculated as

Np1 D B�1p1 D
2

4
1=6 0 0

�1=3 1 0

�1=6 0 1

3

5

0

@
2

3

4

1

A D
0

@
1=3

7=3

11=3

1

A ;

and it is filled in on the rightmost column of the revised simplex tableau. Since

min

 Nb2

Na21

;
Nb4

Na41

;
Nb5

Na51

!

D min

�
4:5

1=3
;

7

7=3
;

13:5

11=3

�

D 7

7=3
D 3;

x4 becomes a nonbasic variable. After replacing x4 with x1, the pivot operation
on Na41 D 7=3 bracketed by Œ � is performed to the basis inverse matrix and the
constants at cycle 1. This yields the result at cycle 2 in Table 2.13. The next basis
matrix becomes as B D Œ p2 p1 p5 �, and since

Nc3 D c3 �  p3 D 0 �
�

�9

7
; �1

7
; 0

�
0

@
1

0

0

1

A D 9

7
> 0

Nc4 D c4 �  p4 D 0 �
�

�9

7
; �1

7
; 0

�
0

@
0

1

0

1

A D 1

7
> 0;

an optimal solution

x1 D 3; x2 D 3:5 .x3 D x4 D 0; x5 D 2:5/; z D �37

is obtained. ˙
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2.7 Duality

The notion of duality is one of the most important concepts in linear programming.
Basically, associated with a linear programming problem (we may call it the primal
problem), defined by the constraint matrix A, the right-hand side constant vector
b, and the cost coefficient vector c, there is the corresponding linear programming
problem (called the dual problem) which is specified by the same set of coefficients
A, b, and c. These two problems bear interesting and useful relationships to one
another.

Consider the standard form of linear programming

minimize z D cx
subject to Ax D b

x � 0;

9
=

;
(2.99)

where c is an n dimensional row vector, x is an n dimensional column vector, A

is an m � n matrix A, and b is an n dimensional column vector. Introducing an
m dimensional row vector   D . 1;  2; : : : ;  m/, we define an associated linear
programming problem:

maximize v D  b
subject to  A � c:

�

(2.100)

It should be noted here that problem (2.100) is a maximization problem with m

unrestricted variables and n inequality constraints. The roles of the variables and
constraints are somewhat reversed in problems (2.99) and (2.100). Usually, the
original problem (2.99) is called the primal problem and the related problem (2.100)
is called the dual problem. The two problems make a primal–dual pair. Similarly, an
element of the vector x is called a primal variable, and that of the vector   is called
a dual variable.

The constraint of the dual problem (2.100), which is a product of the m

dimensional row vector   and the m � n constraint matrix A, is alternatively
expressed as

a11 1 C a21 2 C � � � C am1 m � c1

a12 1 C a22 2 C � � � C am2 m � c2

� � � � � � � � �
a1n 1 C a2n 2 C � � � C amn m � cn;

9
>>=

>>;

(2.101)

which implies that the coefficients of the system of inequalities (2.101) are given by
the transposed matrix AT of A.

Any primal problem can be changed into a linear programming problem in a
different format by using the following devices: (i) replace an unconstrained variable
with the difference of two nonnegative variables; (ii) replace an equality constraint
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Table 2.14 Primal–dual
relationships

Minimization problem Maximization problem

Constraints Variables
� , � 0

� , � 0

D , Unrestricted
Variables Constraints
� 0 , �
� 0 , �
Unrestricted , D

with two opposing inequalities; and (iii) replace an inequality constraint with an
equality by adding a slack or surplus variable.

For example, consider the following linear programming problem involving not
only equality constraints but also inequality constraints and free variables:

minimize z D c1x1 C c2x2 C c3x3

subject to A11x1 C A12x2 C A13x3 � b1

A21x1 C A22x2 C A23x3 � b2

A31x1 C A32x2 C A33x3 D b3

x1 � 0; x2 � 0:

9
>>>>>=

>>>>>;

(2.102)

By converting this problem to its standard form by introducing slack and surplus
variables, and substituting x2 D �x2C .x2C � 0/ and x3 D x3C � x3� .x3C � 0,
x3� � 0/, it can be easily understood that its dual becomes

maximize v D  1b1 C  2b2 C  3b3

subject to  1A11 C  2A21 C  3A31 � c1

 1A12 C  2A22 C  3A32 � c2

 1A13 C  2A23 C  3A33 D c3

 1 � 0;  2 � 0:

9
>>>>>=

>>>>>;

(2.103)

Carefully comparing this dual problem (2.103) with the primal problem (2.102)
gives the relationships between the primal and dual pair summarized in Table 2.14.
For example, an unrestricted variable corresponds to an equality constraint.

By utilizing the relationships in Table 2.14, it is possible to write the dual problem
for a given linear programming problem without going through the intermediate step
of converting the problem to the standard form. From Table 2.14, the symmetric
primal-dual pair given in Table 2.15 is immediately obtained. In a symmetric form,
it is especially easy to see that the dual of the dual is the primal.

The relationship between the primal and dual problems is called duality. The
following theorem, sometimes called the weak duality theorem, is easily proven
and gives us an important relationship between the two problems. In the following,
it is convenient to deal with a primal problem in the standard form.
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Table 2.15 Symmetric
primal–dual pair

Primal Dual

Minimize z D cx Maximize v D  b
Subject to Ax � b Subject to  A � c

x � 0   � 0

Theorem 2.5 (Weak duality theorem). If Nx and N  are feasible primal and dual
solutions, then

Nz D cNx � N b D Nv: (2.104)

Proof. From the dual feasibility of N  and the primal feasibility of Nx, we have

c � N A; and ANx D b; Nx � 0;

which implies

cNx � N ANx D N b:

�

This theorem shows that the primal (minimization) problem is always bounded
below by the dual (maximization) problem and the dual (maximization) problem is
always bounded above by the primal (minimization) problem if they are feasible.

