
Operator Theory:
Advances and Applications, Vol. 227, 43–55
c⃝ 2013 Springer Basel

Finite and Infinite Gap Jacobi Matrices

Jacob S. Christiansen

Abstract. The present paper reviews the theory of bounded Jacobi matrices
whose essential spectrum is a finite gap set, and it explains how the theory
can be extended to also cover a large number of infinite gap sets. Two of
the central results are generalizations of Denisov–Rakhmanov’s theorem and
Szegő’s theorem, including asymptotics of the associated orthogonal polyno-
mials. When the essential spectrum is an interval, the natural limiting object
𝐽0 has constant Jacobi parameters. As soon as gaps occur, ℓ say, the complex-
ity increases and the role of 𝐽0 is taken over by an ℓ-dimensional isospectral
torus of periodic or almost periodic Jacobi matrices.
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Parreau–Widom sets.

1. Introduction

Let 𝑑𝜇 be a probability measure on ℝ with moments of all orders, that is,∫
ℝ

∣𝑥∣𝑛𝑑𝜇(𝑥) < ∞ for all 𝑛 ≥ 0. (1.1)

When 𝑑𝜇 is nontrivial (i.e., supp(𝑑𝜇) is infinite), we can apply the Gram–Schmidt
process to 1, 𝑥, 𝑥2, . . . and obtain a sequence {𝑃𝑛}𝑛≥0 of orthonormal polynomials

⟨𝑃𝑛, 𝑃𝑚⟩ :=
∫
ℝ

𝑃𝑛(𝑥)𝑃𝑚(𝑥)𝑑𝜇(𝑥) = 𝛿𝑛𝑚, (1.2)

where each 𝑃𝑛 has positive leading coefficient and is of degree 𝑛. It is a basic fact
that such polynomials satisfy a three-term recurrence relation of the form

𝑥𝑃𝑛(𝑥) = 𝑎𝑛+1𝑃𝑛+1(𝑥) + 𝑏𝑛+1𝑃𝑛(𝑥) + 𝑎𝑛𝑃𝑛−1(𝑥), 𝑛 ≥ 0 (1.3)
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with 𝑎𝑛 = ⟨𝑃𝑛−1, 𝑥𝑃𝑛⟩ > 0 and 𝑏𝑛 = ⟨𝑃𝑛−1, 𝑥𝑃𝑛−1⟩ ∈ ℝ for 𝑛 ≥ 1 (by convention,
𝑃−1(𝑥) ≡ 0). To see this, simply expand 𝑥𝑃𝑛 in terms of 𝑃0, 𝑃1, . . . , 𝑃𝑛+1 and use
the orthogonality relation (1.2). Note also that

𝑃𝑛(𝑥) =
1

𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛
(
𝑥𝑛 − (𝑏1 + ⋅ ⋅ ⋅+ 𝑏𝑛)𝑥

𝑛−1 + ⋅ ⋅ ⋅
)

for 𝑛 ≥ 1. (1.4)

The spectral theorem for orthonormal polynomials (also known as Favard’s
theorem) states that for any pair of sequences {𝑎𝑛, 𝑏𝑛}∞𝑛=1 ∈ (0,∞)ℕ × ℝℕ, there
exists a probability measure 𝑑𝜇 on ℝ such that the polynomials generated by (1.3),
with 𝑃0(𝑥) = 1, satisfy the orthogonality relation (1.2). In general, this measure
of orthogonality need not be unique. But when the recurrence coefficients are
bounded, say 𝑎𝑛, ∣𝑏𝑛∣ ≤ 𝐶, then 𝑑𝜇 is indeed unique and supp(𝑑𝜇) is contained in
[−3𝐶, 3𝐶]. Conversely, if 𝑑𝜇 has compact support, then the associated recurrence
coefficients are bounded by

max
𝑥∈supp(𝑑𝜇)

∣𝑥∣ < ∞

and the polynomials are dense in 𝐿2(𝑑𝜇). We shall henceforth assume that supp(𝑑𝜇)
is compact.

The three-term recurrence relation (1.3) links orthogonal polynomials to Ja-
cobi matrices, that is, tridiagonal matrices of the form

𝐽 =

⎛⎜⎜⎜⎝
𝑏1 𝑎1
𝑎1 𝑏2 𝑎2

𝑎2 𝑏3 𝑎3
. . .

. . .
. . .

⎞⎟⎟⎟⎠ (1.5)

with 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ. In fact, the matrix 𝐽 in (1.5) represents the operator of
multiplication by the identity function 𝑥 in the Hilbert space 𝐿2(𝑑𝜇) with respect
to the orthonormal basis {𝑃𝑛}𝑛≥0. When 𝐽 is viewed as an operator on ℓ2(ℕ), its
spectrum 𝜎(𝐽) coincides with supp(𝑑𝜇) and we shall refer to 𝑑𝜇 as the spectral
measure of 𝐽 .

