Chapter 1

Propositional Logic

Either this man is dead or my watch has stopped.
Groucho Marx.

Like her three older brothers before her, little Amanda always wants to
know “Why”: “Why do I have to go to school?” “Why does it only snow
in Winter?” As young as she is, she can understand that logically the
responses she gets satisfy each and every one of her queries: “You go to
school to learn things.” “It only snows in Winter because that’s the only
time it gets cold.” However, these answers rarely satisfy her they merely
open the way for yet more queries to explain the reasons she gets as answers
to her previous questions: “Why do I have to learn things?” “Why does
it only get cold in the Wintertime?” Her impatient father rarely wins this
game; it inevitably ends either with a definitive “Just because!” or, more
usually, with a simple “Gee, I don't know, that’s a very good question! Go
ask your mother.”

This behaviour demonstrates more than mere curiosity; and in fact cu
riosity typically has little to do with it. It is the fun of the game of logical
reasoning which motivates her: the pursuit of the absolute, unquestionable
premises from which all the other points follow. Her father’s goal in this
game, of course, is to identify these premises as quickly as possible. (Her true
goal, one can’t help but feel, is to get her father to give up in exasperation.)

It is in our nature as human beings to reason about the world and our
existence, to assimilate the knowledge which we accumulate and to make
logical deductions based on this knowledge. Despite the fact that we are
born with a built in propensity to apply logical rules to make deductions
from our knowledge if we do something potentially dangerous such as step
out into the street without looking for cars, then we may get hurt, and
therefore we shouldn’t do such things it is nonetheless the case that we
are very bad at doing this correctly consistently. The problem lies to a great
extent with the ambiguities in our language.

In this chapter we shall see how logically correct reasoning manifests
itself in a multitude of ways, and we shall learn how to tame our use of
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18 Propositional Logic

language in order to prevent the types of ambiguities and mismatches which
lead to the sorts of invalid logical arguments which all too typically underly
system failures. We will see that precise rules of logical reasoning can be
written down and mechanically applied like the rules of chess. But, due to
their universality as laws of thought, they are much more than a mere formal
game. They can be applied to model and reason about a huge variety of
systems and situations. In particular, they can be very useful in detecting
unexpected misbehaviour or inconsistency of computing systems.

Logic in fact lies at the very core of computing. Historically, the concepts
of computation and effective computability have been developed from a
logical basis and they were motivated by questions about the mathematical
foundations of logic. All computer programming languages rely on logical
notions in their specifications, their implementations and their constructs.
Logics are also among the most popular and effective methods for specifying
and analysing computational systems in formally rigorous ways. And, last
but not least, the design and implementation of digital systems is strongly
based on logic.

@ Propositions and Deductions

Consider the following argument.

1. Either this man is dead or my watch has stopped.
2. My watch is still ticking.
Therefore
3. This man is dead.
This is an example of the sort of reasoning which we (mostly unconsciously)

perform constantly all day long. If we analyse the structure of the argument,
we see the following elements.

A. The argument involves three statements, or propositions, by which
we mean declarations which are either true or false (but not both).
Each of the statements in the argument is declared to be true.

B. The first statement expresses an option between two simpler state
ments, namely

la. This man is dead.
or

1b. My watch has stopped.

C. A deduction or inference is made to infer the truth of the third
statement from the truth of the first two statements. The third state
ment is referred to as the conclusion of the argument, while the first
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two statements from which we draw the conclusion are referred to as
the premises of the argument.

Such arguments can be formalised in propositional logic. The syntaz
(structure) of propositional logic provides a language for modelling systems,
situations and arguments. The semantics (meaning) of propositional logic
gives an interpretation to the symbols of the language. The language of
propositional logic starts with atomic propositions, such as “This man
is dead”, and builds up larger compound propositions using a variety of
propositional connectives, such as “or”. Each connective is given a
precise prescribed meaning which aims to reflect its everyday use in natural
language. The purpose of this formalization is to remove ambiguities which
are prevalent in the use of English or any other natural language.

Example 1.1

The following rules, adapted from those specified by the World Chess Fed
eration FIDE, describe the conditions for castling. Castling is a move of
the king and either rook of the same colour, counting as a single move of the
king, and executed as follows: the king is transferred from its original square
two squares towards the rook in question, and then that rook is transferred
to the square which the king has just crossed.

1. The right for castling with a particular rook has been lost:

(a) if the king has already moved; or
(b) if the rook in question has already moved.

2. Castling with a particular rook is prevented:

(a) i the right for castling with that rook has been lost; or

(b) 4f there is a piece between the king and the rook in question; or

(c) if the square on which the king stands, or the square which it
must cross, or the square which it is to occupy, is under attack
by one or more of the opponent’s pieces.

The conditions that permanently or temporarily prevent castling use the
propositional connectives “or” and “if” to express constraints under which
castling is prohibited.

Arguments are all about truth. Therefore, not all sentences can take part
in arguments, simply because not all sentences express statements which can
be true or false. This is the case with questions like “Is that man dead?”
and requests like “Bring me a watch that works.” To be true or false,
a sentence must state a potential fact, hence be related to a potential bit
of reality. This criterion distinguishes statements or propositions from all
other kinds of sentences.
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Exercise 1.1 ) (Solution on page 405)

Which of the following are statements (propositions)?

1
2
3
4
5.
6
7
8

. 2+3=5.

. 2+3=6

. Do your homework, Joel!

. Joel didn’t do his homework.
Is there life on Mars?

. False

. What Felix says is false.

. What this sentence says is false.

Each atomic statement can, of course, be further analysed with respect to
its grammatical structure Joel, for instance, is a subject noun, do a verb,

and

homework an object noun but this is of no relevance to propositional

logic. It is concerned solely with the distinction between logical and non
logical components and, correspondingly, with the way in which the truth
of simpler statements determines that of more complex ones.

Exercise 1.2 (Solution on page 405)

Which of the following are valid deductions?

1.

If the fire alarm sounds, then everyone must leave the building.
Everyone is leaving the building.
Therefore the fire alarm has sounded.

. If the fire alarm sounds, then everyone must leave the building.
The fire alarm has sounded.
Therefore everyone is leaving the building.

. If the signal is green, then the train may proceed.
The signal is red.
Therefore the train must wait.

. The right for castling with a particular rook has been lost if the king
has already moved.
Both rooks have already moved.
Therefore the right for castling with a particular rook has been lost.

. The right for castling with a particular rook has been lost if the king
has already moved, or if the rook in question has already moved.
One of the two rooks has already moved.

Therefore the right for castling with a particular rook has been lost.
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6. It is unlawful for any person to keep more than three dogs and three
cats on their property within the city.
Charles keeps five dogs (but no cats) on his property in the city.
Therefore Charles is breaking the law.

( Exercise 1.3) (Solution on page 406)

Which of the following are valid deductions?