From the weak duality theorem, several corollaries can be immediately obtained.

Corollary 2.1. If Nxo and N o are feasible primal and dual solutions and cxo D  ob
holds, then Nxo and N o are optimal solutions to their respective problems.

This corollary implies that if a pair of feasible solutions can be found to the
primal and dual problems with the same objective value, then they are both optimal.

Corollary 2.2. If the primal problem is unbounded below, then the dual problem is
infeasible.

Corollary 2.3. If the dual problem is unbounded above, then the primal problem is
infeasible.

With these results, the following duality theorem, sometimes called the strong
duality theorem, can be established as a stronger result.

Theorem 2.6 (Strong duality theorem).

(i) If either the primal or the dual problem has a finite optimal solution, then so
does the other, and the corresponding values of the objective functions are the
same.

(ii) If one problem has an unbounded objective value, then the other problem has
no feasible solution.
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Proof. (i) It is sufficient, in proving the first statement, to assume that the primal
has a finite optimal solution, and then we show that the dual has a solution with
the same value of the objective function.
To show that the optimal values are the same, let xo solve the primal. Since the

primal must have a basic optimal solution, we may as well assume xo as the basic,
with the optimal basis matrix Bo, and the vector of basic variables xo

Bo . Thus

Boxo
Bo D b; xo

Bo � 0:

The simplex multiplier vector associated with Bo is

 o D cBo.Bo/�1;

where cBo is the vector of cost coefficients of basic variables. Since xo is optimal,
the relative cost coefficients Ncj given by (2.86) are nonnegative:

Ncj D cj �  opj � 0; j D 1; : : : ; n;

or, in matrix form,

 oA � c:

Thus,  o satisfies the dual constraints, and the corresponding objective value is

vo D  ob D cBo.Bo/�1b D cBoxo
Bo D zo:

Hence, from Corollary 2.1, it directly follows that  o is an optimal solution to the
dual problem.

(ii) The second statement is an immediate consequence of Corollaries 2.2 and 2.3.
�

The preceding proof illustrates some important points.

(i) The constraints of the dual problem exactly represent the optimality conditions
of the primal problem, and the relative cost coefficients Ncj can be interpreted as
slack variables in them.

(ii) The simplex multiplier vector  o associated with a primal optimal basis solves
the corresponding dual problem. Since, as shown in the previous section, the
vector �  is contained in the bottom row of the revised simplex tableau for the
primal problem, the optimal revised simplex tableau inherently provides a dual
optimal solution.

For interpreting the relationships between the primal and dual problems, recall
the two-variable diet problem of Example 2.3. Associated with this problem, we
examine the following problem, though it is somewhat intentional.
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Example 2.13 (Dual problem for the diet problem of Example 2.3). A drug
company wants to maximize the total profit by producing three pure tablets V1,
V2, and V3 which contain exactly one mg (milligram) of the nutrients N1, N2, and
N3, respectively. To do so, the company attempts to determine the prices of three
tablets which compare favorably with those of the two foods F1 and F2. Let  1,  2,
and  3 denote the prices in yens of one tablet of V1, V2, and V3, respectively.

One gram of the food F1 provides 1, 1, and 2 mg of N1, N2, and N3 and costs 4
yen. If the housewife replaces one gram of this food F1 with tablets of V1, V2, and
V3, one tablet of V1, one tablet of V2, and two tablets of V3 are needed. This would
cost  1C 2C2 3, which should be less than or equal to the price of one gram of the
food F1, i.e.,  1 C  2 C 2 3 � 4. Similarly, one gram of the food F2 provides 1, 1,
and 2 mg of N1, N2, and N3 and costs 3 yen. Thus, the inequality 3 1 C2 2 C 3 �
3 is imposed. Since the housewife understands that the daily requirements of the
nutrients N1, N2, and N3 are 12, 10, and 15 mg, respectively, the cost of meeting
these requirements by using the tablets would be v D 12 1C10 2C15 3. Thus, the
company should determine the prices of the tablets V1, V2, and V3 so as to maximize
this function subject to the above two inequalities. That is, the company determines
the prices of the three tablets which maximize the profit function

v D 12 1 C 10 2 C 15 3

subject to the constraints

 1 C  2 C 2 3 � 4

3 1 C 2 2 C  3 � 3

 1 � 0;  2 � 0;  3 � 0:

It should be noted here that this linear programming problem is precisely the dual
of the original diet problem of Example 2.3. ˙

As thus far discussed, the dual variables, corresponding to the constraints of
the primal problem, coincide with the simplex multipliers for the optimal basic
solution of the primal problem. Consider the economic interpretation of the simplex
multiplier. Let

xo D .xo
1 ; xo

2 ; : : : ; xo
n/T and  o D . o

1;  o
2; : : : ;  o

m/

be the optimal solutions of the primal and dual problems, respectively. From the
strong duality theorem, it follows that

zo D c1xo
1 C c2xo

2 C � � � C cnxo
n D  o

1b1 C  o
2b2 C � � � C  o

mbm D vo:

In this relation, one finds that

zo D  o
1b1 C  o

2b2 C � � � C  o
mbm; (2.105)
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and then it can be intuitively understood that when one unit of the right-hand side
constant bi of the i th constraint ai1x1 C ai2x2 C � � � C ainxn D bi of the primal
problem is changed from bi to bi C1, the value of the objective function will increase
by  o

i as long as the basis does not change.
To be more precise, from (2.105), the amount of change in the objective function

z for a small change in bi is obtained by partially differentiating z with respect to
the right-hand side bi , i.e.,

 o
i D @zo

@bi

; i D 1; : : : ; m: (2.106)

Thus, the simplex multiplier  i indicates how much the value of the objective
function varies for a small change in the right-hand side of the constraint, and
therefore it is referred to as the shadow price or the marginal price.