In spectral theory for orthogonal polynomials, one studies the relation be-
tween nontrivial probability measures 𝑑𝜇 satisfying (1.1) on one hand and pairs of
sequences {𝑎𝑛, 𝑏𝑛}∞𝑛=1 ∈ (0,∞)ℕ × ℝℕ on the other hand. The aim of the present
paper is to give a general view of the situation where 𝑑𝜇 is compactly supported
and the recurrence coefficients (also known as Jacobi parameters) are bounded
sequences. As already mentioned, there is a one-one correspondence between these
two classes of objects and we shall focus on results that explain how qualitative fea-
tures of the Jacobi parameters, say, are reflected in the measure of orthogonality,
and vice versa.

Throughout, we shall write the probability measure 𝑑𝜇 as

𝑑𝜇 = 𝑓(𝑥)𝑑𝑥 + 𝑑𝜇s, (1.6)
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with 𝑑𝜇s singular to 𝑑𝑥. Rather than 𝜎(𝐽), many of the results are more suitably
formulated in terms of 𝜎ess(𝐽), the essential spectrum of 𝐽 . By definition,

𝜎ess(𝐽) := {𝑥 ∈ 𝜎(𝐽) ∣ 𝑥 is not an isolated eigenvalue of 𝐽}. (1.7)

As regards proofs, in particular, a key role is played by the 𝑚-function (or Stieltjes
transform of 𝑑𝜇) defined by

𝑚(𝑧) := 𝑚𝜇(𝑧) =

∫
𝑑𝜇(𝑥)

𝑥− 𝑧
, 𝑧 ∈ ℂ ∖ supp(𝑑𝜇). (1.8)

This analytic function is known to be a Nevanlinna–Pick function (i.e., Im𝑚(𝑧) ≷ 0
for Im 𝑧 ≷ 0) and we have

𝑚(𝑧) = −1/𝑧 +𝒪(𝑧−2) (1.9)

near ∞. In fact, one can write down the Laurent expansion of 𝑚𝜇 around ∞ in
terms of the moments of 𝑑𝜇. More importantly, the boundary values 𝑚(𝑥+ 𝑖0) :=
lim𝜀↓0𝑚(𝑥+ 𝑖𝜀) exist for a.e. 𝑥 ∈ ℝ and

1

𝜋
Im𝑚𝜇(𝑥+ 𝑖𝜀) 𝑑𝑡

𝑤−−→ 𝑑𝜇 as 𝜀 ↓ 0. (1.10)

To be even more specific,

𝑓(𝑥) =
1

𝜋
Im𝑚𝜇(𝑥+ 𝑖0) a.e. on ℝ (1.11)

and

𝜇s
({𝑥}) = lim

𝜀→0
𝜀 Im𝑚𝜇(𝑥+ 𝑖𝜀) for all 𝑥 ∈ ℝ. (1.12)

So isolated mass points of 𝑑𝜇 (or isolated eigenvalues of 𝐽) are poles of 𝑚.
The simplest compact subsets of ℝ that have positive measure are intervals

of the form [𝛼, 𝛽] with −∞ < 𝛼 < 𝛽 < ∞. In Section 2, we shall consider the
situation when 𝜎ess(𝐽) has this form and without loss of generality we may assume
that −𝛼 = 𝛽 = 2. The associated Jacobi parameters are often – but not always
– close to 1 and 0 as 𝑛 → ∞. Orthogonal polynomials on a compact interval are
intimately related to Jacobi parameters that are asymptotically constant. As we
shall see, the theory is well developed and many precise results are available.

In Section 3, we generalize our studies to finite gap sets 𝔢, that is, finite
unions of closed intervals. When 𝔢 is the union of two or more disjoint intervals,
the complement ℂ ∖ 𝔢 is no longer simply connected. This is to be overcome by
using the universal covering map. Perhaps more seriously, the structure of the
Jacobi parameters changes. They are no longer asymptotically constant but rather
asymptotically periodic or almost periodic. The natural limit point (viz., the free
Jacobi matrix) also has to be replaced by an ℓ-dimensional torus, where ℓ counts
the number of gaps in 𝔢.