1. Epimenides is a Cretan.
All Cretans are liars.
Therefore Epimenides is a liar.

2. Epimenides is a Cretan.
Epimenides said that “All Cretans are liars.
Therefore Epimenides is a liar.

”

3. Epimenides is a Cretan.
Epimenides said that “All Cretans are liars.
Therefore all Cretans are liars.

4. Epimenides is a Cretan.
Epimenides said that “All Cretans are liars.
Therefore not all Cretans are liars.

”

5. Epimenides is a Cretan.
Aristotle said that “All Cretans are liars.”
Therefore Epimenides is a liar.

@ The Language of Propositional Logic

The syntax of propositional logic is the formal definition of the language,
the object language of formal logic. This definition is given in a meta-
language natural language in this case in which we speak about the
language of propositional logic. The metalanguage itself will use logical no
tions and reasoning, albeit at an informal level; since the levels can be kept
separate, there should be no conceptual confusion.

The definition of syntax has two steps. In the first step, the basic sym-
bols of the language are defined. In the second step, the rules for writ
ing formule with these symbols is defined; these represent statements or
propositions. The precise definition of a formula will be given at the end of
this section; we first introduce the components of this definition informally.
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1.2.1

1.2.2

Propositional Variables

In propositional logic, the meaning of a particular atomic proposition is given
solely by its truth or falsity. We therefore abstract from these propositions
and introduce propositional variables instead.

In algebra, variables such as z, y and z are used to represent unknown
numbers. The occurrences of the variable z in the quadratic equation z2 +
2z 15 = 0 are place holders for some value, in this case a number. The
equation restricts the admissible values of z to being either 3 or 5. That
is, if 3 is substituted for every occurrence of z in the equation, or if 5
is substituted for every occurrence of z in the equation, then the equation
holds; and when any other number is substituted, it doesn’t.

We use variables in a similar way in propositional logic. Propositional
variables such as P, Q, R, ... represent unknown propositions. In algebra
we may assign a specific value to a variable; for example, we might write
“let x=3" and then interpret every subsequent occurrence of the variable z
by the value 3. Similarly we may let a propositional variable represent a
specific proposition, for example writing “let Dead represent the statement:
This man is dead.” (Following good programming style, we will typically
use meaningful words as propositional variables rather than mere letters to
obtain more readable statements.)

In algebra, values (including unknown values represented by variables)
can be combined using various operations, such as addition (+), subtraction
(), multiplication (x) and division (+). In propositional logic, we may
combine propositions using various propositional connectives, specifi
cally “not” (), “or” (V), “and” (A), “if ... then...” (=), and “... if, and
only if, ...” (<). An informal description of the connectives of propositional
logic is given in the follow sections.

Negation

The negation —p of a statement p, pronounced “not p”, is a statement
which is true if, and only if, p is false. This is typically expressed in English
in one of the following ways:

e not p; (more precisely, the statement p with “not” modifying the
verb, typically by appearing tmmediately after it.)
e p does not hold / is not true / is false;

e it is not the case that p.

Example 1.3

If Dead stands for the statement “This man is dead,” then —Dead says “It
is not the case that this man is dead,” or, equivalently, “This man is not
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dead.”

If a proposition is not true, then it must be false; and conversely, if it is
not false, then it must be true. In particular then, if a proposition is not
not true, then it is true: ——p is the same as p. This is referred to as the
Law of Double Negation.

( Exercise 1.4 ) (Solution on page 406)

Rewrite the following statements without negations at the start.

1. = “The Earth revolves around the sun.”
2. — “All of my children are boys.”
3. a(2+2<4).

1.2.3  Disjunction

The disjunction pV q of two statements p and g, pronounced “p or ¢”, is
a statement which is true if, and only if, p is true or ¢ is true (or indeed
if both are true); that is, at least one of p and ¢ is true. This is typically
expressed in English in one of the following ways:

e porg;
e p or q or both;
e p and/or g,

e p unless q.

In the context of the disjunction pV ¢, the propositions p and g are individ
ually referred to as disjuncts.

Example 1.4

If Dead stands for the statement “This man is dead” and Watch stands for
the statement “My watch has stopped,” then Dead V Watch says “Either
this man is dead or my watch has stopped,” or, equivalently, “If this man
is alive, then my watch must have stopped.” This does not preclude the
possibility that the man is dead and my watch has stopped, in which case
Dead v Watch will still be true.

Example 1.5

In chess, the right for castling with a particular rook has been lost if the
king has already moved, or if the rook in question has already moved. This
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condition can be formalised as KingMoved vV RookMoved, where KingMoved
and RookMoved are propositional variables stand for the statements “The
king has moved” and “The rook has moved,” respectively. In particular,
therefore, one may not castle with a particular rook if both the king and
the rook in question have already been moved.

Recalling that —p is true if p is not true, we can note that p vV —p must
always be true regardless of what proposition p stands for: either pis true, or
it is not true. This fact is referred to as the Law of the Ezcluded Middle:
there is no middle ground when it comes to the truth of a propositional
formula.

( Exercise 1.5) (Solution on page 406)

Are the following disjunctions true or false?

1. (3<2) v (3<5b)
2. (6<4) Vv (7<5)
3. (5<6) Vv (6<28)

Note that p Vv ¢ is true if (though not only if) both p and ¢ are true.
In propositional logic, there can be no ambiguity: the “or” is always taken
in this inclusive sense. In some everyday circumstances, however, “or” is
used in the ezclusive sense: the statement “Either you be quiet now or
you won't get an ice cream!” certainly is not supposed to be true in the
case in which the child under consideration is quiet but still doesn’t get
the ice cream that would be an unfair trick. Such an “exclusive or” is
in fact provided by a different connective from the (inclusive) “or” used
in propositional logic; it is written @, and it has its own different truth
conditions: p @ q is true if, and only if, one of p and ¢ is true and the other
is false; that is, precisely one of p and q is true. Note that this connective is
not formally a part of the definition of propositional logic; however, it can
be expressed using the connectives of propositional logic (see Example 1.10
on page 29).

( Exercise 1.6 ) (Solution on page 406)

For each of the following disjunctive statements, decide whether you think
the speaker intends to use the inclusive or exclusive sense of the disjunction.

1. Joel came in last place in the round robin competition; so that mean
that either Felix beat him or Oskar beat him.

2. The light is either on or off.

3. You can have tea or coffee.
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1.2.4

Conjunction

The conjunction p A q of two statements p and ¢, pronounced “p and g”,
is a statement which is true if, and only if, both p and ¢ are true. This is
typically expressed in English in one of the following ways:

e pand q,

e p butg;

e not only p but also gq.

In the context of the conjunction p A ¢, the propositions p and g are indi
vidually referred to as conjuncts.

Example 1.6

If Dead stands for the statement “This man is dead” and Watch stands for
the statement “My watch has stopped,” then Dead A Watch says “This man
is dead and my watch has stopped,” or, equivalently, “Not only is this man
dead, but so is my watch!”

Recalling that —p is false if p is true, we can note that p A —p must always
be false regardless of what proposition p stands for: p and —p cannot both
be true at the same time.

( Exercise 1.7 ) (Solution on page 407)

1.2.5

Are the following conjunctions true or false?
1. (3<2) A (3<5b)
2. (5<4) A (7T<5)
3. (5<6) A (6<8)

Implication

Given two statements p and g, the implication p = g, pronounced “p
implies ¢”, is a statement which is true if, and only if, p is false, or q is true;
that is, if p is true then ¢ must also be true. In other words, p = ¢ is false
if, and only if, p is true and q is false. This is typically expressed in English
in one of the following ways:

e p implies q;

e if p then q:

® qifp;

e p only if q;
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e g whenever p;
e p 15 a sufficient condition for q;

® g 15 a necessary condition for p.

