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Huntington’s Disease and Cell Therapies: Past, Present,
and Future
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Abstract

Huntington’s disease (HD) is an inherited neurodegenerative disease that is characterized by movement
abnormalities, cognitive impairment, and abnormal behavior as well as sleep and weight problems. It is an
autosomal dominant disorder caused by a mutation in the huntingtin gene on the short arm of chromo-
some 4, which results in the progressive degeneration of the basal ganglia (caudate, putamen, and globus
pallidus), cerebral cortex, brainstem, thalamus, and hypothalamus. This chapter considers four avenues of
research: (a) the restoration of neurogenesis as an endogenous cell therapy in HD, (b) fetal tissue trans-
plantation, (c) stem cell transplantation, and finally (d) the use of endogenous trophic factors such as brain
derived neurotrophic factor.
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1 Clinical Features and Pathology

Huntington’s disease (HD) is a devastating inherited neurodegen-
erative condition first described by George Huntington. In a paper
that nowadays is considered a classic in the literature of neurology
he explains: “It begins as an ordinary chorea might begin, by the
irregular and spasmodic action of certain muscles, as of the face,
arms, etc. These movements gradually increase when muscles hith-
erto unaftected take on the spasmodic action, until every muscle in
the body becomes affected (excepting the involuntary ones), and
the poor patient presents a spectacle which is anything but pleasant
to witness” [1]. It is a disease characterized not only by movement
abnormalities but also by cognitive impairment and abnormal
behavior, as well as weight problems and sleep disturbances [2].
One of'its prominent motor symptoms is chorea, derived from
the Greek word yopdg meaning dance-like. Other symptoms such
as bradykinesia, although not necessarily detected at the early stages
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of the disease, have been considered to constitute an important
part of the motor aspect of HD [3]. Evidence for this was first
provided by the fact that even after pharmacological suppression of
chorea, motor function did not really improve [4-6]. Besides
motor symptoms a whole range of other features is present in HD.
Cognitive decline usually emerges at an early stage [7-9]. This
includes executive dysfunction, which has been associated with
striatal and insular atrophy [10]. Psychiatric symptoms are also
prevalent, and relatively independent of the cognitive and motor
aspects of the disease [11]. These include irritability and apathy,
hallucinations, and depression [12-14].

HD can become manifest at ages from as young as 2 years to
as old as 80 or more. Typically, however, it tends to strike in midlife
[15], with progression over 15-20 years, the duration of disease
being influenced by the age of symptom onset—running a shorter
course in younger onset cases [16]. It is an autosomal dominant
disorder caused by a mutation in the huntingtin gene (htt) on the
short arm of chromosome 4 (4p16.3) [17]. This mutation is caused
by an expansion of the CAG triplet (cytosine—adenine—guanine)
that encodes for glutamine in the coding region of the first exon of
the HD gene [2, 18], which has a normal range of up to 29 repeats.
When these CAG repeats reach 40 or more the disease is fully pen-
etrant, while incomplete penetrance occurs with 36-39 repeats
[19, 20]. Repeats between 27 and 35 can be meiotically unstable
during paternal transmission, and it has been known that descen-
dants of men in this range can inherit CAG repeats of 40 or more
[15]. This has been used to explain the phenomenon of anticipa-
tion in HD, whereby the age of onset of manifest disease becomes
earlier in successive generations [21-23]. Huntingtin, in both
wild-type and mutant forms, interacts with a variety of transcrip-
tion factors [24]. Among the transcriptional pathways affected in
HD, two have been studied extensively, namely, the cAMP respon-
sive element (CRE) and specificity protein 1 (Spl). The CRE path-
way has a role in neuronal survival [25] and early down-regulation
of CRE-regulated genes is a feature of early human HD [26].
There is a great deal of literature on the normal function of htt,
which is still not completely understood.

A genetic test can reliably detect the size of CAG repeat length
in the htt gene. This CAG repeat length has been associated with
the expected age at which onset of the disease is most likely to
occur [18, 21]. This relationship has been extensively reviewed by
Langbehn and colleagues [27], who report that, for instance, a
40-year-old individual who has CAG repeat lengths over 41 has a
95 % chance of disease onset by the age of 70. Whether CAG repeat
length can reliably predict the timing of disease onset as well as the
rate of its progression [28] is a controversial topic.