Finally, in Section 4 we consider infinite gap sets of Parreau–Widom type.
This notion of regular compact sets includes Cantor sets of positive measure,
among others. The theory is less developed, but many results that hold for fi-
nite gap sets can be extended to the infinite gap setting.
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2. Perturbations of the free Jacobi matrix

The most natural choice of Jacobi parameters is

𝑎𝑛 ≡ 1 and 𝑏𝑛 ≡ 0. (2.1)

As is well known, the associated orthogonal polynomials are Chebyshev of the 2nd
kind

𝑈𝑛(𝑥) =
sin(𝑛+ 1)𝜃

sin 𝜃
, 𝑥 = 2 cos 𝜃.

They are orthogonal on the interval [−2, 2] with respect to the semicircle law

𝑓0(𝑥) =
√
4− 𝑥2/2𝜋. We shall follow the standard terminology and refer to

𝐽0 =

⎛⎜⎜⎜⎝
0 1
1 0 1

1 0 1
. . .

. . .
. . .

⎞⎟⎟⎟⎠ (2.2)

as the free Jacobi matrix.

If 𝑎𝑛 → 1 and 𝑏𝑛 → 0, then 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 is a compact perturbation
of 𝐽0 and hence 𝜎ess(𝐽) = [−2, 2] by Weyl’s theorem. There may be points in
supp(𝑑𝜇) ∖ [−2, 2], but these are all isolated mass points that can only accumulate
at ±2. Moreover, a result of Nevai [14] states that the ratio 𝑃𝑛+1(𝑥)/𝑃𝑛(𝑥) has a
limit for 𝑥 ∕∈ 𝜎(𝐽).

The condition 𝜎ess(𝐽) = [−2, 2], on the other hand, is by itself not strong
enough to imply 𝑎𝑛 → 1 and 𝑏𝑛 → 0 (see, e.g., [21, Section 1.4] for a counter-
example). An extra condition is needed and for 𝑑𝜇 as in (1.6), the Denisov–
Rakhmanov theorem [9] states that if 𝜎ess(𝐽) = [−2, 2] and 𝑓(𝑥) > 0 a.e. on
[−2, 2], then 𝑎𝑛 → 1 and 𝑏𝑛 → 0. Denoting by 𝐽𝑛 the 𝑛 times stripped Jacobi ma-
trix (i.e., the matrix obtained from 𝐽 by removing the first 𝑛 rows and columns),
the above conclusion can also be formulates as 𝐽𝑛 → 𝐽0 strongly.

The more detailed spectral analysis involves the rate of convergence of the
Jacobi parameters. Of particular interest are the cases of Hilbert–Schmidt and
trace-class perturbations of 𝐽0. A deep result of Killip and Simon [12] classifies the
spectral measures of all Jacobi matrices 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 for which

∞∑
𝑛=1

(𝑎𝑛 − 1)2 + 𝑏2𝑛 < ∞. (2.3)

They all have

supp(𝑑𝜇) = [−2, 2] ∪ {𝑥𝑘},
where {𝑥𝑘} is a countable set of isolated mass points, possibly empty, and are
precisely those probability measures of the form (1.6) that satisfy∫ 2

−2
log 𝑓(𝑥)

√
4− 𝑥2 𝑑𝑥 > −∞ (2.4)
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and ∑
𝑘

(∣𝑥𝑘∣ − 2
)3/2

< ∞. (2.5)

The proof of Killip–Simon’s theorem relies on sum rules, obtained from a
factorization of the 𝑚-function. More precisely, one shows that

𝑀(𝑧) := −𝑚(𝑧 + 1/𝑧), ∣𝑧∣ < 1 (2.6)

is a meromorphic Herglotz function and hence of the form 𝑀 = 𝐵 ⋅ 𝑂, where 𝐵
is an alternating Blaschke product and 𝑂 an outer function (see [18] for details).
The sum rules now result from computing the Taylor coefficients of log(𝑀(𝑧)/𝑧)
in two different ways.

Note that

𝜙(𝑧) := 𝑧 + 1/𝑧 (2.7)

is the unique conformal mapping of the unit disk 𝔻 onto ℂ∖[−2, 2] for which 𝜙(0) =
∞ and lim𝑧→0 𝑧𝜙(𝑧) = 1. The use of 𝜙 in the theory of orthogonal polynomials
goes back at least to Szegő.