In the context of the implication p = ¢, p is referred to as the premise and
q is referred to as the conclusion.

Example 1.7

]

Let the variable SignalDanger stand for the statement “The signal shows
danger,” and let the variable TrainStop stand for the statement “The train
stops.” Then SignalDanger = TrainStop stands for the statement “If the
signal shows danger then the train stops.”

The only event in which this statement can be false is when the signal
shows danger and yet the train does not stop. Hence the rule allows the case
that the signal does not show danger and yet the train nevertheless stops.

Exercise 1.8 ) (Solution on page 407)

Letting JoelHappy stand for “Joel is happy” and AmandaHappy stand for
“Amanda is happy,” each of the following statements translates as either
JoelHappy = AmandaHappy or as AmandaHappy = JoelHappy. Determine
which in each case.

1. “Joel is happy whenever Amanda is happy.”
2. “Joel is happy only if Amanda is happy.”
3. “Joel is happy unless Amanda is not happy.”

( Exercise 1.9 ) (Solution on page 407)

On the door of a particular house is the following warning to potential
thieves:

Barking dogs don'’t bite.

My dog doesn’t bark.

Should a potential thief necessarily be concerned?
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1.2.6

Equivalence

The equivalence p < q of two statements p and g, pronounced “p if, and
only if, ¢”, is a statement which is true if, and only if, both p and ¢ are true,
or both p and q are false; that is, if p and ¢ have the same truth value. This
is typically expressed in English in one of the following ways:

e p if, and only if, q;
e p 15 equivalent to q;
e p 15 a necessary and sufficient condition for q.

The symbol for equivalence < looks like the symbol for implies = point
ing in both directions. This is very much by design since, with a bit of
thought, it is evident that p < ¢ is true if, and only if, p = g and p < ¢
(that is, ¢ = p) are both true.

Example 1.9

1.2.7

Let the variable TrainEnter stand for the statement “The train enters the
tunnel,” and let the variable TunnelClear stand for the statement “The tunnel
is clear.” Then TrainEnter < TunnelClear stands for the statement “The train
enters the tunnel if, and only if, the tunnel is clear.”

This statement is false if the train enters the tunnel while the tunnel is
not clear, or if the tunnel is clear but the train does not enter.

The Syntax of Propositional Logic

We can now summarise the above discussion of propositional logic in the
following formal definition. A statement written in propositional logic is
called a propositional formula, and is either:

e an atomic formula, typically represented by a variable such as P, @
or R; or

e a compound formula, in which case it is built up using the above
propositional connectives as summarised in Figure 1.1.

There are two special atomic propositional formule, true (representing the
proposition which is always true) and false (representing the proposition
which is always false).

The above defines the formal syntax of the language of propositional
formulz. To emphasise that a propositional formula must be written syn
tactically correctly according to Figure 1.1, it is also referred to as a well-
formed formula (wff).

Note that in Figure 1.1 (as well as throughout this whole chapter) the
letters p and g are not propositional variables, but rather metavariables
which stand for arbitrary propositions.
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1.2.8

If p and ¢ are propositional formula, then so are the following:

true truth
false falsity
P atomic proposition
-p not p negation
pVg porg disjunction
PAg p and q congunction
P=4q if p then q implication

pPEq p if, and only if, q equivalence

Figure 1.1: The formulea of propositional logic.

Parentheses and Precedences

It is common to use parentheses when writing mathematical expressions such
as (54 3) x 2, in order to disambiguate such expressions. Most mathemati
cians (as well as many hand held calculators) will calculate 5 + 3 x 2 = 11,
as it is standard to consider multiplication as binding more tightly than
addition; that is, multiplications are applied before additions whenever pos
sible. Multiplication is said to have a higher precedence than addition.
However, with parentheses the meaning of this expression changes dramat
ically: (5 + 3) x 2 = 16. Similarly, we would use parentheses to calculate
5 (3 1)=5 2 =3, as without them we would naturally apply the
subtractions left to right and calculate5 3 1=2 1=1.

In a similar vein we can and will regularly make use of parentheses within
propositional formulae to ensure that the meaning of our formule is clear.
For example, the formula PV Q = R can be read either as (PV Q) = R or
as PV (Q = R), so we shall write the formula with parentheses in one of
the above ways in order to make sure it is read as intended. We shall thus
extend our definition of a well formed formula to include parentheses which
enclose subformulee.

However, to reduce the need for parentheses, we will consider — as bind
ing more tightly than A, which will bind more tightly than Vv, which will
bind more tightly than =, which will bind more tightly than <. Apart
from this, the connectives will be applied right to left, so that for example
an expression of the form

p=>qgAT =35

would be interpreted as
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p = (gAT) = s
due to A binding more tightly than =, and thus as
p= (grr) = s)

due to the right to left application order of the = connectives.

Omitting parentheses by adopting the above precedence and application
orders on connectives will often make formula easier to read. However,
parentheses can and should still be used despite these conventions in cases
when confusions can easily arise. For example, we will typically write

p = ((q/\r) = s)

despite the redundancy of the parentheses.

Example 1.10

We can express the “exclusive or” operation p @ ¢ which says that one of
p and g is true and the other is false as a simple equivalence, by noting
that p @ g says that one of p and ¢ is true if, and only if, the other is not
true. It can thus be defined simply by:

p®g = pe g
or, equivalently, by
p®g = p&g.

Both of these options abide by the hint that p @ g says that one of p and ¢
is true if, and only if, the other is not true.
You may be tempted to define it as

p®qg = (pe—q9) AN (¢ D)

which would be correct, but this would be overkill; with a little thought you
should realise that p & —q is the same as ¢ & —p.

Exercise 1.10 ) (Solution on page 407)

]

Express the following connectives using the connectives of propositional
logic.
1. The NAND connective p|g which is true if, and only if, p and g are
not both true.

2. The NOR connective p | ¢ which is true if, and only if, neither p nor ¢
are true.

3. The conditional connective g<pt>r which is true if, and only if, either
p and ¢ are both true, or —p and r are both true. In other words: “If
p 1s true then q must be true; otherwise r must be true.”
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1.2.9

Syntax Trees

It can be helpful to view a well formed propositional formula as a tree
like diagram, called a syntax tree, in which the tree structure reflects
the way in which the formula is constructed. For example, the formula
(PV Q)= —(P AQ) corresponds to the following syntax tree:

To recognise the expression (PV Q) = —(PAQ) as a well formed proposi
tional formula, we need only break it down to its constituent parts, and to
reconstruct it from the inside out:

e P and @, being propositional variables, are propositional formulz.

e Since P and @ are propositional formule, so too are their disjunction
P Vv @ and conjunction P A Q.

e Since PAQ is a propositional formula, so too is its negation =(P A Q).

e Since PV @ and —(P A Q) are propositional formule, so too is their
implication (PV Q) = —(P AQ).

This decomposition is directly reflected in the syntax tree, and also provides
a method for determining whether or not the formula is true.

