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Immunoproteomics: Current Technology and Applications
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Abstract

The varied landscape of the adaptive immune response is determined by the peptides presented by immune
cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or
antigens is not new and classical methods such as agglutination, enzyme-linked immunosorbent assay, or
Western blotting have been used for many years to study the immune response to vaccination or disease.
However, in many of these traditional techniques, protein or peptide identification has often been the
bottleneck. Recent advances in genomics and proteomics, has led to many of the rapid advances in pro-
teomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have
the common goal of identifying and measuring antigenic peptides or proteins. This includes gel based,
array based, mass spectrometry, DNA based, or iz silico approaches. Immunoproteomics is yielding an
understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an
overview of immunoproteomics and closely related technologies that are used to define the full set of
antigens targeted by the immune system during disease.
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1 Introduction

The landscape of the immune system is constantly changing and is
determined by the peptides presented by immune cells, whether
from viral or microbial pathogens or cancerous cells. Detection
and identification of these immune-active proteins or peptides can
therefore be investigated using many of the approaches that have
been developed for proteomics studies. As an extension of the pro-
teomics field, the term “immunoproteomics” was first used in
2001 [1]. The field is rapidly expanding and includes increasingly
varied techniques that result in the identification of immune related
proteins and peptides, derived from invading pathogens, host cells,
or immune signalling molecules. The study of immune biomarkers
or antigens is not new and classical methods such as agglutination,
enzyme-linked immunosorbent assay, or Western blotting have
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been used for many years to study the immune response to vaccina-
tion or disease. However, in many of these traditional techniques,
protein or peptide identification has often been the bottleneck.
Recent advances in genomics and proteomics, including mass spec-
trometry instrumentation, has led to many of the rapid advances in
immunoproteomics approaches. Immunoproteomics is yielding an
understanding of disease and disease progression, vaccine candi-
dates, and biomarkers. Herein, we focus upon providing a broad
overview of immunoproteomics and closely related techniques that
are used to study the immune response and their role in further
disease diagnostics and vaccine development.

2 Immunoproteomics for Characterization of Antibody Targets

One of the two major arms of the adaptive immune system, also
classically referred to as the humoral immune response, relies on
activated B-cells secreting large amounts of highly specific antibod-
ies, which bind to microbial or cellular targets, either neutralizing
them or tagging them for elimination. Antibodies can be gener-
ated against microbial invaders, cancer antigens and sometimes
misdirected against self-antigens, resulting in autoimmune disease.
For a more complete overview of the antibody based immune
response, readers are directed to a recent review [2]. Many meth-
ods have been developed in order to study the antigen targets of
the humoral immune response and in the following section we
provide an overview of the most commonly used. Fig. 1 shows a
summary overview of these methods.

Serological Proteome Analysis (SERPA)
Highthroughput Proteome Arrays
Glycopeptide Arrays
Expression arrays e.g. SEREX
Immunoproteomics for Characterisation Antigen Identification
of (Qualitative or Quantitative information)
Antibody Targets Antigen Capture and Mass Spectrometry
Multiple Affinity Protein Profiling (MAPPing)
Immunocapture of Circulating Immune Complexes (CIC)

Electroi ipitations of Antibody-Antigen

Fig. 1 Overview of methods commonly used to interrogate antigenic targets of the humoral immune response
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One of the most commonly used immunoproteomics approaches
relies upon 2D-PAGE, which separates proteins based upon
orthogonal physical characteristics. When combined with Western
blotting, the technique is commonly known as Serological
Proteome Analysis (SERPA). The technique was originally devel-
oped in the 1970s and with some refinements popularized for use
in biochemistry [3]. Early studies were hampered by challenges in
protein identification, and instead used the gel maps to compare
protein patterns under different cellular conditions. With many
years of refinement, and rapid advances in mass spectrometry and
genome sequencing, 2D-PAGE became the mainstay of compara-
tive proteomics studies in the late 1990s and early 2000s. 2D-PAGE
can be performed in most protein chemistry labs as a matter of
routine, and advances in protein staining and image analysis soft-
ware have made their use accessible to a broad scientific audience.
With well-documented disadvantages, including difficulties in
resolving very large, small, hydrophobic or basic proteins and the
dynamic range of protein abundance, 2D-PAGE has been super-
seded by non-gel based proteomics approaches. However,
2D-PAGE has advantages and remains one of the few techniques
that allow high quality analysis of intact proteins on a proteome
wide scale, including detection of protein posttranslational modifi-
cations (PTMs). One of the most overlooked advantages is the ease
and efficiency with which 2D-PAGE can interface with other bio-
chemical techniques, such as Western blotting. When combined
with Western blotting for detection of antigenic proteins, and mass
spectrometry based identification of proteins from in-gel digests,
2D-PAGE provides a powerful approach for antigen identification.
Combined, 2D-PAGE and Western blotting is commonly known
as serologic proteome analysis (SERPA). The antigen used in these
studies can be a whole cell proteome, or subproteome (e.g., mem-
brane fraction). 2D-PAGE resolves the majority of proteins in a
sample to a single protein spot, giving the potential to readily iden-
tify the antigenic proteins within the resolved proteome. Gels are
then transferred to membranes and probed with sera from animal
models or humans and developed as per any traditional Western
blotting experiment. Many gels can be run in parallel to the blot-
ting experiment, providing gels for reference maps and identifica-
tion of immunoreactive proteins.

This now “classical” immunoproteomics approach is still
widely used, and provides a robust way of screening the antibody
reactivity profiles of serum in a variety of disease states, or post vac-
cination. Applications include discovery of antigenic proteins, bio-
markers or correlates of protection, with many studies reporting
bacterial diseases [4-29], cancers [30—40] and diseases such as
multiple sclerosis [41]. Studies have included discovery of serodi-
agnostic markers for Q fever [42] and Helicobacter pylori [21, 25,
43, 44] as well as diagnostic markers of parasitic diseases, such as
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2.2 High Throughput
Proteome Wide
Screening of Antibody
Targets: The Proteome
Array

Schistosomiasis [45]. Another report has used SERPA to discover
proteins secreted iz vivo by Bacillus anthracis [46]. SERPA has
also been used to study the human serological response to vaccina-
tion with whole-cell pertussis vaccine [47], Franciselln tularensis
live vaccine strain [48] and human infection with Francisella [16,
48]. The latter studies focused upon discovering antibody based
correlates of protection.