Post-mortem studies have shown progressive degeneration of
the basal ganglia, with prominent cell loss and atrophy in the
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caudate and putamen but also in the cerebral cortex, brainstem,
thalamus, and hypothalamus [2]. There is progressive loss of
medium spiny GABAergic neurons in the striatum [29] as well as
cortical and hippocampal neurons [30, 31]. The angular gyrus of
the parietal lobe [32, 33] and lateral tuberal nuclei of the hypo-
thalamus [34, 35] are also affected in HD patients. There is evi-
dence of neuronal dysfunction even at the pre-manifest stage; loss
of staining of various cytoskeletal elements in early stage HD tissue
may be related to changes in neuronal morphology and conse-
quently function [36, 37].

A standardized scale is the most commonly used clinical rating
tool for describing the severity of disease manifestations. It was first
introduced in 1979 and at that time consisted only of a functional
scale [38]. The Unified Huntington’s Disease Rating Scale
(UHDRS) was introduced in 1996 as a team effort by the
Huntington’s Study group, and comprises motor, behavioral,
functional, and cognitive domains [39]. As with any qualitative
clinical scale, the UHDRS has its limitations. It is inherently non-
linear and subjective, and there is considerable inter-rater and intra-
rater variability [40].

2 Epidemiology

A number of studies of the epidemiology of HD in the UK have
been published. In 1954 Pleydell [41] provided a detailed report
on the county of Northampton: by tracing the available pedigrees,
61 cases were identified and within a year another choreic family
was recorded [42], giving an incidence of 6.5 cases per 100,000
for that county. A number of similar studies followed [43-45]; a
study carried out in an area of East Anglia found a much higher
incidence of HD [46], 9.24 per 100,000 as opposed to the much
earlier East Anglia study which gave an incidence 1.2 per 100,000
[47]. Similar studies in Ireland [48] reported a prevalence of about
6.4 per 100,000. Contrary to what George Huntington first
reported—*“the disease exists, so far as I know, almost exclusively
on the east end of Long Island” [ 1 ]—a stable prevalence is observed
in most populations of about 5-7 aftected per 100,000 [49], with
a few exceptions such as Tasmania [50] and the Lake Maracaibo
[51] in Venezuela.

No treatment is currently available to slow or halt the unremit-
ting and fatal progression of HD. To date work in HD cell therapy
has been (a) to harness the ability of the brain to self-repair through
the upregulation of endogenous stem cells/neurogenesis, (b) to
replace dead and/or dying neurons through fetal or stem cell
transplantation, and (c¢) to protect neurons vulnerable to disease
progression through the administration of neuroprotective trophic
factors via cell or viral delivery [52].
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2.1 Restoring

or Manipulating
Neurogenesis

as an Endogenous
Cell Therapy

in Huntington’s
Disease

Neurogenesis—the formation of new neurons—occurs normally in
specific regions of the adult brain, namely, the subventricular zone
(SVZ) adjacent to the caudate nucleus, and the hippocampus [53].
One proposed therapeutic strategy for HD is to upregulate endog-
enous neurogenesis in the hope that the extra cells thus produced
could ameliorate disease symptoms and partially repair the damaged
brain. Neural stem cells in the SVZ, dentate gyrus of the hippocam-
pus, and also the olfactory bulb, can differentiate into all lineages of
the adult central nervous system including neurons [54, 55]. Injury
or neurodegeneration can upregulate proliferation and promote the
migration of new cells to the damaged area [56-59]. But it remains
to be clarified whether the observed increase in cell genesis is associ-
ated with any significant repair, and whether or not it might be of
therapeutic value.

Adult neurogenesis has been extensively studied in both HD
transgenic mice and humans. The R6 mice (R6/1 and R6/2) are
the most studied animal models of HD. They harbor exon 1 of the
human htt gene with respectively 115 and 150 CAG repeats [60].
The phenotypes of R6,/2 mice mimic many of the human HD
symptoms and thus provide a good animal model. A number of
animal studies have reported that hippocampal neurogenesis is
decreased in both R6/1 and R6,/2 mice [61-64]. The molecular
cascade by which proliferating hippocampal neural progenitors exit
the cell cycle to become new neurons, migrate, and differentiate
into functional and fully mature neurons is controlled by serial
expression of a number of specific transcription factors. Neurogenin
2 and neuroD1 demonstrate a critical role in controlling neuronal
commitment and hippocampal granule neuroblast formation, both
during embryonic development and in postnatal hippocampal neu-
rogenesis [65-67]. R6,/2 mice have shown impaired spatial learn-
ing using the Morris water maze [68]. Like HD patients afflicted
by the disease, R6,/2 mice have shown progressive learning impair-
ments on cognitive tasks sensitive to frontostriatal and hippocam-
pal function. Two studies have also indicated that reduced adult
hippocampal neurogenesis leads to defective spatial learning and
memory [69, 70]. Similarly, HD patients suffer from deficiencies
related to spatial memory [71, 72]. Studies have shown that normal
htt activity and NeuroD1 are linked and are required for proper
neurogenesis [73, 74].

