Chapter 2
The Gamma Function

In what follows, we introduce the classical Gamma function in Sect.2.1. It is
essentially understood to be a generalized factorial. However, there are many further
applications, e.g., as part of probability distributions (see, e.g., Evans et al. 2000).
The main properties of the Gamma function are explained in this chapter (for
a more detailed discussion the reader is referred to, e.g., Artin (1964), Lebedev
(1973), Miiller (1998), Nielsen (1906), and Whittaker and Watson (1948) and
the references therein). We briefly consider Euler’s Beta function in Sect.2.2 and
use it to recursively compute the volume of the (¢ — 1)-dimensional unit sphere
S9=1 c RY. As outstanding property of the Gamma function the Stirling formula is
verified in Sect. 2.3. It leads us to the so-called duplication formula (Lemma 2.3.3)
which will simplify a lot of calculations in later chapters. The extension of the
Gamma function to complex values is studied in Sect. 2.4. In doing so, we introduce
Pochhammer’s factorial and Euler’s constant y. Moreover, we establish product
representations for the Gamma function as well as for trigonometric functions. In
Sect. 2.5 the incomplete Gamma and Beta functions are briefly presented in form of
some exercises and their relation to probability distributions is indicated.

2.1 Definition and Functional Equation

For real values x > 0, we consider the integrals

1
/ et ds, (2.1.1)
0
and
o0
/ e 't* 1 dr. (2.1.2)
1
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26 2 The Gamma Function

In order to show the convergence of (2.1.1) we observe that 0 < e "t*~! < !
holds true for all ¢ € (0, 1]. Therefore, for ¢ > 0 sufficiently small, we have

1 1 tx
/ e ¥l dr 5/ A= —
& & x

Consequently, for all x >0, the integral (2.1.1) is convergent. To assure the
convergence of (2.1.2) we observe that

1
1 X
—-_% (2.1.3)
X X

&

1 n!

—t . x—1 __ x—1 _
e 't = —Z,fooi < ﬁ = T 2.1.4)
=0 %! n!
foralln € Nand ¢ > 1. This shows us that
A A —n+x |4 |
/e"t"‘ldt<n!/ ;dtzn!t - ! -1
! I I L x—n|, ~x-—n\A"*
(2.1.5)

provided that A is sufficiently large and # is chosen such that n > x + 1. Thus, the
integral (2.1.2) is convergent which we summarize in the following lemma.

Lemma 2.1.1. For all x > 0, the integral

o0
/ e 't* " dr (2.1.6)
0

is convergent.

Definition 2.1.2. The function x > I"(x), x > 0, defined by
o0
I'(x) = / e 't* " dr (2.1.7)
0

is called the Gamma function (see Fig. 2.3 (right) for an illustration).
Obviously, we have the following properties:

(i) I is positive for all x > 0,
() ()= ["e"dt = 1.
We can use integration by parts to obtain for x > 0:

o0 o0
F'x+1) = / e 'tYdt = —e_’t"|go —/ (—e Hxt ' dr (2.1.8)
0 0

o0
= x/ e 't Mdt = x I'(x).
0
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Lemma 2.1.3. The Gamma function I satisfies the functional equation
'x+1)=xTI(x), x>0. (2.1.9)

Moreover, by iteration for x > 0 andn € N,

Fx+n=@+n-1-...-(x+DxI'x)=[]x+i-DIx). 2.1.10)
i=1

n n

Fn+1)= (Hi)F(l):ni =nl. (2.1.11)

i=1 i=1

In other words, the Gamma function can be interpreted as an extension of factorials.

Lemma 2.1.4. The Gamma function I' is differentiable for all x > 0 and we have

I''(x)= / ” e In(t)r*! dr. (2.1.12)
0

Proof. For x > |h| > 0, we use the formula ¥ = e"®” y > 0,¢ > 0:

