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Finite and Infinite Gap Jacobi Matrices

Jacob S. Christiansen

Abstract. The present paper reviews the theory of bounded Jacobi matrices
whose essential spectrum is a finite gap set, and it explains how the theory
can be extended to also cover a large number of infinite gap sets. Two of
the central results are generalizations of Denisov—Rakhmanov’s theorem and
Szegd’s theorem, including asymptotics of the associated orthogonal polyno-
mials. When the essential spectrum is an interval, the natural limiting object
Jo has constant Jacobi parameters. As soon as gaps occur, £ say, the complex-
ity increases and the role of Jy is taken over by an /-dimensional isospectral
torus of periodic or almost periodic Jacobi matrices.
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1. Introduction

Let dp be a probability measure on R with moments of all orders, that is,

/ |z|"du(z) < oo for all m > 0. (1.1)

R

When dp is nontrivial (i.e., supp(dp) is infinite), we can apply the Gram—Schmidt

process to 1,z,z2,... and obtain a sequence {P, },>0 of orthonormal polynomials
(P, Pr) /P (z)dpu(x) = dpm, (1.2)

where each P, has positive leading coefficient and is of degree n. It is a basic fact
that such polynomials satisfy a three-term recurrence relation of the form

P, (x) = any1Prt1(x) + bpy1 Po(2) + anPr1(z), n>0 (1.3)
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with a, = (Ph—1,2F,) > 0 and b,, = (P,—1,2P,—1) € R for n > 1 (by convention,
P_i(z) =0). To see this, simply expand zP,, in terms of Py, Pi,..., P,41 and use
the orthogonality relation (1.2). Note also that

P, (z)= ! (x”—(bl—l—---—i—bn)x"*l—i—---) for n> 1. (1.4)

ai - Qp

The spectral theorem for orthonormal polynomials (also known as Favard’s
theorem) states that for any pair of sequences {a,,b,}22; € (0,00)N x RN, there
exists a probability measure dy on R such that the polynomials generated by (1.3),
with Py(x) = 1, satisfy the orthogonality relation (1.2). In general, this measure
of orthogonality need not be unique. But when the recurrence coeflicients are
bounded, say ay, |b,| < C, then du is indeed unique and supp(du) is contained in
[-3C, 3C]. Conversely, if du has compact support, then the associated recurrence
coefficients are bounded by

max || < oo
zesupp(du)
and the polynomials are dense in L?(du). We shall henceforth assume that supp(dpu)
is compact.

The three-term recurrence relation (1.3) links orthogonal polynomials to Ja-

cobi matrices, that is, tridiagonal matrices of the form

b1 a1
aq bg a9
J= as b3 as (1 5)

with a, > 0 and b, € R. In fact, the matrix J in (1.5) represents the operator of
multiplication by the identity function x in the Hilbert space L?(du) with respect
to the orthonormal basis { P, }n>0. When J is viewed as an operator on ¢?(N), its
spectrum o(J) coincides with supp(dp) and we shall refer to du as the spectral
measure of .J.

In spectral theory for orthogonal polynomials, one studies the relation be-
tween nontrivial probability measures du satisfying (1.1) on one hand and pairs of
sequences {an, b, }52; € (0,00)N x RY on the other hand. The aim of the present
paper is to give a general view of the situation where du is compactly supported
and the recurrence coefficients (also known as Jacobi parameters) are bounded
sequences. As already mentioned, there is a one-one correspondence between these
two classes of objects and we shall focus on results that explain how qualitative fea-
tures of the Jacobi parameters, say, are reflected in the measure of orthogonality,
and vice versa.

Throughout, we shall write the probability measure du as

du = f(x)dx + dus, (1.6)
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with dus singular to dz. Rather than o(J), many of the results are more suitably
formulated in terms of oess(J), the essential spectrum of J. By definition,

Oess(J) :={x € o(J) | z is not an isolated eigenvalue of J}. (1.7)

As regards proofs, in particular, a key role is played by the m-function (or Stieltjes
transform of du) defined by
du(z
m(z) :=my(z) = / xME Z), z € C\ supp(dp). (1.8)
This analytic function is known to be a Nevanlinna—Pick function (i.e., Imm(z) =2 0
for Imz 2 0) and we have

m(z) = —1/z+ O0(z7?) (1.9)

near oo. In fact, one can write down the Laurent expansion of m, around oo in
terms of the moments of du. More importantly, the boundary values m(x +i0) :=
lim, o m(z + i€) exist for a.e. z € R and

1 w
Immy,(x +ic)dt — dp as e | 0. (1.10)
T
To be even more specific,
1
f(x) = Imm,(x+i0) a.e.on R (1.11)
™
and
ps ({z}) = lim e Imm, (z + ic) for all z € R. (1.12)
e—0

So isolated mass points of du (or isolated eigenvalues of J) are poles of m.