Using the duality theorem, the following result, known as Farkas’s theorem
concerning systems of linear equalities and inequalities, can be easily proven.

Theorem 2.7 (Farkas’s theorem). One and only one of the following two
alternatives holds.

(i) There exists a solution x � 0 such that Ax D b.
(ii) There exists a solution   such that  A � 0T and  b > 0.

Proof. Consider the (primal) linear problem

minimize z D 0T x
subject to Ax D b

x � 0;

9
=

;
(2.107)

and its dual

maximize v D  b
subject to  A � 0T :

�

(2.108)

If the statement (i) holds, the primal problem is feasible. Since the value of the
objective function z is always zero, any feasible solution is optimal. From the strong
duality theorem, the value of the objective function v of the dual is zero. Thus, the
statement (ii) does not hold.

Conversely, if the statement (ii) holds, the dual problem has a feasible solution
such that the objective function v is positive. From the weak duality theorem, this
implies that the objective function z of the primal is positive, and therefore the primal
problem has no feasible solution. �

Associated with Farkas’s theorem, Gordon’s theorem also plays an important role
for deriving the optimality conditions of nonlinear programming.
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Theorem 2.8 (Gordon’s theorem). One and only one of the following two
alternatives holds.

(i) There exists a solution x � 0, x ¤ 0 such that Ax D 0.
(ii) There exists a solution   such that  A < 0T .

The following theorem, relating the primal and dual problems, is often useful.

Theorem 2.9 (Complementary slackness theorem). Let x be a feasible solution
to the primal problem (2.99) and   be a feasible solution to the dual prob-
lem (2.100). Then they are respectively optimal if and only if the complementary
slackness condition

.c �  oA/xo D 0 (2.109)

is satisfied.

2.8 Dual Simplex Method

There are a number of algorithms for linear programming which start with an
infeasible solution to the primal and iteratively force a sequence of solutions to
become feasible as well as optimal. The most prominent among such methods is
the dual simplex method (Lemke 1954). Operationally, its procedure still involves a
sequence of pivot operations, but with different rules for choosing the pivot element.

Consider a primal problem in the standard form

minimize z D cx
subject to Ax D b

x � 0;

9
=

;

and its dual

maximize v D  b
subject to  A � c:

�

Consider the canonical form of the primal problem starting with the basis
.x1; x2; : : : ; xm/ expressed as

2

6
6
6
4

x1

x2

: : :

xm

3

7
7
7
5

C
nX

j DmC1

Npj xj D

0

B
B
B
@

Nb1Nb2

:::
Nbm

1

C
C
C
A

�z C
nX

j DmC1

Ncj xj D �Nz;

9
>>>>>>>>=

>>>>>>>>;

(2.110)
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where not all right-hand side constants Nbi may be nonnegative, i.e., for some i ,
Nbi � 0 may not hold.

In this canonical form, if Ncj D cj �  pj � 0 for all j D m C 1; : : : ; n, which
can be alternatively expressed as  A � c in a vector-matrix form,   is a feasible
solution to the dual problem. Thus, the canonical form of the primal problem (2.110)
satisfying Ncj � 0, j D m C 1; : : : ; n is called the dual feasible canonical one.
Obviously, if the dual feasible canonical form is also feasible to the primal problem,
i.e., for all i , bi � 0 hold, then it is an optimal canonical form.

Now, in a quite similar way to the selection rule of Ncs in the simplex method, find
the pivot row by

minNbi <0

Nbi D Nbr :

It should be noted that if Nbr � 0 for all r , it follows that an optimal solution is
obtained.

If Narj � 0 for all j , from Nbr < 0, in the r th equation

xr D Nbr �
nX

j DmC1

Narj xj ;

the right-hand side is negative for xj � 0, j D m C 1; : : : ; n, which implies that
the value of the basic variable xr is negative, i.e., xr < 0 for all the nonnegative
nonbasic variables xj . This means that the primal problem is infeasible, and then
the following theorem is obtained.

Theorem 2.10 (Infeasibility of primal problem). In the r th row of the canonical
form (2.110), if

Nbr < 0; Narj � 0; j D m C 1; m C 2; : : : ; n; (2.111)

then the primal problem is infeasible.

Now, in the dual feasible canonical form (2.110), let the r th row be the pivot one.
Moreover, assume that Nbr is negative and for some j at least one Narj is negative.
Then, if the pivot column is found by

minNarj <0

Ncj

�Narj

D Ncs

�Nars

D �; (2.112)

Nars is chosen as the pivot element.
By performing the pivot operation on Nars which means that xr is replaced

with xs as a new basic variable, as shown in Table 2.3, the resulting new relative
cost coefficients Nc�

j for nonbasic variables, which are discriminated by adding the
superscript �, are represented as
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Nc�
j D Ncj � Ncs Na�

rj D Ncj � Ncs

Narj

Nars

:

Obviously, for any column index j of a nonbasic variable such that Narj � 0

holds, from Ncs > 0 and Nars < 0, it directly follows that its relative cost coefficient is
nonnegative, i.e.,

Nc�
j D Ncj � Ncs

Narj

Nars

� Ncj � 0:

For any column index j of a nonbasic variable such that Narj < 0 holds, from (2.112),
it follows that its relative cost coefficient is also nonnegative, i.e.,

Nc�
j D Narj

� Ncs

�Nars

� Ncj

�Narj

�

� 0:

Hence, it holds that Nc�
j � 0 for all j , the resulting new canonical form (tableau) is a

dual feasible canonical form.
Moreover, by the pivot operation on Nars , we also have the updated value of the

objective function

Nz� D Nz C Ncs

Nbr

Nars

D Nz � Nbr�;

and from Nbr < 0 and � � 0, the value is increased by j Nbr�j compared to the
previous value of Nz. 6

After starting with the dual feasible canonical form, the dual simplex method
improves feasible solutions of the dual problems through a series of pivot operations
in order to seek for an optimal solution. Although the dual simplex method uses the
pivot operations in a similar way to the simplex method, it employs a different rule
for choosing the pivot element and the value of the objective function increases with
the number of iterations. The procedure of the dual simplex method, starting with
the dual feasible canonical form, can be summarized as follows.