I'(x+h)= /oo e 'l dr = /OO e FINOCFh=D) qf (2.1.13)
0 0

By Taylor’s formula we find 0 < % < 1 such that

o0
I'(x+h)—Tx) = / e e N0 (hCth) _ ghit)x) g (2.1.14)
0

_ / e~ e 0 (hin(n)* + LhA(In()2 ) di
0

o0 00
= h/ e ' In(t)r* " dt + %hZ/ e~ (In(r))*t* "1 dr.
0 0
This gives us the differentiability of I" if the second integral is bounded. Consider

the following estimate (we employ that (In(¢))> < t> for¢ > 1 and thate™ < 1 for
te[0.1])

oo 1 oo
/ e (In()) 2 1 g = / R0 S A T / e (In(r)) > =1 gy
0 0 1

1 e’}
E/ (In(e))2e* P01 dz+/ ot 2501 g,
0 1

2
ST+ x+Ih) + (s < oo (2.1.15)

This provides us with the desired result. O
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An analogous proof can be given to show that I" is infinitely often differentiable for
all x > 0 and

r'®x) = / e '(In(r))f+*~" dr, k e N. (2.1.16)
0

Lemma 2.1.5 (GauB3’ Expression of the Second Logarithmic Derivative). For
x >0,

(I''(x))* < T(x)I" (x). 2.1.17)
Equivalently, we have
d 2 B I—v//(x) I—v/(x) 2
(a) In(I"(x)) = e — (F(x)) > 0, (2.1.18)

i.e., x = In(I"(x)), x > 0, is a convex function or I' is logarithmic convex.

Proof. We start with

e’} 2
(I'(x)* = ( /O e~ In(t)r*! dt)
e’} 2
= (/ e 2T In()e 2t T dt) . (2.1.19)
0

The Cauchy—Schwarz inequality yields (note that equality cannot occur since the
two functions are linearly independent):

(1"’(x))2 < /000 (e_%t%)2 dr /000 (e_%t% ln(t))2 dr

= / ” e 't dt / ” e 't In(r)*dt = I'(x) I'"(x). (2.1.20)
0 0

Moreover, we find with the help of (2.1.20) that

d ') _ TN = (C(x)

ETE - TP >0, (2.1.21)

d2
d—len(l“(x)) =
which yields (2.1.18). O

Note that In({"(-)) is convex, i.e., for ¢ € [0, 1]

In(I'(tx + (1 —1)y)) <tIn(I"'(x)) + (1 —=1)In(I"(p))
=In(I'"(x)) +In(I"'"(y))
= In(I'(x)- T (y)) (2.1.22)

which is equivalent to I'(tx + (1 —t)y) < I''(x) - I'™(y) with x, y > 0.
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Fig. 2.1 The illustration of the coordinate transformation relating the Beta and the Gamma
functions

2.2 Euler’s Beta Function

Next, we notice that for x, y > 0, the integral

1
/ A=) de (2.2.1)
0

is convergent.

Definition 2.2.1. The function (x, y) — B(x, y), x, y > 0, defined by

1
B(x,y) = /0 A=) de (2.2.2)

is called the Euler Beta function.

For x,y > 0, we see that

o0 o0 o0 o0

rry) = / e 't dr / e s’ M ds = / / e (==l dr ds.
0 0 0 0

(2.2.3)

Note that the transition from one-dimensional to two-dimensional integrals is
permitted by Fubini’s theorem. We make a coordinate transformation (see Fig.2.1)
as follows:
t =u(l—v), 0<u<oo, (2.2.4)
S = uvy, 0<v<l. (2.2.5)

It is not difficult to verify that the functional determinant of the coordinate
transformation is given by

a(tvs) _‘1_‘}_” :u(l_v)+uv:u20 (226)

ou,v)

14
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Thus, we find

00 0o 1 00
/ / e Tl qr ds = / / e (u(l —v))* ()’ 'u du dv
o Jo o Jo

1 9]
:// e w21 —v) Wy du dv
0 Jo
o

1
= / eyt Tyl du/ VI =) dw.
0 0

This leads us to the following theorem:

Theorem 2.2.2. Forx,y > 0,

_Irro)
P Ty

In particular,

11 1 1
B(=-.- =/ z—%(l—t)—%dz=2/(1—u2)—%du
2’2 0 o

) 7
= 2arcsin(1) = 25 = .