The syntax tree makes it clear how the expression should be parsed,
without the need for parentheses or precedence rules to tell the reader how
to interpret the formula. Without the rules of precedence, there are many
different ways to read the expression PV Q = —P A @, all of which having
completely different meanings and syntax trees.

]

Example 1.11

Consider the expression P = —Q V R = Q. According to the precedence
rules, it is represented by the following syntax tree:
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In order to evaluate this expression that is, to determine its truth value
we first need to know the truth values of the propositional variables P,
@ and R. We then compute —Q, as — binds more tightly than the other
connectives; then (—Q) V R is computed, as V binds more closely than =;
then ((-Q) V R) = Q is computed followed by P = (((-Q) V R) = Q),
since the two = connectives are computed in a left to right order.
Fully bracketed, the formula is thus interpreted as

P= ((FQVR)=Q).

Example 1.12

The string of symbols =(P A (Q Vv 7)) is not a well formed propositional
formula. This can be seen by applying the formation rules in Figure 1.1
backwards.

—(P A (Q V7)) is a formula only if (P A (Q Vv —)) is a formula.

(PA(QV 7)) is a formula only if P and (Q V —) are formule.
e P is a propositional variable and is therefore a formula.

e (QV ) is aformula only if @ and — are formulz.

e () is a propositional variable and is therefore a formula.

e However, — is a logical connective; it is neither a propositional variable
nor a compound formula, so it is not a formula.

e Therefore, =(P A (Q V —)) is not a well formed formula.

( Exercise 1.12 ) (Solution on page 407)

Which of the following are well formed formulae? Rewrite each well formed
formula using a minimal number of parentheses without changing its mean
ing, and draw its syntax tree.

L(P=Q) & (@=P)).

2. PVQ(AP).

3. (PVQ)AP.

4. (PVQ) & (R-5)).

5. (PV(QAR)) & (PV(QA(PVR)).
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13)

Modelling with Propositional Logic

Propositional logic is very important for modelling real life scenarios, in
which we define propositional variables to represent particular properties
which may be true or false. Indeed we have described many such examples
already above. We shall here consider a few further such examples.

Example 1.13

A particular computer program contains the following lines of code:

if CabinPressure < MinPressure then PrepareForLanding;
if FlightHeight < MinHeight then PrepareForLanding;

A software engineer assessing this code proposes that it could be optimised
as follows:

if (CabinPressure < MinPressure and FlightHeight < MinHeight)
then PrepareForLanding;

Is this correct?

Logically, we can use the variables Pressure and Height to express the
two conditions that signal a need to land; and the variable Land to express
the execution of PrepareForLanding. The program then gives rise to the
following propositional formula:

(Pressure = Land) A (Height = Land)
while the suggested optimisation corresponds to
(Pressure A Height) = Land.

The formula corresponding to the program is false if, and only if, either
Pressure is true and Land is false, or Height is true and Land is false; this is
the case if, and only if, either Pressure or Height is true while Land is false.

The formula for the suggested optimisation, on the other hand, would
only be false if both Pressure and Height are true while Land is false; for exam
ple, having the cabin pressure drop below its minimum allowed value would
wrongly not cause the aeroplane to prepare for landing if the aeroplane is
cruising above its minimum allowed height.

The correct variant of the propositional formula one which is equivalent
to the formula corresponding to the program would be

(Pressure V Height) = Land.
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That is, the optimised code should should have a disjunction (or) in the
condition, not a conjunction (and). Of course this logical analysis only
confirms our intuition: The aeroplane should prepare for landing if either
condition is satisfied, not if both of them hold.

Example 1.14

Consider the following four symbols: a white circle, a black circle, a white

square, and a black square:

OO @ [ 1

Let B represent the proposition that the symbol in question is black, and
C represent the proposition that the symbol in question is a circle.

e B is true of the black circle and the black square, but false of the white
circle and the white square.

e —B is true of the white circle and the white square, but false of the
black circle and the black square.

e BV C(C is true of the white circle, the black circle and the black square,
but false of the white square.

e BAC is true of the black circle, but false of the white circle, the white
square and the black square.

e B = C istrue of the white circle, the black circle and the white square,
but false of the black square.

e B & C is true of the black circle and the white square, but false of
the white circle and the black square.

These facts are summarised in the table in Figure 1.2. Almost all of them
are self evident, though you should spend time considering carefully when
B = C is true and when it is not true. Specifically, the only way that it
can be false is if the symbol in question is black yet is not a circle.

The Oxford mathematician Charles Lutwidge Dodgson (1832 1898), bet
ter known as Lewis Carroll, the author of Alice in Wonderland, enjoyed
inventing puzzles which required careful logical reasoning to solve. The
following is a typical example.

Exercise 1.14 ) (Solution on page 408)

Lewis Carroll concludes that “Amos Judd loves cold mutton” from the fol
lowing seven assumptions:

1. All the policemen on this beat sup with our cook.
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B X | v | X || (it’s black)

-B v | X | v | x| (it’s not black)

BVvC | v | v | x|y | (it’s black or it’s a circle)

BAC | x | v | X | x| (it’s black and it’s a circle)

B=C| v | v |v|X| (i it’s black then it’s a circle)

B&C| x| v | v | x| (it’s black if and only if it’s a circle)

Figure 1.2: B="the symbol is black”, C="“the symbol is a circle”.

N O ot W N

. No man with long hair can fail to be a poet.
. Amos Judd has never been in prison.

. Our cook’s cousins all love cold mutton.

. None but policemen on this beat are poets.

. None but her cousins ever sup with our cook.

. Men with short hair have all been in prison.

Explain how Lewis Carroll can draw his conclusion.

( Exercise 1.15) (Solution on page 410)

Translate the rules for castling in chess presented in Example 1.1 into propo
sitional logic using the following propositional variables:

RightToCastleLeft / RightToCastleRight:
You have the right to castle with the rook to the left / right.

MayCastleLeft / MayCastleRight:
You may perform a castling move with the rook to the left / right.

KingMoved: The king has moved.

LeftRookMoved / RightRookMoved:
The left / right rook has moved.

PieceBetweenLeft / PieceBetweenRight:
There is a piece between the king and the rook to the left / right.

KingAttack: The king is under attack.
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e LeftSquareAttack / RightSquareAttack:
The square to the left / right of the king is under attack.

e KingMoveleftAttack / KingMoveRightAttack:
The square two to the left / right of the king is under attack.

The following puzzle may appear hard at first sight, but it becomes
surprisingly simple when approached logically.

( Exercise 1.16 ) (Solution on page 410)

Joel, Felix and Oskar give Amanda the following puzzle. The three of them
each write their name on a piece of paper, and then exchange the pieces of
paper so that no one has the piece with their own name on it. They then
hold these pieces of paper so that Amanda can’t see what’s on them, but
tell her that each has the name of one of the others, and they challenge her
to figure out who is holding each name. She is allowed to look at the name
written on any one piece of paper.

1. Give a propositional formula which expresses the fact that each boy
holds one of the pieces of paper but no one holds the piece of paper
with their own name on it. Use the following propositional variables

to do this.

JonF:
JonO:
FonJ:
FonO:
OonJ:
OonF:

“Joel” is on Felix’s paper.
“Joel” is on Oskar’s paper.
“Felix” is on Joel’s paper.

“Felix” is on Oskar’s paper.