Procedure of the Dual Simplex Method

Start with the dual feasible canonical form. That is, assume that Ncj � 0 for all j .

Step 1 If Nbi � 0 for all indices i of the basic variables, then the current solution
is optimal, and stop. Otherwise, choose the index r for the pivot row such that

6If Ncs D 0 and dual degeneracy occurs, it is possible to avoid cycling by utilizing the similar
anticycling rule in the simplex method.
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minNbi <0

Nbi D Nbr :

Step 2 If Narj � 0 for all indices j of the nonbasic variables, then the primal
problem is infeasible, and stop.

Step 3 If some of Narj are negative, find the index s for the pivot column such that

minNarj <0

Ncj

�Narj

D Ncs

�Nars

D �:

Step 4 Perform the pivot operation on Nars for obtaining a new dual feasible
canonical form with xs replacing xr as a basic variable. Return to step 1.

Example 2.14 (Dual simplex method for the diet problem of Example 2.3). Using
the dual simplex method, solve the diet problem in the standard form given in
Example 2.3:

minimize z D 4x1 C 3x2

subject to x1 C 3x2 � x3 D 12

x1 C 2x2 � x4 D 10

2x1 C x2 � x5 D 15

xj � 0; j D 1; 2; 3; 4; 5:

Multiplying both sides of the three equations of the constraints by �1 yields the
dual feasible canonical form

�x1 � 3x2 C x3 D �12

�x1 � 2x2 C x4 D �10

�2x1 � x2 C x5 D �15

4x1 C 3x2 � z D 0

xj � 0; j D 1; 2; 3; 4; 5

:

Since Nc1 D 4 > 0 and Nc2 D 3 > 0, this canonical form with basic variables x3,
x4, and x5 is dual feasible. However, it is not primal feasible because Nb1 D �12 < 0,
Nb2 D �10 < 0 and Nb3 D �9 < 0.

At cycle 0 in Table 2.16, from

min. Nb3; Nb4; Nb5/ D min .�12; �10; �15/ D �15 < 0;

x5 becomes a nonbasic variable in the next cycle. From

min

� Nc1

�Na51

;
Nc2

�Na52

�

D min

�
4

2
;

3

1

�

D 4

2
;
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Table 2.16 Simplex tableau of Example 2.3 (dual simplex method)

Cycle Basis x1 x2 x3 x4 x5 Constants

0 x3 �1 �3 1 �12

x4 �1 �2 1 �10

x5 Œ�2� �1 1 �15

�z 4 3 0

1 x3 Œ�2:5� 1 �0:5 �4:5

x4 �1:5 1 �0:5 �2:5

x1 1 0.5 �0:5 7.5

�z 1 2 �30

2 x2 1 �0:4 0.2 1.8
x4 �0:6 1 �0:2 0.2
x1 1 0.2 �0:6 6.6

�z 0.4 1.8 �31:8

x1 becomes a basic variable in the next cycle, and the pivot element is determined
at Na51 D �2 bracketed by Œ � in Table 2.16. After performing the pivot operation on
Na51 D �2, the tableau at cycle 1 is obtained. At cycle 1, from Nb1 > 0 and

min. Nb3; Nb4/ D min .�4:5; �2:5/ D �4:5 < 0

x3 becomes a nonbasic variable in the next cycle. From

min

� Nc2

�Na32

;
Nc5

�Na35

�

D min

�
1

2:5
;

2

0:5

�

D 1

2:5

x2 becomes a basic variable in the next cycle, and the pivot element is determined at
Na32 D �2:5 bracketed by Œ �. After performing the pivot operation on Na32 D �2:5,
the tableau at cycle 2 is obtained. At cycle 2, all of the constants Nbi become positive,
and an optimal solution

x1 D 6:6; x2 D 1:8 .x3 D 0; x4 D 0:2; x5 D 0/; z D 31:8

is obtained. Observe that the tableau of cycle 2 in Table 2.16 coincides with that of
cycle 3 in Table 2.7 when the row of �w is dropped. ˙

It should be noted here that the idea of the revised simplex method can be
employed in the discussion of the dual simplex method. In the dual simplex method,
in addition to the data of the initial feasible canonical form A, b, and c, the
coefficients Narj for all indices j of the nonbasic variables with respect to xr left
from the basis and the relative cost coefficients Ncj for all indices j of the nonbasic
variables are required, where Ncj can be computed by the formula Ncj D cj �  pj of
the revised simplex method. Hence, if the formula for calculating Narj for all indices
j of the nonbasic variables through the basis inverse matrix B�1 is given, the dual
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simplex method can be expressed in a style followed by the revised simplex method.
Since the coefficient Narj is the r th element of Npj , by using the r th row vector of B�1,
denoted by ŒB�1�r �, it can be calculated just as

Narj D ŒB�1�r � pj ; j W nonbasic: (2.113)

With the above discussion, the procedure of the revised dual simplex method can be
summarized as follows.

