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Chapter 2

Immunoproteomics: Current Technology and Applications

Kelly M. Fulton and Susan M. Twine

Abstract

The varied landscape of the adaptive immune response is determined by the peptides presented by immune 
cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or 
antigens is not new and classical methods such as agglutination, enzyme-linked immunosorbent assay, or 
Western blotting have been used for many years to study the immune response to vaccination or disease. 
However, in many of these traditional techniques, protein or peptide identification has often been the 
bottleneck. Recent advances in genomics and proteomics, has led to many of the rapid advances in pro-
teomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have 
the common goal of identifying and measuring antigenic peptides or proteins. This includes gel based, 
array based, mass spectrometry, DNA based, or in silico approaches. Immunoproteomics is yielding an 
understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an 
overview of immunoproteomics and closely related technologies that are used to define the full set of 
antigens targeted by the immune system during disease.

Key words Immunoproteomics, Mass spectrometry, Antibody, Antigen, Cancer, Infectious disease, 
SERPA, SEREX, MHC, Epitope

1  Introduction

The landscape of the immune system is constantly changing and is 
determined by the peptides presented by immune cells, whether 
from viral or microbial pathogens or cancerous cells. Detection 
and identification of these immune-active proteins or peptides can 
therefore be investigated using many of the approaches that have 
been developed for proteomics studies. As an extension of the pro-
teomics field, the term “immunoproteomics” was first used in 
2001 [1]. The field is rapidly expanding and includes increasingly 
varied techniques that result in the identification of immune related 
proteins and peptides, derived from invading pathogens, host cells, 
or immune signalling molecules. The study of immune biomarkers 
or antigens is not new and classical methods such as agglutination, 
enzyme-linked immunosorbent assay, or Western blotting have 
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been used for many years to study the immune response to vaccina-
tion or disease. However, in many of these traditional techniques, 
protein or peptide identification has often been the bottleneck. 
Recent advances in genomics and proteomics, including mass spec-
trometry instrumentation, has led to many of the rapid advances in 
immunoproteomics approaches. Immunoproteomics is yielding an 
understanding of disease and disease progression, vaccine candi-
dates, and biomarkers. Herein, we focus upon providing a broad 
overview of immunoproteomics and closely related techniques that 
are used to study the immune response and their role in further 
disease diagnostics and vaccine development.

2  Immunoproteomics for Characterization of Antibody Targets

One of the two major arms of the adaptive immune system, also 
classically referred to as the humoral immune response, relies on 
activated B-cells secreting large amounts of highly specific antibod-
ies, which bind to microbial or cellular targets, either neutralizing 
them or tagging them for elimination. Antibodies can be gener-
ated against microbial invaders, cancer antigens and sometimes 
misdirected against self-antigens, resulting in autoimmune disease. 
For a more complete overview of the antibody based immune 
response, readers are directed to a recent review [2]. Many meth-
ods have been developed in order to study the antigen targets of 
the humoral immune response and in the following section we 
provide an overview of the most commonly used. Fig. 1 shows a 
summary overview of these methods.

Fig. 1 Overview of methods commonly used to interrogate antigenic targets of the humoral immune response
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One of the most commonly used immunoproteomics approaches 
relies upon 2D-PAGE, which separates proteins based upon 
orthogonal physical characteristics. When combined with Western 
blotting, the technique is commonly known as Serological 
Proteome Analysis (SERPA). The technique was originally devel-
oped in the 1970s and with some refinements popularized for use 
in biochemistry [3]. Early studies were hampered by challenges in 
protein identification, and instead used the gel maps to compare 
protein patterns under different cellular conditions. With many 
years of refinement, and rapid advances in mass spectrometry and 
genome sequencing, 2D-PAGE became the mainstay of compara-
tive proteomics studies in the late 1990s and early 2000s. 2D-PAGE 
can be performed in most protein chemistry labs as a matter of 
routine, and advances in protein staining and image analysis soft-
ware have made their use accessible to a broad scientific audience. 
With well-documented disadvantages, including difficulties in 
resolving very large, small, hydrophobic or basic proteins and the 
dynamic range of protein abundance, 2D-PAGE has been super-
seded by non-gel based proteomics approaches. However, 
2D-PAGE has advantages and remains one of the few techniques 
that allow high quality analysis of intact proteins on a proteome 
wide scale, including detection of protein posttranslational modifi-
cations (PTMs). One of the most overlooked advantages is the ease 
and efficiency with which 2D-PAGE can interface with other bio-
chemical techniques, such as Western blotting. When combined 
with Western blotting for detection of antigenic proteins, and mass 
spectrometry based identification of proteins from in-gel digests, 
2D-PAGE provides a powerful approach for antigen identification. 
Combined, 2D-PAGE and Western blotting is commonly known 
as serologic proteome analysis (SERPA). The antigen used in these 
studies can be a whole cell proteome, or subproteome (e.g., mem-
brane fraction). 2D-PAGE resolves the majority of proteins in a 
sample to a single protein spot, giving the potential to readily iden-
tify the antigenic proteins within the resolved proteome. Gels are 
then transferred to membranes and probed with sera from animal 
models or humans and developed as per any traditional Western 
blotting experiment. Many gels can be run in parallel to the blot-
ting experiment, providing gels for reference maps and identifica-
tion of immunoreactive proteins.

This now “classical” immunoproteomics approach is still 
widely used, and provides a robust way of screening the antibody 
reactivity profiles of serum in a variety of disease states, or post vac-
cination. Applications include discovery of antigenic proteins, bio-
markers or correlates of protection, with many studies reporting 
bacterial diseases [4–29], cancers [30–40] and diseases such as 
multiple sclerosis [41]. Studies have included discovery of serodi-
agnostic markers for Q fever [42] and Helicobacter pylori [21, 25, 
43, 44] as well as diagnostic markers of parasitic diseases, such as 

2.1  Classical 
Immunoproteomics: 
Serological Proteome 
Analysis

Immunoproteomics
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Schistosomiasis [45]. Another report has used SERPA to discover 
proteins secreted in vivo by Bacillus anthracis [46]. SERPA has 
also been used to study the human serological response to vaccina-
tion with whole-cell pertussis vaccine [47], Francisella tularensis 
live vaccine strain [48] and human infection with Francisella [16, 
48]. The latter studies focused upon discovering antibody based 
correlates of protection.

Some of the limitations of 2D-gel based immunoproteomics have 
been overcome with the development of proteome or protein 
arrays to study the humoral immune response. Here, each open 
reading frame of interest in the genome is amplified by PCR, fol-
lowed by cloning, protein expression and microarray printing [49, 
50]. Bacterial proteomes are sufficiently small that the entire com-
plement of proteins from the genome can be printed on a single 
array.

