Preface

An essential aim of geomathematics is the investigation of qualitative and quantita-
tive structures of the Earth’s system to deepen our understanding of its complexity.
In this respect, special functions comprise the essential instruments for mathe-
matical interaction of abstraction and concretization. Special functions enable the
formulation of a geoscientific problem by reduction such that a new, more concrete
problem can be attacked within a well-structured framework, usually in the context
of differential equations. A good understanding of special functions provides the
capacity to recognize causality between the abstractness of the geomathematical
concept and the impact on, as well as cross-sectional importance to, the geoscientific
reality.

Our purpose in this work is to present a textbook that allows the reader to concen-
trate on special fields such as the geosphere, hydrosphere, or atmosphere. In other
words, the special functions to be discussed vary widely, depending on the chosen
measurement parameters (gravitation, electric and magnetic fields, deformation,
climate observables, fluid flow, etc.) and on the field characteristic (potential field,
diffusion field, wave field). The differential equation under consideration determines
the type of special functions that are needed in the desired reduction process.

The diversity of geomathematical problems involves such a large number of
scientific manifestations that our approach to any of them has to be selective. In
consequence, since greater weight has to be given to some topics than to others, we
have chosen to restrict ourselves to gravitation, geomagnetism, elasticity, and fluid
flow theory. Gravitational field theory defines a canonical need to generate special
function systems for the Laplace equation. Geomagnetism and electric current sys-
tems are closely related to the (pre-)Maxwell equation; the deformation of the solid
Earth leads to function systems solving the Cauchy—Navier equation (at least when
linear material behavior is assumed). Oceanic circulation and wind motion have
to be handled in terms of vectorial function systems involving the Navier—Stokes
equation or modifications of it. Unfortunately, we are confronted with the difficult
challenge to characterize special function systems under adequate consistency in
terms of less mathematically structured geometric features of a reference model
(such as the geoid or the real Earth’s surface) as well as the intrinsic structure of
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underlying differential equations involving the laws of physics. Thus, at the present
stage of geoscience, no compendium can be expected that is both geometrically
consistent with modern navigation results and geophysically reflected by advanced
mathematical settings. The complexity of a real “potato-like” Earth model is a
striking obstacle that can only be overcome to some extent in today’s mathematics.
Accordingly, the principles lie in the suitable transition to a regularly structured
geometry for the Earth, namely, the ball in first approximation. This leads us to a
prestructured framework, namely, spherically oriented special function systems.
Looking at the special functions available in the geophysical literature today, we
find that a spherical shape of the Earth is used in almost all publications. Indeed, by
modern satellite positioning methods, the maximum deviation of the actual Earth’s
surface from the average Earth’s radius (6,371km) can be determined to be less
than 0.4 %. Although a spheriodization, i.e., a mathematical formulation simply in
spherical reference geometry, amounts to a strong restriction, it is at least acceptable
for a large number of problems. Standard special functions since the time of
C.F. Gau8} are polynomial trial functions, conventionally called spherical harmonics.
Spherical harmonics represent the analogs of trigonometric functions for orthogonal
(Fourier) expansions on the sphere. In consequence, the use of spherical harmonics
in diverse areas of geosciences is a well-established method, particularly for the pur-
pose of decomposing scalar potentials. Nowadays, reference models for the Earth’s
gravitational and magnetic potential, e.g., are widely known by tables of expansion
coefficients of the frequency constituents of their potentials. However, it should be
mentioned that vectorial potentials—even in a spherical Earth’s reference model—
have their own nature. Concerning the mathematical modeling of vector fields,
one is usually not interested in their separation into scalar Cartesian component
functions. Instead, inherent physical properties should be observed. For example,
the external gravitational field is curl-free, the magnetic field is divergence-free,
the equations for incompressible flow, i.e., the Navier—Stokes equations, imply
divergence-free vector solutions. In a spherical nomenclature as intended in our
approach, all these physical constraints result in a formulation by certain operators,
such as the surface gradient, surface curl gradient, surface divergence, surface curl.
Our types of vector spherical harmonics satisfy these requirements by splitting
the tangential part into a curl-free and a divergence-free field, thereby avoiding
artificial singularities arising from the use of local coordinates. Basically, two
transitions are undertaken in our approach to harmonics: first, the extension from
the scalar to the vectorial case is strictly realized under physical constraints and,
second, the definition of Legendre functions is canonically described under the
phenomenon of rotational invariance on the sphere. The Legendre functions act
as constituting elements for zonal functions, i.e., one-dimensional functions only
depending on the polar distance of their two arguments. Altogether, the concept
of spherical harmonics plays the central role in a geomathematical presentation of
special functions, reflecting the significance of a polynomial nature in a spherically
shaped Earth. In addition, spherical harmonics comprise the canonical candidates to
represent the angular part in a radial/angular decomposition of solution systems for
Laplace, Helmholtz, Cauchy—Navier, (pre-)Maxwell, and Navier—Stokes equations.
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It is surprising that, besides the geometrically implied spheriodization, the
methodologically oriented periodization should take some space in a modern
collection of special function systems of geomathematical importance. The reasons
are twofold. First, the periodization leads back to the Fourier transform in Euclidean
spaces that has been well understood for a long time and is extremely efficient
in numerical computation. Second, the procedure of periodization leads to the
Euler summation formula and the Poisson summation formula which show a close
relationship to each other. The Green (lattice) functions forming the essential basis
of these summation formulas indeed enable us to express key volume integrals
in geophysics, such as the Newton integral, Mie potentials, elastic potentials, by
mass lattice point conglomerates that discretely fill out the integration domain under
consideration in an equidistributed way.