“Oskar” is on Joel’s paper.

“Oskar” is on Felix’s paper.

2. Suppose Amanda looks at Joel’s paper and sees “Oskar” written on it.
Use the formula above to deduce what name is written on the other
two pieces of paper.

Ambiguities of Natural Languages

Despite their intentionally obfuscated form, the statements in the Amos
Judd puzzle in Exercise 1.14 are precise and unambiguous. There are, how
ever, many common abuses of logical arguments arising from the ambiguities
of a natural language such as English. In the following examples we consider
particular difficulties which beginning logicians often find problematic.
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Example 1.16

Children can get very unruly in the back seat of the family car during long
drives. In such instances, an increasingly exasperated father in the driving
seat might find himself making promises such as the following:

“Everyone who sits quietly for the next hour
will get an ice cream when we stop for petrol.”

What exactly does this statement say? And more importantly, does it ex
press what the father means to say? You might well imagine that he wants
to suggest that:

“Anyone who misbehaves will not get ice cream.”

However, this does not follow from his statement: the children who get ice
cream will include those who sit quietly, but may well include the noisy ones
as well. In fact, he knows that even greater problems of retribution will arise
later on during the drive if only some of the children get the promised ice
cream, so it is always his unspoken intention that all of the children will get
ice cream, regardless of their behaviour (within reason).

His aim in making the statement was to manipulate language to his
benefit, as well as to provide a lesson for his children in its logical use. He
was being intentionally vague, relying on his children to misinterpret his
statement as saying something more than it actually does, namely that any
misbehaving children will not get ice cream. When in the end even the
misbehaving children get ice cream, those that sat quietly in anticipation of
their reward would be mildly upset at the unfairness of it all, but they could
not argue with their father’s explanation that he did not actually say that
the unruly children would lose out. Without a doubt he spoke the truth.

Needless to say, this strategy would not work for very long, as the children
will quickly become keen interpreters of any statements that their father
makes.

Example 1.17

Suppose a menu at a restaurant states the following:

“You may have coffee or tea with your meal.”
This clearly expresses a disjunction of two atomic propositions:

“You may have coffee with your meal
or you may have tea with your meal.”

However, does it really do this? Clearly the intention is that if you ask for
coffee, then you will be served coffee. But consider the following scenarios.
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1. Suppose the coffee maker is broken on the day you visit, and only tea
is available that day; is the menu wrong in this case? Certainly not
logically, assuming that you may still have tea.

2. Suppose the restaurant doesn’t have a coffee maker, and never actually
serves coffee at all; is the menu wrong in this case? Still as certainly
not logically, assuming that it serves tea.

The real intention of the proposition on the menu is something more akin
to conjunction rather than disjunction, as follows.

“You may have coffee with your meal
and you may have tea with your meal.”

However, this is still not true either, as it is unlikely that the restaurant
intends to allow you to order both beverages with your meal. The following
proposition might be a more accurate interpretation of the intended option
on the menu.

“You may have coffee with your meal
and you may have tea with your meal,
but not both.”

Are you satisfied with this? There is in fact still something seriously wrong
with this proposition. To see this clearly, let us introduce the following two
atomic propositions.

A = You may have coffee with your meal.
B = You may have tea with your meal.

Then the above proposition is
(AAB) A =(AAB).

However, this proposition is of the form p A =p; and recalling the fact noted
after Example 1.6 that no proposition p (such as A A B) can be true at the
same time as its negation —p, this means that the menu is giving no option
whatsoever!

The problem here is one of modality. That we may have a coffee, and
that we indeed do have a coffee, are different propositions, and we need to
be careful how we treat such modalities.

To correctly formulate the option, we might introduce the following two
atomic propositions.

C = You have coffee with your meal.
T = You have tea with your meal.

Then the option stated on the menu would stipulate that one, and only
one, of these atomic propositions are true. This can be rendered in many
(equivalent) ways, such as
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(CvT) A =(CAT)

“You have coffee with your meal
or you have tea with your meal,
but not both.”

or
(CA=T) vV (-CAT)

“You have coffee but not tea with your meal
or you have tea but not coffee with your meal.”

But this is still not the end of the story. Perhaps a particular diner drinks
neither coffee nor tea. The menu surely doesn’t force the diner to accept
one of these beverages; the diner surely has the option of having neither.
The option on the menu thus is merely stipulating the following

-(CAT)
“You do not have both coffee and tea with your meal.”
or equivalently
-C v T
“You do not have coffee with your meal
or you do not have tea with your meal.”

From this simple English proposition has sprouted a plethora of compli
cations. This is the greatest problem in formulating the design of systems,
and hence of getting such designs correct.

Example 1.18

If p is false then by definition p = ¢ is true regardless of the truth of q.
This observation gives rise not so much to a problem of ambiguity, but to
one of misunderstanding and confusion. For example, assuming that Carlos
is an ordinary man who is not the King of Spain, the following proposition
is false:

“If Carlos is a man, then Carlos is the King of Spain.”
However, the following statement is true:
“If Carlos is a woman, then Carlos is the King of Spain.”

Do not be distracted by the falsity of the conclusion; the only way that
the above statement can be false is if the premise is true whilst the conclu
sion is false. It is unfortunately a common misconception that the above
implication is false, as the implication should be as follows:
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“If Carlos is a woman, then Carlos is the Queen of Spain.”

This statement is true as well, for precisely the same reason that the previous
one is true: the premise of the implication is false.

Though this is a common confusion, it is well understood and properly
applied in several instances of natural language. For example, the statement

“If T told you once, I told you a hundred times!”

is meant to convey that you have been told something a hundred times
(assuming that you’ve been told once). This statement, of course, is typically
false due to an intended use of hyperbole it is highly unlikely that you
have been told something so many times.

As another example, the statement

“If he ever pays me back, then I’ll be a monkey’s uncle!”

expresses the doubt (i.e., falsity) that money lent will ever be returned,
by concluding an obviously false conclusion from the premise which is being
denied. As I can never be a monkey’s uncle, the only way that this statement
can be true is if he never pays me back.

Example 1.19

Suppose your teacher says the following to you:

“If you understand implication, then you will pass the exam.”
There are four scenarios to consider:

1. Suppose you understand implication, and you pass the exam. Clearly
you would consider the above statement to be true.

2. Suppose you don’t understand implication, and you fail the exam.
Again you would consider the above statement to be true, and you
might even think your teacher to be a wise sage. However, this thought
would just go to show that you indeed don’t understand implication.
The reason you failed the exam is not (necessarily) because you don’t
understand implication. To understand this point, consider the next
scenario.

3. Suppose you don’t understand implication, but nonetheless you pass
the exam, because you understand enough of the rest of the material.
This does not contradict your teacher’s claim; it is still true.

4. Suppose, finally, that you understand implication, but you fail the
exam nonetheless. In this case you may feel angry towards your
teacher, since he was obviously lying to you. (Of course, your teacher
would maintain that it is you who are lying, in claiming that you
understand implication.)
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In summary, the only way for the teacher’s statement to be false is if the
premise is true (i.e., you understand implication) while the conclusion is
false (you fail the exam).