The chips are then treated in a manner similar to traditional 
Western blotting, probed with sera and reactivity detected after 
incubation with a secondary antibody with fluorescent conjugate. 
The chip based technology has the advantage of screening closer 
to equal amounts of antigens, interrogation of the entire theoreti-
cal proteome of the organism, and reduced volume of serum 
required for screening (2 μL vs. ∼50–100 μL for large 2D-Western 
blot). The reduced requirement for serum means that pooling of 
sera from multiple animals or humans in a study is not required, 
and individual differences can be readily detected. These benefits, 
combined with the high throughput capacity of proteome micro-
arrays, make it an attractive method of rapidly screening hundreds 
of sera. The use of advanced data handling algorithms is a require-
ment, as with DNA based microarrays, for meaningful data inter-
pretation [51].

The complexity of protein purification and high throughput 
gene expression systems means that it can be challenging to produce 
proteome arrays that represent the entire proteome of an organism. 
In addition, the expressed proteins lack native PTMs, processing 
and correct protein folding is not guaranteed. Investigation into the 
use of yeast based protein expression systems may help address the 
issue of PTMs, however many bacteria elaborate a unique repertoire 
of glycoconjugates and glycoproteins that cannot be replicated by 
yeast based systems. Lack of non-protein antigens can be addressed 
by addition of native molecules to arrays, in order to gain a broader 
perspective of the humoral immune response. To date, there have 
been reported advances in array technology that address challeng-
ing protein antigens, such as membrane proteins [52], and non-
protein antigens, such as carbohydrates [53].

Proteome arrays have been used to study the humoral immune 
response of a wide range of pathogens, including smallpox vaccina-
tion [54, 55], Chlamydia infections [56, 57], Brucellosis [58, 59], 

2.2  High Throughput 
Proteome Wide 
Screening of Antibody 
Targets: The Proteome 
Array
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Mycobacterium tuberculosis infections [60, 61], salmonellosis [62], 
Herpes simplex virus [63, 64], Plasmodium falciparum [65–68], 
Q fever [42, 69, 70], toxoplasmosis [71], Burkholderia pseudomal-
lei [72], Borrelia burgdorferi [73], Francisella tularensis [50, 74], 
and Epstein-Barr virus [75]. In the long term, this technology has 
the potential to aid development of improved serodiagnostic tests, 
vaccine development, epidemiological studies and shed light on 
the interaction of pathogens with the immune system.

Carbohydrate moieties and glycoconjugates, including glycopro-
teins, are increasingly being shown to have roles in various diseases, 
including cancers and bacterial infections. Protein glycosylation is 
a highly abundant PTM and aberrant glycosylation of proteins has 
been shown to be associated with cancers [76] and autoimmune 
diseases [77, 78]. Truncated glycan moieties on glycoproteins are 
recognized as nonself and result in the generation of autoantibod-
ies to glycopeptide epitopes [79, 80]. For example, O-glycosylation 
of mucin (MUC1) is particularly important in cancers, with patients 
reported to have autoantibodies to distinct epitopes on MUC1 
that harbor truncated sugar moieties [81]. Of note, these autoan-
tibodies recognize cancer specific epitopes, composed of the com-
bined peptide sequence and the carbohydrate moiety [76, 82, 83]. 
It is, therefore, likely that there are other glycopeptide antigens in 
cancers. Investigation of glycan associated autoantibodies has been 
carried out using variations of chip based screening technologies. 
These have included a microarray display platform that allows the 
large scale screening of O-glycopeptide libraries for the investiga-
tion of disease associated autoantibodies [80, 84–87].

Recently, a high throughput chemoenzymatic synthesis and 
microarray display platform has been described that enables the 
production and screening of large O-glycopeptide libraries for dis-
ease associated autoantibodies. A combined synthetic and enzy-
matic approach allowed immobilization and generation of a 
glycopeptide epitope library on a microarray chip. As outlined in 
Fig. 2, O-linked GlcNAc containing peptides were synthesized by 
standard solid-phase peptide synthesis (SPPS) [84]. These glyco-
peptides were then immobilized on microarray plates coated with 
amine-reactive NHS-ester groups. This was followed by on-slide 
glycosylation with different polypeptide GalNAc-transferases and 
other elongating glycosyltransferases. In this way, a diverse library 
of synthetic O-glycosylated MUC1-peptides was generated in situ. 
This was used for serological screening and the results showed that 
the array was able to detect autoantibodies in the sera of patients 
with a confirmed diagnosis of breast cancer [84]. Rapidly synthe-
sized libraries which represent the potential diversity of glycopep-
tide or glycoprotein epitopes pave the way to broader screening of 
glycan-epitopes and the elucidation of glycan epitopes within exist-
ing immunodominant peptides.

2.3  Deciphering the 
Immune Response to 
Glycoprotein Antigens

Immunoproteomics
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The diversity of carbohydrate moieties across the domain of 
Bacteria is substantially greater than that of eukaryotes. Many 
monosaccharides are found exclusively within bacteria and are 
genus, species, or strain specific. Consequently, these unique sug-
ars are often readily identified by the host immune system as for-
eign entities during infection. Frequently these sugars are part of a 
pathogen associated molecular pattern (PAMP), such as lipopoly-
saccharide (LPS) or peptidoglycan, that is recognized by host pat-
tern recognition receptors (PRR) such as toll-like receptors (TLR) 
[88, 89] or nucleotide oligomerization domains (Nod) [90–93] as 
part of an innate immune response. However, it is increasingly 
being reported that bacterial glycoproteins also play a role in stim-
ulating innate [94] and adaptive [95–98] host immune responses. 
Several of these pathogen glycoproteins, including the flagellin of 
Campylobacter coli and Campylobacter jejuni, are responsible for 
serospecific antibody responses [95, 98]. Additionally, the anti-
body response to anthrose, a unique sugar decorating the Bacillus 
anthracis exosporium glycoproteins (BclA and BclB), is currently 
being exploited for its potential use in detection and diagnosis of 
anthrax [99–102]. Despite a growing recognition of the impor-
tance of bacterial glycoprotein antigens, immunproteomics meth-
ods directed specifically towards their identification are lacking. In 
fact, glycoprotein antigenicity is frequently discovered as a conse-
quence of targeted glycoprotein characterization. Given the docu-
mented importance of bacterial glycoprotein antigens, methods 
designed for their global detection and identification would greatly 
benefit the field of immunoproteomics.