Neurogenesis can be upregulated not only by neurotrophic
factors but also by certain antidepressants. Indeed, it has been sug-
gested that neurogenesis is important to the efficacy of antidepres-
sants [75]. The antidepressant fluoxetine was used in treating
R6/1 mice from 10 to 20 weeks of age [76]. Beneficial effects
included the reversal of affective symptoms and improved cogni-
tive performance. These were attributed to promotion of survival,
differentiation, and/or functional integration of adult-born neu-
rons rather than neural proliferation alone.
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Fibroblast growth factor 2 (FGF-2) protects striatal neurons in
toxin-induced models of HD, exerts a trophic effect on striatal
neurons, and stimulates proliferation of striatal neural stem cells.
It also regulates htt expression by cultured striatal neurons [77-80].
FGF-2 has been investigated in the R6 /2 mouse model [81 ] where
it was found to stimulate neurogenesis, induce migration of new-
born cells into the striatum and cortex, and significantly extend
lifespan. The nascent neurons that migrated into the affected stria-
tum assumed phenotypic features of medium spiny neurons (the
principal striatal cell type lost in HD) and extended processes to
the globus pallidus, where spiny neurons normally project.

The idea that grafts of fetal striatal tissue could survive, differentiate
toward a functional phenotype and be integrated into the host
circuitry has been tested in a number of studies. The earliest trans-
plantation study in an HD animal model occurred in 1983.
Transplants of fetal rat striatal tissue fragments led to moderate
functional benefits [82]. The first long-term demonstration that
striatal allografts could survive, differentiate and integrate in the
host striatum in a nonhuman primate model of HD came from
Dunnett and colleagues [83], who also described a recovery of
motor skills. Primary human fetal striatal cells also survived, migrated
and differentiated into both neurons and glia, when used for xeno-
graft experiments in the adult rat central nervous system [84].

In small groups of human HD patients, there have been tran-
sient clinical improvements of motor scores within 6 months of
transplantation, followed by progressive clinical deterioration similar
to the natural history of the disease [85-89]. Reports from long-
term studies showed motor and cognitive improvement at 2 years,
consistent with an increase in brain activity in the grafted striata
and in frontal and prefrontal cortices. In one series of five patients,
motor benefits plateaued for 4-6 years, followed by subsequent
deterioration with disease progression [90]; cognitive stabilization
lasted for more than 6 years in three out of five patients. In another
study of two patients, one experienced improvement in both motor
and cognitive functions which endured for 5 years, with increased
striatal D2 receptor binding evident on 11C-raclopride (RAC)
PET, suggesting long-term survival and efficacy of the graft [91].
Another study has reported shorter-term benefits in six out of
seven patients, which did not last beyond 2-3 years [92].

Post-mortem analyses show grafted cell survival at 18 months
[93] and 6 years post-transplantation [94]. In contrast, grafts
analyzed 10 years after cell implantation demonstrated clear grafted
cell degeneration in a pattern similar to the disease itself, including
preferential loss of grafted striatal projection neurons and preservation
of interneurons [89]. The similarity of the pattern of degeneration
in the striatum in HD and then in striatal components of geneti-
cally unrelated neural grafts suggests that some of the pathogenic
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2.3 Stem Cell
Transplantation

events underlying neuronal death in HD are also responsible for
the long-term degeneration of genetically unrelated transplanted
cells [89].

Findings from all these studies indicate that striatal neuronal
transplantation might provide a period of improvement and stability
but it is by no means a permanent cure for the disease [95].
Implantation of fetal grafts in adult HD brain aims to substitute for
lost cell populations and not to oppose the progression of neuro-
degeneration. In addition to the eventual graft degeneration, as
the disease progresses other regions of the brain become affected,
including the neocortex. Implants in the striatum alone are unlikely
to be effective at this stage.