Procedure of the Revised Dual Simplex Method

Assume that the coefficients A, b, and c of the initial dual feasible canonical form
and the inverse matrix B�1 of the initial dual feasible basis are available.

Step 0 Using B�1, calculate

  D cBB�1; xB D Nb D B�1b; Nz D  b

and put them in the revised simplex tableau shown in Table 2.12.
Step 1 If Nbi � 0 for all indices i of the basic variables, then the current solution

is optimal, and stop. Otherwise, choose the index r for the pivot row such that

minNbi <0

Nbi D Nbr :

Step 2 For all indices j of the nonbasic variables, calculate

Narj D ŒB�1�r � pj :

If Narj � 0 for all indices j of the nonbasic variables, then the primal problem is
infeasible, and stop.

Step 3 If some of Narj are negative, calculate

Ncj D cj �  pj

and find the index s for the pivot column such that

minNarj <0

Ncj

�Narj

D Ncs

�Nars

D �:

In Table 2.12, replace xr with xs as a basic variable.
Step 4 Calculate

Nps D B�1ps
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Table 2.17 Revised dual simplex tableau of Example 2.3

Cycle Basis Basis inverse matrix Constants ONps

0 x3 1 �12 �1

x4 1 �10 �1

x5 1 �15 [�2]

�z 4

1 x3 1 �1=2 �9=2 [�5=2]
x4 1 �1=2 �5=2 �3=2

x1 �1=2 15=2 1=2

�z 2 �30 1

2 x2 �2=5 1=5 9=5

x4 �3=5 1 �1=5 1=5

x1 1=5 �3=5 33=5

�z 2=5 9=5 �159=5

and put the values of ONps D .Nps; Ncs/
T in the column ONps of Table 2.12. Perform the

pivot operation on Nars to B�1, � , Nb, �Nz of Table 2.12, and return to step 1.

Example 2.15 (Revised dual simplex method for the diet problem of Example 2.3).
The canonical form

�x1 � 3x2 C x3 D �12

�x1 � 2x2 C x4 D �10

�2x1 � x2 C x5 D �15

4x1 C 3x2 � z D 0

xj � 0; j D 1; 2; 3; 4; 5;

for the diet problem discussed in Examples 2.3 and 2.14, where x3, x4, and x5 are
basic variables, is dual feasible because Nc1 D 4 > 0 and Nc2 D 3 > 0. However,
since Nb1 D �12 < 0, Nb2 D �10 < 0, and Nb3 D �9 < 0, the primal problem is not
feasible. The initial basis matrix B is the 3 � 3 unit matrix and its inverse B�1 is
also the same unit matrix. Hence, from (2.78) and (2.84), it follows that

  D cBB�1 D .0; 0; 0/; Nb D B�1b D b D .�12; �10; �15/T ; Nz D  b D 0:

Putting these values in the revised dual simplex tableau at cycle 0 of Table 2.17.
At cycle 0 in Table 2.17, since

min. Nb3; Nb4; Nb5/ D min.�12; �10; �15/ D �15 < 0;

x5 becomes a nonbasic variable in the next cycle and the index r of the variable
leaving the basis is determined as r D 3.

According to (2.113), we calculate the coefficients Narj , r D 3, j D 1; 2 for the
nonbasic variables. That is, using the third row ŒB�1�3� of B�1, p1, and p2, we have
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Na31 D ŒB�1�3� p1 D .0; 0; 1/.�1; �1; �2/T D �2

Na32 D ŒB�1�3� p2 D .0; 0; 1/.�3; �2; �1/T D �1:

Also the relative cost coefficients Ncj , j D 1; 2 are calculated as

Nc1 D c1 �  p1 D 4 C .0; 0; 0/.�1; �1; �2/T D 4

Nc2 D c2 �  p2 D 3 C .0; 0; 0/.�3; �2; �1/T D 3:

From

minNarj <0

Ncj

�Narj

D min

� Nc1

�Na31

;
Nc2

�Na32

�

D min

�
4

2
;

3

1

�

D 4

2
;

x1 becomes a basic variable in the next cycle. We calculate Np1 as

Np1 D B�1p1 D
2

4
1 0 0

0 1 0

0 0 1

3

5

0

@
�1

�1

�2

1

A D
0

@
�1

�1

�2

1

A

and put Np1 and Nc1 D 4 in the column of ONps at cycle 0 in Table 2.17. Since r D 3, the
pivot element is �2 bracketed by Œ �. By performing the pivot operation on �2 at
cycle 0, the tableau at cycle 1 is obtained.

At cycle 1, the variables x3, x4, and x1 are basic variables, and in Table 2.17,
since Nb1 > 0 and

min. Nb3; Nb4/ D min.�9=2; �5=2/ D �9=2 < 0;

x3 becomes a nonbasic variable in the next cycle, and the index r of the variable
leaving the basis is determined as r D 1.

From (2.113), we calculate the coefficients Narj , r D 1, j D 2; 5 for nonbasic
variables. Using the first row ŒB�1�1� of B�1, p2, and p5, we have

Na12 D ŒB�1�1� p2 D .1; 0; �1=2/.�3; �2; �1/T D �5=2

Na15 D ŒB�1�1� p5 D .1; 0; �1=2/.0; 0; 1/T D �1=2:

Also the relative cost coefficients Ncj , j D 2; 5 are calculated as

Nc2 D c2 �  p2 D 3 C .0; 0; 2/.�3; �2; �1/T D 1

Nc5 D c5 �  p5 D 0 C .0; 0; 2/.0; 0; 1/T D 2:
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From

minNarj <0

Ncj

�Narj

D min

� Nc2

�Na12

;
Nc5

�Na15

�

D min

�
1

5=2
;