Therefore, we have

This shows that

1 o0
r (—) == / et dr.
2 0

Other types of integrals can be derived from

© i u=t% 1 o0 _ l—l 1 1
e dt = — e ‘ue " du=-I-), a>0.
0 o Jo o o

Lemma 2.2.3. Foro > 0,

I 1
/ et dt:F(“+ )
0 o

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)
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In particular, Lemma 2.2.3 yields for o« = 2

/ooe_tz 4T (é) _1r (l) _ T (2.2.14)
A 2) 727 \2) 7 2

Moreover, we have

o0 T 1 X
e At = - (—) . x,a>0, (2.2.15)
0 o o
and
o0 1.
/ e’ df = —a~3T (f) x.a>0. (2.2.16)
A 2 2

Within the notational framework of polar coordinates (see (6.1.17) and (6.1.18) for
details) we are now prepared to give the well-known calculation of the area ||S77!||
of the unit sphere S7~! in RY: By definition, we set ||S°|| = 2. Clearly, S' is the unit
circle in R?, i.e., S! = {x € R? : |x| = 1}. Hence, its area is equal to

ISY = 2. (2.2.17)
Furthermore, S> = {x € R? : |x| = 1} is the unit sphere in R>. Thus, its area is
known to be equal to

IS?|| = 4. (2.2.18)

We are interested in deriving the area of the sphere S?! in R? (¢ > 3):

”Sl]—ln — /Sq_l dS(q_l)(S(q)). (2219)

In terms of spherical coordinates (6.1.17) and (6.1.18) in RY the surface element
dS(;—1)() of the sphere S?~! in R? admits the representation

dSg-1) (§@) = S (V 1 —fzé‘(q—n) dr (2.2.20)
+ (—l)q_ll dV(q_l) (\/ 11— tzg(q_1)> .
Now, we notice that
—3
dVig-1) (V - tzg(q—l)) =—1(1-1%)"7 dr dSi) (Eq-1) (2.2.21)

—3
= (—1)q_ll(1 - lz)qT dS(q_z) (ég'(q_l)) dr.
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In addition, it is not difficult to see that
a8 (VI=28-1) = 1 =) dSi-2) () (22.22)
Combining our results we are led to the identity
a8 (167 + VT =16 (2.2.23)
= (1= (122 +1%) dSqa (Ee) o,

where we have used the decomposition &) = 1&9+/1 — 12§(4—1). Note thate!, . . ., &4
is the canonical orthonormal system in R?. In brief, we obtain

—3
dSg1 (Eg) = (1 =11 dSa (1) dr. (2.2.24)

such that
—1 ! 2 q=3
= [ [ =T dsgaEena @229
—1 JSi—

l —_J
= |52 / (1- ) ar.
—1

For the computation of the remaining integral it is helpful to use some facts known
from the Gamma function as well as Euler’s Beta function. More explicitly,

1 2 q—3 1 2 q—3 2=y 1 1 q—3
/ 1—-t)7 dt:2/ 1—¢t) 2 dt = / viZ(l—v) 2z dv (2.2.26)
—1 0

Lg-1y TOr(s) var(s)
=234 - TS I S (Y

By recursion we get the following lemma from (2.2.26):

Lemma 2.24. Forq > 2,

IS

T

ST =2
IS~ Il

(2.2.27)

3

ST

The area of the sphere S(fe_l (y) with center y € R? and radius R > 0 is given by

[STEY

/4

r(3)

8% ) = 1871 RI™! = 2= RO (22.28)

ST
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Furthermore, using &) = |~XTI’ the volume of the ball B% (y) with center y € R and

radius R > 0 is given by

R

o= [ wow= [ ([ aSen@n) o @2
B% () r=0 \JS!I™ ()

b
(ST

b4
=2

ST
vk g

r(

2.3 Stirling’s Formula

ral =

+ 1)

Next, we are interested in the behavior of the Gamma function I" for large positive
values x. This provides us with the so-called Stirling’s formula, a result which we
apply to verify the helpful duplication formula and to extend the Gamma function

in Sect. 2.4.
Theorem 2.3.1 (Stirling’s Formula). For x > 0,

I'(x) 1 < 2
2w xx—1/2e=x ~ Voax’
Proof. Regard x as fixed and substitute
dt
t=x(1+s), —-1<s<o0, —=x
ds

in the defining integral of the Gamma function. We obtain

o o
r'(x) = / et dr = / e I 4 5) T x ds
0 -1

o0
= x"e_"/ (145 te™ ds = x“e ™ I(x).
-1

Our aim is to verify that /(x) satisfies

2 2
I(x)— 2] < =
x x
such that
r 2 2 r 2
O S <2 e [ L9 )< 2
X¥e—x X X x¥—1/2e=x/27r X

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)
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5 ; ; ; ; ; ;

-1 0 1 2 3 4 5

6

Fig. 2.2 The functions s > u?(s) = s — In(1 + s) (blue) and u(s) defined by (2.3.7) (red)

For that purpose we write

(1+5)%e™ = exp (—x(s — In(1 +5))) = ™0,

where (cf. Fig.2.2)

Is—In(1 +s)2 . s€[0,00).