Expression arrays are composed of bacterial, yeast, mammalian, or 
cell free cDNA expression libraries that are used to identify novel 
antigens. Known as serological analysis of recombinant cDNA 

2.4  Antigen 
Discovery Using 
Expression Arrays

Fig. 2 Uncovering glycopeptides epitope. Peptides are synthesized using solid phase peptide synthesis, includ-
ing amino acid harboring an N-acetyl glucosamine residue. Peptides are then immobilized on glass slides, 
coated with NHS esters. This serves as a partial purification step. Addition of glycosyltransferases allow in situ 
addition of carbohydrate moieties to generate a library of glycopeptide epitopes. This is then screened with 
sera and reactive epitopes identified
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expression libraries (SEREX), these techniques have a large genetic 
component and have been termed by some as “reverse proteomics” 
[103]. SEREX was first developed for analysis of the humoral 
response to cancer in the 1990s [104], with the goal of identifying 
tumor specific antigens that elicit high titer immunoglobulin G 
(IgG) antibodies in patient sera. In this context, the technique per-
mits the search for antibody responses and the molecular definition 
of immunogenic tumor proteins, based upon autologous patient 
sera (reviewed in ref. 103). Patient tumor mRNA is used to pre-
pare prokaryotically expressed cDNA libraries which are then 
immunoscreened with absorbed and diluted patients’ sera for the 
detection of tumor antigens that have elicited a high-titer IgG 
humoral response. This approach has the advantage of being able 
to identify antigens expressed in vivo, and is unbiased, based only 
upon the reactivity of clones with autologous patient sera. A sec-
ond phase of screening is also carried out, using sera from normal 
patients in order to define antigens that show cancer-restricted 
immune recognition [105, 106]. SEREX has been applied to the 
study of many cancer types, including renal [105, 107, 108], colon 
[109–111] and breast [106, 112–123] cancers leading to the iden-
tification of cancer specific antigens. One antigen, NY-ESO-1, was 
identified in esophageal squamous cell carcinoma and the gene 
expressed in normal testis and ovary, with aberrant expression in 
various types of malignant tumors [124]. NY-ESO-1 shows 
restricted expression patterns, elicits both cell mediated and 
humoral immune responses [125] and has been under develop-
ment as a cancer vaccine target (reviewed in ref. 126).

Despite many advantages, SEREX presents some challenges, in 
that it is time consuming to construct cDNA libraries for each 
tumor sample. In addition, false positives are possible, either due 
to reactivity with prokaryotic expression components or lack of 
expression of PTM in prokaryotic expression systems. In particu-
lar, protein glycosylation of eukaryotic proteins can represent 
important antigenic epitopes, including disease associated changes 
in glycosylation. A few autoantibodies to PTM-protein epitopes 
have been reported, including those found in cancers [79, 80] and 
autoimmune diseases [77]. The use of eukaryotic expression sys-
tems can ensure that expressed proteins are glycosylated [127–
130]. Tumor associated antigens identified from SEREX screening 
are updated in the Cancer Immunome database (ref. 131; http://
ludwig-sun5.unil.ch/CancerImmunomeDB/). Over 2000 auto-
antigens are listed in this online database. An excellent review that 
discusses the classes of SEREX defined antigens and the wider 
impact of this technique upon cancer vaccine and diagnostic devel-
opment can be found here [103].

Immunocapture mass spectrometry aims to enrich antigen pro-
teins from cell lysates, using mass spectrometry as the final means 
to identify captured proteins. There are many variants of 

2.5  Antigen Capture 
and Mass Spectrometry

Immunoproteomics
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immunocapture and generally immunoglobulins from patient sera 
are immobilized on Protein A or Protein G, usually in column for-
mat. This is followed by the application of a cell or tissue lysate to 
the column, effectively enriching for antigenic proteins, i.e., those 
proteins to which there are antibodies in patient serum. Proteins 
are eluted from the column, enzymatically digested and subse-
quently identified by MS/MS [132].

Multiple Affinity Protein Profiling (MAPPing) is an example of an 
immunocapture technique that has primarily been exploited to 
identify cancer related autoantigens [133, 134]. It is based upon 
two-dimensional immunoaffinity chromatography, whereby anti-
gens from tumor lysates are separated based upon their affinity for 
immunoglobulins from healthy controls in the first dimension and 
immunoglobulins from cancer patients in the second. The first 
dimension removes autoantigens that are recognized by sera from 
healthy patients. Cancer restricted autoantigens then flow through 
to the second column, which then selectively binds them. The pro-
teins eluted from the second chromatography step are therefore 
likely to be cancer specific and are identified by enzymatic diges-
tion and MS/MS analyses [133, 134].

Another variation of immunocapture targets circulating immune 
complexes (CIC). Immune complexes are formed from the non-
covalent interaction between antigens and antibodies and are usu-
ally removed by mononuclear phagocytes through complement 
receptors and Fc-receptors [135]. This process constantly occurs 
in healthy individuals and ensures the rapid clearance of denatured 
proteins, antigens of gut bacteria or dead cells. Studies have shown 
that these antigen–antibody complexes can play a role in disease 
progression of human autoimmune diseases [136], cancer [137], 
or infectious diseases [138]. There is some discrepancy in the lit-
erature regarding the utility of CIC in disease diagnosis, treatment 
or as an indicator of disease severity [139–144]. Some have argued 
that identification of antigens incorporated into CICs may be of 
greater relevance than information regarding free antigens [144], 
and that antigens in CICs could provide information useful to 
understanding disease progression, and in developing diagnostic 
and treatment strategies.

CICs can be isolated from serum, as described in a recent 
report [144]. Patient serum was immobilized on a Protein A or G 
column and cell lysates passed over the column. Proteins that were 
bound to the immobilized patient sera were eluted and identified 
using tandem mass spectrometry of their tryptic digests [143–
145]. A recent study identified CICs containing the proteins 
thrombospondin-1 and platelet factor 4 in the serum of 81 and 
52 % of a sampling of rheumatoid arthritis patients, respectively 
[143]. This method is applicable to many other diseases for inven-
tory of antigens within CICs.

2.5.1  Multiple Affinity 
Protein Profiling

2.5.2  Capture and 
Identification of Circulating 
Immune Complexes
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Electroimmunoprecipitation can exploit differences in electropho-
retic mobility between an antibody and its corresponding antigen, 
resulting antigen–antibody complexes embedded in an agarose gel. 
Staining of the gels permits visualization of precipitated complexes. 
Elution of these complexes, plus enzymatic digestion, and subse-
quent mass spectrometry analysis can identify the unknown anti-
genic proteins of interest [146]. In rocket immunoelectrophoresis 
(RIE), a monoclonal antibody is used. However, crossed immuno-
electrophoresis (CIE) involves two dimensions of separation [147, 
148] and can therefore be used to identify antigenic proteins react-
ing with mixtures of monoclonal antibodies, polyclonal antibodies, 
or serum. Therefore, electroimmunoprecipitation can be used to 
capture antigens relevant to various disease states or contribute to 
validation of antigenic proteins. Electroimmunoprecipitation has 
the added advantage of being quantitative [147–149] and can 
therefore also be used to monitor the level of serum antibody 
response to a known antigen.

