Preface

The good news about computers is that they do what you tell them
to do. The bad news s that they do what you tell them to do.
Ted Nelson.

Computer Science is a relatively young discipline. University Computer
Science Departments are rarely more than a few decades old. They will
typically have emerged either from a Mathematics Department or an Engi
neering Department, and until recently a Computer Science degree was pre
dominantly about writing computer programs (the mathematical software)
and building computers (the engineering hardware). Textbooks typically
referred to programming as an “art” or a “craft” with little scientific basis
compared to traditional engineering subjects, and many computer program
mers still like to see themselves as part of a pop culture of geeks and hackers
rather than as academically trained professionals.

However, the nature of Computer Science is changing rapidly, reflecting
the increasing ubiquity and importance of its subject matter. In the last
decades, computational methods and tools have revolutionised the sciences,
engineering and technology. Computational concepts and techniques are
starting to influence the way we think, reason and tackle problems; and
computing systems have become an integral part of our professional, eco
nomic and social lives. The more we depend on these systems particularly
for safety critical or economically critical applications the more we must
ensure that they are safe, reliable and well designed, and the less forgiv
ing we can be of failures, delays or inconveniences caused by the notorious
“computer glitch.”

Unlike traditional engineering disciplines which are solidly rooted on
centuries old mathematical theories, the mathematical foundations under
lying Computer Science are younger, and Computer Scientists have yet to
agree on how best to approach the fundamental concepts and tasks in the
design of computing systems. The Civil Engineer knows exactly how to
define and analyse a mathematical model of the components of a bridge
design so that it can be relied on not to fall down, and the Aeronautical
Engineer knows exactly how to define and analyse a mathematical model of
an aeroplane wing for the same purpose. However, Software Engineers have
few universally accepted mathematical modelling tools at their disposal. In
the words of the eminent Computer Scientist Alan Kay, “most undergrad

xiv Preface

uate degrees in computer science these days are basically Java vocational
training.” But computing systems can be at least as complex as bridges or
aeroplanes, and a canon of mathematical methods for modelling computing
systems is therefore very much needed. “Software’s Chronic Crisis” was the
title of a popular and widely cited Scientific American article from 1994,
and, unfortunately, its message remains valid today.

University Computer Science Departments face a sociological challenge
posed by the fact that computers have become everyday, deceptively easy
to use objects. A single generation ago, new Computer Science students
typically had teenage backgrounds spent writing Basic and/or Assembly
Language programs for their early hobbyist computers. A passion for this
activity is what drove these students into University Computer Science pro
grammes, and they were not disappointed with the education they received.
Their modern day successors on the other hand born directly into the
heart of the computer era have grown up with the internet, a billion dollar
computer games industry, and mobile phones with more computing power
than the space shuttle. They often choose to study Computer Science on
the basis of having a passion for using computing devices throughout their
everyday lives, for everything from socialising with their friends to down
loading the latest films, and they often have less regard than they might
to the considerations of what a University Computer Science programme
entails, that it is far more than just using computers.

There is a universal trend of large numbers of first year students trans
ferring out of Computer Science programmes and into related programmes
such as Media Studies or Information Studies. This trend, we feel, is often
unjustified, and can be reversed by a more considered approach to modelling
and the mathematical foundations of system design, one which the students
can connect and feel at home with right from the beginning of their Univer
sity education. This has been our motivation in writing this textbook aimed
at teaching first year undergraduate students the essential mathematics and
modelling techniques for computing systems in a novel and relatively light
weight way.

The book is divided into two parts. Part I, subtitled Mathematics for
Computer Science, introduces concepts from Discrete Mathematics which
are in the curriculum of any University Computer Science programme, as
well as much which often is not. This material is typically taught in service
modules by mathematicians, and new Computer Science students often find
it difficult to engage with the material presented in a purely mathemati
cal context. We attempt here to present the material in an engaging and
motivating fashion as the basis of computational thinking.