Exercise 1.19 ) (Solution on page 411)

Consider the following four symbols: a white circle, a black circle, a white
square, and a black square:

OO @ [ 1

I have in mind one of these four symbols. I will accept any symbol which
either has the same colour or the same shape (or both) as the one I have
in mind, and otherwise I will reject it. If I accept the black square, what
does this suggest to you about whether I accept or reject the other three
symbols?

( Exercise 1.20 ) (Solution on page 411)

1s5)

If two’s a company and three’s a crowd, what’s four and five?

Truth Tables

By thinking carefully about the logical connectives, we can informally un
derstand their intended meanings. However, we still need to express these
meanings precisely; that is, we need to define the meaning of the con
nectives. In doing this, the semantics of propositional logic is formally,
rigorously and unambiguously defined.

One way in which we can do this concisely is by explicitly listing out
the truth values which a compound formula takes for each of the possible
combinations of truth values of its constituent propositions. A table which
contains this listing is called a truth table.

For example, negation —p can be defined by specifying its truth value
for each of the two possible truth values of p: if the truth value of p is true,
then the truth value of —p will be false; and if the truth value of p is false,
then the truth value of —p will be true. For ease of presentation, we shall
reserve the symbols T for true and F for false. The truth table for negation
is thus as follows.

- N
n g
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The remaining four connectives are similarly defined by the following truth
tables, which all have four rows corresponding to the four distinct combina
tions of truth values for the two propositions p and ¢ being combined using
the connectives.

Truth tables can also be used to understand far more complicated for
mulae, such as in the following example.

Example 1.20

Consider the statement from Example 1.16 made by a certain father:

“Everyone who sits quietly for the next hour
will get an ice cream when we stop for petrol.”

Let us define the following atomic propositions.

Quiet = You sit quietly.
Ice = You get an ice cream.

For you, as a perfectly logical child, the above statement translates to
Quiet = Ice if you remain quiet then you will get an ice cream  which has
the following truth table:

Quiet Ice ‘ Quiet = Ice

F F T
F T T
T F F
T T T

The only scenario in which the above statement can be considered false is
if Quiet is true and Ice is false that is, if you do not get an ice cream
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despite being quiet; in this instance you would be justified in being angry
with your father for lying to you. However, your father, being trustworthy,
would never allow this scenario.

It is tempting to be angry that your noisy siblings also get ice cream.
However, there is no justification in this based on the above statement. As
is clear from the second row of the truth table, the statement is true even in
the instance that a noisy child gets an ice cream. It is a common pitfall to
interpret p = ¢ as p & ¢ (that is, to understand from the above statement
that you will get an ice cream if, and only if, you are quiet), and to believe
that p = ¢ implies that ¢ = p (that is, to understand from the above
statement that you will not get an ice cream if you are not quiet).

The above statement is giving you a guarantee that you will get an ice
cream if you are quiet and therefore you best be quiet. If you are not
quiet, then there is no guarantee that you will get an ice cream, but there
is no guarantee that you won’t!

( Exercise 1.21 ) (Solution on page 411)

Recall the statement from Example 1.19 made by a certain teacher:

“If you understand implication, then you will pass the exam.”

Translate this statement into a propositional formula, and use its truth table
to justify when it is true or false.

Example 1.21

]

Catherine wishes to go to a party tonight, and would be happy to go with
either Jim or Jules. However, as she is currently dating both Jim and Jules,
she doesn’t want to go to the party if they will both be there.

Let us define the following atomic propositions.

Cat = Catherine goes to the party.
Jim = Jim goes to the party.
Jules = Jules goes to the party.

Catherine’s predicament then can be formalised as follows.
Cat = —(Jim A Jules).

This proposition states that Catherine goes to the party only if Jim and
Jules don’t both go to the party. We can determine when this proposition
is true or false by building up a truth table based on all possible values of
the atomic propositions Cat, Jim and Jules, and the values of the constituent
propositions which make up the complete proposition. The resulting truth
table is as follows.
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4 —~(Jim A Jules) I
Cat Jim Jules | Jim A Jules Cat = —(Jim A Jules)
F F F F T T
F F T F T T
F T F F T T
F T T T F T
T F F F T T
T F T F T T
T T F F T T
T T T T F F Y

The first three columns systematically list out the eight distinct combina
tions of truth values for the three propositions Cat, Jim and Jules; the next
column applies the rules from the truth table for A to the columns for Jim
and Jules; the next column applies the rules for — to the column just con
structed; and the final column applies the rules for = to the columns for
Cat and —(Jim A Jules). From this we can discover that the proposition is
true in all cases except when all three atomic propositions are true; that is,
it is false if, and only if, all three participants in this love triangle go to the
party.

As a point of interest, we can build truth tables in a more concise way
which entails writing the proposition of interest along the top row of the
truth table, and filling in columns defined by the propositional variables
and connectives, working from the “inside out.” The truth table for the
above example would then be rendered as follows:

/Cat Jim  Jules Cat = — (Jim A Jules)

F F F F T T F F F

F F T F T T F F T

F T F F T T 1T F F

F T T F T F T T T

T F F T T T F F F

T F T T T T F F T

T T F T T T T F F

T T 7T T F F T T T
\(0) ©) (0 H @ eoe o

The bottom row of numbers is included in this example to indicate at what
stage each column was filled in:

(0) The three initial columns are filled in, representing all 8 possible com
binations of truth values for the atomic propositions Cat, Jim and Jules.

(1) The columns for the propositional variables are then filled in during
the first stage.
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(2) After this the column for Jim A Jules is filled in (under the A symbol)
during the second stage.

(3) Then the column for —~(Jim A Jules) is filled in (under the — symbol)
during the third stage.

(4) Finally the column for Cat = —(Jim A Jules) is filled in (under the =
symbol) during the fourth stage.

Each column is computed by referring to columns which have been computed
in earlier stages.

( Exercise 1.22 ) (Solution on page 412)

How many rows will there be in a truth table involving four propositional
variables P, @, R and S? What if there are five propositional variables?
What if there are n propositional variables?

( Exercise 1.23) (Solution on page 412)

Construct truth tables for the following propositions.

1. 2(P & —Q).
2. (PAQ) V (AP A-Q).
3. (PAQ) = (mRVS).

]

Exercise 1.24 ) (Solution on page 413)

The “exclusive or” operation p @ ¢ has the following truth table:

That is, p @ q is true if, and only if, one of p and q is true and the other is
false.

Confirm that the formula you gave in Example 1.10 (page 29) for ex
pressing p @ ¢ in propositional logic gives the same truth table.
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Equivalences and Valid Arguments

We have seen that a given proposition can be expressed as a formula in
propositional logic in different yet equivalent ways. As a further example,
the formula

Cat = —(Jim A Jules) “If Cat then not both of Jim and Jules.”

from Example 1.21 is equivalent to the formula

—(Cat A Jim A Jules) “Cat, Jim and Jules cannot all be true.”
as well as
—Cat vV —Jim Vv —Jules. “One of Cat, Jim or Jules is false.”

To verify that two compound formula p and g are equivalent, we could
construct truth tables for p and ¢ and observe that they have the same
truth values under all interpretations of their respective atomic propositions.
Alternatively we could build the truth table for the formula p < ¢ and
observe that it is true under all interpretations. If so, the two propositions
p and q are said to be logically equivalent.