The simplest compact subsets of R that have positive measure are intervals
of the form [o, f] with —co < a < 8 < oo. In Section 2, we shall consider the
situation when oess(J) has this form and without loss of generality we may assume
that —a = B = 2. The associated Jacobi parameters are often — but not always
— close to 1 and 0 as n — oco. Orthogonal polynomials on a compact interval are
intimately related to Jacobi parameters that are asymptotically constant. As we
shall see, the theory is well developed and many precise results are available.

In Section 3, we generalize our studies to finite gap sets e, that is, finite
unions of closed intervals. When ¢ is the union of two or more disjoint intervals,
the complement C \ ¢ is no longer simply connected. This is to be overcome by
using the universal covering map. Perhaps more seriously, the structure of the
Jacobi parameters changes. They are no longer asymptotically constant but rather
asymptotically periodic or almost periodic. The natural limit point (viz., the free
Jacobi matrix) also has to be replaced by an ¢-dimensional torus, where ¢ counts
the number of gaps in e.

Finally, in Section 4 we consider infinite gap sets of Parreau-Widom type.
This notion of regular compact sets includes Cantor sets of positive measure,
among others. The theory is less developed, but many results that hold for fi-
nite gap sets can be extended to the infinite gap setting.
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2. Perturbations of the free Jacobi matrix

The most natural choice of Jacobi parameters is
an =1 and b, =0. (2.1)

As is well known, the associated orthogonal polynomials are Chebyshev of the 2nd

kind

sin(n + 1)0
sin 0

They are orthogonal on the interval [—2,2] with respect to the semicircle law

fo(x) = V4 — x2/27m. We shall follow the standard terminology and refer to

0 1
10
1

xr = 2cosb.

)

U, (x) =

1
Jo = 0 1 (2.2)

as the free Jacobi matrix.

If a, — 1 and b, — 0, then J = {a,,b,}52; is a compact perturbation
of Jo and hence oess(J) = [—2,2] by Weyl’s theorem. There may be points in
supp(dp) \ [—2, 2], but these are all isolated mass points that can only accumulate
at +2. Moreover, a result of Nevai [14] states that the ratio P,,11(x)/P,(z) has a
limit for x & o(J).

The condition oess(J) = [—2,2], on the other hand, is by itself not strong
enough to imply a, — 1 and b, — 0 (see, e.g., [21, Section 1.4] for a counter-
example). An extra condition is needed and for du as in (1.6), the Denisov—
Rakhmanov theorem [9] states that if gess(J) = [-2,2] and f(z) > 0 a.e. on
[—2,2], then a, — 1 and b, — 0. Denoting by J,, the n times stripped Jacobi ma-
trix (i.e., the matrix obtained from J by removing the first n rows and columns),
the above conclusion can also be formulates as .J,, — Jy strongly.

The more detailed spectral analysis involves the rate of convergence of the
Jacobi parameters. Of particular interest are the cases of Hilbert—Schmidt and
trace-class perturbations of Jy. A deep result of Killip and Simon [12] classifies the
spectral measures of all Jacobi matrices J = {ay, b, }22; for which

oo

> (an —1)° b2 < oc. (2.3)

n=1
They all have
supp(dp) = [_27 2] U {xk}7

where {x} is a countable set of isolated mass points, possibly empty, and are
precisely those probability measures of the form (1.6) that satisfy

/2 log f(x)\/4 — 22 dz > —oc (2.4)
2
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and
3 (el —2)** < . (2.5)
k
The proof of Killip—Simon’s theorem relies on sum rules, obtained from a
factorization of the m-function. More precisely, one shows that

M(z):=-m(z+1/z), |z2|<1 (2.6)

is a meromorphic Herglotz function and hence of the form M = B - O, where B
is an alternating Blaschke product and O an outer function (see [18] for details).
The sum rules now result from computing the Taylor coefficients of log(M (z)/z)
in two different ways.
Note that
d(z)=z+1/z (2.7)

is the unique conformal mapping of the unit disk D onto C\ [—2, 2] for which ¢(0) =
oo and lim,_,0 2¢(z) = 1. The use of ¢ in the theory of orthogonal polynomials
goes back at least to Szego.