Compared to (2.3), the a priori stronger condition

∞∑
𝑛=1

∣𝑎𝑛 − 1∣+ ∣𝑏𝑛∣ < ∞ (2.8)

was conjectured by Nevai [13] and later proven by Killip and Simon [12] to imply
the Szegő condition, that is, ∫ 2

−2

log 𝑓(𝑥)√
4− 𝑥2

𝑑𝑥 > −∞. (2.9)

In turn, (2.9) is closely related to

𝑎1 ⋅ ⋅ ⋅𝑎𝑛 ∕→ 0 (2.10)

and ∑
𝑘

(∣𝑥𝑘∣ − 2
)1/2

< ∞. (2.11)

What is known as Szegő’s theorem states that if (2.11) holds, then (2.9) is equiva-
lent to (2.10). Moreover, (2.9)–(2.10) implies (2.11) so as formulated by Simon and
Zlatoš [22], any two imply the third. In the setting of Szegő’s theorem (i.e., when
(2.9)–(2.11) hold), the product in (2.10) has a positive limit, (2.3) is satisfied, and
both of the series

∞∑
𝑛=1

(𝑎𝑛 − 1),

∞∑
𝑛=1

𝑏𝑛 (2.12)

are conditionally convergent. Furthermore, a result of Peherstorfer and Yuditskii
[15] states that

𝑧𝑛𝑃𝑛(𝑧 + 1/𝑧)→ 𝐵(𝑧)𝐷(𝑧)

1− 𝑧2
(2.13)
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uniformly on compact subsets of 𝔻, where 𝐵 is the Blaschke product

𝐵(𝑧) =
∏
𝑘

∣𝑧𝑘∣
𝑧𝑘

𝑧𝑘 − 𝑧

1− 𝑧𝑘𝑧
, 𝑧𝑘 =

1

2

(
𝑥𝑘 −

√
𝑥2𝑘 − 4

)
and 𝐷 the outer function

𝐷(𝑧) = exp

{∫ 2𝜋

0

𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
log

( ∣ sin 𝜃∣
𝜋𝑓(2 cos 𝜃)

)
𝑑𝜃

4𝜋

}
.

This type of power asymptotic behavior is known as Szegő asymptotics. Note that
since

𝑈𝑛(𝑧 + 1/𝑧) =
𝑧𝑛+1 − 𝑧−𝑛−1

𝑧 − 𝑧−1
∼ 𝑧−𝑛

1− 𝑧2
,

we can replace 𝑧𝑛 by 1/𝑈𝑛(𝑧 + 1/𝑧) on the left-hand side in (2.13) if the factor
1− 𝑧2 on the right-hand side is removed too.

While the Szegő condition implies Szegő asymptotics, as has long been known,
it is not a necessary condition. Examples for which (2.11) fails and yet the left-
hand side of (2.13) has a limit are given by Damanik and Simon in [8]. More
importantly, [8] proves that 𝑧𝑛𝑃𝑛(𝑧 + 1/𝑧) has a limit for all 𝑧 ∈ 𝔻 if and only if
(2.3) holds and the series in (2.12) are conditionally convergent. The right-hand
side of (2.13), however, is only correct when (2.9) holds.

3. Finite gap Jacobi matrices

In this section, we shall consider Jacobi matrices 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 for which 𝜎ess(𝐽)
is a finite gap set, that is, a set of the form

𝔢 =

ℓ+1∪
𝑗=1

[
𝛼𝑗 , 𝛽𝑗

]
, 𝛼1 < 𝛽1 < 𝛼2 < ⋅ ⋅ ⋅ < 𝛽ℓ+1. (3.1)

Apart from a single interval, such a finite union of closed intervals is the simplest
type of compact sets in ℝ with positive measure (and no isolated points). Note
that ℓ counts the number of gaps in 𝔢 and when ℓ ≥ 1, two questions arise:

∙ Is there a natural choice of 𝐽 that can serve as a limit point, like 𝐽0 did for
the interval [−2, 2]?

∙ What replaces the conformal mapping 𝜙 in (2.7) when ℂ ∖ 𝔢 is no longer
simply connected?

The answer to the first question is negative. There is no single 𝐽 that will take
over the role of 𝐽0. Even when 𝔢 only has one gap, say 𝔢 = [−2,−1] ∪ [1, 2], there
are several sequences of periodic Jacobi parameters with period 2 (i.e., 𝑎𝑛+2 = 𝑎𝑛
and 𝑏𝑛+2 = 𝑏𝑛 for all 𝑛) leading to the right spectrum, namely 𝔢. And it seems
impossible to pick out one that should be more natural than all the others. In
fact, the Denisov–Rakhmanov theorem is known to fail when [−2, 2] is replaced by
a finite gap set with at least one gap. The Jacobi parameters need not approach
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a single point. Rather, they approach a set which is topologically a circle (or a
1-dimensional torus) when ℓ = 1.