Part II of the book Modelling Computing Systems develops a par

Preface xv

ticular approach to modelling based on state transition systems. State tran
sition systems have always featured in the Computer Science curriculum,
but traditionally (and increasingly historically) only within the study of
formal languages. Here we introduce them as general modelling devices,
and explore languages and techniques for expressing and reasoning about
system specifications and (concurrent) implementations. Although Part I
covers twice as many pages as Part II, the title of the book is nonetheless
justified: much of the Mathematics presented in Part I itself is used directly
for modelling systems, and forms the basis on which the approach developed
in Part II is based.

The main benefit of mathematical formalisation is that systems can be
modelled and analysed in precise and unambiguous ways; but formal pre
cision can also be a major pitfall in modelling since it can compromise
simplicity and intuition. In this book, therefore, we always try to start from
intuition and examples, and we aim at developing precise concepts from that
basis. How and when to be precise is certainly not less important to learn
than precision itself: the ability to give mathematical proofs often does not
depend on knowing precise formal definitions and foundations. One can,
for example, write down recursive functions without having a precise formal
concept in mind.

There is a long standing tradition in disciplines like Physics to teach
modelling through little artifacts. The fundamental ideas of computational
modelling and thinking as well can better be learned from idealised exam
ples and exercises than from many real world computer applications. This
book builds on a large collection of logical puzzles and mathematical games
that require no prior knowledge about computers and computing systems;
these can be much more fun and sometimes much more challenging than
analysing a device driver or a criminal record database. Also, computa
tional modelling and thinking is about much more than just computers!

In fact, games play a far more important role in the book: they provide
a novel approach to understanding computer software and systems which is
proving to be very successful both in theory and practice. When a computer
runs a program, for example, it is in a sense playing a game against the
user who is providing the input to the program. The program represents
a strategy which the computer is using in this game, and the computer
wins the game if it correctly computes the result. In this game, the user
is the adversary of the computer and is naturally trying to confound the
computer, which itself is attempting to defend its claim that it is computing
correctly, that is, that the program it is running is a winning strategy. (In
Software Engineering, this game appears in the guise of testing.) Similarly,
the controller of a software system that interacts with its environment plays

xvi Preface

a game against the environment: the controller tries to maintain the system’s
properties, while the environment tries to confound them.

This view suggests an approach to addressing three basic problems in
the design of computing systems:

1. Specification refers to the problem of precisely identifying the task to
be solved, as well as what exactly constitutes a solution. This problem
corresponds to the problem of defining a winning strategy.

2. Implementation or Synthesis refers to the problem of devising a
solution to the task which respects the specification. This problem
corresponds to the problem of implementing a winning strategy.

3. Verification refers to the problem of demonstrating that the devised
solution does indeed respect the specification. This problem corre
sponds to the problem of proving that a given strategy is in fact a
winning strategy.

This analogy between the fundamental concepts in Software Engineering on
the one hand, and games and strategies on the other, provides a mode of
computational thinking which comes naturally to the human mind, and can
be readily exploited to explain and understand Software Engineering con

cepts and their applications. It also motivates our thesis that Game Theory
provides a paradigm for understanding the nature of computation.

There are over 200 exercises presented throughout each chapter, all of
which have complete solutions at the back of the book, as well as over 200
futher exercises at the end of each chapter whose solutions are not provided.
The exercises within the chapters are often used to explore subtleties or
side issues, or simply to put lengthy arguments into an appendix, and as
such should all be attempted; their solutions at the back of the book should
be looked at as well, as they often explain the issues which the exercises are
attempting to highlight.

Most of the material in this book has been used successfully for over a
decade in first year Discrete Mathematics and Systems Modelling modules.
Countless eyes have passed over the text, and a thousand students have
solved its exercises. Nonetheless there will inevitably be a (hopefully small)
flurry of errors in the text for which we accept full responsibility and offer
our sincere apologies.

Faron Moller Georg Struth
Swansea Sheffield

2 Springer
http://www.springer.com/978-1-84800-321-7

Modelling Computing Systems
Mathematics for Computer Science
Moller, F.; Struth, G,

2013, XV, 500 p. 46 illus., Softcover
ISBN: @78-1-84800-321-7