Some of the limitations of 2D-gel based immunoproteomics have
been overcome with the development of proteome or protein
arrays to study the humoral immune response. Here, each open
reading frame of interest in the genome is amplified by PCR, fol-
lowed by cloning, protein expression and microarray printing [49,
50]. Bacterial proteomes are sufficiently small that the entire com-
plement of proteins from the genome can be printed on a single
array.

The chips are then treated in a manner similar to traditional
Western blotting, probed with sera and reactivity detected after
incubation with a secondary antibody with fluorescent conjugate.
The chip based technology has the advantage of screening closer
to equal amounts of antigens, interrogation of the entire theoreti-
cal proteome of the organism, and reduced volume of serum
required for screening (2 pL vs. ~50-100 pL for large 2D-Western
blot). The reduced requirement for serum means that pooling of
sera from multiple animals or humans in a study is not required,
and individual differences can be readily detected. These benefits,
combined with the high throughput capacity of proteome micro-
arrays, make it an attractive method of rapidly screening hundreds
of sera. The use of advanced data handling algorithms is a require-
ment, as with DNA based microarrays, for meaningful data inter-
pretation [51].

The complexity of protein purification and high throughput
gene expression systems means that it can be challenging to produce
proteome arrays that represent the entire proteome of an organism.
In addition, the expressed proteins lack native PTMs, processing
and correct protein folding is not guaranteed. Investigation into the
use of yeast based protein expression systems may help address the
issue of PTMs, however many bacteria elaborate a unique repertoire
of glycoconjugates and glycoproteins that cannot be replicated by
yeast based systems. Lack of non-protein antigens can be addressed
by addition of native molecules to arrays, in order to gain a broader
perspective of the humoral immune response. To date, there have
been reported advances in array technology that address challeng-
ing protein antigens, such as membrane proteins [52], and non-
protein antigens, such as carbohydrates [53].

Proteome arrays have been used to study the humoral immune
response of a wide range of pathogens, including smallpox vaccina-
tion [54, 55], Chlamydia infections [56, 571, Brucellosis [58, 591,
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Mycobacterinm tuberculosis infections [60, 61 ], salmonellosis [62],
Herpes simplex virus [63, 64, Plasmodium falciparum [65-68],
Q fever [42, 69, 70], toxoplasmosis [ 71 ], Burkholderia pseudomal-
lei [72], Borrvelin burgdorferi [ 73], Francisella tulavensis [50, 741,
and Epstein-Barr virus [75]. In the long term, this technology has
the potential to aid development of improved serodiagnostic tests,
vaccine development, epidemiological studies and shed light on
the interaction of pathogens with the immune system.

Carbohydrate moieties and glycoconjugates, including glycopro-
teins, are increasingly being shown to have roles in various diseases,
including cancers and bacterial infections. Protein glycosylation is
a highly abundant PTM and aberrant glycosylation of proteins has
been shown to be associated with cancers [76] and autoimmune
diseases [77, 78]. Truncated glycan moieties on glycoproteins are
recognized as nonself and result in the generation of autoantibod-
ies to glycopeptide epitopes [79, 80]. For example, O-glycosylation
of mucin (MUC]1 ) is particularly important in cancers, with patients
reported to have autoantibodies to distinct epitopes on MUCI
that harbor truncated sugar moieties [81]. Of note, these autoan-
tibodies recognize cancer specific epitopes, composed of the com-
bined peptide sequence and the carbohydrate moiety [76, 82, 83].
It is, therefore, likely that there are other glycopeptide antigens in
cancers. Investigation of glycan associated autoantibodies has been
carried out using variations of chip based screening technologies.
These have included a microarray display platform that allows the
large scale screening of O-glycopeptide libraries for the investiga-
tion of disease associated autoantibodies [80, 84-87].

Recently, a high throughput chemoenzymatic synthesis and
microarray display platform has been described that enables the
production and screening of large O-glycopeptide libraries for dis-
ease associated autoantibodies. A combined synthetic and enzy-
matic approach allowed immobilization and generation of a
glycopeptide epitope library on a microarray chip. As outlined in
Fig. 2, O-linked GlcNAc containing peptides were synthesized by
standard solid-phase peptide synthesis (SPPS) [84]. These glyco-
peptides were then immobilized on microarray plates coated with
amine-reactive NHS-ester groups. This was followed by on-slide
glycosylation with different polypeptide GalNAc-transferases and
other elongating glycosyltransterases. In this way, a diverse library
of synthetic O-glycosylated MUCI1-peptides was generated i situ.
This was used for serological screening and the results showed that
the array was able to detect autoantibodies in the sera of patients
with a confirmed diagnosis of breast cancer [84]. Rapidly synthe-
sized libraries which represent the potential diversity of glycopep-
tide or glycoprotein epitopes pave the way to broader screening of
glycan-epitopes and the elucidation of glycan epitopes within exist-
ing immunodominant peptides.
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Fig. 2 Uncovering glycopeptides epitope. Peptides are synthesized using solid phase peptide synthesis, includ-
ing amino acid harboring an N-acetyl glucosamine residue. Peptides are then immobilized on glass slides,
coated with NHS esters. This serves as a partial purification step. Addition of glycosyltransferases allow in situ
addition of carbohydrate moieties to generate a library of glycopeptide epitopes. This is then screened with
sera and reactive epitopes identified

2.4 Antigen
Discovery Using
Expression Arrays

The diversity of carbohydrate moieties across the domain of
Bacteria is substantially greater than that of eukaryotes. Many
monosaccharides are found exclusively within bacteria and are
genus, species, or strain specific. Consequently, these unique sug-
ars are often readily identified by the host immune system as for-
eign entities during infection. Frequently these sugars are part of a
pathogen associated molecular pattern (PAMP), such as lipopoly-
saccharide (LPS) or peptidoglycan, that is recognized by host pat-
tern recognition receptors (PRR) such as toll-like receptors (TLR)
[88, 89] or nucleotide oligomerization domains (Nod) [90-93] as
part of an innate immune response. However, it is increasingly
being reported that bacterial glycoproteins also play a role in stim-
ulating innate [94] and adaptive [95-98] host immune responses.
Several of these pathogen glycoproteins, including the flagellin of
Campylobacter coli and Campylobacter jejuni, are responsible for
serospecific antibody responses [95, 98]. Additionally, the anti-
body response to anthrose, a unique sugar decorating the Bacillus
anthracis exosporium glycoproteins (BclA and BclB), is currently
being exploited for its potential use in detection and diagnosis of
anthrax [99-102]. Despite a growing recognition of the impor-
tance of bacterial glycoprotein antigens, immunproteomics meth-
ods directed specifically towards their identification are lacking. In
fact, glycoprotein antigenicity is frequently discovered as a conse-
quence of targeted glycoprotein characterization. Given the docu-
mented importance of bacterial glycoprotein antigens, methods
designed for their global detection and identification would greatly
benefit the field of immunoproteomics.