Compared to (2.3), the a priori stronger condition

> an =1+ |bn| < 00 (2.8)

n=1

was conjectured by Nevai [13] and later proven by Killip and Simon [12] to imply
the Szegd condition, that is,

? log f(z)
dxr > —oo0. 2.9
-2 \/4 — {,C2 ( )
In turn, (2.9) is closely related to
ay---ap A0 (2.10)

and

3 (lanl = 2)"? < oo (2.11)

k

What is known as Szegd’s theorem states that if (2.11) holds, then (2.9) is equiva-
lent to (2.10). Moreover, (2.9)—(2.10) implies (2.11) so as formulated by Simon and
Zlatos [22], any two imply the third. In the setting of Szegd’s theorem (i.e., when
(2.9)—(2.11) hold), the product in (2.10) has a positive limit, (2.3) is satisfied, and
both of the series

D an—1), > ba (2.12)

are conditionally convergent. Furthermore, a result of Peherstorfer and Yuditskii
[15] states that
B(2)D(2)

"P, 1 —
P12 =

(2.13)
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uniformly on compact subsets of D, where B is the Blaschke product
|zk| 21— 2 1
B(z) = R ( _ \/ 2 _ 4)
=) 1;[ P A Tk

and D the outer function

el 4y | sin 6| do
D(z) = ) 1 .
(2) exp{/o e — 2 Og(ﬂf(Qcosﬂ))47r}

This type of power asymptotic behavior is known as Szegé asymptotics. Note that
since

Zn+1 _ zfnfl LN

Un(z+1/2) = o e
we can replace 2" by 1/Up(z 4+ 1/2) on the left-hand side in (2.13) if the factor
1 — 22 on the right-hand side is removed too.

While the Szeg6 condition implies Szeg6 asymptotics, as has long been known,
it is not a necessary condition. Examples for which (2.11) fails and yet the left-
hand side of (2.13) has a limit are given by Damanik and Simon in [8]. More
importantly, [8] proves that z"P,(z 4+ 1/z) has a limit for all z € D if and only if
(2.3) holds and the series in (2.12) are conditionally convergent. The right-hand
side of (2.13), however, is only correct when (2.9) holds.

3. Finite gap Jacobi matrices

In this section, we shall consider Jacobi matrices J = {an, b, }52; for which oess(J)
is a finite gap set, that is, a set of the form

041
¢ = U[Oéj,ﬁjL a1 <ﬁ1<a2<---<ﬁg+1. (3.1)
j=1
Apart from a single interval, such a finite union of closed intervals is the simplest
type of compact sets in R with positive measure (and no isolated points). Note
that ¢ counts the number of gaps in ¢ and when ¢ > 1, two questions arise:

o Is there a natural choice of J that can serve as a limit point, like Jy did for
the interval [—2,2]?

e What replaces the conformal mapping ¢ in (2.7) when C \ ¢ is no longer
simply connected?

The answer to the first question is negative. There is no single J that will take
over the role of Jy. Even when e only has one gap, say ¢ = [-2, —1] U [1, 2], there
are several sequences of periodic Jacobi parameters with period 2 (i.e., ap42 = ap
and b,12 = b, for all n) leading to the right spectrum, namely e. And it seems
impossible to pick out one that should be more natural than all the others. In
fact, the Denisov—Rakhmanov theorem is known to fail when [—2, 2] is replaced by
a finite gap set with at least one gap. The Jacobi parameters need not approach
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a single point. Rather, they approach a set which is topologically a circle (or a
1-dimensional torus) when ¢ = 1.