Discovery of antigenic proteins is the first step in profiling the 
humoral immune response to disease. There is often a need to then 
further dissect the immune response and determine the region of 
the antigenic protein, or epitope, that stimulates the immune 
response; particularly in antibody design or epitope based vaccine 
design [150]. This can be carried out using a wide variety of tech-
niques, a full description of which is beyond the scope of this 
review and we direct the reader to recent reviews [151, 152].

3  Immunoproteomics in the Study of Major Histocompatibility Complex Peptides

The cell mediated immunity (CMI) arm of the adaptive immune 
response involves activation of cell populations such as phagocytes 
or T-cells and can include the release of communicator molecules, 
such as cytokines and chemokines in response to foreign invaders 
or antigens. T-cells recognize antigens that are displayed on the 
surface of host cells in complexes known as the major histocompat-
ibility complex (MHC). The antigens found in complex with 
MHC molecules are short peptides that are derived from intracel-
lular proteolysis of proteins. This antigen presentation and process-
ing allows for the host recognition of foreign peptides from infected 
or transformed cells, by stimulating an immune response. In addi-
tion, there is constant surveillance of peptides derived from the 
host organism, and self-peptide presentation is involved in T-cell 
development in the thymus and regulation of self-tolerance.

There are two major subgroups of MHCs, denoted MHC I 
and MHC II, which are encoded by the human leukocyte antigen 
(HLA) gene clusters. These gene clusters are highly polymorphic, 
giving rise to hundreds of allelic forms, with only a subset present 

2.5.3  Electroimmuno- 
precipitation of Antigen–
Antibody Complexes

2.6  Epitope Mapping
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in each individual. The polymorphism gives rise to differences in 
the MHC molecules, their binding pockets and affinity for particu-
lar peptide antigens, thereby influencing the repertoire of antigens 
presented to the immune system of an individual. The two major 
classes of MHC molecules (class I and II) are distinct in their three 
dimensional structure, pathways by which antigens are processed 
and the type of T-cell with which they interact. MHC class I gene 
cluster encodes the heterodimeric proteins that bind antigenic 
peptide from within cells, and are found on all nucleated cells 
types. MHC Class I molecules carrying peptide antigens complex 
with the CD8 co-receptor. This complex is primarily recognized by 
cytotoxic T-cells and leads to their activation and eventual death of 
the cell expressing the nonself antigen.

In comparison, MHC class II gene cluster encodes heterodi-
meric peptide-binding proteins and proteins that control peptides 
binding to the MHC heterodimers. Peptide loading onto MHC 
class II molecules occurs in the lysosomal pathway and MHC class 
II complexes are only found on specialized cell types, such as 
B-cells, neutrophils, and dendritic cells and can be induced on 
macrophages and human T cells. The CD4 T cell co-receptor rec-
ognizes MHC Class II antigen complexes, also resulting in T-cell 
activation. If the presented peptide is foreign, the T cells then pro-
liferate, secrete cytokines, and differentiate into antigen-specific 
effector CD4 cells, which secrete cytokines and activate other cell 
types, such as B-cells. For both MHC class I and class II molecules, 
the antigens are peptide fragments which are recognized as nonself 
by T-cells, these antigens are known as T-cell epitopes. A detailed 
description of how these peptide fragments are generated is 
described in more detail [153–155].

The identification and characterization of peptides displayed by 
MHC molecules and specific T-cell epitopes has become essential 
for modern immunological studies, in many aspects of basic and 
applied research. For example, the development of vaccines with 
enhanced T-cell immune response [156–158]. A broad array of 
functional and biochemical approaches have been developed to 
identify peptide epitopes, including forward and reverse immuno-
proteomics, and mass spectrometry centric approaches (for exam-
ple refs. 158–168). A recent review describes T-cell epitope 
mapping based upon screening of peptide libraries and screening 
for T-cell activation [169]. In the following sections, we review the 
contributions of mass spectrometry based immunoproteomics to 
MHC peptide binding and T-cell epitope identification and how 
this knowledge is furthering vaccine and diagnostic development.

MHC class I and II proteins preferentially bind peptides of differ-
ent lengths and general characteristics. Typically, MHC class I 
molecules have a binding cleft that accommodates peptides of 

3.1  MHC Peptide 
Enrichment

3.2  Mass 
Spectrometry in MHC 
Peptide Discovery
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8–10 amino acids, whereas, MHC class II molecules bind peptides 
8–30 amino acids in length. Peptides that bind the cleft of a MHC 
class II molecule are usually found to share a core sequence 
[170–175].

Over the past two decades, several methods of isolating MHC 
peptides have been developed. Early reports in the 1990s used acid 
treatment to elute peptides from the surface of cells [176]. 
Although simple to carry out, peptide elution was not specific to 
those bound to MHC complexes and difficulties arose when 
attempting to discriminate specific MHC peptides. Targeted 
immunoaffinity purification was also reported in the 1990s [177], 
in which monoclonal antibodies specific for an MHC class were 
used to enrich the MHC complexes. MHC bound peptides are 
then eluted by acid treatment and separated from proteins by size 
exclusion. Soluble MHC molecules, without a transmembrane 
domain, are secreted in transfected cells with MHC peptides 
bound. The secreted complexes are easily purified, for example 
with the use of immunoaffinity columns; this method is considered 
a facile method to isolate MHC peptides [178]. In all cases, it is 
assumed that peptides bound to MHC molecules are protected 
from proteolysis during sample preparation and that acid treat-
ment is sufficient to dissociate peptides from their MHC binding 
partners. Immunoaffinity purification of MHC peptides has been 
applied in many areas, including the study of the central nervous 
system of multiple sclerosis patients [179, 180] and bronchoalveo-
lar lavage cells isolated from patients with sarcoidosis [181]. 
Another study combines immunoaffinity enrichment with testing 
of subsequent fractions for biological reactivity, prior to peptide 
identification by mass spec [182] for the identification of tumor 
associated antigens. This approach has also been used for the suc-
cessful identification of novel antigens in primary human breast 
cancer [183] and West Nile virus [184].