Expression arrays are composed of bacterial, yeast, mammalian, or
cell free cDNA expression libraries that are used to identify novel
antigens. Known as serological analysis of 7ecombinant cDNA
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expression libraries (SEREX), these techniques have a large genetic
component and have been termed by some as “reverse proteomics”
[103]. SEREX was first developed for analysis of the humoral
response to cancer in the 1990s [104 ], with the goal of identifying
tumor specific antigens that elicit high titer immunoglobulin G
(IgG) antibodies in patient sera. In this context, the technique per-
mits the search for antibody responses and the molecular definition
of immunogenic tumor proteins, based upon autologous patient
sera (reviewed in ref. 103). Patient tumor mRNA is used to pre-
pare prokaryotically expressed ¢cDNA libraries which are then
immunoscreened with absorbed and diluted patients’ sera for the
detection of tumor antigens that have elicited a high-titer IgG
humoral response. This approach has the advantage of being able
to identify antigens expressed iz vivo, and is unbiased, based only
upon the reactivity of clones with autologous patient sera. A sec-
ond phase of screening is also carried out, using sera from normal
patients in order to define antigens that show cancer-restricted
immune recognition [105, 106]. SEREX has been applied to the
study of many cancer types, including renal [ 105, 107, 108], colon
[109-111] and breast [ 106, 112-123] cancers leading to the iden-
tification of cancer specific antigens. One antigen, NY-ESO-1, was
identified in esophageal squamous cell carcinoma and the gene
expressed in normal testis and ovary, with aberrant expression in
various types of malignant tumors [124]. NY-ESO-1 shows
restricted expression patterns, elicits both cell mediated and
humoral immune responses [125] and has been under develop-
ment as a cancer vaccine target (reviewed in ref. 126).

Despite many advantages, SEREX presents some challenges, in
that it is time consuming to construct cDNA libraries for each
tumor sample. In addition, false positives are possible, either due
to reactivity with prokaryotic expression components or lack of
expression of PTM in prokaryotic expression systems. In particu-
lar, protein glycosylation of eukaryotic proteins can represent
important antigenic epitopes, including disease associated changes
in glycosylation. A few autoantibodies to PTM-protein epitopes
have been reported, including those found in cancers [79, 80] and
autoimmune diseases [77]. The use of eukaryotic expression sys-
tems can ensure that expressed proteins are glycosylated [127-
130]. Tumor associated antigens identified from SEREX screening
are updated in the Cancer Immunome database (ref. 131; http://
ludwig-sun5.unil.ch /CancerImmunomeDB /). Over 2000 auto-
antigens are listed in this online database. An excellent review that
discusses the classes of SEREX defined antigens and the wider
impact of this technique upon cancer vaccine and diagnostic devel-
opment can be found here [103].

Immunocapture mass spectrometry aims to enrich antigen pro-
teins from cell lysates, using mass spectrometry as the final means
to identify captured proteins. There are many variants of



28 Kelly M. Fulton and Susan M. Twine

2.5.1  Multiple Affinity
Protein Profiling

2.5.2 Capture and
Identification of Circulating
Immune Complexes

immunocapture and generally immunoglobulins from patient sera
are immobilized on Protein A or Protein G, usually in column for-
mat. This is followed by the application of a cell or tissue lysate to
the column, effectively enriching for antigenic proteins, i.c., those
proteins to which there are antibodies in patient serum. Proteins
are eluted from the column, enzymatically digested and subse-
quently identified by MS/MS [132].

Multiple Affinity Protein Profiling (MAPPing) is an example of an
immunocapture technique that has primarily been exploited to
identify cancer related autoantigens [133, 134]. It is based upon
two-dimensional immunoaffinity chromatography, whereby anti-
gens from tumor lysates are separated based upon their affinity for
immunoglobulins from healthy controls in the first dimension and
immunoglobulins from cancer patients in the second. The first
dimension removes autoantigens that are recognized by sera from
healthy patients. Cancer restricted autoantigens then flow through
to the second column, which then selectively binds them. The pro-
teins eluted from the second chromatography step are therefore
likely to be cancer specific and are identified by enzymatic diges-
tion and MS/MS analyses [133, 134].

Another variation of immunocapture targets circulating immune
complexes (CIC). Immune complexes are formed from the non-
covalent interaction between antigens and antibodies and are usu-
ally removed by mononuclear phagocytes through complement
receptors and Fc-receptors [135]. This process constantly occurs
in healthy individuals and ensures the rapid clearance of denatured
proteins, antigens of gut bacteria or dead cells. Studies have shown
that these antigen—antibody complexes can play a role in disease
progression of human autoimmune diseases [136], cancer [137],
or infectious diseases [138]. There is some discrepancy in the lit-
erature regarding the utility of CIC in disease diagnosis, treatment
or as an indicator of disease severity [ 139-144]. Some have argued
that identification of antigens incorporated into CICs may be of
greater relevance than information regarding free antigens [ 144,
and that antigens in CICs could provide information useful to
understanding disease progression, and in developing diagnostic
and treatment strategies.

CICs can be isolated from serum, as described in a recent
report [ 144]. Patient serum was immobilized on a Protein A or G
column and cell lysates passed over the column. Proteins that were
bound to the immobilized patient sera were eluted and identified
using tandem mass spectrometry of their tryptic digests [143-
145]. A recent study identified CICs containing the proteins
thrombospondin-1 and platelet factor 4 in the serum of 81 and
52 % of a sampling of rheumatoid arthritis patients, respectively
[143]. This method is applicable to many other diseases for inven-
tory of antigens within CICs.
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Electroimmunoprecipitation can exploit differences in electropho-
retic mobility between an antibody and its corresponding antigen,
resulting antigen—antibody complexes embedded in an agarose gel.
Staining of the gels permits visualization of precipitated complexes.
Elution of these complexes, plus enzymatic digestion, and subse-
quent mass spectrometry analysis can identify the unknown anti-
genic proteins of interest [ 146]. In rocket immunoelectrophoresis
(RIE), a monoclonal antibody is used. However, crossed immuno-
electrophoresis (CIE) involves two dimensions of separation [147,
148] and can therefore be used to identify antigenic proteins react-
ing with mixtures of monoclonal antibodies, polyclonal antibodies,
or serum. Therefore, electroimmunoprecipitation can be used to
capture antigens relevant to various disease states or contribute to
validation of antigenic proteins. Electroimmunoprecipitation has
the added advantage of being quantitative [147-149] and can
therefore also be used to monitor the level of serum antibody
response to a known antigen.