2

1=2

�

D 1

5=2
;

x2 becomes a basic variable in the next cycle. We calculate Np2 as

Np2 D B�1p2 D
2

4
1 0 0

0 1 0

0 0 1

3

5

0

@
�3

�2

�1

1

A D
0

@
�5=2

�3=2

1=2

1

A

and put Np2 and Nc2 D 1 in the column of ONps at cycle 1 in Table 2.17. Since r D 1, the
pivot element is �5=2 bracketed by Œ �. By performing the pivot operation on �5=2

at cycle 1, the tableau at cycle 2 is obtained.
At cycle 2, the variables x2, x4 and x1 are basic variables. Since all of the

constants Nbi are positive, an optimal solution

x1 D 33

5
; x2 D 9

5

�

x3 D 0; x4 D 1

5
; x5 D 0

�

; z D 159

5

is obtained. ˙

Finally, consider the sensitivity analysis, which examines the effects of small
changes in the parameters of a linear programming problem on its optimal solution.
In particular, we deal with a case where the right-hand side vector is changed, which
is closely related to the dual simplex method.

Assume that in the standard form of linear programming

minimize z D cx
subject to Ax D b

x � 0;

9
=

;
(2.114)

an optimal basis B is known, and then the corresponding optimal basic solution
xB is

xB D Nb D B�1b: (2.115)

Moreover, the corresponding simplex multiplier vector   is

  D cBB�1; (2.116)

and the value of the objective function Nz is also calculated as

Nz D cBxB D cB
Nb D  b: (2.117)
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Obviously, the optimality criterion

Ncj D cj �  pj � 0 for all j of the nonbasic variables (2.118)

is satisfied.
In discussing changes in the right-hand side vector, assume that b is changed to

b C �b. Consider the following linear programming problem:

minimize z D cx
subject to Ax D b C �b

x � 0:

9
=

;
(2.119)

Since the simplex multiplier vector   and the relative cost coefficients Ncj for
all indices j of the nonbasic variables do not depend on b as shown in (2.116)
and (2.118), they remain the same even if b is changed to b C �b. However, the
basic solution xB itself may no longer be feasible.

The new basic solution and the value of the objective function are calculated as

x�
B D B�1.b C �b/ D xB C B�1�b (2.120)

and

Nz� D  .b C �b/ D Nz C  �b; (2.121)

respectively.
Therefore, the following statements hold:

(i) If x�
B � 0 holds, then x�

B is an optimal solution, and the variation in the objective
function is  �b.

(ii) If x�
B � 0 does not hold, since the optimality condition Ncj � 0 for all indices

j of the nonbasic variables is satisfied, the dual simplex method can be used to
find a new optimal solution.

Example 2.16 (Sensitivity analysis for the production planning problem of Exam-
ple 1.1). In the production planning problem of Example 1.1, we calculate optimal
solutions when the total amounts of available materials are changed as follows:

(i) The available amounts of material M1 is changed from 27 tons to 32 tons.
(ii) The available amounts of material M2 is changed from 16 tons to 23 tons.

Although the optimal solution to the original problem is given at cycle 2 in the
revised simplex method of Table 2.13, for the sake of convenience, we rewrite the
initial tableau (cycle 0) and the optimal tableau (cycle 2) in Table 2.18.

From the optimal tableau, one finds that the basic variables are xB D
.x2; x1; x5/T , the basis inverse matrix is
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Table 2.18 Initial and optimal tableaux of Example 1.1

Cycle Basis Basis inverse matrix Constants ONps

Cycle 0 (initial) x3 1 27 [6]
x4 1 16 2
x5 1 18 1

�z 0 �8

Cycle 2 (optimal) x2 3/14 �1=7 3.5
x1 �1=7 3/7 3
x5 5/14 �11=7 1 2.5

�z 9/7 1/7 37

B�1 D

2

6
6
4

3=14 �1=7 0

�1=7 3=7 0

5=14 �11=7 1

3

7
7
5 ;

and the simplex multiplier vector is

  D .�9=7; �1=7; 0/:

(i) Let the amounts of changes be �b D
0

@
5

0

0

1

A, and from b D
0

@
27

16

18

1

A, it follows

that

x�
B D B�1.b C �b/

D
2

4
3=14 �1=7 0

�1=7 3=7 0

5=14 �11=7 1

3

5

0

@
32

16

18

1

A D
0

@
32=7

16=7

30=7

1

A

Nz� D  .b C �b/ D .�9=7; �1=7; 0/

0

@
32

16

18

1

A D �304=7:

Since x�
B � 0 holds, x�

B is an optimal basic solution, and then an optimal
solution

x2 D 32=7; x1 D 16=7; x5 D 30=7; .x3 D x4 D 0/ z D �304=7

is obtained.
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Table 2.19 Revised simplex tableau after change of b2 D 23

Cycle Basis Basis inverse matrix Constants ONps

1 x2 3/14 �1=7 5/2 �1=7

x1 �1=7 3/7 6 3=7

x5 5/14 �11=7 1 �17=2 Œ�11=7�

�z 9/7 1/7 38 1=7

2 x2 2/11 1/11 36/11
x1 �1=22 3/11 81/22
x4 �5=22 1 �7=11 119/22

�z 29/22 1/11 819/22

(ii) Let the amounts of changes be �b D
0

@
0

7

0

1

A, and from b D
0

@
27

16

18

1

A, it follows

that

x�
B D B�1.b C �b/ D B�1

0

@
27

23

18

1

A D
0

@
5=2

6

�17=2

1

A

Nz� D  .b C �b/ D .�9=7; �1=7; 0/

0

@
27

23

18

1

A D �38:

Since the negative component �17=2 appears in x�
B , using the revised dual

simplex method, we can obtain an optimal tableau shown in Table 2.19.