Purified MHC peptides were largely analyzed using Edman degra-
dation. In particular, the shorter length of the MHC class I peptide 
ligands made them amenable to amino acid sequencing by Edman 
degradation. The use of Edman chemistry on a pool of MHC class 
I peptides revealed an increased signal for a particular conserved 
amino acid, or amino acid position [185], allowing progress 
towards identifying conserved residues or sequence motifs. MHC 
class II peptides are less amenable to this approach, due to their 
longer length and greater heterogeneity. However, other early bio-
chemical studies established consensus binding motifs for both 
MHC class I and II peptide ligands [170–175].

Due to the limitations in HPLC separation of peptides and 
Edman sequencing in early studies of MHC peptides, only short 
sequences of abundant peptides were determined. Pioneering 
studies in the early 1990s demonstrated the utility of the then 

3.3  MHC Peptide 
Identification

Immunoproteomics



32

recently developed electrospray ionization mass spectrometry 
(ESI-MS), in combination with microcapillary HPLC to deter-
mine the length and sequence of peptides bound to HLA-A2.1 
[159], one of the most widely distributed MHC class I molecules 
within the human population. Since this study, ESI-MS has been 
used extensively for the detection of peptides presented by major 
histocompatibility complex (MHC) molecules (for example refs. 
159, 186, 187 and recently reviewed in ref. 188). Mass spectrom-
etry affords the advantage of high resolution peptide mapping, 
allowing rapid identification of hundreds of MHC peptides in a 
single experiment.

Since the first report [189], rapid advances in mass spectrom-
etry instrumentation, throughput and data handling mean that 
mass spectrometry is a widely used technique in the identification 
of T-cell epitopes. More recently, large scale proteomics method-
ologies have been used in comparative or quantitative studies of 
T-cell epitope identification. Studies have reported robust identifi-
cation of epitopes, and refinements have been made to identify 
immunodominant epitopes and in distinguishing self and nonself 
MHC class I peptides. Precise splitting of the eluate from HPLC 
separation of MHC peptides, with a portion diverted to the mass 
spectrometer and the majority retained to assay T-cell activity, has 
allowed more precise correlation between MHC peptide identifi-
cation and T-cell activation [190–192]. Other methods compared 
the LC-MS chromatograms of peptides eluted from MHC I com-
plexes with those of reference cells. Mass spectrometry has been 
used to identify T-cell epitopes of Plasmodium falciparum [193], 
cancers [194, 195] and rheumatoid arthritis [196]. Others have 
employed novel approaches to hold antigen presenting cells in pro-
tein free medium, simplifying the repertoire of peptide antigens 
presented and reducing the background of peptides normally 
observed, allowing greater detection of exogenous MHC [197]. 
Fig. 3 gives an overview of the current workflow for MHC peptide 
isolation and identification.

Qualitative studies provide an inventory of detected MHC pep-
tides, and with the development of advanced proteomics technolo-
gies comes the opportunity to carry out quantitative studies. 
Quantification of MHC peptides allows for comparison of peptide 
repertoire and abundance with time, between tissues, self and non-
self, or test and control and between individuals. Quantification 
can be relative or comparative, achieved using peptide labeling 
strategies such as the commercially available ICAT system [198], 
isobaric tags such as iTRAQ [199] or chemical tags (mass coded 
abundance tagging, MCAT) [200]. A recent study, for example, 
reported robust identification of over 100 MHC II peptides, and 
their relative quantification using stable isotope labeling [187].

3.4  Quantification of 
MHC Peptides Using 
Mass Spectrometry
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Others have described the development of a selected reaction 
monitoring (SRM) method combined with absolute quantitation 
(AQUA) [201]. Selected reaction monitoring is a highly specific 
technique that targets specific peptides, with high sensitivity. 
When used in combination with a deuterated internal calibrant 
peptide, this permits the absolute quantification of target pep-
tides [202, 203]. This approach was successful in quantifying the 
amount of a known ovalbumin peptide from the spleens of immu-
nized mice after MHC affinity purification. Recently, the approach 
has been used to measure the presence and abundance of known 
MHC melanoma peptide antigens on the surface of several 
human melanoma cell lines [204]. SRM can be multiplexed 
for  rapid and simultaneous identification and quantitation of 
hundreds of peptides, is robust and readily transferable between 
laboratories.

Fig. 3 Schematic overview of methods for MHC peptide purification and sequencing
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Other studies have combined mass spectrometry and functional 
assays for T-cell epitope identification [195]. The genetic 
polymorphism of the HLA alleles results in variation in the MHC 
complexes across the population, with differing binding affinities. It 
can, therefore, prove challenging to identify antigenic MHC I pep-
tides presented by MHC class I molecules that are less frequently 
found across a population. This is important in the development of 
peptide-based vaccines for the therapeutic treatment of melanoma 
and other cancers, which requires the identification of antigenic 
peptides that will allow the majority of the population, regardless of 
their MHC encoded phenotype, to stimulate a T-cell response.

Glycosylation is a common PTM of proteins in eukaryotes and 
increasingly discovered in bacteria. Although largely ignored until 
recently, carbohydrates, glycolipids, and glycopeptides [205] are 
now recognized to modulate T-cell recognition [206, 207] having 
been shown to be presented by MHC complexes [208]. This has 
important implications in the immune response to pathogens, tumor 
cells, and self-tolerance. Several studies in the late 1990s provided 
evidence that naturally modified O-GlcNAc peptides were ligands 
for MHC class I molecules [208–211], and a crystal structure 
showed the glycan moiety to be exposed for recognition by CD8 
T-cells [212]. After affinity enrichment of MHC complexes and elu-
tion of bound peptides, many of the techniques developed for the 
study of glycoproteomes could be applied to target and identify gly-
copeptide MHC peptides. Some approaches such as those using lec-
tin enrichment have already been successfully employed for the 
enrichment of MHC bound glycopeptides [208]. Other approaches, 
such as hydrazide capture [213] and chromatographic enrichments, 
combined with advanced mass spectrometry approaches, such as 
precursor ion scanning of signature glycan ions, could lead to rapid 
and specific identification of MHC glycopeptides.

Similarly, it has been proposed that phosphopeptides may also 
be T-cell antigens [214], presented by class I MHC molecules on 
malignant cells [215] or MHC class II [216] and be attractive tar-
gets for cancer immunotherapy [217, 218]. Phosphopeptides asso-
ciated with class I MHC molecules on the surface of tumor cells 
can be enriched by immunoaffinity purification of the MHC com-
plexes, followed by elution and enrichment of phosphopeptides 
with immobilized metal-affinity chromatography (IMAC) [214, 
216–219].