For a general finite gap set 𝔢 as in (3.1), Simon [19,20] suggested to introduce
the so-called isospectral torus 𝒯𝔢 of dimension ℓ. The structure of this limiting
object is carefully described in [4]. It consists of all Jacobi matrices whose 𝑚-
function is a minimal Herglotz function on the two-sheeted Riemann surface 𝒮
associated with 𝔢. Loosely speaking, one can think of 𝒮 as two copies of ℂ ∖ 𝔢
glued together suitably. Alternatively, 𝒯𝔢 is the collection of all two-sided Jacobi
matrices 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=−∞ that have spectrum 𝔢 and are reflectionless on 𝔢 (see,
e.g., [17, 23] for more details).

The isospectral torus is invariant under coefficient stripping, a very useful
fact. If 𝐽 ′ is a point on 𝒯𝔢, then the Jacobi parameters {𝑎′𝑛, 𝑏′𝑛}∞𝑛=1 are periodic
or almost periodic sequences, depending on whether the intervals in 𝔢 all have
rational harmonic measure (i.e., whether 𝜇𝔢

(
[𝛼𝑗 , 𝛽𝑗 ]

) ∈ ℚ for all 𝑗, where 𝑑𝜇𝔢 is
the equilibrium measure of 𝔢). We say that 𝔢 is periodic if all [𝛼𝑗 , 𝛽𝑗 ] have rational
harmonic measure. The spectral measure of 𝐽 ′ is also very regular. It is purely
absolutely continuous on 𝔢 with a density that satisfies the Szegő condition (see
(3.3) below). Besides, it has at most one mass point in each of the ℓ gaps in 𝔢 and
no other singular part. For later use, we pick 𝐽♯ to be a suitable reference point
on 𝒯𝔢, namely a Jacobi matrix whose spectral measure has no singular part at all.

A remarkable result of Remling [17] generalizes the Denisov–Rakhmanov the-
orem to finite gap sets. It states that if 𝜎ess(𝐽) = 𝔢 and 𝑓(𝑥) > 0 a.e. on 𝔢, then
the orbit of 𝐽 under coefficient stripping approaches the isospectral torus 𝒯𝔢. The
sequence of 𝐽𝑛’s need not have a limit, but any of its accumulation points (essen-
tially right limits) lie on 𝒯𝔢. In order to ensure convergence to some point on the
isospectral torus and not only the torus as a set, stronger assumptions on 𝐽 are
needed.

We say that a Jacobi matrix 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 with spectral measure 𝑑𝜇 of
the form (1.6) belongs to the Szegő class for 𝔢 if

supp(𝑑𝜇) = 𝔢 ∪ {𝑥𝑘},
where {𝑥𝑘} is a countable set of isolated mass points satisfying the Blaschke con-
dition ∑

𝑘

dist(𝑥𝑘, 𝔢)
1/2 < ∞ (3.2)

and 𝑓 obeys the Szegő condition∫
𝔢

log 𝑓(𝑥)

dist(𝑥,ℝ ∖ 𝔢)1/2 𝑑𝑥 > −∞. (3.3)

It is proven in [5] that when (3.2) holds, (3.3) is equivalent to

𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛
Cap(𝔢)𝑛

∕→ 0. (3.4)
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In fact, just as for Szegő’s theorem on [−2, 2], any two of (3.2)–(3.4) imply the
third. While the sequence in (3.4) no longer has a limit, it turns out to be asymp-
totically periodic/almost periodic.

Another result of Christiansen, Simon, and Zinchenko [5] states that if 𝐽
belongs to the Szegő class for 𝔢, there is a unique point 𝐽 ′ ∈ 𝒯𝔢 so that

∣𝑎𝑛 − 𝑎′𝑛∣+ ∣𝑏𝑛 − 𝑏′𝑛∣ → 0. (3.5)

Equivalently, this means that 𝐽𝑛 − 𝐽 ′𝑛 → 0 strongly (i.e., the orbit of 𝐽 under
coefficient stripping approaches the orbit of 𝐽 ′ on 𝒯𝔢). To explain which point on
the torus to pick and to make a statement about the asymptotics of 𝑃𝑛, we first
need to answer the second question.

In short, the role of 𝜙 is taken over by the universal covering map of 𝔻 onto
Ω := ℂ ∖ 𝔢. This is the standard tool for ‘lifting’ functions on multiply connected
domains to the unit disk. The universal covering map 𝜓 : 𝔻 → Ω is only locally
one-to-one and each point in Ω has infinitely many preimages in 𝔻. These are
related to one another through a Fuchsian group Γ of Möbius transformations,

𝜓(𝑧) = 𝜓(𝑤) ⇐⇒ ∃𝛾 ∈ Γ : 𝑧 = 𝛾(𝑤).