That is, using the third row ŒB�1�3� of B�1, p3, and p4, we have

Na33 D ŒB�1�3� p3 D .5=14; �11=7; 1/.1; 0; 0/T D 5=14;

Na34 D ŒB�1�3� p4 D .5=14; �11=7; 1/.0; 1; 0/T D �11=7:

Thus, x4 becomes a basic variable in the next cycle. The relative cost coefficients Nc4

is calculated as

Nc4 D c4 �  p4 D 0 � .�9=7; �1=7; 0/.0; 1; 0/T D 1=7:

We calculate Np4 as

2

4
3=14 �1=7 0

�1=7 3=7 0

5=14 �11=7 1

3

5

0

@
0

1

0

1

A D
0

@
�1=7

3=7

�11=7

1

A :
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These values are put in the column of ONps in the tableau. By performing the pivot
operation on Œ�11=7�, a new tableau is obtained.

In this example, after the only one pivot operation, an optimal solution

x2 D 36=11; x1 D 81=22 .x4 D 119=22; x3 D x5 D 0/; z D �819=22

is obtained. ˙

When the coefficients of the objective function are changed, since only the
changes in the cost coefficients c affect the optimality criterion and the value of the
objective function, the (revised) simplex method is used for finding the new optimal
solution only when some relative cost coefficients become negative, i.e., Ncj < 0 for
some j .

Problems

2.1 Convert the following problems to the standard form of linear program-
ming:

(i) (Absolute value problem)

minimize z D
nP

j D1

cj jxj j

subject to
nP

j D1

aij xj D bi ; i D 1; 2; : : : ; m;

where cj > 0, j D 1; 2; : : : ; n, and xj , j D 1; 2; : : : ; n are free variables.
(ii) (Fractional programming problem)

minimize z D

nP

j D1

cj xj C c0

nP

j D1

dj xj C d0

subject to
nP

j D1

aij xj D bi ; i D 1; 2; : : : ; m

xj � 0; j D 1; 2; : : : ; n;

where
nP

j D1

dj xj C d0 > 0 holds for all feasible solutions.
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(iii) (Minimax problem)

minimize z D max

�
nP

j D1

c1
j xj ;

nP

j D1

c2
j xj ; : : : ;

nP

j D1

cL
j xj

�

subject to
nP

j D1

aij xj D bi ; i D 1; 2; : : : ; m

xj � 0; j D 1; 2; : : : ; n:

2.2 Formulate the following problems as linear programming ones.

(i) A manufacturing company produces two products A and B. There are 40 h
of labor available each day, and 1 kg (kilogram) of product A requires 2 h of
labor, whereas 1 kg of product B requires 5 h. There are up to 30 machine-
hours available per day, and machine processing time for 1 kg of product A is
3 h and for 1 kg of product B is 1 h. There are 39 kg of raw material available
each day, and 1 kg of product A requires 3 kg of the material, whereas 1 kg
of product B requires 4 kg. The daily profit for product A is 30 thousand yen
per 1 kg, while B is 20 thousand yen per 1 kg, and the manager wishes to
maximize the daily profit.

(ii) A firm manufactures cattle feed by mixing two ingredients A and B. Each
ingredient contains three nutrients C, D, and E. Each 1 g (gram) of the
ingredient A contains 9 mg (milligram) of C, 1 mg of D, and 1 mg of E.
Each 1 g of the ingredient B contains 2 mg of C, 5 mg of D, and 1 mg of E.
Each 1 g of the feed must contain at least 54 g, 25 g, and 13 g of C, D, and
E, respectively. The costs per gram of the ingredients A and B are 9 yen and
15 yen, respectively, and the manager wishes to find the best feed mix that has
the minimum cost per gram.

2.3 Assume that all xl D .xl
1; xl

2; : : : ; xl
n/T , l D 1; 2; : : : ; L are optimal solutions

to a certain linear programming problem. Show that x� D
LP

lD1

œl xl is also

an optimal solution to the problem, where œl , l D 1; : : : ; L are nonnegative
constants satisfying

PL
lD1 œl D 1.

2.4 For a linear programming problem involving a free variable xk , assume that
we substitute the difference of two nonnegative variables xC

k � x�
k , xC

k � 0,
x�

k � 0 for xk . Explain why both xC
k and x�

k cannot be in the same basis
simultaneously.

2.5 Consider the two linear programming problems

minimize z D cx
subject to Ax D b

x � 0;

and
minimize z D .�c/x
subject to Ax D .œb/

x � 0;

where œ and � are positive real numbers. Explain the relationships between these
two problems. What happens if either œ or � is negative?
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2.6 Solve the following problems using the simplex method:

(i) Minimize �2x1 � 5x2

subject to 2x1 C 6x2 � 27

8x1 C 6x2 � 45

3x1 C x2 � 15

xj � 0; j D 1; 2

(ii) Minimize �3x1 � 2x2

subject to 2x1 C 5x2 � 130

6x1 C 3x2 � 110

xj � 0; j D 1; 2

(iii) Minimize �3x1 � 4x2

subject to 3x1 C 12x2 � 400

6x1 C 3x2 � 600

8x1 C 7x2 � 800

xj � 0; j D 1; 2

(iv) Minimize �2:5x1 � 5x2 � 3:4x3

subject to �5x1 C 10x2 C 6x3 � 425

2x1 � 5x2 C 4x3 � 400

3x1 � 10x2 C 8x3 � 600

xj � 0; j D 1; 2; 3

(v) minimize �12x1 � 18x2 � 8x3 � 40x4

subject to 2x1 C 5:5x2 C 6x3 C 10x4 � 80

4x1 C x2 C 4x3 C 20x4 � 50

xj � 0; j D 2; 3; 4I x1: a free variable

(vi) Minimize 2x1 � 3x2 � x3 C 2x4

subject to �3x1 C 2x2 � x3 C 3x4 D 2

�x1 C 2x2 C x3 C 2x4 D 3

xj � 0; j D 1; 2; 3; 4

2.7 Solve the following problems using the simplex method:

(i) Minimize jx1j C 4jx2j C 2jx3j
subject to 2x1 C x2 � 3

x1 C 2x2 C x3 D 5

(ii) Minimize
�x1 C 4x2 C x3 C 1

x1 C 2x2 C x3 C 1
subject to 2x1 � 2x2 C x3 � 1

x1 C 2x2 � x3 � 1:5

xj � 0; j D 1; 2; 3
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(iii) Minimize max .�x1 C 2x2 � x3; �2x1 C 3x2 � 2x3; x1 � x2 � 2x3/