4  Cytokines

Cytokines are low molecular weight secreted proteins, ranging from 
8 to 40 kDa [220, 221], with diverse roles in controlling growth, 
survival, differentiation and the effector function of cells and tissues 
(recently reviewed in ref. 220, 221). They are critical to an immune 

3.5  Characterization 
of Posttranslational 
Modifications of T-Cell 
Epitopes
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response, and the secreted profiles of certain cells determine the 
nature of the response—Th1 versus Th2 and dictate whether the 
immune response is cell mediated or antibody based. Production of 
cytokines is tightly regulated, with an uncontrolled response poten-
tially leading to septic shock. Therefore, controlled production of 
cytokines is key to many aspects of inflammation and immunity, 
including a balanced immune response. Therefore the types and 
levels of cytokines can serve as markers of disease progression.

The number of cytokines and closely related growth factors 
that have been identified has increased dramatically in recent years 
[222]. Unlike hormones, cytokines are active over short distances 
at sites of inflammation and can act in combination with other 
cytokines to give a variety of biological responses. Cytokine profiles 
can potentially be indicative of a particular disease state, so in order 
to correlate this, methods are required that can simultaneously 
measure levels of multiple cytokines. Although some cytokines are 
produced at ng/mL concentrations in body fluids, most are 
expressed at pg/mL levels and therefore, the most widely used 
current methods are based upon immunoassays, RT-PCR or bead 
based bioassays. Other methods for detecting cytokines or cyto-
kine secreting cells include radioimmunoassay (RIA), immunora-
diometric assays [223], cellular enzyme-linked immunosorbent 
assay (CELISA), cytometric bead array (CBA), radioreceptor assay 
(RRA), reverse hemolytic plaque assay (RHPA), cell blot assay, and 
cytokine flow cytometry. Identifying and quantifying the cytokines 
secreted in response to a disease state or pathogen are of interest in 
diagnostics and as vaccine correlates of protection. The cytokine 
quantification assays that have gained popularity have become 
increasingly high throughput, allowing an increase in the amount 
of information that can be collected about the roles of cytokines 
during disease or post vaccination. The use of bead based assays 
has allowed the multiplex measurement of multiple cytokines 
simultaneously [224–229]. These assays are robust, but they are 
inherently biased towards a predetermined panel of cytokines and 
provide only quantitative information. In addition, these methods 
provide no information regarding PTM of cytokines, which can be 
of importance in some cases. For example, IL-24 activity is depen-
dent upon formation of a disulfide bond and glycosylation [230].

Several different immunoproteomics approaches have been 
reported that are able to detect and quantify cytokines and provide 
information regarding PTMs. A recently reported technique, 
known as immunoaffinity capillary electrophoresis (IACE), cap-
tures cytokines by immunoaffinity using specific antibodies, then 
separates the captured proteins using capillary electrophoresis. The 
resulting protein or peptide fractions are then analyzed by tandem 
mass spectrometry, providing cytokine identification [231–233]. 
This two dimensional separation also allows for differentiation 
between protein isoforms and identification of PTMs. Another 

Immunoproteomics



36

cytokine detection method also exploited an immunoaffinity 
capture step coupled then directly to analysis by mass spectrometry 
for protein detection and quantitation [234]. With both methods, 
the immunoaffinity capture step limits cytokine detection to a pre-
determined panel. However, in the latter study, the authors’ goal 
was to improve the speed of cytokine detection compared to cur-
rent assay technologies (1–3 h) [234].

Other reports have focused upon unbiased detection of cyto-
kines in serum, or in vitro secretion from immune cells, such as 
monocytes. Detection of cytokines in serum presents many chal-
lenges, characteristic of serum proteomics. Cytokines are typically a 
very small fraction of the low molecular mass proteome in serum. 
Although such proteins are amenable to detection using current 
mass spectrometry technologies, the challenge lies in their low 
abundance in relation to the high background of other serum pro-
teins. In human serum, albumin and immunoglobulin G (IgG) 
make up 60–80 % of the total serum protein content [235], poten-
tially masking the detection of low abundance proteins. The chal-
lenge of the dynamic range of proteins in serum is not new and 
there are many strategies for their depletion [236]. Additional con-
cerns arise when albumin, known as the “tramp steamer” of the 
blood, interacts with many small molecules, fatty acids and proteins, 
acting as a transient carrier. Depletion of these transiently bound 
proteins, peptides and small molecules is possible and may distort 
the low abundance serum proteome. Methods have been reported 
for separation of low molecular weight serum proteins, using cen-
trifugal ultrafiltration under solvent conditions that disrupt protein–
protein interactions. Two dimensional liquid chromatography of 
tryptically digested proteins and identification using mass spectrom-
etry facilitates the identification of the low MW proteome, includ-
ing cytokines [237]. Others have also used ultracentrifugation, IEF 
[238] for identification of low MW serum proteome, while Groessl 
et al. [239] employed a label free MS based proteomics approach to 
characterize the human monocyte secretome, successfully identify-
ing important proinflammatory proteins and cytokines. Advances in 
these mass spectrometry based methods pave the way for rapid, 
robust and unbiased serum cytokine detection, characterization and 
quantification during disease. This has the potential to contribute to 
understanding of disease progression, as well as revealing disease or 
post vaccination biomarkers.

5  Immunoinformatics

In silico prediction of T or B cell epitopes has become a mainstay of 
immune related research. This is part of a growing field of immu-
noinformatics, or computational immunology, which describes the 
application of informatics technologies to problems of the immune 
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system. Several studies have used the term “immunomics” to 
describe the study of the detailed map of immune reactions of a 
given host interacting with a foreign antigen (the immunome). 
In  silico methods have been developed in order to predict the 
sequence, structure and affinity of various epitopes of the humoral 
and cell mediated immune systems. As with many rapidly growing 
fields, the overlap or complementarity between closely related areas 
means the boundaries are less easily defined. For example, immu-
noinformatic studies of peptide epitopes is important in immuno-
proteomics and many studies combine epitope prediction with 
epitope sequencing. The various algorithms and bioinformatics 
techniques complement proteomics identification of peptide epit-
opes, and combined in silico and in vitro approaches bring more 
power to peptide identification or mapping. In the following sec-
tion, we provide a high level overview of the key areas.

B-cell epitopes are antigenic determinants from pathogens (or self) 
that interact with B-cell receptors [240]. The B-cell receptor con-
tains a hydrophobic binding site composed of hypervariable loops 
that vary in length and amino acid composition. Epitopes that bind 
to the receptor are either continuous (linear) or discontinuous 
(conformational) [241]. According to accumulated knowledge, 
the majority of B-cell epitopes are discontinuous, with protein 
folding playing a large role in epitope formation. Prediction tools 
exist for prediction based upon amino acid sequence (for continu-
ous epitopes) or structure based tools for discontinuous epitopes 
(for recent examples refs. 242–254). In the past, sequence based 
prediction tools have used amino acid hydrophobicity scales for 
epitope prediction. This approach is still used, for example 
BCIPEPT predicts continuous epitopes using propensity scale val-
ues, such as amino acid polarity, flexibility. The BCEPRED server 
[242] has been reported to predicted continuous B cell epitopes 
with an efficiency of 58.7  % [245]. Prediction of discontinuous 
epitopes is more challenging, with over 90  % of B-cell epitopes 
being discontinuous [255].