“(S):{—|s—1n(1+s)|é  se(=1,0).

We set up the Taylor expansion of u? for s € (—1, co) at 0:

du? d%u? 52
20y 2 s
u-(s) = u"(0) + o (0)s + FrE (@s) 5

o (1o Yy b ¥
= —_ S -,
140 (1+s)22

where © € (0, 1). Therefore,

8]

s 1

2 -
W) =3 a0y

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

with 0 < ¢ < 1. We interpret ¥ as a uniquely defined function of s, i.e., ¥ : s

¥ (s), such that
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u(s) 1 1

— = 2.3.10
s V2 (1 + s89(s)) ( )
is a positive continuous function for s € (—1, co) with the property
u(s) 1 ' _ ( 1 )' ' sP(s)
s NABNAVET O V2 |1+ s9(s)
sO(s)u(s)
= [Py o) < ). @3
From u?(s) = s — In(1 + s) follows that
2udu = ds. (2.3.12)
I+
Obviously, s : u — s(u), u € R, is of class CV(R) and thus,
o0 +o00 s U
I(x) :/ (1+s) e ™ ds = 2/ e —— du. (2.3.13)
-1 —00 s(u)

We are able to deduce that

‘I(x)—2x/§/000e_”2du :‘
T (L _ L) g,
:‘2/_006 (s(u) ﬁ)d‘

<2/oo e 1‘d
< e | — — —| du
—00 s(u) \/i

o 2 o 2
< 2/ e ™ |u| du = 4/ e M udu. (2.3.14)
0

—0o0

Note that we can use the integral (2.2.16) with ¢ = x and x = 1,

o0 o0
/ A le e gy, — / e qy — Ixrr(d) = ﬁ, (2.3.15)
0 0 2./x

as well as with @ = x and x = 2in (2.2.16)

o 2 © 2 1
/ W le™ dy = / e udu=1x"r(1)=—. (2.3.16)
0 0 ZX
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This yields:

I(x)—zx/il\/z‘z I(x)—\/z
2 Vx X

This leads to the desired result. O

1 2
<4 — ==, (2.3.17)
2x X

Remark 2.3.2. Stirling’s formula can be rewritten in the form

lim v _y (2.3.18)
x—>00 /2 xX—1/2e—x - -

An immediate application is the limit relation

I'(x+a)

lim =1, a>0. (2.3.19)

x—>o00 x4["(x)

This can be seen from Stirling’s formula by

I'x +a)

i T | @320
due to the relation
(x +a) 073 = P HTI(] 4 gyvHess (2.3.21)
and the limits
XILIIOIO(I—Z# =1, lim (1+ )=z =1, (2.3.22)

Next, we prove the so-called Legendre relation or duplication formula.

Lemma 2.3.3 (Duplication Formula). For x > 0 we have

2-ip (%) r (x er 1) = J7 (). (2.3.23)

Proof. We consider the function x — @(x), x > 0, defined by

2 M)
)

d(x) = (2.3.24)

for x > 0. Setting x + 1 instead of x we find the following functional equation for
the numerator

»r (x er 1) r (% + 1) — 2 Ixr (g) r (x er 1) , (2.3.25)
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such that the numerator satisfies the same functional equation as the denominator.
This means @(x + 1) = &(x),x > 0. By repetition we get for all n € N and x
fixed @(x + n) = d(x). We let n tend to co. For the numerator of @ (x + n) we
then find by use of the result in Remark 2.3.2, i.e., by using (2.3.19) twice, that

2x+n—1p(M)p(M)
: 2 2
lim —

R =1 (2.3.26)
2 @ )T (1)

For the denominator we consider

: I'(x +n)

tr, e 2
R () ) (1)
I'(x +n)