A number of issues need to be addressed before the initiation
of future clinical trials. First, there is no consensus on the optimal
method of tissue preparation. The fetal brain dissection methods
utilize different regions of the Ganglionic Eminence (GE), although
all include regions rich in projection neurons. Some methods opti-
mize inclusion of more projection neurons, others maximize inclu-
sion of cholinergic interneurons [96]. The amount and cellular
composition of the transplanted cells must be regulated [97], as
transplants with less than 30 % striatal content are ineffective.
Secondly, some studies [92, 94 ] have described acute neurosurgical
complications with subdural hematoma and intracerebral bleeding.
No such subdural hematomata have been reported in the Parkinson’s
disease literature. Brain atrophy increases the risk of subdural hema-
toma, and Hauser has suggested [92] that advanced HD patients
with significant brain atrophy be excluded from surgical trials, to
minimize the risks involved in such procedures.

The use of fetally derived striatal grafts for transplantation in
patients with HD raises obvious ethical issues because of the need
for aborted fetal tissue. This has been part of the impetus towards
the development of stem cells as a graft material.

The idea of stem cell therapy for HD has received increasing atten-
tion over the last decade. Stem cells are easier to obtain than
primary fetal tissue and have the potential to be manipulated to
eliminate possible problems of graft rejection. Neural stem cells
(NSCs) can be isolated from the fetal, neonatal, and adult brain
and propagated in culture [98]. Grafted NSCs exhibit physiologi-
cal properties of mature intrinsic pyramidal neurons and become
functionally integrated into host neural circuitry [99].
Transplantation of neural stem cell into a transgenic mouse model
after neuronal ablation survived, migrated, differentiated, and
improved memory impairment [100].

Stem cells derived from various other sites have been tested in
HD animal models. Bone marrow stem cells (containing both
hematopoietic stem cells [HSCs] and mesenchymal stem cells
[MSCs]) were implanted bilaterally into the quinolinic acid (QA)
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damaged striatum of HD rat models, remained viable for at least
37 days, and significantly reduced functional deficits in working
memory [101]. Transplantation of MSCs alone resulted in a
decreased atrophy of rats QA-lesioned striatum. These results
confirm the potential of bone-marrow derived mesenchymal stem
cells in treatment of microanatomical defects in motor disorders of
HD [102] However, in most of these studies, only a few cells (1 %)
expressed neural phenotypes, and it was suggested that MSCs
worked as neurotrophic enhancers via the release of growth fac-
tors, therefore allowing surviving cells within the caudate to func-
tion more efficiently and to facilitate other compensatory responses
[103]. Another study [104] demonstrated significant engraftment
of undifferentiated exogenous mesenchymal or neural stem cells
throughout the lesioned area in an HD rat model, as late as 8
weeks post-transplantation. The stem cell factor (SCF), strongly
upregulated within host cells in the damaged striatum, was able to
activate the SCF receptor c-kit and its signaling pathway and to
promote the migration and proliferation of mesenchymal and neu-
ral stem cells in vitro. Furthermore, the c-kit receptor blockade
altered neural stem cell distribution within the lesioned striatum.
Taken together, these data demonstrated the importance of factors
such as stem cell factor, produced in situ in the lesioned striatum,
to promote the migration and engraftment of MSCs via the SCF
receptor c-kit.

In another study, in a 3-NP model of early HD, adult periph-
eral precursor cells from Sertoli cells (testis-derived cells with
immunosuppressive and trophic properties) were transplanted into
rat striatum. Results indicated that the Sertoli transplants were able
to ameliorate locomotor abnormalities [ 105]. However, one prob-
lem with autologous cell grafts may be that they carry the mutant
htt gene responsible for the disease. There are a number of problems
related to cell survival, cell fate (for example avoiding teratoma
formation), maintenance of a defined differentiated phenotype,
and roper cell engraftment in transplantation [106]. The differen-
tiation of stem cells or treatment with growth factors in vitro prior
to implantation may facilitate fate determination while reducing
the risk of tumor formation, a primary concern when using stem
cells [107, 108]. A study by Dihne et al. used ES cell-derived
aggregates consisting predominantly of B-tubulin neurons, which
demonstrated that the state of maturity of ES cell-derived trans-
plants critically determined tumorigenicity [ 108].