subject to 2x1 C x2 C x3 � 5

2x1 C 2x2 C 5x3 � 10

xj � 0; j D 1; 2; 3

2.8 Prove by contradiction that the use of Bland’s rule prevents cycling in the
following way.

(i) Let T be the index set of all variables that enter the basis during cycling, and
let q be the largest index in T , i.e., q D maxfj j j 2 T g. The variable xq

enters the basis during cycling, and then xq must also leave the basis. Let I

be the index set of basic variables before xq enters the basis, and let J D
f1; 2; � � � ; ng � I be the index set of nonbasic variables. The corresponding
canonical form is represented by

xi C
X

j 2J

Naij xj D Nbi ; i 2 I; �z C
X

j 2J

Ncj xj D �z:

Furthermore, let I 0 be the index set of basic variables when xq leaves the
basis, and let J 0 D f1; 2; � � � ; ng � I 0 be the index set of nonbasic variables.
The corresponding canonical form is represented by

xi C
X

j 2J 0

Na0
ij xj D Nbi ; i 2 I 0; �z C

X

j 2J 0

Nc0
j xj D �z:

Let t 2 J 0 be the index of the basic variable that enters I 0 instead of xq . By
the definitions of q and t , it follows that Ncq < 0, Nc0

t < 0, Na0
qt > 0, t 2 T ,

t < q. In the canonical form for I 0 and J 0, assume that xt D �1 for t 2 J 0
and xj D 0 for all j 2 J 0 � ftg. Explain that the relation �Nc0

t D P
j 2J Ncj xj

holds.
(ii) From Nc0

t < 0, there must be a positive term in
P

j 2J Ncj xj of the above
relation. Let the term be Ncrxr > 0, r 2 J . Show that r < q.

(iii) Show xr D Na0
rt > 0 and derive the contradiction.

2.9 Apply the standard simplex method to the following linear programming
problem due to E.M.L. Beale, starting with x5, x6, and x7 as the initial basic
variables, and verify that the procedure of the simplex method cycles:

minimize .�3=4/x1 C150x2 �.1=50/x3 C6x4

subject to .1=4/x1 �60x2 �.1=25/x3 C9x4 Cx5 D 0

.1=2/x1 �90x2 �.1=50/x3 C3x4 Cx6 D 0

x3 Cx7 D 1

xj � 0; j D 1; 2; : : : ; 7:

Solve the problem using the simplex method incorporating Bland’s rule.
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2.10 A vector   of the simplex multipliers can also be defined as follows:
Multiply   by a vector b of the right-hand side constants of the original equation
system, and subtract it from the objective function z. Then,  i is determined such
that the coefficient of a basic variable xi is zero. Explain that the above definition
and the original definition of the simplex multiplier are equivalent.

2.11 Solve problem 2.6 by the revised simplex method.
2.12 Show that the dual to the linear programming problem

minimize x1 Cx2 Cx3

subject to �x2 Cx3 � �1

x1 �x3 � �1

�x1 Cx2 � �1

xj � 0; j D 1; 2; 3

is equivalent to the primal problem. Such a pair of linear programming is known
as self-dual. Assuming A is a square matrix, derive the conditions for c, A, and
b for which the linear programming problem

minimize cx
subject to Ax � b

x � 0

is self-dual.
2.13 Prove the complementary slackness theorem.
2.14 Prove Gordon’s theorem.
2.15 Solve the following problems using the dual simplex method:

(i) Minimize 4x1 C 3x2

subject to x1 C 3x2 � 12

x1 C 2x2 � 10

2x1 C x2 � 9

xj � 0; j D 1; 2

(ii) Minimize 3x1 C 5x2

subject to 2x1 C 3x2 � 20

2x1 C 5x2 � 22

5x1 C 3x2 � 25

xj � 0; j D 1; 2

(iii) Minimize 4x1 C 2x2 C 3x3

subject to 5x1 C 3x2 � 2x3 � 10

3x1 C 2x2 C 4x3 � 8

xj � 0; j D 1; 2; 3
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(iv) Minimize 4x1 C 8x2 C 3x3

subject to 2x1 C 5x2 C 3x3 � 185

3x1 C 2:5x2 C 8x3 � 155

8x1 C 10x2 C 4x3 � 600

xj � 0; j D 1; 2; 3

2.16 In the production planning problem of Example 1.1, assume that the total
amounts of available materials are changed as follows:

(i) The total amount of M1 is changed from 27 tons to 33 tons.
(ii) The total amount of M2 is changed from 16 tons to 21 tons.

In each case, find a new optimal solution starting from the last optimal tableau.
2.17 In the linear programming problem solved in problem 2.6 (i), assume that

the right-hand side constants are changed as follows:

(i) The right-hand side constant 27 is changed to 30.
(ii) The right-hand side constant 45 is changed to 51.

In each case, find a new optimal solution starting from the last optimal tableau.
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