For a general finite gap set ¢ as in (3.1), Simon [19,20] suggested to introduce
the so-called isospectral torus 7. of dimension ¢. The structure of this limiting
object is carefully described in [4]. It consists of all Jacobi matrices whose m-
function is a minimal Herglotz function on the two-sheeted Riemann surface &
associated with e. Loosely speaking, one can think of S as two copies of C \ ¢
glued together suitably. Alternatively, 7. is the collection of all two-sided Jacobi
matrices J = {an, by }5L _ o that have spectrum e and are reflectionless on ¢ (see,

g., [17,23] for more details).

The isospectral torus is invariant under coefficient stripping, a very useful
fact. If J’ is a point on T, then the Jacobi parameters {a/,b] }52, are periodic
or almost periodic sequences, depending on whether the intervals in ¢ all have
rational harmonic measure (i.e., whether p. ([, 3;]) € Q for all j, where dp, is
the equilibrium measure of ¢). We say that ¢ is periodic if all [a;, ;] have rational
harmonic measure. The spectral measure of J' is also very regular. It is purely
absolutely continuous on ¢ with a density that satisfies the Szegd condition (see
(3.3) below). Besides, it has at most one mass point in each of the ¢ gaps in ¢ and
no other singular part. For later use, we pick J# to be a suitable reference point
on 7¢, namely a Jacobi matrix whose spectral measure has no singular part at all.

A remarkable result of Remling [17] generalizes the Denisov—Rakhmanov the-
orem to finite gap sets. It states that if oess(J) = ¢ and f(x) > 0 a.e. on ¢, then
the orbit of J under coefficient stripping approaches the isospectral torus T.. The
sequence of J,,’s need not have a limit, but any of its accumulation points (essen-
tially right limits) lie on 7¢. In order to ensure convergence to some point on the
isospectral torus and not only the torus as a set, stronger assumptions on J are
needed.

We say that a Jacobi matrix J = {an, b, }7%; with spectral measure du of
the form (1.6) belongs to the Szegé class for e if

supp(du) = e U {zy},
where {x1} is a countable set of isolated mass points satisfying the Blaschke con-
dition

> dist(a, ¢)/? < oo (3.2)

and f obeys the Szegd condition

log f(x

dist(x R\ 01/2 dx > —o0. (3.3)

It is proven in [5] that when (3.2) holds, (3.3) is equivalent to

0. (3.4)

ai---Qp

Cap(e)”
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In fact, just as for Szegd’s theorem on [—2,2], any two of (3.2)=(3.4) imply the
third. While the sequence in (3.4) no longer has a limit, it turns out to be asymp-
totically periodic/almost periodic.

Another result of Christiansen, Simon, and Zinchenko [5] states that if J
belongs to the Szeqd class for e, there is a unique point J' € T, so that

Equivalently, this means that J, — J/, — 0 strongly (i.e., the orbit of J under
coefficient stripping approaches the orbit of J’ on 7;). To explain which point on
the torus to pick and to make a statement about the asymptotics of P,, we first
need to answer the second question.

In short, the role of ¢ is taken over by the universal covering map of DD onto
Q := C\ ¢. This is the standard tool for ‘lifting’ functions on multiply connected
domains to the unit disk. The universal covering map ¢ : D — 2 is only locally
one-to-one and each point in Q has infinitely many preimages in ID. These are
related to one another through a Fuchsian group I' of Mobius transformations,

P(z) =¢w) &= Iyel:z=71w).

We fix 9 uniquely by also requiring that ¢ (0) = oo and lim,_,o z¢(z) > 0. I' is
isomorphic to the fundamental group 71 (2) and hence a free group on ¢ generators,

Say Vi, .-, Ye-
To get a better picture of I', we introduce the open set

F:={zeD:|[¥(z)| <1 forall y #id}. (3.6)

This is a fundamental domain for I', that is, no two points of F are equivalent
under I and F contains at least one point from each I'-orbit. Geometrically, F is
symmetric in the real line and consists of the unit disk with 2¢ orthocircles (and
their interior) removed. The circular arcs in the upper (or lower) half-disk, say
Ci,...,Cy, are in one-one correspondence with the gaps in ¢ under the covering
map . In fact, one can take the generator v; to be reflection in C; following
complex conjugation.