For both continuous and discontinuous epitopes, the current 
gold standard remains X-ray crystallography and observing the 
points of contact. From the accumulated structural data, several 
prediction methods have been developed, for example Discotope 
[243] and mapitope [246, 256]. Discotope combines amino acid 
statistics with protein spatial information and was trained on a 
dataset of X-ray crystal structures of antibody–antigen complexes. 
More detailed overviews of the current methods and databases are 
given [257, 258].

In order to accelerate experimental approaches to MHC epitope 
prediction, computational methods or algorithms have been devel-
oped that can predict MHC-binding peptides and their binding 
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affinity [259]. These approaches fall into two areas, and are either 
sequence based or structure based [260]. Numerous algorithms 
are now available to carry out sequence based peptide epitope pre-
dictions (reviewed in ref. 261–263). These have the advantage of 
being fast, potentially screening whole genomes, but require large 
amounts of experimental data regarding the peptide binding pref-
erences of the MHC molecule of interest. In comparison, structure 
based epitope modeling is slower, requiring the X-ray crystal struc-
tures of the MHC molecules but can be applied to all MHC types, 
including those that are uncharacterized. Advanced approaches 
include matrix-driven methods, finding structural binding motifs, a 
quantitative structure activity relationship (QSAR) analysis, homol-
ogy modeling, protein threading, docking techniques and design 
of several machine-learning algorithms. Structure based predica-
tions have the potential to discover non sequence based binders.

Both sequence and structure based computational approaches 
are based upon experimentally characterized peptides, but offer a 
more rapid indication of potential epitopes that could guide exper-
imental studies. In both scenarios, experimental confirmation of 
peptide-MHC binding is still required.

In addition to sequence based or structure based predictions a 
number of computer algorithms have been developed that inter-
rogate at the genome level for in silico prediction of T-cell antigens 
[264–267]. This has the potential to help in targeting low abun-
dance T-cell epitopes in experimental studies. In silico methods, 
based upon various patterns in known MHC binding peptides, are 
cost effective and high throughput. They have the advantage of 
reducing the potential MHC binding peptide dataset, ruling out 
peptides that have no MHC binding potential. Even so, MHC 
binding is a prerequisite for T-cell activation, but does not guaran-
tee it and experimental confirmation of T-cell activation is still 
required. There are also now epitope databases and web accessible 
tools for MHC binding prediction (for example http://www.iedb.
org/). Other strategies have combined in silico prediction meth-
ods with mass spectrometry MHC peptide sequencing in order to 
increase the numbers of peptides identified [268–271]. This was 
exploited to target low abundance viral MHC peptides, synthesiz-
ing an in silico predicted MHC peptide as a calibrant, and using 
retention time and peptide mass–charge ratio in order to identify 
the corresponding experimental peptide [268, 269]. In silico pre-
diction of MHC peptides is being demonstrated to be increasingly 
accurate when compared with experimental data [272, 273]. These 
approaches have the potential to increase the repertoire of detected 
MHC peptides. Moreover, sophisticated studies combining immu-
noproteomics and other approaches are beginning to decipher the 
origin and composition of the total repertoire of MHC peptides or 
“immunopeptidome” from a systems biology perspective [274].
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The combined application of experimental studies and in silico 
based prediction will, in the long term impact upon vaccine devel-
opment and personalized medicine. The information uncovers 
potential new antigens, which could be protein or peptide epitopes 
with the potential to stimulate protective immunity, i.e., to be part 
of a vaccine. The process is known as reverse vaccinology and has 
the potential to expedite the discovery and characterization of 
pathogen or disease epitopes. Reverse vaccinology identifies from 
whole genome sequences, antigenic extracellular proteins or pep-
tides that are potential antigens. This approach has the potential to 
accelerate the sometimes slow and costly vaccine development 
pipeline. This was successfully pioneered for Neisseria meningiti-
dis, causative agent of meningococcal meningitis and vaccines are 
now available for A, C, Y and W135 [275].

6  Emerging Technologies and Applications

In the previous sections, we have provided a high level summary of 
the current, most widely used techniques loosely grouped under 
“immunoproteomics”. In the following subsections, we discuss 
emerging, or less widely used technologies that have potential to 
increase the breadth of immunoproteomics research.

Immuno-PCR is a technique that was first reported in 1992 [276], 
and combines advantages of ELISA type assays, with the sensitivity 
of PCR and is aimed at detecting low abundance protein antigens. 
As outlined in Fig. 4, the antigen of interest is captured by a spe-
cific antibody and in a manner similar to traditional ELISA, a sec-
ondary antibody is used to detect binding. In this case, the 
secondary antibody is a chimeric antibody, with a DNA strand as 
the detection marker. The incorporation of a DNA tag allows 
amplification of the detection signal by PCR. This provides many 
of the advantages of PCR amplification, which are lacking in tradi-
tional ELISA assays. Immuno-PCR has been reported to have 10- 
to 1,000-fold increase in sensitivity compared to traditional antigen 
detection methods [276, 277], with high potential for the devel-
opment of diagnostic assays. The technique has reported utility in 
detection of serological markers of ovarian cancer [278], CNS 
indicator proteins [279], detection and quantification of amyloid 
β-peptide in Alzheimer’s disease [280], early diagnosis of infec-
tious disease [281], cytokine detection [282], and toxin detection  
[283–287]. In addition, this method is not aimed at discovery 
immunoproteomics, and has been developed for speed and sensi-
tivity for use as a clinical laboratory tool [288]. Development of 
real time quantitative immune-PCR has added the ability to mea-
sure the amounts of antigen in a sample [289–291]. An excellent 
review provides more details on this approach [292].

