Propagation Through Trapped Sets
and Semiclassical Resolvent Estimates

Kiril Datchev and Andras Vasy

Let P = —h*A+V(x), V € C{(R"). We are interested in semiclassical resolvent
estimates of the form

- a(h)

Ix(P — E —i0) " xll 2@y r2@n) < 5 h € (0, hol, (D
for E > 0, y € C*°(R") with |x(x)| < (x)™*, s > 1/2. We ask: how is the function
a(h) for which (1) holds affected by the relationship between the support of y and
the trapped set at energy E, defined by

Kg ={a e T*R":3C > 0,Vt > 0, |exp(tHp)a| < C}?

Here p = [§]> + V(x) and H, = 2§ -V, — VV - V¢.

We have (1) with x(x) = (x)™* and a(h) = C for all E in a neighborhood of
Ey > 0if and only if Kg, = @ ([6,7]). For general V' and y, the optimal bound is
a(h) = exp(C/ h), but Burq [1] and Cardoso-Vodev [2] prove that for any given V/,
if y vanishes on a sufficiently large compact set, for any £ > 0 there exists C such
that (1) holds with a(h) = C. In our main theorem we improve the condition on y
and obtain a shorter proof at the expense of an a priori assumption.

Theorem 1 ([3]). Fix E > 0. Suppose that (1) holds for x(x) = (x)™° with s >
1/2 and with a(h) = h™" for some N € N. Then if we take instead x such that
Kg N T*supp y = 0, we have (1) with a(h) = C.
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In fact our result holds for more general operators, and the cutoff y can be
replaced by a cutoff in phase space whose microsupport is disjoint from Kg. In
certain situations it is even possible to take a cutoff whose support overlaps Kz: see
[3] for more details and references.

The a priori assumption that (1) holds for y(x) = (x)™° with a(h) = b~V is
not present in [1, 2] and is not always satisfied, but there are many examples of
hyperbolic trapping where it holds: see e.g. [5, 8].

To indicate the comparative simplicity of our method, we prove a special case
of the Theorem, under the additional assumption that supp V' C {|x| < Ry} and
suppy C {Ro < |x| < Ry + 1}. In other words, suppose (P — A)u = f, with
ReAd = E,and supp f C {Ro < |x| < Ry + 1}, || f|| < 1. We must prove that
|| xull < Ch™', uniformly as Im A — 0. Here and below all norms are L? norms.

Let S denote functions in C*°(T*R") which are bounded together with all
derivatives, and for a € S define

Op(a)u(x) = (Zﬂh)_”/exp(i(x —y)-§/alx. Hu(y)dyds.

Because P — A has a semiclassical elliptic inverse away from p~'(E) (see for
example [4, Chap. 4]), we have || Op(a)u|| < C whenever suppa N p~'(E) =0.
Consequently it is enough to show that ||Op(a)u| < Ch~! for some a € S
with @ nowhere vanishing on 7* supp y N p~ ' (E). We will prove this inductively:
we will show that if there is a; with this nowhere vanishing property such that
| Op(ay)u|| < Ch*, then there is a, with the same nowhere vanishing property such
that || Op(as)u|| < Ch**'/2, provided k < —3/2. The base case follows from the a
priori assumption that ||u|| < A~"~!, so it suffices to prove the inductive step.

Take ¢ = ¢(]x|) > 0 a smooth function such that ¢ = 1 when |x| < Ry, ¢ = 0
when |x| > Ry+1, ¢’ = —? with y smooth. We require further that 7* supp 1 be
contained in the set where a; is nonvanishing, and in the end we will take a, = V.
We will now use a positive commutator argument with ¢ as the commutant:

H([Popluu) = i (u.pf ) —i(pfou) = 2ImAllul® = =Cllyull| Il @)

where we used first (P — A)u = f and then ImA > 0 and supp f C { # 0}. The
semiclassical principal symbol of i [P, ¢] is

hH,p = 2hpe' = —2hpy°,

where p is the dual variable to |x| in T*R".

We now define an open cover and partition of unity of 7 supp y according to
the regions where this commutator does and does not have a favorable sign (the
favorable sign is H,¢ < 0, because of the direction of the inequality in (2)). Take
¢ > 0 small enough that for p < 2¢, |x| > Ry, t < 0 we have x + 2pt &
supp V. Let K be a neighborhood of p~'(E) N T* supp y with compact closure in
T*{Ry < |x| < Ry + 1}, and let O be a neighborhood of K with compact closure



Propagation Through Trapped Sets and Semiclassical Resolvent Estimates 9
in T*{Ry < |x| < Ro + 1}, and let
Uy ={a€ 0:p>c}, U_={aecO0:p<2cU(T*R"\ K).

Take ¢+ € C°(0) with ¢ + ¢2 = 1 on T* supp y and with supp¢p+ C Ux.
Then
H,p = —b* —2py2¢2, where b = /2p¥¢

and if B = Op(b) and _ = Op(¢-)
i[P,¢] = —hB*B + h®_R,®_ + h’R, + O(h™),

where R;» = Op(r;2) for ri; € S with suppr;» C supp . Combining with (2),
and using L? boundedness of R;, we obtain

h|Bull* < Ch|®_ull* + h*(Rou.u) + C |yull| £ || + OR™).
Since (Ryu,u) < C hk by inductive hypothesis, we have
| Bull> < C(|®@—ull* + K>+ + 7" [yullll £ 1)
< C(|P—ul® + K+ 67 h 72 + 8| yul),

where we used || /|| < 1, and where § > 0 will be specified presently. Since at least
one of B and ®_ is elliptic at each point in the interior of 7* supp ¥, we have

Iyull* < C([P-ull® + || Bull?). 3)
from which we conclude that, if § is sufficiently small,
| Bul* < Cs([|D—ul® + h™> + n*+1). 4)

Because ¢ was chosen small enough that all backward bicharacteristics through
supp ¢ stay in T*{|x| > Ry}, where P = —h>A, we have

IP_ull < Ch7",

by standard nontrapping estimates (see, for example, [3, Sect. 6]). This, combined
with (3) and (4), gives
Iyl < Cs(h™ + K1,

after which taking a, = ¥ completes the proof of the inductive step.
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