Discovery of antigenic proteins is the first step in profiling the
humoral immune response to disease. There is often a need to then
further dissect the immune response and determine the region of
the antigenic protein, or epitope, that stimulates the immune
response; particularly in antibody design or epitope based vaccine
design [150]. This can be carried out using a wide variety of tech-
niques, a full description of which is beyond the scope of this
review and we direct the reader to recent reviews [151, 152].

3 Immunoproteomics in the Study of Major Histocompatibility Complex Peptides

The cell mediated immunity (CMI) arm of the adaptive immune
response involves activation of cell populations such as phagocytes
or T-cells and can include the release of communicator molecules,
such as cytokines and chemokines in response to foreign invaders
or antigens. T-cells recognize antigens that are displayed on the
surface of host cells in complexes known as the major histocompat-
ibility complex (MHC). The antigens found in complex with
MHC molecules are short peptides that are derived from intracel-
lular proteolysis of proteins. This antigen presentation and process-
ing allows for the host recognition of foreign peptides from infected
or transformed cells, by stimulating an immune response. In addi-
tion, there is constant surveillance of peptides derived from the
host organism, and self-peptide presentation is involved in T-cell
development in the thymus and regulation of self-tolerance.
There are two major subgroups of MHCs, denoted MHC 1
and MHC II, which are encoded by the human leukocyte antigen
(HLA) gene clusters. These gene clusters are highly polymorphic,
giving rise to hundreds of allelic forms, with only a subset present
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3.1 MHC Peptide
Enrichment

3.2 Mass
Spectrometry in MHC
Peptide Discovery

in each individual. The polymorphism gives rise to differences in
the MHC molecules, their binding pockets and affinity for particu-
lar peptide antigens, thereby influencing the repertoire of antigens
presented to the immune system of an individual. The two major
classes of MHC molecules (class I and II) are distinct in their three
dimensional structure, pathways by which antigens are processed
and the type of T-cell with which they interact. MHC class I gene
cluster encodes the heterodimeric proteins that bind antigenic
peptide from within cells, and are found on all nucleated cells
types. MHC Class I molecules carrying peptide antigens complex
with the CD8 co-receptor. This complex is primarily recognized by
cytotoxic T-cells and leads to their activation and eventual death of
the cell expressing the nonself antigen.

In comparison, MHC class II gene cluster encodes heterodi-
meric peptide-binding proteins and proteins that control peptides
binding to the MHC heterodimers. Peptide loading onto MHC
class II molecules occurs in the lysosomal pathway and MHC class
II complexes are only found on specialized cell types, such as
B-cells, neutrophils, and dendritic cells and can be induced on
macrophages and human T cells. The CD4 T cell co-receptor rec-
ognizes MHC Class II antigen complexes, also resulting in T-cell
activation. If the presented peptide is foreign, the T cells then pro-
liferate, secrete cytokines, and differentiate into antigen-specific
effector CD4 cells, which secrete cytokines and activate other cell
types, such as B-cells. For both MHC class I and class II molecules,
the antigens are peptide fragments which are recognized as nonself
by T-cells, these antigens are known as T-cell epitopes. A detailed
description of how these peptide fragments are generated is
described in more detail [153-155].

The identification and characterization of peptides displayed by
MHC molecules and specific T-cell epitopes has become essential
for modern immunological studies, in many aspects of basic and
applied research. For example, the development of vaccines with
enhanced T-cell immune response [156-158]. A broad array of
functional and biochemical approaches have been developed to
identify peptide epitopes, including forward and reverse immuno-
proteomics, and mass spectrometry centric approaches (for exam-
ple refs. 158-168). A recent review describes T-cell epitope
mapping based upon screening of peptide libraries and screening
for T-cell activation [169]. In the following sections, we review the
contributions of mass spectrometry based immunoproteomics to
MHC peptide binding and T-cell epitope identification and how
this knowledge is furthering vaccine and diagnostic development.

MHC class I and II proteins preferentially bind peptides of difter-
ent lengths and general characteristics. Typically, MHC class 1
molecules have a binding cleft that accommodates peptides of
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8-10 amino acids, whereas, MHC class II molecules bind peptides
8-30 amino acids in length. Peptides that bind the cleft of a MHC
class II molecule are usually found to share a core sequence
[170-175].

Over the past two decades, several methods of isolating MHC
peptides have been developed. Early reports in the 1990s used acid
treatment to elute peptides from the surface of cells [176].
Although simple to carry out, peptide elution was not specific to
those bound to MHC complexes and difficulties arose when
attempting to discriminate specific MHC peptides. Targeted
immunoaffinity purification was also reported in the 1990s [177],
in which monoclonal antibodies specific for an MHC class were
used to enrich the MHC complexes. MHC bound peptides are
then eluted by acid treatment and separated from proteins by size
exclusion. Soluble MHC molecules, without a transmembrane
domain, are secreted in transfected cells with MHC peptides
bound. The secreted complexes are easily purified, for example
with the use of immunoaffinity columns; this method is considered
a facile method to isolate MHC peptides [178]. In all cases, it is
assumed that peptides bound to MHC molecules are protected
from proteolysis during sample preparation and that acid treat-
ment is sufficient to dissociate peptides from their MHC binding
partners. Immunoaffinity purification of MHC peptides has been
applied in many areas, including the study of the central nervous
system of multiple sclerosis patients [179, 180] and bronchoalveo-
lar lavage cells isolated from patients with sarcoidosis [181].
Another study combines immunoaffinity enrichment with testing
of subsequent fractions for biological reactivity, prior to peptide
identification by mass spec [182] for the identification of tumor
associated antigens. This approach has also been used for the suc-
cessful identification of novel antigens in primary human breast
cancer [183] and West Nile virus [184].