A proposition which is true regardless of the truth values of its atomic
propositions is called a tautology, and the proposition is said to be valid. A
contradiction on the other hand is a proposition which is false regardless of
the truth values of its atomic propositions, and is said to be unsatisfiable.
A proposition which is true under some interpretation of its atomic propo
sitions that is, one that is not a contradiction is said to be satisfiable.

Example 1.24

]

Any formula of the form p Vv —p is a tautology, while any of the form p A —p
is a contradiction. These facts were noted already in Section 1.2, and can
be verified formally by constructing the truth tables for these formulee.

p | p pv-p p| p pAp
F | T T Fl T F
T | F T T | F F

Each entry in the column for p VvV —p is true, confirming that p v —p is a
tautology, while each entry in the column for p A —p is false, confirming that
p A —p is a contradiction.

Note that if we take p = A A B, then the contradiction

pA-p = (ANB) A =(AAB)
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is precisely the formula which appeared in Example 1.17 (page 37).

( Exercise 1.25 ) (Solution on page 413)

Construct truth tables for each of the following formulae to determine which
are tautologies and which are contradictions.

LpVv (pAg).
2. (pAg) A —(pVa).
3. (p= —p) & —p.
4 p=q9) =p
5. p=(¢=p).

Tautologies are important in ascertaining the validity of arguments. Con
sider, for example, our first argument from Section 1.1 (page 18):
1. Either this man is dead or my watch has stopped.
2. My watch is still ticking.
Therefore
3. This man is dead.

This argument is valid if the conjunction of the two premises implies the
conclusion, that is, if the following implication is valid:

(Dead vV Watch) A —~Watch = Dead

Again, this means that the proposition is a tautology, that it is true regard
less of the truth values of its atomic propositions. We can easily confirm
this by constructing a truth table for this proposition:

Dead Watch ‘ (Dead vV Watch) A — Watch = Dead

F Foo F F F FT F T F
F T FT T FF T T F
T F T T F TT F T 7T
T T TT T FF T T 7T

In contrast, consider the argument suggested by Exercise 1.9 (page 26):

1. If my dog barks, then my dog doesn’t bite.
2. My dog doesn’t bark.

Therefore
3. My dog bites.
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Its formalisation yields the following truth table:

Barks Bites ‘ (Barks = - Bites) A —Barks = Bites
F F F TTF TTF F F
F T F TF T TTF T T
T F T TTF FFT T F
T T T FF T FF T T T

The first row of this truth table shows that the proposition and hence the
argument it represents is not valid. It presents a scenario in which the
proposition may be false: a dog that neither barks nor bites satisfies both
premises, but not the conclusion. Such a dog provides a counterexample
to the validity of the argument.

( Exercise 1.26 ) (Solution on page 414)

In Example 1.13 we represented a piece of computer program in proposi
tional logic as:

p = (Pressure = Land) A (Height = Land).
We also considered two optimisations of this program represented as

q = Pressure A Height = Land,
r = Pressure V Height = Land.
Of course, an optimisation is only correct if the representation of the opti

mised program code is equivalent to the original one. Explain which of the
two optimisations is correct and which is not.

Algebraic Laws for Logical Equivalences

Using truth tables to prove properties about propositions, specifically that
two propositions are equivalent, can quickly become tedious. However, we
can avoid relying on truth tables by reasoning equationally much as we
would do in algebra and arithmetic.

For example, we might conclude that 3 x (4+5) = 27 in the following
way:

3x(4+5) = (3x4) + (83x5)
= 12 + 15 = 27.

In the first line of this calculation we used the algebraic law that says that
multiplication distributes over addition: a(b+c) = ab+ac; and in the second
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line we used the principle that we can replace equals by equals: if a = b and
c=dthena+c=0b+d.

A similar kind of reasoning is possible with propositional logic, with
equivalence < playing the role of equality =. Once we have determined that
two propositions p and g are equivalent, that p < ¢, we can then replace
one with the other. First, though, we need to know what equivalences we
can use as our "algebraic laws”. A large number of these are given as follows.

Commutativity Laws

pVqg & qVp PAGg < gAD

Associativity Laws

pv(gvr) & (pvgVvr PA(GAT) & (PAGAT

Idempotence Laws

pVp & p PAD & P

Distributivity Laws

pV(gAr) & (pvgA(pVr) pA(gVvr) & (pAgV(pAT)

De Morgan’s Laws
“(pve) & pA—q “(prg) & pVq
Double Negation Law

-p & D

Tautology Laws

pVtrue & true pAtrue & p

Contradiction Laws

pVfalse & p pAfalse & false

Excluded Middle Laws

pV-p & true pA—-p < false

Absorption Laws

pV(pAg) & p pA(pVe) & p

Implication Law

p=4q < PVg
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Contrapositive Law

pP=q < 7q="p

Equivalence Law

peq & (p=9A(@=>Dp)

You can (and should) show that all of the above laws are valid tautologies
by constructing appropriate truth tables. However, some laws can be shown
to be valid by using laws that have already been previously confirmed. For
example, we can verify the validity of the Contrapositive Law as follows:

p=>q & —pVgq (Implication)
& qVp (Commutativity)
& gV -p  (Double Negation)

& —g= —p (Implication)

Of course, this derivation relies on the Implication, Commutativity and
Double Negation Laws being verified first.

More importantly, we can use the above equivalences to derive ever more
equivalences, bypassing the need to construct truth tables to justify them.

Example 1.26

We can derive the equivalence pV (-p A q) < pV ¢ using the following
sequence of steps:

pV (-pAgq) & (pV-Dp) A (pVq) (Distributivity)

< true A (pVaq) (Ezcluded Middle)
< (pV@q) A true (Commutativity)
& pVg (Tautology)

We can equally use this technique to verify that a proposition p is a
tautology by demonstrating that p < true.

Example 1.27

We can demonstrate that (p = ¢) V (¢ = r) is a tautology as follows:
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=9 V (g=r)

=

U

(pvg) Vv (mgVvr)
p VvV ((gv=g)Vvr)
-p V (truevr)
(mp VvV 7)Vtrue

true

(Implication, twice)
(Associativity, twice)
(Bzcluded Middle)
(Commutativity, Associativity)

(Tautology)

As in algebra, we will usually not mention applications of associativity and
commutativity, and write formulae like p vV ¢ V r instead of pV (¢ V r) or
(pV q) vV r. This allows us to represent the above calculation in a more
compact way as follows:

=49 VvV (@g=r)

=4

=

&

pVqgV-oqgVr
-p V true V. r

true

Exercise 1.27 ) (Solution on page 415)

(Implication, twice)
(Bzcluded Middle)
(Tautology)

Give derivations of the following equivalences.

P A(pVg) & pAg.

. (p=q)

1
2
3.p=(Vvr)
4. p=(gAT)
5. (pAg) =T
6. (pvg)=>r

< p AN q.

K DR

=49 Vv (p=r).
p=4q A (p=r).
(p=r1) Vv (g=r).
(p=r1) A (g=r).

Additional Exercises

1. Which of the following are statements?

(a) “17 is an odd integer.”
(b) “Manchester is the capital of Great Britain.”
(c) “Unload the dishwasher if it has completed its washing cycle.”