We fix 𝜓 uniquely by also requiring that 𝜓(0) = ∞ and lim𝑧→0 𝑧𝜓(𝑧) > 0. Γ is
isomorphic to the fundamental group 𝜋1(Ω) and hence a free group on ℓ generators,
say 𝛾1, . . . , 𝛾ℓ.

To get a better picture of Γ, we introduce the open set

𝔽 :=
{
𝑧 ∈ 𝔻 : ∣𝛾′(𝑧)∣ < 1 for all 𝛾 ∕= id

}
. (3.6)

This is a fundamental domain for Γ, that is, no two points of 𝔽 are equivalent
under Γ and 𝔽 contains at least one point from each Γ-orbit. Geometrically, 𝔽 is
symmetric in the real line and consists of the unit disk with 2ℓ orthocircles (and
their interior) removed. The circular arcs in the upper (or lower) half-disk, say
𝐶1, . . . , 𝐶ℓ, are in one-one correspondence with the gaps in 𝔢 under the covering
map 𝜓. In fact, one can take the generator 𝛾𝑗 to be reflection in 𝐶𝑗 following
complex conjugation.

The multiplicative group of characters on Γ, denoted Γ∗, turns out to play
an important role. Since an element in Γ∗ is determined from its values on the
generators of Γ, we can think of Γ∗ as an ℓ-dimensional torus. The point is that
𝒯𝔢 and Γ∗ are homeomorphic. To get hold of a homeomorphism between these two
ℓ-dimensional tori, we first introduce the Jost function of an element in the Szegő
class. Let 𝑑𝜇♯ = 𝑓 ♯(𝑥)𝑑𝑥 be the spectral measure of 𝐽♯, our reference point on 𝒯𝔢.
For 𝐽 in the Szegő class of 𝔢, we define its Jost function by

𝑢(𝑧; 𝐽) =
∏
𝑘

𝐵(𝑧, 𝑧𝑘) exp

{∫ 2𝜋

0

𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
log

(
𝑓 ♯(𝜓(𝑒𝑖𝜃))

𝑓(𝜓(𝑒𝑖𝜃))

)
𝑑𝜃

4𝜋

}
, 𝑧 ∈ 𝔻 (3.7)

where {𝑧𝑘} are the unique points in 𝔽 with Im 𝑧𝑘 ≥ 0 and 𝜓(𝑧𝑘) = 𝑥𝑘. This analytic
function turns out to be character automorphic, that is, there exists 𝜒𝐽 ∈ Γ∗ such
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that

𝑢(𝛾(⋅); 𝐽) = 𝜒
𝐽
(𝛾)𝑢( ⋅ ; 𝐽) for all 𝛾 ∈ Γ. (3.8)

Most importantly, the map

𝒯𝔢 ∋ 𝐽 −→ 𝜒
𝐽
∈ Γ∗, (3.9)

essentially the Abel map, is a homeomorphism (see, e.g., [4] for details).
We are now able to explain which point 𝐽 ′ on 𝒯𝔢 is the right one for (3.5) to

hold: Take the unique point for which 𝜒
𝐽′ = 𝜒𝐽 . This fact is proven in [5] by use of

Remling’s theorem, the homeomorphism (3.9), and a technical lemma stating that
strong convergence to a point on the torus implies convergence of the associated
characters. We repeat the proof here as it merely takes a few lines.

For contradiction, suppose that

∣𝑎𝑛 − 𝑎′𝑛∣+ ∣𝑏𝑛 − 𝑏′𝑛∣ ∕→ 0.

Then there is a subsequence {𝑛𝑘} so that 𝐽 and 𝐽 ′ have different right limits, say
𝐾 ∕= 𝐾 ′. Due to Remling’s theorem, both 𝐾 and 𝐾 ′ lie on 𝒯𝔢, and we have

𝜒𝐽𝑛𝑘
−→ 𝜒𝐾 and 𝜒

𝐽′𝑛𝑘

−→ 𝜒
𝐾′

since 𝐽𝑛𝑘
→ 𝐾 and 𝐽 ′𝑛𝑘

→ 𝐾 ′ strongly. As 𝜒
𝐽
= 𝜒

𝐽′ , we also have 𝜒
𝐽𝑛

= 𝜒
𝐽′𝑛

so

that 𝜒
𝐾
= 𝜒

𝐾′ . This contradicts the fact that 𝐾 ∕= 𝐾 ′.
The Jost function also enters the picture in connection with the asymptotic

behavior of 𝑃𝑛. With 𝑃 ′
𝑛 the orthonormal polynomials associated with 𝐽 ′ (not to

be confused with the derivative), we have

𝑃𝑛(𝜓(𝑧))

𝑃 ′
𝑛(𝜓(𝑧))

−→ 𝑢(𝑧; 𝐽)

𝑢(𝑧; 𝐽 ′)
(3.10)

uniformly on compact subsets of 𝔽, the fundamental domain for Γ. This result
should be compared with (2.13) and the fact that 𝑢(𝑧; 𝐽0) = 1.