Purified MHC peptides were largely analyzed using Edman degra-
dation. In particular, the shorter length of the MHC class I peptide
ligands made them amenable to amino acid sequencing by Edman
degradation. The use of Edman chemistry on a pool of MHC class
I peptides revealed an increased signal for a particular conserved
amino acid, or amino acid position [185], allowing progress
towards identifying conserved residues or sequence motifs. MHC
class II peptides are less amenable to this approach, due to their
longer length and greater heterogeneity. However, other early bio-
chemical studies established consensus binding motifs for both
MHC class I and II peptide ligands [170-175].

Due to the limitations in HPLC separation of peptides and
Edman sequencing in early studies of MHC peptides, only short
sequences of abundant peptides were determined. Pioneering
studies in the early 1990s demonstrated the utility of the then
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3.4 Quantification of
MHC Peptides Using
Mass Spectrometry

recently developed electrospray ionization mass spectrometry
(ESI-MS), in combination with microcapillary HPLC to deter-
mine the length and sequence of peptides bound to HLA-A2.1
[159], one of the most widely distributed MHC class I molecules
within the human population. Since this study, ESI-MS has been
used extensively for the detection of peptides presented by major
histocompatibility complex (MHC) molecules (for example refs.
159, 186, 187 and recently reviewed in ref. 188). Mass spectrom-
etry affords the advantage of high resolution peptide mapping,
allowing rapid identification of hundreds of MHC peptides in a
single experiment.

Since the first report [189], rapid advances in mass spectrom-
etry instrumentation, throughput and data handling mean that
mass spectrometry is a widely used technique in the identification
of T-cell epitopes. More recently, large scale proteomics method-
ologies have been used in comparative or quantitative studies of
T-cell epitope identification. Studies have reported robust identifi-
cation of epitopes, and refinements have been made to identify
immunodominant epitopes and in distinguishing self and nonself
MHC class I peptides. Precise splitting of the eluate from HPLC
separation of MHC peptides, with a portion diverted to the mass
spectrometer and the majority retained to assay T-cell activity, has
allowed more precise correlation between MHC peptide identifi-
cation and T-cell activation [190-192]. Other methods compared
the LC-MS chromatograms of peptides eluted from MHC I com-
plexes with those of reference cells. Mass spectrometry has been
used to identify T-cell epitopes of Plasmodium falciparum [193],
cancers [194, 195] and rheumatoid arthritis [196]. Others have
employed novel approaches to hold antigen presenting cells in pro-
tein free medium, simplifying the repertoire of peptide antigens
presented and reducing the background of peptides normally
observed, allowing greater detection of exogenous MHC [197].
Fig. 3 gives an overview of the current workflow for MHC peptide
isolation and identification.

Qualitative studies provide an inventory of detected MHC pep-
tides, and with the development of advanced proteomics technolo-
gies comes the opportunity to carry out quantitative studies.
Quantification of MHC peptides allows for comparison of peptide
repertoire and abundance with time, between tissues, self and non-
self, or test and control and between individuals. Quantification
can be relative or comparative, achieved using peptide labeling
strategies such as the commercially available ICAT system [198],
isobaric tags such as iTRAQ [199] or chemical tags (mass coded
abundance tagging, MCAT) [200]. A recent study, for example,
reported robust identification of over 100 MHC II peptides, and
their relative quantification using stable isotope labeling [187].
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Fig. 3 Schematic overview of methods for MHC peptide purification and sequencing

Others have described the development of a selected reaction
monitoring (SRM) method combined with absolute quantitation
(AQUA) [201]. Selected reaction monitoring is a highly specific
technique that targets specific peptides, with high sensitivity.
When used in combination with a deuterated internal calibrant
peptide, this permits the absolute quantification of target pep-
tides [202, 203]. This approach was successtul in quantifying the
amount of a known ovalbumin peptide from the spleens of immu-
nized mice after MHC affinity purification. Recently, the approach
has been used to measure the presence and abundance of known
MHC melanoma peptide antigens on the surface of several
human melanoma cell lines [204]. SRM can be multiplexed
for rapid and simultaneous identification and quantitation of
hundreds of peptides, is robust and readily transferable between
laboratories.
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3.5 Characterization
of Posttranslational
Modifications of T-Cell
Epitopes

Other studies have combined mass spectrometry and functional
assays for T-cell epitope identification [195]. The genetic
polymorphism of the HLA alleles results in variation in the MHC
complexes across the population, with differing binding affinities. It
can, therefore, prove challenging to identify antigenic MHC I pep-
tides presented by MHC class I molecules that are less frequently
found across a population. This is important in the development of
peptide-based vaccines for the therapeutic treatment of melanoma
and other cancers, which requires the identification of antigenic
peptides that will allow the majority of the population, regardless of
their MHC encoded phenotype, to stimulate a T-cell response.

Glycosylation is a common PTM of proteins in eukaryotes and
increasingly discovered in bacteria. Although largely ignored until
recently, carbohydrates, glycolipids, and glycopeptides [205] are
now recognized to modulate T-cell recognition [206, 207 ] having
been shown to be presented by MHC complexes [208]. This has
important implications in the immune response to pathogens, tumor
cells, and self-tolerance. Several studies in the late 1990s provided
evidence that naturally modified O-GlcNAc peptides were ligands
for MHC class I molecules [208-211], and a crystal structure
showed the glycan moiety to be exposed for recognition by CD8
T-cells [212]. After affinity enrichment of MHC complexes and elu-
tion of bound peptides, many of the techniques developed for the
study of glycoproteomes could be applied to target and identify gly-
copeptide MHC peptides. Some approaches such as those using lec-
tin enrichment have already been successfully employed for the
enrichment of MHC bound glycopeptides [208]. Other approaches,
such as hydrazide capture [213] and chromatographic enrichments,
combined with advanced mass spectrometry approaches, such as
precursor ion scanning of signature glycan ions, could lead to rapid
and specific identification of MHC glycopeptides.

Similarly, it has been proposed that phosphopeptides may also
be T-cell antigens [214], presented by class I MHC molecules on
malignant cells [215] or MHC class 11 [216] and be attractive tar-
gets for cancer immunotherapy [217, 218]. Phosphopeptides asso-
ciated with class I MHC molecules on the surface of tumor cells
can be enriched by immunoaffinity purification of the MHC com-
plexes, followed by elution and enrichment of phosphopeptides
with immobilized metal-affinity chromatography (IMAC) [214,
216-219].