IR re)’
x+n 1(%) 2(%);1 le n277(%)(n—126—)n2,,

Fx+n) ( (r(2))? )‘1
(

5 le™ 2

= lim
n—>o00

= lim -
n—o0 x+n n n X—i —n
2%tn (3) e

ny\2 -1
— lim I'(x +n) (I'(%))
n—>00 mnn+x—%e—nﬁ (%)”_le_”27t
1
=, 2.3.27
N ( )
since Stirling’s formula yields that
r
lim (3)1 — =1, (23.28)
T V2m(t)2T2e2
ie.,
2
r
lim & =1, (2.3.29)

n—>00 27{(%)"‘13—"

and by the same arguments as in Remark 2.3.2 (set a in (2.3.20) to x and x
in (2.3.20) to n) we find that

. I'(x +n)
lim

L R (2.3.30)
n—00 mnn+x—§e—n

Therefore, we get for every x > O and all n € N,

D(x) =DP(x+n) = lim D(x +n) = /7. (2.3.31)
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A periodic function with this property must be constant. This proves the lemma. 0O

A generalization of the Legendre relation (“duplication formula”) is the Gaufs
multiplication formula that can be verified by analogous arguments.

Lemma 2.3.4. For x > Qandn > 2,

F(i)F(x_'_l)-...-F(%n_l)n“‘ = Q)T Jn T (x). (2.3.32)

n n

2.4 Pochhammer’s Factorial

Thus far, the Gamma function I" is defined for positive values, i.e., x € R.o. We are
interested in an extension of I” to the real line R (or even to the complex plane C)
if possible.

Definition 2.4.1. The so-called Pochhammer factorial (x), withx € Randn € N
is defined by

On=x(x+1)...x+n=D=[[Cx+i-1). (2.4.1)

i=1

For x > 0, it is clear that
I'(x +n)
= 7 2.4.2
(xX)n r(x) ( )

or
(x), 1
I'x+n) I'(x) (2.4.3)

The left-hand side is defined for x > —n and gives the same value for all n € N
with n > —x. We may use this relation to define ﬁ for all x € R, and we see that
this function vanishes for x = 0, —1, -2, ... (see Fig. 2.3 (left)). We know that the
Gamma integral is absolutely convergent for x € C with Re(x) > 0 and represents
a holomorphic function for all x € C with Re(x) > 0. Moreover, the Pochhammer
factorial (x), can be defined for all complex x. Because of (2.4.3) with n chosen
sufficiently large, we have a definition of ﬁ for all x € C. This is summarized in
the following lemma.

Lemma 2.4.2. The I -function is a meromorphic function that has simple poles in
0,—1,-2,... (see Fig. 2.3 (right)). The reciprocal x +— % is an entire analytic
function (see Fig. 2.3 (left) for an illustration).
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I\~ T

4 3 2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1

-4
-1

-6
) 8
-3 -10

o 1 2 3 4 5

Fig. 2.3 The reciprocal of the Gamma function (left) and the Gamma function (right) on the real

line R

Lemma 2.4.3. Forx € C,

n—1
1 — s —X X
e = A x]!j[l (1+7%). (2.4.4)
Proof. Because of (2.4.3) the identity
P 1
() ) _ (2.4.5)
I'n)I'(x+n) I'(x)
is valid for all x € C with Re(x) > —n. Furthermore it is easy to see that
~1
() x+DE+2)...(x+n—1) T x
T~ 2. =1 xﬂ( +3) (2.4.6)
Combining the two and multiplying with n™* we find that
n—1
I'(x +n) . X
—_ = 14+ -). 24.7
o Tl xﬂ( + k) (24.7)
Now, we use (2.3.19) withx = n anda = x, i.c.,
. I'(x+n)
lim ———= =1, 0, 24.8
woo T (nyn* *= (2:4.5)
on the left-hand side and obtain for x > 0,
1 . T(x+n) 1 = x
=1 Z =1 X 14+-—), 2.4.9
[(x) wooo nil(n) ['(x) noeo [1 ( + k) (2.4.9)

k=1
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which proves Lemma 2.4.3 for x > 0. To determine if this limit is also defined
for x < 0 we consider once again s — In(1 + s) (cf. Fig. 2.2) with —1 < s < o0
from (2.3.9) in the proof of Theorem 2.3.1:

[}

Therefore, we can put s = % and estimate the right-hand side with its maximum,
ie., with ¥ = 0:

0<i-In(1+}) <55 (2.4.11)
This immediately proves that lim_ i (t —=In(1+ 7)) exists and is positive.
n—» k=1
Moreover,
: 1 1)) — 1
Tim 3 (f —In(1+¢)) = lim > (3 —Ink + 1) + In(k))

k=1 k=1

= nli)ngo( 1 —In(n + 1)) =y, (24.12)
k=1

where y denotes Euler’s constant
m—1

, 1
y = lim (Z A —1nm) ~ 0.577215665 . . .. (2.4.13)

m—>00
k=1

Assume now that x € R. If k > 2|x|, then

0<*-m(l+%) <% (2.4.14)
and
ﬁ(wj{—c):ﬁ(w )% T = ]:[7]:[( ) T (2415
k=1 k=1 =1 k=1

For k > ko = [2|x|], we obtain by multiplying (2.4.14) with —1 and applying the
exponential function to it:

X
1> (14 f)ek >e &2, (2.4.16)
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which shows that

n—1 9]
nli)ngokli[l (1+5)ek = E (1+f)ex (2.4.17)

exists for all x. Furthermore,

n—1 n—1 n—1
l_[ e/ =exp (x ]l) = exp (x ]1 —xIn(n) +x ln(n))
J=1 Jj=1 j=
n—1
= n"exp (x Jl —Xx ln(n)), (2.4.18)
j=1
where
n—1
lim exp (x 1_ xln(n)) = e, (2.4.19)
n—oo ‘ J

j=1

n—1

Therefore, lim n™*x [] (1 + %) exists for all x € R and it holds that
n—>oo k=1

n o0
lim = x [T (1+ %) =xe” [[(1+§)eF, (2.4.20)
k=1

n—00
k=1

where the infinite product is also convergent for all x € R. By similar arguments
these results can be extended for all x € C. O

The proof of Lemma 2.4.3 also shows us the following lemma.

Lemma 2.4.4. For x € C,

1 . = X\ _x
o= eV ;El (1 + %) =3 (2.4.21)

Let us consider the expression
1
O(x)=—TI'(x)I'(1—x)sin(rx), (2.4.22)
T

which has no singularities and is holomorphic for all x € C. It is not difficult to
show that
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okx) = n_lxr(l + x)I"'(1 — x) sin(x) (2.4.23)

= ;r(x)r(z — x) sin(7rx). (2.4.24)
w(l —x)

Obviously, by using (2.4.23) for x = 0 and (2.4.24) for x = 1, we obtain

sin(wx)

Q)y=rayr( lin}) 1, (2.4.25)
sin(rx)

o) = F(I)F(l)iiml i =

(2.4.26)

In the interval [0, 1] the function Q is positive and twice continuously differentiable.
With the duplication formula (Lemma 2.3.3) we get

X x+1
0(3)e ( , ) = 0(x). 2427
which is easily verified. Setting R(x) = In(Q(x)), we see that
X x+1
R (5) +R ( . ) — R(x). (2.4.28)
By differentiation we obtain
1 X 1 x+1
-R" (= -R" = R"(x). 2.4.29
4 (2) 3 ( 2 ) x) (24.29)

As the second order derivative R” is continuous on the compact interval [0, 1], there
is a value £ € [0, 1] such that

|R"(§)] = |R"(x)|, x € [0,1]. (2.4.30)

R// E + 1

2
which implies |R”(§)] =0, i.e., R”(x) = 0. From R(1) = R(0) =0 we then deduce
R(x) =0. Therefore, Q (x) = 1. This result can be written in the form

Therefore, we obtain from (2.4.29)

o= g|e(5)|+5

1 "
5 1 = SIR°@I, (2.4.31)

rx)rd-x) =

TR (2.4.32)
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It establishes an identity between the meromorphic functions I'(:), I'(1 — -), and
(sin+)~!. Altogether, we have

BN N o PN 2.4.33
F(x)r(l—x)‘xk=1( ) (2439

In connection with (2.4.32) we obtain

Lemma 2.4.5. For x € C,

0 2
sin(x) = 7x [ | (1 - %) . (2.4.34)
k=1

2.5 Exercises (Incomplete Gamma and Beta Function,
Applications in Statistics)

In this section the discussion of the so-called incomplete Gamma functions and
their relation to the error functions erf and erfc as well as the incomplete Beta
function is left to the reader in the form of some exercises. The results demonstrate
an immediate transition to probability distributions in statistics.