The multiplicative group of characters on I', denoted I'*, turns out to play
an important role. Since an element in I'* is determined from its values on the
generators of I', we can think of I'* as an /-dimensional torus. The point is that
T. and I'* are homeomorphic. To get hold of a homeomorphism between these two
{-dimensional tori, we first introduce the Jost function of an element in the Szegd
class. Let duf = f*(x)dz be the spectral measure of J#, our reference point on 7.
For J in the Szeg6 class of ¢, we define its Jost function by

u(z; J) = l;IB(z,zk)exp{/o% Z: J_“ z log (ﬁ%jﬁ;) Zi}, 2eD (3.7)

where {2z} are the unique points in F with Im 2z, > 0 and ¢(zx) = . This analytic
function turns out to be character automorphic, that is, there exists x, € I'* such
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that
u(y(); J) = x,(u(-;J) forall y €T (3.8)
Most importantly, the map

TedJ — x, €', (3.9)

essentially the Abel map, is a homeomorphism (see, e.g., [4] for details).

We are now able to explain which point J’ on 7, is the right one for (3.5) to
hold: Take the unique point for which x ,, = x . This fact is proven in [5] by use of
Remling’s theorem, the homeomorphism (3.9), and a technical lemma stating that
strong convergence to a point on the torus implies convergence of the associated
characters. We repeat the proof here as it merely takes a few lines.

For contradiction, suppose that

lan, — al| + |bn, — b,| 4 0.

Then there is a subsequence {n;} so that J and J’ have different right limits, say
K # K'. Due to Remling’s theorem, both K and K’ lie on 7,, and we have

X""k _>XK and XJ;% —>XK/

since J,, — K and J; — K’ strongly. As x, = x,,, we also have x, = x, so
that x, = x,.,. This contradicts the fact that K # K'. !

The Jost function also enters the picture in connection with the asymptotic
behavior of P,. With P} the orthonormal polynomials associated with J’ (not to
be confused with the derivative), we have

(=) (=)

Pr((z))  ulz )
uniformly on compact subsets of F, the fundamental domain for I". This result
should be compared with (2.13) and the fact that u(z; Jy) = 1.

Along the lines of [8], Christiansen, Simon, and Zinchenko [6] set out to find
weaker assumptions than the Szegd condition that still imply Szegd asymptotics
(in the sense that the left-hand side of (3.10) has a limit). At first sight, it may
look like

(3.10)

> (an —al,)? + (b — b,)? < 00 (3.11)
n=1

and conditional convergence of

D (an—al), Y (b b)) (3.12)
n=1 n=1

will be sufficient. But a more careful analysis shows that the periodicity/almost
periodicity has to be taken into account and one needs to replace the conditional
convergence with a more involved set of assumptions involving the harmonic mea-
sures fe([a;, B;]) for all j. The reader is referred to [6] for more details.
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The generalized Nevai conjecture has recently been proved in the finite gap
setting by Frank and Simon [10]. They answer in the affirmative that if J =
{an, b }52; is a Jacobi matriz with spectral measure dy of the form (1.6) and

Z|an—a;|+|bn—b;| < o0 (3.13)
n=1

for some point J' on T., then the Szegd condition (3.3) holds. Hence there is
some understanding of £!-convergence to 7. Among other things, [10] relies on an
improved Birman—Schwinger bound in the gaps of .

The situation of £2-convergence to 7., on the other hand, is much less un-
derstood. Whether or not the Killip—Simon theorem can be proved for all finite
gap sets is still an open question. That it is true when ¢ is periodic has proven by
Damanik, Killip, and Simon [7]. The ingenious idea of [7] is to handle the peri-
odic case by use of matrix orthogonal polynomials. But this method only applies
to periodic e. The proof of Killip—Simon’s theorem for [—2, 2] relies among other
things on the explicit form of ¢. The universal covering map, in turn, is much more
complicated. Even if one succeeds in finding ¢ explicitly, the expression at hand
will still be too difficult to work with. New insight is needed to really understand
the concept of £2-convergence to the isospectral torus.

4. Infinite gap Jacobi matrices

Every compact set E C R can be written in the form
E= o8\ U (05 5), (4.1)

where U; is a countable union of disjoint open subintervals of [c, 5]. We shall refer
to (¢, B5) as a ‘gap’ in E and now mainly focus on the situation of infinitely many
gaps. In order to develop the theory, a few restrictions have to be put on E. But
among others, there will still be room for Cantor sets of positive measure.