MSCs are currently the most widely investigated adult cells for
brain cell therapy. However, their neuronal differentiation poten-
tial remains very low or uncertain after transplantation. The poor
cell survival and engraftment observed when using chromaffin
cells, hRPE cells, MSCs, and in general all kinds of transplanted
cells, has called into question the efficacy of such procedures. These
issues may now be addressed by tissue-engineering approaches [106].
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2.4 Using
Endogenous

or Exogenous Trophic
Factors in HD Cell
Therapy

Stem cell therapy for the treatment of HD patients is an exciting
emerging area of research. Animal studies show promise, but trans-
lation to the bedside is still in its infancy.

Neurotrophic factors are large molecules that do not cross the
blood-brain barrier. Manipulation of both endogenous and exog-
enous trophic factors has been used in HD therapy. Transplanted
stem and progenitor cells can promote the survival of host cells by
releasing trophic factors such as brain-derived neurotrophic factor
(BNDF), ciliary neurotrophic factor (CNTF), and glial cell line-
derived neurotrophic factor (GDNF) [109, 110].

BDNF is known to be of specific importance for differentiation
and survival of striatal neurons [111-113]. BDNF knockout mice
recapitulate the striatal gene expression phenotype of human HD
[114]. Based on striatal gene expression, BDNF models, both
heterozygous and homozygous knockouts, seem to be more like
human HD than the other HD models. This implicates reduced
trophic support as a major factor contributing to striatal degenera-
tion in HD. Because the majority of striatal BDNF is synthesized
by cortical neurons, the data from this study also suggest that cor-
tical dystunction contributes to HD’s hallmark effects on the basal
ganglia. Environmental enrichment at 5 months of age amelio-
rated motor symptoms and prevented loss of body weight induced
by the HD transgene. BDNF levels remained unaltered by the
disease in the anterior cortex, implying that enrichment might pre-
vent HD-induced impairment of anterograde transport of this
neurotrophin to the striatum [115]. As a whole, these results sug-
gest that regulation (either through endogenous or exogenous
manipulations) of abnormal BDNF production have the potential
to improve motor function.

Ciliary neurotrophic factor was one of the first purified trophic
factors that was demonstrated to protect striatal output neurons
(especially vulnerable GABAergic striatal neurons) in an adult HD
animal model [116-118]. In one study, direct intrastriatal delivery
was achieved by bilaterally implanting encapsulated baby hamster
kidney (BHK) cells genetically engineered to produce human
CNTF [119]. This not only protected neurons from degeneration
but also restored neostriatal functions. Ciliary neurotrophic factor
is likely to be more beneficial if administered at the early stages of
the disease, when infusion of CNTF intro the striatum might not
only block the degeneration of neurons but also could alleviate
motor and cognitive symptoms associated with persistent neuronal
dysfunction.

The glial cell line-derived neurotrophic factor (GDNF) fam-
ily is differentially regulated by excitotoxic insults in the striatum
[120]. GDNF protects striatal medium spiny GABAergic neu-
rons from excitotoxic injury in a rodent model of HD [121, 122].
Viral-mediated gene transfer of GDNF into the striatum of
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presymptomatic transgenic HD mice provides neuroanatomical
and behavioral protection such as preservation of neuronal cells from
degeneration, and a reduced percentage of neuronal cells with
mutant htt inclusions [123, 124].

Post-mortem results indicate that neuronal transplants undergo
disease-like degeneration by 10 years after transplantation [125],
and any therapeutic effect disappears in less than half this time. The
mechanisms by which nonmutant huntingtin-bearing transplanted
tissue becomes affected by the disease process are unclear. Immune
mechanisms may play a role [126], and immunosuppression, essen-
tial to prevent rejection of transplants elsewhere in the body, is
used inconsistently [96]. The grafts may suffer from various other
insults, and a better understanding of the culprit processes might
permit their eventual pharmacological treatment. Improvement of
the graft survival time is a key issue, and neurotrophic factors may
have an important role in preserving grafts as well as native tissue;
repeated transplantation is unlikely to be a realistic option, as accu-
rate and safe stereotactic graft placement will become more difficult
with progressive brain atrophy, increasing risk and decreasing the
chance of success. It is not clear whether fetal cells or stem cells will
be superior, and for the present research on the two continues in
parallel. Other graft-related issues that need further research
include the methods of preparation of fetal tissue (including the
exact region of the ganglionic eminence that fetal cells are taken
from), and the optimal implanted dose (cell numbers) and form
(solid graft or cell suspension).
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