Incomplete Gamma Function

Definition 2.5.1. By definition, we let for x,a > 0,
o0
I'(a,x) = / e 't dr (2.5.1)
X

and .
y(a,x) = I'(a) — ' (a,x) =/ e 't 1 dr. (2.5.2)
0
The functions I'(:, x), y(-, x) are called the incomplete Gamma functions related
to x.

Exercise 2.5.2. Prove that

1
y(a,x) :x”/ et dr, (2.5.3)
0

o0
I'(a,x) = x”e_"/ e dt. (2.5.4)
0
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Exercise 2.5.3. Show that the so-called error functions

2 (Y _p»
erf(x) = ﬁ/o e dt,
2 [* _a
erfc(x) = 1 —erf(x) = —/ e " dt
Ve
admit the representations
1 1.2
erf(x) = ﬁy(i,x ),

erfc(x) = L1“(l x?).

Neahel
Exercise 2.5.4. Verify that
n xm
'n+1,x) =nle™™ —,
= m!
n xm
= n! —e " -
y(n+1,x) =n! (1 e 22()}71!)
m—

hold true for all n € Ny.

Exercise 2.5.5. Prove the following recurrence relations

X

y(a+1,x) =ay(a,x)—xe™™,
I'a+1,x) =al(a,x) + x%™".

Incomplete Beta Function
Definition 2.5.6. The function (x, y) — B(x, y, «) defined by

B(x,y,a) = / A=) de
0

is called incomplete Beta function relative to o € (0, 1].
Exercise 2.5.7. Show that

B(x, y,

satisfies

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)
(2.5.12)

(2.5.13)

(2.5.14)
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I(x,y,1) =1, (2.5.15)
I(x,y,a) =1—-1(y,x,1 —a). (2.5.16)

Exercise 2.5.8. Prove the recurrence relation
(x+nI(x,y,0) =xI(x+1,y,a) +yl(x,y + 1,a). (2.5.17)

Exercise 2.5.9. Verify the binomial expansion

n

Im,n+1-—m,a) = Z (7)0{1(1 —a)"!, n,meN. (2.5.18)

I=m

As already announced, the incomplete Gamma and Beta functions possess a
variety of applications in probability theory and statistics, from which we mention
only two examples. We restrict ourselves to continuous random variables with non-
negative realizations.

Definition 2.5.10 (Gamma Distribution). A random variable X with density
distribution
,ifx <0,

0
F(x) = { o icwr e o (2.5.19)
I'(p) ’ ’

is called a Gamma distribution with p > 0 and o > 0.

Clearly, F(x) > 0 for all x € R. An easy calculation gives
/ F(x)dx =1. (2.5.20)
R

The probability density function of the Gamma distribution reads as follows:

X aP X . 1 ax |

X F(t)dt = —/ P e dr = —/ tP~le™ dt = y(p, ax).
/0 I'(p) Jo I'(p) Jo

(2.5.21)

The Gamma distribution is widely used as a conjugate prior in Bayesian statistics
(for more details see, e.g., Papoulis and Pillai 2002).

Beta Distribution

The Beta distribution is a family of continuous probability distributions defined on
the interval (0, 1) and parameterized by two positive values p and gq.
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Definition 2.5.11. A random variable X with density distribution

0 , if 0,1),
F(x) = § — § o #£0.1) (2.5.22)
B(M)x” (1—x)? ,ifx € (0,1),

is called a Beta distribution with p,q > 0.

The probability density function of the Beta distribution reads as follows:

1
B(p.q)

X /X F(t)dt = /xt”_l(l _pyitgr = BP0 505
0 0

B(p.q)

for x € (0, 1). The expectation value and the variance of a Beta distributed random
variable X corresponding to the parameters p and g are given by

w=EX)=-2_, (2.5.24)
p+q

Var(X) = E(X — u2) = P4 (2.5.25)

P+ ptg+ )

Beta distributions are often used in Bayesian inference, since Beta distributions
provide a family of conjugate prior distributions for binomial distributions (more
details can be found, e.g., in van der Waerden 1969).
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