Along the lines of [8], Christiansen, Simon, and Zinchenko [6] set out to find
weaker assumptions than the Szegő condition that still imply Szegő asymptotics
(in the sense that the left-hand side of (3.10) has a limit). At first sight, it may
look like

∞∑
𝑛=1

(𝑎𝑛 − 𝑎′𝑛)
2 + (𝑏𝑛 − 𝑏′𝑛)

2 < ∞ (3.11)

and conditional convergence of

∞∑
𝑛=1

(𝑎𝑛 − 𝑎′𝑛),
∞∑
𝑛=1

(𝑏𝑛 − 𝑏′𝑛) (3.12)

will be sufficient. But a more careful analysis shows that the periodicity/almost
periodicity has to be taken into account and one needs to replace the conditional
convergence with a more involved set of assumptions involving the harmonic mea-
sures 𝜇𝔢([𝛼𝑗 , 𝛽𝑗 ]) for all 𝑗. The reader is referred to [6] for more details.
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The generalized Nevai conjecture has recently been proved in the finite gap
setting by Frank and Simon [10]. They answer in the affirmative that if 𝐽 =
{𝑎𝑛, 𝑏𝑛}∞𝑛=1 is a Jacobi matrix with spectral measure 𝑑𝜇 of the form (1.6) and

∞∑
𝑛=1

∣𝑎𝑛 − 𝑎′𝑛∣+ ∣𝑏𝑛 − 𝑏′𝑛∣ < ∞ (3.13)

for some point 𝐽 ′ on 𝒯𝔢, then the Szegő condition (3.3) holds. Hence there is
some understanding of ℓ1-convergence to 𝒯𝔢. Among other things, [10] relies on an
improved Birman–Schwinger bound in the gaps of 𝔢.

The situation of ℓ2-convergence to 𝒯𝔢, on the other hand, is much less un-
derstood. Whether or not the Killip–Simon theorem can be proved for all finite
gap sets is still an open question. That it is true when 𝔢 is periodic has proven by
Damanik, Killip, and Simon [7]. The ingenious idea of [7] is to handle the peri-
odic case by use of matrix orthogonal polynomials. But this method only applies
to periodic 𝔢. The proof of Killip–Simon’s theorem for [−2, 2] relies among other
things on the explicit form of 𝜙. The universal covering map, in turn, is much more
complicated. Even if one succeeds in finding 𝜓 explicitly, the expression at hand
will still be too difficult to work with. New insight is needed to really understand
the concept of ℓ2-convergence to the isospectral torus.

4. Infinite gap Jacobi matrices

Every compact set � ⊂ ℝ can be written in the form

� = [𝛼, 𝛽] ∖
∪

𝑗
(𝛼𝑗 , 𝛽𝑗), (4.1)

where ∪𝑗 is a countable union of disjoint open subintervals of [𝛼, 𝛽]. We shall refer
to (𝛼𝑗 , 𝛽𝑗) as a ‘gap’ in � and now mainly focus on the situation of infinitely many
gaps. In order to develop the theory, a few restrictions have to be put on �. But
among others, there will still be room for Cantor sets of positive measure.

First of all, we shall always assume that ∣�∣ > 0 to allow for an absolutely
continuous part of 𝑑𝜇. This in particular implies that the logarithmic capacity of
�, denoted Cap(�), is positive so that the domain Ω = ℂ∖� has a Green’s function.
We denote by 𝑔 the Green’s function for Ω with pole at ∞. This function is known
to be positive and harmonic on Ω, and

𝑔(𝑧) = log ∣𝑧∣+ 𝛾(�) + 𝑜(1)

near ∞, where 𝑒−𝛾(�) = Cap(�).

To avoid dealing with isolated points in the essential spectrum, we assume
that � is regular, that is,

lim
Ω∋𝑧→𝑥

𝑔(𝑧) = 0 for all 𝑥 ∈ �. (4.2)
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Hence 𝑔 has precisely one critical point in each gap of �. Denoting by 𝑐𝑗 the critical
point in (𝛼𝑗 , 𝛽𝑗), we impose the so-called Parreau–Widom condition,∑

𝑗
𝑔(𝑐𝑗) < ∞. (4.3)

While Widom was interested in Riemann surfaces with sufficiently many analytic
functions, the notion becomes useful to us as the equilibrium measure 𝑑𝜇� of �
turns out to be absolutely continuous (see, e.g., [2] for a detailed proof). Moreover,
the𝑚-function for measures supported on � is of bounded characteristic when lifted
to 𝔻.