6.1  Immuno-PCR
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MALDI-TOF is seeing increasingly widespread use in clinical 
microbiology laboratories for the routine identification of bacterial 
species (for example ref. 293–296). The approach is based upon 
protein signatures (without protein identification), and exploits 
not only the differences in cell surface proteins between cells types, 
but the dynamic change in those proteins under certain condi-
tions. This has been demonstrated to be a robust, reproducible, 
rapid and potentially cost saving approach in medical diagnostics 
[297]. Recently, this approach has been successful in discriminat-
ing intact immune cells, including lymphocytes, monocytes and 
polymorphonuclear cells for the generation of an immune cell 
database [298]. The same approach was also able distinguish 
between stimulated and unstimulated macrophages [298]. Further 
to this, distinct differences in the MALDI-TOF protein finger-
prints of the surface of macrophages were detected with the addi-
tion of M1 agonists, IFN-γ, TNF, LPS, and LPS+IFN-γ, and the 
M2 agonists, IL-4, TGF-β1, and IL-10. The differences in 
macrophage surface fingerprints were specific and readily 

6.2  MALDI-TOF for 
Immune Cell Surface 
Discrimination

Fig. 4 Immuno-PCR. The setup of immune PCR is similar to that of traditional 
antigen detection ELISA. A capture antibody immobilizes the antigen, and detec-
tion antibody added. Instead of the antibody–enzyme conjugate used for colori-
metric detection in ELISA, the chimeric antibody with reporter DNA is used. 
Addition of primers, nucleotides and polymerase allows amplification of the sig-
nal. The linear amplification of PCR means that the number of PCR amplicons 
generated is proportional to the initial amount of antigen detected. This shows a 
simplified scheme, and many variations have been developed
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identifiable [299]. The method is rapid and reproducible and 
opens the door to an alternative method of immune cell analysis.

In vivo microbial antigen discovery (InMAD) [300] was developed 
to identify circulating microbial antigens that are secreted or shed 
by bacteria, and detectable in sera. These circulating antigens can 
then be exploited for the development of rapid point of care immu-
noassays for bacterial diseases. The technique relies upon the 
humoral immune response to identify antigens that are circulating 
in sera. First carried out with the highly pathogenic bacteria, 
Francisella tularensis and Burkholderia pseudomallei, mice were 
infected with one or other organism and serum harvested [300]. 
The serum was filtered to remove whole bacteria, and termed 
InMAD serum. The filtered InMAD serum was then mixed with 
adjuvant and used to immunize mice. Bacterial proteins in the 
InMAD serum stimulate an immune response, which can then be 
monitored in order to determine the identity of the circulating 
bacterial proteins. Sera, collected from immunized mice was termed 
“InMAD immune serum” and was used in 2D Western blot or 
proteome array. In this way, the circulating bacterial proteins were 
identified [300] and have the potential to be rapidly translated into 
clinically relevant biomarkers for the disease diagnosis.

7  Applications

Immunoproteomics is still a relatively young field, with many aca-
demic reports, and a few being translated into clinical applications. 
However, there is huge potential for immunoproteomics-based 
assays to monitor or diagnose disease states or vaccine efficacy 
where antigens are involved. Bacterial and viral diseases are highly 
preventable through vaccination and an obvious application of 
immunoproteomics techniques is in antigen discovery for vaccine 
development. For example, efforts to develop a universal influenza 
vaccine with efficacy against all types of influenza need to be tar-
geted against a conserved antibody or T-cell epitope. Mass spec-
trometry identification of influenza T-cell epitopes [301] is a step 
towards generating a vaccine that stimulates cross strain cell medi-
ated immunity. A similar approach was used to identify conserved 
T-cell epitopes in dengue virus infected cells [302].

The remaining vaccine preventable diseases are challenging in 
terms of developing efficacious vaccines and discerning correlates of 
protection. Vaccinations against infectious disease are designed to 
stimulate a protective immune response. This immune response can 
be measured and correlated with the protection of the host against 
disease. In some cases, protective vaccination may only be estab-
lished through detection of several immune parameters, such as 
immunodominant antibodies, cytokines etc. As immunoproteomics 

6.3  In Vivo Microbial 
Antigen Discovery
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studies advance in terms of sensitivity and throughput, this opens 
the door to rapid discovery of biomarkers of vaccine efficacy. 
Immunoproteomics approaches are being exploited to determine 
immune correlates of protection, which may then be used to moni-
tor the protective status of the host. For example, proteome array 
studies have monitored the humoral immune response to smallpox 
and tularemia vaccines, and have noted a number of immunodomi-
nant proteins that have potential diagnostic applications [48, 54, 
303–306]. These studies were extended further to investigate why 
smallpox vaccine fails to develop lesions in some individuals [307] 
and also comparing the antibody response to existing and next gen-
eration vaccinia virus vaccines [308].

Circulating antibodies represent important makers, reflecting 
the repertoire of nonself agents to which the immune system has 
been exposed. Antibodies amplify the signal of what may have been 
low abundance disease related proteins, have half lives of days to 
months and are stable to sample handling, so represent good bio-
markers for diagnostic applications. As with all biomarker discover-
ies, validation and translation of immunoproteomic biomarkers to 
diagnostics is met with a number of challenges. Clinical diagnostic 
assays must be simple, robust, and sensitive, for example ELISA or 
antigen arrays.

Recombinant protein therapeutics are gaining popularity in a 
variety of applications. In addition to their desired therapeutic 
effects, they have the potential to stimulate an undesirable immune 
response against the recombinant protein. Protein therapeutics, 
such as recombinant IFNβ [309–311], IFNα [312, 313], and anti-
TNFα antibodies [314, 315], are frequently observed to stimulate 
an undesirable immune response against the recombinant protein. 
The immune responses may be antibody or cell mediated and a 
combination of in silico prediction tools (reviewed in ref. 316) and 
in vivo validation by immunoproteomics methods could support 
prediction of immunogenicity for protein therapeutics, giving 
more rapid translation from discovery to clinic. Immunoproteomics 
approaches have the potential to have a high impact in this area, 
supporting the depletion of T-cell epitopes from protein therapeu-
tics (reviewed in ref. 317).

8  Future Perspective

The breadth and sophistication of the techniques developed to 
study the immunoproteome have increased dramatically in the past 
decade. The field has benefited greatly from advances in proteomics 
and immunoinformatics and will continue to develop. Challenges 
remain, such as characterization of low abundance T-cell epitopes, 
and detection of low level serum cytokines. However, new ave-
nues  of investigation are emerging, including application of 
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interactomics to immunoproteomics studies, and comprehensive 
systems biology studies of the immune response to disease. As our 
depth of knowledge of the immune response to infection, cancer 
or self-antigens (misdirected autoimmunity) increases, so do the 
opportunities for discovery of robust disease biomarkers for early 
diagnosis. Combined in silico and experimental studies promise to 
yield efficacious vaccine candidates and correlates of vaccine pro-
tection. On a systems level, understanding the rapidly changing 
protein landscape of the immune system at various stages of life has 
the potential to provide immune markers of vaccine health, and 
predictive markers of the immune response, which may in the lon-
ger term, contribute to the development of personalized 
medicine.
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