First of all, we shall always assume that |E| > 0 to allow for an absolutely
continuous part of dy. This in particular implies that the logarithmic capacity of
E, denoted Cap(E), is positive so that the domain = C\ E has a Green’s function.
We denote by g the Green’s function for 2 with pole at co. This function is known
to be positive and harmonic on €2, and

9(z) = log|z| +~(E) + o(1)

near oo, where e~7(F) = Cap(E).
To avoid dealing with isolated points in the essential spectrum, we assume
that E is regular, that is,

lim g¢g(z) =0 forall z € E (4.2)

Q3dz—zx
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Hence g has precisely one critical point in each gap of E. Denoting by c; the critical
point in (e, B;), we impose the so-called Parreau-Widom condition,

Zj g(c;) < oo. (4.3)

While Widom was interested in Riemann surfaces with sufficiently many analytic
functions, the notion becomes useful to us as the equilibrium measure dug of E
turns out to be absolutely continuous (see, e.g., [2] for a detailed proof). Moreover,
the m-function for measures supported on E is of bounded characteristic when lifted
to D.

The Parreau-Widom condition (4.3) is known to be satisfied for compact sets
that are homogeneous in the sense of Carleson [1]. By definition, this means there
is an € > 0 such that

[(x — 6,z + ) NE|

0

Carleson introduced this geometric condition to avoid the possibility of certain
parts of E to be very thin, compared to Lebesgue measure. To get an explicit
example of an infinite gap set which is homogeneous, remove the middle 1/4 from
the interval [0,1] and continue removing subintervals of length 1/4™ from the
middle of each of the 2"~! remaining intervals. The set F of what is left in [0,1] is
a Cantor set of length 1/2, and the reader may check that |(z —d,z+d8)NE| > §/4
for all x € E and all § < 1.

Just as in the finite gap setting, we can make use of the covering space
formalism. In fact, the seminal paper [23] of Sodin and Yuditskii deals with infinite
gap sets of Parreau-Widom type. Let J = {an,b,}22; be a Jacobi matrix with
0ess(J) = E and spectral measure dy of the form (1.6). Denote by {zy} the possible
mass points of du outside E. We say that du (or J) satisfies the Szegd condition if

/Elog fz) dpe(z) > —oo. (4.5)

As follows at once when recalling the explicit form of dy. (see, e.g., [21, Chap. 5]),
this is the natural way of generalizing (3.3). On condition that

>, 9lan) < oo, (4.6)

Sodin and Yuditskii [23] showed that M :=m o is of bounded characteristic on
D and without a singular inner part. Hence it admits a factorization of the form

2m 61'9 P )
M(2) = Boo(2) exp{/o o i  log|M ()| ;Zi} (4.7)

with B, the Blaschke product of zeros and poles, and this paves the way for step-
by-step sum rules. Comparing the constant terms in (4.7) and iterating n times
lead to

bg(&g(gz) = (gzr) = g(@nr)) + ) /10g<;;(z))>dug(t), (4.8)

k

>¢ for all z € E and all § < diam(E). (4.4)
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where {z,, 1 } are the eigenvalues of .J,, outside E and f,, is the absolutely continuous
part of its spectral measure. Interpreting the integral on the right-hand side in
terms of relative entropies, one can show that the Szegd condition is equivalent to
A0 (4.9)

ai---an

Cap(E)"

provided that (4.6) holds. The details are given in [2] and the proof also shows
that the sequence in (4.9) is bounded above and below. While one direction is
straightforward using (4.8), the other involves some cutting and pasting in the
Jacobi matrix before applying (4.8).

For general Parreau—Widom sets, the isospectral torus 7¢ will be infinite
dimensional and we equip it with the product topology. It is known that Remling’s
theorem generalizes and one can ask if elements in the Szeg6 class still approach
a point on Tg and not only the isospectral torus as a set. Provided the Abel map
remains a homeomorphism, the same proof as in Section 3 should work. For this to
hold, an extra condition on E turns out to be needed. The so-called direct Cauchy
theorem has to be valid (see [24], [11]). These and related issues are treated in
the upcoming paper [3]. A recent article of Yuditskii [25] points out that Parreau—
Widom sets for which the direct Cauchy theorem holds are still more general than
homogeneous sets. Asymptotics of orthogonal polynomials on homogeneous sets
were treated by Peherstorfer and Yudiskii in [16].
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