(d) “Are all roses red?”
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(e) “All roses are red.”

2. Negate each of the items from above that you determine to be state
ments.

3. Which of the following are valid deductions?

(a) Mammals are warm blooded animals.

Whales are mammals.

Therefore whales are warm blooded animals.
(b) Mammals are warm blooded animals.

Fish are not mammals.

Therefore fish are not warm blooded animals.
(c) Some doctors are surgeons.

Some women are doctors.

Therefore some women are surgeons.
(d) All horses are animals.

Therefore all horses’ heads are animal heads.
(e) Some girls are better than others.

Therefore some girls’ mothers are better than other girls’ mothers.

4. Formalise the following statement of Sherlock Holmes in propositional
logic:

“If I’'m not mistaken Watson, that was the Dore and Totley
tunnel through which we have just come, and if so we shall
be in Sheffield in a few minutes.”

5. Let F and T and W represent the following propositions.

E: Your laptop’s warranty has expired.
T: You have tampered with the electronics in your laptop.
W: Your laptop is covered by its warranty.

(a) Translate the following statements into propositional logic.

Wy: Your laptop is covered by its warranty as long as the warranty
has not expired and you have not tampered with the laptop’s
electronic components.

W,: Your laptop is not covered by its warranty if the warranty has
expired or if you have tampered with the laptop’s electronic
components.

(b) How do these two statements differ? Which one would you prefer
to see on the warranty of your new laptop?

6. Given that P and R are true while @ is false, determine the truth
values of the following formulae. Verify these by building truth tables
for the given formulee.
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() PA(QVR)

(b) (PAQ)VR

() (PAQ) A R
(d) “P V ~(-Q A R)

7. Write each of the following statements symbolically in the form P = @
(using the suggested propositional variables), and then express them
in English in the form “If ... then ....”

(a) I will play golf tomorrow (G) unless it rains (R).

(b) I'll do it (D) if you ask me nicely (N).

(c) Ann cries (C) every time she watches The Titanic (W).

(d) I never leave the house (L) without locking the door (D).

(e) A rectangle is a square (.S) only if all four of its sides are the same
length (L).

(f) A rectangle is a square (.S) if all four of its sides are the same
length (L).

8. Letting CatAway stand for “The cat's away” and MicePlay stand for
“The mice will play,” translate each of the following into propositional
logic.

(a) “The mice will play whenever the cat’s away.”
(b) “The mice will play only if the cat’s away.”
(c) “The mice will play unless the cat’s not away.”

9. Suppose I lay the following four cards on the table, each of which has
a shape on one side (either a circle or a square) and a pattern on the
other side (either stripes or dots).

I claim that:

“Every card with a circle on one side
always has stripes on the other side.”

Which card(s) do you need to turn over in order to be certain that I
am telling the truth?

This exercise is known as a Wason Selection Test after the psychol
ogist Peter Wason who first described it in 1966. Be careful with your
answer: studies rarely result in a reported success rate of over 20%)!
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10.

11.

12.

13.

14.

15.

Explain the difference between the following three offers:

(a) You can watch TV if you tidy your room.
(b) You can watch TV only if you tidy your room.

(c) You can watch TV if, and only if, you tidy your room.

Which offer should a logical parent make to their children?

Give the truth tables defining the NAND, NOR and conditional con
nectives p | ¢, p | ¢ and ¢ < p > 7 defined in Exercise 1.10, and show
that these are the same as the truth tables for the formulz you gave
in Exercise 1.10 for these connectives.

Propositional Logic is based on the three connectives —, VvV and A;
the Implication Law and the Equivalence Law show that the two
connectives = and < can be defined in term of the other three.

(a) Show how to express —p, pV ¢ and p A g using only the NAND
connective |.

(b) Show how to express —p, p V ¢ and p A g using only the NOR
connective |.

A friend proposes the following game to you. You keep tossing a coin
over and over until one of the following two things happens:

e if two heads occur in a row, then the game ends; you win, and
your friend will give you £2;

e if a tail occurs followed immediately by a head, then the game
ends; your friend wins, and you must give your friend £1.

Is it worth playing this game?

In a certain country, every inhabitant is either a truth teller who always
tells the truth, or a liar who always lies. While travelling in this
country, you meet two people, Abe and Ben. Abe says, “Ben and I are
both liars.” Is Abe a truth teller or a liar? What about Ben?

Argue that Superman doesn’t exist. To do this, start by making the
following four assumptions:

Xi: If Superman were able and willing to prevent evil, he would do
s0.

X,: Superman does not prevent evil.

X3: If Superman were unable to prevent evil, he would be impotent;
and if he were unwilling to prevent evil, he would be malevolent.

X,: If Superman exists, he is neither impotent nor malevolent.

Argue as follows. First introduce the following variables:
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“Superman is able to prevent evil.”
“Superman is willing to prevent evil.”
“Superman is impotent.”

“Superman is malevolent.”
“Superman prevents evil.”
“Superman exists.”

mv R~ S

(a) The first assumption translates into the following formal logical
statement:
Xi: (AANW) = P.
Translate the remaining assumptions X», X3 and X, into formal
logical statements.
(b) Use assumptions X; and X, to argue that =A v -W.
(c) Use assumption X3, and the fact from (b), to argue that I v M.

(d) Use assumption X4, and the fact from (c), to draw your conclu
sion.

16. Which of the following statements is true?

(a) All of the below.
(b) None of the below.
(c) All of the above.
(d) One of the above.
(e) None of the above.
(f) None of the above.

17. The following famous puzzle is referred to as the Einstein Riddle as
Albert Einstein is sometimes credited with inventing it as a boy. He
is also credited with claiming that only two percent of the world’s
population can solve it.

You are given the following information about five houses sitting in a
row on some street which are each painted a different colour, and whose
inhabitants are of different nationalities, own different pets, drink dif
ferent beverages, and smoke different brands of American cigarettes.
In statement (e), right refers to the reader’s right.

(a) The Englishman lives in the red house.
(b) The Spaniard owns the dog.

(d) The Ukrainian drinks tea.
(e) The green house is immediately to the right of the ivory house.

)
)
(c) Coffee is drunk in the green house.
)
)
(f) The Old Gold smoker owns snails.
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18.

(g) Kools are smoked in the yellow house.

(h) Milk is drunk in the middle house.

(i) The Norwegian lives in the first house.

(j) Chesterfields are smoked next door to the man with the fox.

(k) Kools are smoked next door to the house where the horse is kept.
(1) The Lucky Strike smoker drinks orange juice.

(m) The Japanese smokes Parliaments.

(n) The Norwegian lives next to the blue house.

The question is: Who drinks water? Who owns the zebra?

Verify the Laws of Equivalence from Section 1.7, either directly by
using truth tables, or by deriving them from previous laws which have

already been verified.

19. Verify the following laws for implication and equivalence.

(@) p=rp

() p=aAr(@=r1) = (p=1).
() (p=q = (pvr=gqvVvr).
(d (p=4q) = (PAT=4qAT).
(e) p=4q) & (ng= p).
() pep

(8) (pe4q) = (2= p).

)
h) pegnr(ger) = (per).
() (pe4q) = (PVregvr).
() pe g = (pAT S gAT).
&) (peg & (e 9.
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