4 Cytokines

Cytokines are low molecular weight secreted proteins, ranging from
8 to 40 kDa [220, 221], with diverse roles in controlling growth,
survival, differentiation and the effector function of cells and tissues
(recently reviewed in ref. 220, 221). They are critical to an immune
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response, and the secreted profiles of certain cells determine the
nature of the response—Thl versus Th2 and dictate whether the
immune response is cell mediated or antibody based. Production of
cytokines is tightly regulated, with an uncontrolled response poten-
tially leading to septic shock. Therefore, controlled production of
cytokines is key to many aspects of inflammation and immunity,
including a balanced immune response. Therefore the types and
levels of cytokines can serve as markers of disease progression.

The number of cytokines and closely related growth factors
that have been identified has increased dramatically in recent years
[222]. Unlike hormones, cytokines are active over short distances
at sites of inflammation and can act in combination with other
cytokines to give a variety of biological responses. Cytokine profiles
can potentially be indicative of a particular disease state, so in order
to correlate this, methods are required that can simultaneously
measure levels of multiple cytokines. Although some cytokines are
produced at ng/mL concentrations in body fluids, most are
expressed at pg/mL levels and therefore, the most widely used
current methods are based upon immunoassays, RT-PCR or bead
based bioassays. Other methods for detecting cytokines or cyto-
kine secreting cells include radioimmunoassay (RIA), immunora-
diometric assays [223], cellular enzyme-linked immunosorbent
assay (CELISA), cytometric bead array (CBA), radioreceptor assay
(RRA), reverse hemolytic plaque assay (RHPA), cell blot assay, and
cytokine flow cytometry. Identifying and quantifying the cytokines
secreted in response to a disease state or pathogen are of interest in
diagnostics and as vaccine correlates of protection. The cytokine
quantification assays that have gained popularity have become
increasingly high throughput, allowing an increase in the amount
of information that can be collected about the roles of cytokines
during disease or post vaccination. The use of bead based assays
has allowed the multiplex measurement of multiple cytokines
simultaneously [224-229]. These assays are robust, but they are
inherently biased towards a predetermined panel of cytokines and
provide only quantitative information. In addition, these methods
provide no information regarding PTM of cytokines, which can be
of importance in some cases. For example, 11.-24 activity is depen-
dent upon formation of a disulfide bond and glycosylation [230].

Several different immunoproteomics approaches have been
reported that are able to detect and quantify cytokines and provide
information regarding PTMs. A recently reported technique,
known as immunoaffinity capillary electrophoresis (IACE), cap-
tures cytokines by immunoaffinity using specific antibodies, then
separates the captured proteins using capillary electrophoresis. The
resulting protein or peptide fractions are then analyzed by tandem
mass spectrometry, providing cytokine identification [231-233].
This two dimensional separation also allows for differentiation
between protein isoforms and identification of PTMs. Another
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cytokine detection method also exploited an immunoaffinity
capture step coupled then directly to analysis by mass spectrometry
for protein detection and quantitation [234]. With both methods,
the immunoaffinity capture step limits cytokine detection to a pre-
determined panel. However, in the latter study, the authors’ goal
was to improve the speed of cytokine detection compared to cur-
rent assay technologies (1-3 h) [234].

Other reports have focused upon unbiased detection of cyto-
kines in serum, or iz vitro secretion from immune cells, such as
monocytes. Detection of cytokines in serum presents many chal-
lenges, characteristic of serum proteomics. Cytokines are typically a
very small fraction of the low molecular mass proteome in serum.
Although such proteins are amenable to detection using current
mass spectrometry technologies, the challenge lies in their low
abundance in relation to the high background of other serum pro-
teins. In human serum, albumin and immunoglobulin G (IgG)
make up 60-80 % of the total serum protein content [235], poten-
tially masking the detection of low abundance proteins. The chal-
lenge of the dynamic range of proteins in serum is not new and
there are many strategies for their depletion [236]. Additional con-
cerns arise when albumin, known as the “tramp steamer” of the
blood, interacts with many small molecules, fatty acids and proteins,
acting as a transient carrier. Depletion of these transiently bound
proteins, peptides and small molecules is possible and may distort
the low abundance serum proteome. Methods have been reported
for separation of low molecular weight serum proteins, using cen-
trifugal ultrafiltration under solvent conditions that disrupt protein—
protein interactions. Two dimensional liquid chromatography of
tryptically digested proteins and identification using mass spectrom-
etry facilitates the identification of the low MW proteome, includ-
ing cytokines [237]. Others have also used ultracentrifugation, IEF
[238] for identification of low MW serum proteome, while Groessl
etal. [239] employed a label free MS based proteomics approach to
characterize the human monocyte secretome, successfully identify-
ing important proinflammatory proteins and cytokines. Advances in
these mass spectrometry based methods pave the way for rapid,
robust and unbiased serum cytokine detection, characterization and
quantification during disease. This has the potential to contribute to
understanding of disease progression, as well as revealing disease or
post vaccination biomarkers.

5

Immunoinformatics

In silico prediction of T or B cell epitopes has become a mainstay of
immune related research. This is part of a growing field of immu-
noinformatics, or computational immunology, which describes the
application of informatics technologies to problems of the immune
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system. Several studies have used the term “immunomics” to
describe the study of the detailed map of immune reactions of a
given host interacting with a foreign antigen (the immunome).
In silico methods have been developed in order to predict the
sequence, structure and affinity of various epitopes of the humoral
and cell mediated immune systems. As with many rapidly growing
fields, the overlap or complementarity between closely related areas
means the boundaries are less easily defined. For example, immu-
noinformatic studies of peptide epitopes is important in immuno-
proteomics and many studies combine epitope prediction with
epitope sequencing. The various algorithms and bioinformatics
techniques complement proteomics identification of peptide epit-
opes, and combined % silico and in vitro approaches bring more
power to peptide identification or mapping. In the following sec-
tion, we provide a high level overview of the key areas.

B-cell epitopes are antigenic determinants from pathogens (or self)
that interact with B-cell receptors [240]. The B-cell receptor con-
tains a hydrophobic binding site composed of hypervariable loops
that vary in length and amino acid composition. Epitopes that bind
to the receptor are either continuous (linear) or discontinuous
(conformational) [241]. According to accumulated knowledge,
the majority of B-cell epitopes are discontinuous, with protein
folding playing a large role in epitope formation. Prediction tools
exist for prediction based upon amino acid sequence (for continu-
ous epitopes) or structure based tools for discontinuous epitopes
(for recent examples refs. 242-254). In the past, sequence based
prediction tools have used amino acid hydrophobicity scales for
epitope prediction. This approach is still used, for example
BCIPEPT predicts continuous epitopes using propensity scale val-
ues, such as amino acid polarity, flexibility. The BCEPRED server
[242] has been reported to predicted continuous B cell epitopes
with an efficiency of 58.7 % [245]. Prediction of discontinuous
epitopes is more challenging, with over 90 % of B-cell epitopes
being discontinuous [255].