A variety of examples for combined periodization and spheriodization occur
in the theory of Earth-satellite relations (cf., e.g., Kaula 1966), mixing time-wise
obligations on periodic orbits with space-wise approaches on torus and/or sphere.
Satellite gravimetry (see, e.g., Pail and Plank (2002), Sneeuw (2000), Xu et al.
(2008), and the references therein) is a particularly interesting area of spaceborne
technology, where one-dimensional periodization in time is adequately involved in
three-dimensional periodization and/or spheriodization in space.

This textbook presents material used by the Geomathematics Group, University
of Kaiserslautern, during the last several years to set up a contemporary theory
of special functions of mathematical (geo-)physics. Our work canonically shows
a threefold subdivision. Part I provides preparatory material concerning auxiliary
functions such as the Gamma function and important classes of orthogonal polyno-
mials. The general concept of orthogonal polynomials is introduced before we start
to consider the classical polynomials, in particular the Jacobi polynomials and—
as a special and very important case of them—the ultraspherical or Gegenbauer
polynomials. Several basic mathematical and physical applications are included,
such as quadrature rules, modeling of the electrostatic potential, and the quantum-
mechanical description of oscillations. Part II deals with spherically structured
function systems. It starts with the scalar theory of spherical harmonics in the
Euclidean space R3 including the addition theorem, the Funk—Hecke formula, as
well as the closure and completeness of spherical harmonics in the space of square-
integrable functions, i.e., the space of functions with finite signal energy. It follows
the physically based theory of vector spherical harmonics. The basic tool to establish
divergence-free and curl-free tangential fields is the Helmholtz decomposition
theorem. An alternative system of vector spherical harmonics is also constructed in
such a way that they can be identified as eigenfunctions of the Beltrami operator.
This eigenfunction system plays a particular role in geomagnetism to separate,
e.g., the crustal field from other magnetic sources. Both vector spherical harmonic
systems are shown to be closed and complete in the space of square-integrable
vector fields on the sphere. All properties characterize vector spherical harmonics
as suitable trial functions to constitute the angular ingredients in a radial/angular
decomposition of solutions of the Cauchy—Navier as well as the Navier—Stokes
equation. Part IIl is devoted to the lattice function as the multi-dimensional,
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Fig. 1 Selected sections and chapters for a basic one-term course (note that some parts of Sect. 3.3
have to be included to complete Sect. 3.4. Sections 5.5, 5.6, 5.9, and 5.10 can be skipped in the one-
term course)

periodic analog to the well-known Bernoulli function. From a physical point of
view, the lattice function is interpreted to be the Green function for the Laplace
operator corresponding to the boundary conditions of periodicity. It turns out to
be the most essential tool for the process of periodization in the context of Euler
and Poisson summation formulas. Lattice point sums such as the Zeta and Theta
functions, generated by the interaction of point potentials to each other, conclude our
multi-periodic theory. It should be remarked that the whole palette of multi-periodic
functions is provided in relation to the Laplace operator and arbitrary lattices so
that this approach serves as a prototype for further formulations of more general
(elliptic) partial differential equations.

Essential ingredients of the textbook are the work of Miiller (1952, 1969, 1998),
Freeden et al. (1998), Freeden and Schreiner (2009), and Freeden (2011).

Each chapter of the book is followed by exercises related to the presented
material. The exercises reflect significant topics, mostly in computational geo-
applications. In doing so, they not only confront the reader directly with the contents
of the chapter, but also with additional knowledge in geomathematical fields of
research, where special functions play a decisive role in applications. Students who
wish to continue further studies should consult the literature given as supplements
for each topic worked out by exercises. All in all, the content of the book is equally
suitable for an education in geomathematics and a study in applied and harmonic
analysis.

The book is primarily meant to be a self-consistent introductory text for an
advanced undergraduate or graduate course in special functions. The schedule of
topics allows a selected subdivision into a one-term course (see Fig. 1) as well as a
two-term course. In addition to the proposed sections and chapters in Fig. 1, further
contents can be selected from Chap. 3, such as Sect. 3.2 and all details of Sects. 3.3
or 3.5-3.7, if the schedule allows it. The examples of Chap. 1 can be presented at
any appropriate time.

A two-term course with special emphasis on particular research fields should
include additional material from Chaps. 5 and 7 documenting the special interest of
a graduate student in gravitation, geomagnetism, deformation, atmospheric/oceanic
flow, respectively. Chapters 6 and 8 give multi-dimensional radial/angular decom-
positions of harmonic and metaharmonic functions as a reference tool, thereby
assuming as preparatory material the whole theory of the Gamma function as pre-
sented in Chap. 2. Another separate route going exclusively into the field of lattice
functions includes Chaps. 9 and 10 while also requiring all the material of Chap. 2.
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