The Parreau–Widom condition (4.3) is known to be satisfied for compact sets
that are homogeneous in the sense of Carleson [1]. By definition, this means there
is an 𝜀 > 0 such that

∣(𝑥 − 𝛿, 𝑥+ 𝛿) ∩ �∣
𝛿

≥ 𝜀 for all 𝑥 ∈ � and all 𝛿 < diam(�). (4.4)

Carleson introduced this geometric condition to avoid the possibility of certain
parts of � to be very thin, compared to Lebesgue measure. To get an explicit
example of an infinite gap set which is homogeneous, remove the middle 1/4 from
the interval [0, 1] and continue removing subintervals of length 1/4𝑛 from the
middle of each of the 2𝑛−1 remaining intervals. The set � of what is left in [0, 1] is
a Cantor set of length 1/2, and the reader may check that ∣(𝑥− 𝛿, 𝑥+ 𝛿)∩�∣ ≥ 𝛿/4
for all 𝑥 ∈ � and all 𝛿 < 1.

Just as in the finite gap setting, we can make use of the covering space
formalism. In fact, the seminal paper [23] of Sodin and Yuditskii deals with infinite
gap sets of Parreau–Widom type. Let 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 be a Jacobi matrix with
𝜎ess(𝐽) = � and spectral measure 𝑑𝜇 of the form (1.6). Denote by {𝑥𝑘} the possible
mass points of 𝑑𝜇 outside �. We say that 𝑑𝜇 (or 𝐽) satisfies the Szegő condition if∫

�

log 𝑓(𝑥) 𝑑𝜇�(𝑥) > −∞. (4.5)

As follows at once when recalling the explicit form of 𝑑𝜇𝔢 (see, e.g., [21, Chap. 5]),
this is the natural way of generalizing (3.3). On condition that∑

𝑘
𝑔(𝑥𝑘) < ∞, (4.6)

Sodin and Yuditskii [23] showed that 𝑀 := 𝑚 ∘ 𝜓 is of bounded characteristic on
𝔻 and without a singular inner part. Hence it admits a factorization of the form

𝑀(𝑧) = 𝐵∞(𝑧) exp

{∫ 2𝜋

0

𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
log

∣∣𝑀(𝑒𝑖𝜃)
∣∣ 𝑑𝜃
2𝜋

}
(4.7)

with 𝐵∞ the Blaschke product of zeros and poles, and this paves the way for step-
by-step sum rules. Comparing the constant terms in (4.7) and iterating 𝑛 times
lead to

log
( 𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛
Cap(�)𝑛

)
=

∑
𝑘

(
𝑔(𝑥𝑘)− 𝑔(𝑥𝑛,𝑘)

)
+

1

2

∫
�

log

(
𝑓(𝑡)

𝑓𝑛(𝑡)

)
𝑑𝜇�(𝑡), (4.8)
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where {𝑥𝑛,𝑘} are the eigenvalues of 𝐽𝑛 outside � and 𝑓𝑛 is the absolutely continuous
part of its spectral measure. Interpreting the integral on the right-hand side in
terms of relative entropies, one can show that the Szegő condition is equivalent to

𝑎1 ⋅ ⋅ ⋅𝑎𝑛
Cap(�)𝑛

∕→ 0 (4.9)

provided that (4.6) holds. The details are given in [2] and the proof also shows
that the sequence in (4.9) is bounded above and below. While one direction is
straightforward using (4.8), the other involves some cutting and pasting in the
Jacobi matrix before applying (4.8).

For general Parreau–Widom sets, the isospectral torus 𝒯� will be infinite
dimensional and we equip it with the product topology. It is known that Remling’s
theorem generalizes and one can ask if elements in the Szegő class still approach
a point on 𝒯� and not only the isospectral torus as a set. Provided the Abel map
remains a homeomorphism, the same proof as in Section 3 should work. For this to
hold, an extra condition on � turns out to be needed. The so-called direct Cauchy
theorem has to be valid (see [24], [11]). These and related issues are treated in
the upcoming paper [3]. A recent article of Yuditskii [25] points out that Parreau–
Widom sets for which the direct Cauchy theorem holds are still more general than
homogeneous sets. Asymptotics of orthogonal polynomials on homogeneous sets
were treated by Peherstorfer and Yudiskii in [16].
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Szegő class. Constr. Approx. 33, 365–403 (2011)

[6] J.S. Christiansen, B. Simon, and M. Zinchenko, Finite gap Jacobi matrices, III. Be-
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