For both continuous and discontinuous epitopes, the current
gold standard remains X-ray crystallography and observing the
points of contact. From the accumulated structural data, several
prediction methods have been developed, for example Discotope
[243] and mapitope [246, 256]. Discotope combines amino acid
statistics with protein spatial information and was trained on a
dataset of X-ray crystal structures of antibody—antigen complexes.
More detailed overviews of the current methods and databases are
given [257, 258].

In order to accelerate experimental approaches to MHC epitope
prediction, computational methods or algorithms have been devel-
oped that can predict MHC-binding peptides and their binding
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affinity [259]. These approaches fall into two areas, and are either
sequence based or structure based [260]. Numerous algorithms
are now available to carry out sequence based peptide epitope pre-
dictions (reviewed in ref. 261-263). These have the advantage of
being fast, potentially screening whole genomes, but require large
amounts of experimental data regarding the peptide binding pret-
erences of the MHC molecule of interest. In comparison, structure
based epitope modeling is slower, requiring the X-ray crystal struc-
tures of the MHC molecules but can be applied to all MHC types,
including those that are uncharacterized. Advanced approaches
include matrix-driven methods, finding structural binding motifs, a
quantitative structure activity relationship (QSAR) analysis, homol-
ogy modeling, protein threading, docking techniques and design
of several machine-learning algorithms. Structure based predica-
tions have the potential to discover non sequence based binders.

Both sequence and structure based computational approaches
are based upon experimentally characterized peptides, but offer a
more rapid indication of potential epitopes that could guide exper-
imental studies. In both scenarios, experimental confirmation of
peptide-MHC binding is still required.

In addition to sequence based or structure based predictions a
number of computer algorithms have been developed that inter-
rogate at the genome level for i silico prediction of T-cell antigens
[264-267]. This has the potential to help in targeting low abun-
dance T-cell epitopes in experimental studies. Iz silico methods,
based upon various patterns in known MHC binding peptides, are
cost effective and high throughput. They have the advantage of
reducing the potential MHC binding peptide dataset, ruling out
peptides that have no MHC binding potential. Even so, MHC
binding is a prerequisite for T-cell activation, but does not guaran-
tee it and experimental confirmation of T-cell activation is still
required. There are also now epitope databases and web accessible
tools for MHC binding prediction (for example http://www.iedb.
org/). Other strategies have combined % silico prediction meth-
ods with mass spectrometry MHC peptide sequencing in order to
increase the numbers of peptides identified [268-271]. This was
exploited to target low abundance viral MHC peptides, synthesiz-
ing an iz silico predicted MHC peptide as a calibrant, and using
retention time and peptide mass—charge ratio in order to identify
the corresponding experimental peptide [268, 269]. In silico pre-
diction of MHC peptides is being demonstrated to be increasingly
accurate when compared with experimental data [272,273]. These
approaches have the potential to increase the repertoire of detected
MHC peptides. Moreover, sophisticated studies combining immu-
noproteomics and other approaches are beginning to decipher the
origin and composition of the total repertoire of MHC peptides or
“immunopeptidome” from a systems biology perspective [274].



Immunoproteomics 39

The combined application of experimental studies and iz sifico
based prediction will, in the long term impact upon vaccine devel-
opment and personalized medicine. The information uncovers
potential new antigens, which could be protein or peptide epitopes
with the potential to stimulate protective immunity, i.¢., to be part
of a vaccine. The process is known as reverse vaccinology and has
the potential to expedite the discovery and characterization of
pathogen or disease epitopes. Reverse vaccinology identifies from
whole genome sequences, antigenic extracellular proteins or pep-
tides that are potential antigens. This approach has the potential to
accelerate the sometimes slow and costly vaccine development
pipeline. This was successfully pioneered for Neisseria meningiti-
dis, causative agent of meningococcal meningitis and vaccines are
now available for A, C, Y and W135 [275].

6 Emerging Technologies and Applications

6.1 Immuno-PCR

In the previous sections, we have provided a high level summary of
the current, most widely used techniques loosely grouped under
“immunoproteomics”. In the following subsections, we discuss
emerging, or less widely used technologies that have potential to
increase the breadth of immunoproteomics research.

Immuno-PCRis a technique that was first reported in 1992 [276],
and combines advantages of ELISA type assays, with the sensitivity
of PCR and is aimed at detecting low abundance protein antigens.
As outlined in Fig. 4, the antigen of interest is captured by a spe-
cific antibody and in a manner similar to traditional ELISA, a sec-
ondary antibody is used to detect binding. In this case, the
secondary antibody is a chimeric antibody, with a DNA strand as
the detection marker. The incorporation of a DNA tag allows
amplification of the detection signal by PCR. This provides many
of the advantages of PCR amplification, which are lacking in tradi-
tional ELISA assays. Immuno-PCR has been reported to have 10-
to 1,000-fold increase in sensitivity compared to traditional antigen
detection methods [276, 277], with high potential for the devel-
opment of diagnostic assays. The technique has reported utility in
detection of serological markers of ovarian cancer [278], CNS
indicator proteins [279], detection and quantification of amyloid
B-peptide in Alzheimer’s disease [280], early diagnosis of infec-
tious disease [281], cytokine detection [282], and toxin detection
[283-287]. In addition, this method is not aimed at discovery
immunoproteomics, and has been developed for speed and sensi-
tivity for use as a clinical laboratory tool [288]. Development of
real time quantitative immune-PCR has added the ability to mea-
sure the amounts of antigen in a sample [289-291]. An excellent
review provides more details on this approach [292].
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6.2 MALDI-TOF for
Immune Cell Surface
Discrimination
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Fig. 4 Immuno-PCR. The setup of immune PCR is similar to that of traditional
antigen detection ELISA. A capture antibody immobilizes the antigen, and detec-
tion antibody added. Instead of the antibody—enzyme conjugate used for colori-
metric detection in ELISA, the chimeric antibody with reporter DNA is used.
Addition of primers, nucleotides and polymerase allows amplification of the sig-
nal. The linear amplification of PCR means that the number of PCR amplicons
generated is proportional to the initial amount of antigen detected. This shows a
simplified scheme, and many variations have been developed

MALDI-TOF is seeing increasingly widespread use in clinical
microbiology laboratories for the routine identification of bacterial
species (for example ref. 293-296). The approach is based upon
protein signatures (without protein identification), and exploits
not only the differences in cell surface proteins between cells types,
but the dynamic change in those proteins under certain condi-
tions. This has been demonstrated to be a robust, reproducible,
rapid and potentially cost saving approach in medical diagnostics
[297]. Recently, this approach has been successful in discriminat-
ing intact immune cells, including lymphocytes, monocytes and
polymorphonuclear cells for the generation of an immune cell
database [298]. The same approach was also able distinguish
between stimulated and unstimulated macrophages [298]. Further
to this, distinct differences in the MALDI-TOF protein finger-
prints of the surface of macrophages were detected with the addi-
tion of M1 agonists, IEN-y, TNF, LPS, and LPS+IFN-y, and the
M2 agonists, 11.-4, TGEF-pl, and IL-10. The differences in
macrophage surface fingerprints were specific and readily



6.3 In Vivo Microbial
Antigen Discovery

Immunoproteomics 41

identifiable [299]. The method is rapid and reproducible and
opens the door to an alternative method of immune cell analysis.

In vivo microbial antigen discovery (InMAD) [300] was developed
to identify circulating microbial antigens that are secreted or shed
by bacteria, and detectable in sera. These circulating antigens can
then be exploited for the development of rapid point of care immu-
noassays for bacterial diseases. The technique relies upon the
humoral immune response to identify antigens that are circulating
in sera. First carried out with the highly pathogenic bacteria,
Franciselln tulavensis and Burkholderia psewdomallei, mice were
infected with one or other organism and serum harvested [300].
The serum was filtered to remove whole bacteria, and termed
InMAD serum. The filtered InMAD serum was then mixed with
adjuvant and used to immunize mice. Bacterial proteins in the
InMAD serum stimulate an immune response, which can then be
monitored in order to determine the identity of the circulating
bacterial proteins. Sera, collected from immunized mice was termed
“InMAD immune serum” and was used in 2D Western blot or
proteome array. In this way, the circulating bacterial proteins were
identified [300] and have the potential to be rapidly translated into
clinically relevant biomarkers for the disease diagnosis.

7 Applications

Immunoproteomics is still a relatively young field, with many aca-
demic reports, and a few being translated into clinical applications.
However, there is huge potential for immunoproteomics-based
assays to monitor or diagnose disease states or vaccine efficacy
where antigens are involved. Bacterial and viral diseases are highly
preventable through vaccination and an obvious application of
immunoproteomics techniques is in antigen discovery for vaccine
development. For example, efforts to develop a universal influenza
vaccine with efficacy against all types of influenza need to be tar-
geted against a conserved antibody or T-cell epitope. Mass spec-
trometry identification of influenza T-cell epitopes [301] is a step
towards generating a vaccine that stimulates cross strain cell medi-
ated immunity. A similar approach was used to identify conserved
T-cell epitopes in dengue virus infected cells [302].

The remaining vaccine preventable diseases are challenging in
terms of developing efficacious vaccines and discerning correlates of
protection. Vaccinations against infectious disease are designed to
stimulate a protective immune response. This immune response can
be measured and correlated with the protection of the host against
disease. In some cases, protective vaccination may only be estab-
lished through detection of several immune parameters, such as
immunodominant antibodies, cytokines etc. As immunoproteomics
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studies advance in terms of sensitivity and throughput, this opens
the door to rapid discovery of biomarkers of vaccine efficacy.
Immunoproteomics approaches are being exploited to determine
immune correlates of protection, which may then be used to moni-
tor the protective status of the host. For example, proteome array
studies have monitored the humoral immune response to smallpox
and tularemia vaccines, and have noted a number of immunodomi-
nant proteins that have potential diagnostic applications [48, 54,
303-306]. These studies were extended further to investigate why
smallpox vaccine fails to develop lesions in some individuals [307]
and also comparing the antibody response to existing and next gen-
eration vaccinia virus vaccines [ 308].

Circulating antibodies represent important makers, reflecting
the repertoire of nonself agents to which the immune system has
been exposed. Antibodies amplify the signal of what may have been
low abundance disease related proteins, have half lives of days to
months and are stable to sample handling, so represent good bio-
markers for diagnostic applications. As with all biomarker discover-
ies, validation and translation of immunoproteomic biomarkers to
diagnostics is met with a number of challenges. Clinical diagnostic
assays must be simple, robust, and sensitive, for example ELISA or
antigen arrays.

Recombinant protein therapeutics are gaining popularity in a
variety of applications. In addition to their desired therapeutic
effects, they have the potential to stimulate an undesirable immune
response against the recombinant protein. Protein therapeutics,
such as recombinant IFNf [309-311], IFN« [312, 313], and anti-
TNFa antibodies [314, 315], are frequently observed to stimulate
an undesirable immune response against the recombinant protein.
The immune responses may be antibody or cell mediated and a
combination of iz silico prediction tools (reviewed in ref. 316) and
in vivo validation by immunoproteomics methods could support
prediction of immunogenicity for protein therapeutics, giving
more rapid translation from discovery to clinic. Immunoproteomics
approaches have the potential to have a high impact in this area,
supporting the depletion of T-cell epitopes from protein therapeu-
tics (reviewed in ref. 317).

8 Future Perspective

The breadth and sophistication of the techniques developed to
study the immunoproteome have increased dramatically in the past
decade. The field has benefited greatly from advances in proteomics
and immunoinformatics and will continue to develop. Challenges
remain, such as characterization of low abundance T-cell epitopes,
and detection of low level serum cytokines. However, new ave-
nues of investigation are emerging, including application of
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interactomics to immunoproteomics studies, and comprehensive
systems biology studies of the immune response to disease. As our
depth of knowledge of the immune response to infection, cancer
or self-antigens (misdirected autoimmunity) increases, so do the
opportunities for discovery of robust disease biomarkers for early
diagnosis. Combined % silico and experimental studies promise to
yield efficacious vaccine candidates and correlates of vaccine pro-
tection. On a systems level, understanding the rapidly changing
protein landscape of the immune system at various stages of life has
the potential to provide immune markers of vaccine health, and
predictive markers of the immune response, which may in the lon-
ger term, contribute to the development of personalized

medicine.
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