Clustering and Prediction of Rankings
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Abstract Rankings and partial rankings are ubiquitous in data analysis, yet there is
relatively little work in the classification community that uses the typical properties
of rankings. We review the broader literature that we are aware of, and identify a
common building block for both prediction of rankings and clustering of rankings,
which is also valid for partial rankings. This building block is the Kemeny distance,
defined as the minimum number of interchanges of two adjacent elements required
to transform one (partial) ranking into another. The Kemeny distance is equivalent to
Kendall’s T for complete rankings, but for partial rankings it is equivalent to Emond
and Mason’s extension of t. For clustering, we use the flexible class of methods
proposed by Ben-Israel and Iyigun (Journal of Classification 25: 5-26, 2008), and
define the disparity between a ranking and the center of cluster as the Kemeny
distance. For prediction, we build a prediction tree by recursive partitioning, and
define the impurity measure of the subgroups formed as the sum of all within-node
Kemeny distances. The median ranking characterizes subgroups in both cases.

1 Introduction

Ranking and classification are basic cognitive skills that people use every day to
create order in everything that they experience. Many data collection methods in the
life and behavioral sciences often rely on ranking and classification. Grouping and
ordering a set of elements is also a major communication and action device in social
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life, as is clear when we consider rankings of sport-teams, universities, countries,
web-pages, French wines, and so on. Not surprisingly, the literature on rankings is
scattered across many fields of science.

Statistical methods for the analysis of rankings can be distinguished in (1) data
analysis methods based on badness-of-fit functions that try to describe the structure
of rank data, (2) probabilistic methods that model the ranking process, and assume
substantial agreement (or homogeneity) among the rankers about the underlying
order of the rankings, and (3) probabilistic methods that model the population of
rankers, assuming substantial disagreement (or heterogeneity) between them. Let us
look at each of these in turn.

Two examples of data analysis methods based on badness-of-fit functions that
have been applied to rankings are principal components analysis (PCA, see Cohen
and Mallows 1980; Diaconis 1989; Marden 1995, Chap. 2), and multidimensional
scaling (MDS) or unfolding (Heiser and de Leeuw 1981; Heiser and Busing 2004).
In psychometrics, PCA on rankings was justified by what is called the vector model
for rankings, going back to the independent contributions of Guttman (1946); Slater
(1960) and Tucker (1960) and popularized by Carroll (1972, pp. 114-129) through
his MDPREF method. It is also possible to perform a principal components analysis
while simultaneously fitting some optimal transformation of the data that preserves
the rank order (in a program called CATPCA, cf. Meulman et al. 2004). By contrast,
the unfolding technique is based on the ideal point model for rankings, which
originated with Coombs (1950, 1964, Chaps. 5-7), but his analytical procedures
were only provisional and had been soon superseded by MDS methods (Roskam
1968; Kruskal and Carroll 1969). Unfortunately, however, MDS procedures for
ordinal unfolding tended to suffer from several degeneracy problems for a long time
(see Van Deun 2005; Busing 20009 for a history of these difficulties and state-of-the-
art proposals to resolve them). One of these proposals, due to Busing et al. (2005),
is available under the name PREFSCAL in the IBM-SPSS Statistics package.

Probabilistic modeling for the ranking process assuming homogeneity of rankers
started with Thurstone (1927, 1931), who proposed that judgments underlying
rank orders follow a multivariate normal distribution with location parameters
corresponding to each ranked object. Daniels (1950) looked at cases in which the
random variables associated with the ranked objects are independent. Examples of
more complex Thurstonian models include Bockenholt (1992), Chan and Bentler
(1998), Maydeu-Olivares (1999) and Yao and Bockenholt (1999). A second class
of models assuming homogeneity of rankers started with Mallows (1957), and
was also based upon a process in which pairs of objects are compared, but now
according to the Bradley-Terry-Luce (BTL) model (Bradley and Terry 1952; Luce
1959), thus excluding intransitivities. These probability models amount to a negative
exponential function of some distance between rankings, for example the distance
related to Kendall’s 7 (see Sect. 3); hence their name distance-based ranking models
(Fligner and Verducci 1986). A third class of models assuming homogeneity of
rankers decompose the ranking process into a series of independent stages. The
stages form a nested sequence, in each of which a Bradley-Terry-Luce choice
process is assumed for selecting 1 out of j options, with j=m, m — 1, ..., 2; hence
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their name multistage models (Fligner and Verducci 1988). We refer to Critchlow
et al. (1991) for an in-depth discussion of all of these models. Critchlow and
Fligner (1991) demonstrated how both the Thurstonean models and the multistage
BTL models can be seen as generalized linear models and be fitted with standard
software.

Probabilistic models for the population of rankers assuming substantial hetero-
geneity of their rankings are of at least three types. First, there are probabilistic
versions of the ideal point model involving choice data (Zinnes and Griggs
1974; Kamakura and Srivastava 1986), or rankings (Brady 1989; Van Blokland-
Vogelesang 1989; Hojo 1997, 1998). Second, instead of assuming one probabilistic
model for the whole population, we may move to (unknown) mixtures of subpop-
ulations, characterized by different parameters. For example, mixtures of models
of the BTL type were proposed by Croon (1989), and mixtures of distance-based
models by Murphy and Martin (2003). Gormley and Murphy (2008a) provided a
very thorough implementation of two multistage models with mixture components.
Third, heterogeneity of rankings can also be accounted for by the introduction
of covariates, from which we can estimate mixtures of known subpopulations.
Examples are Chapman and Staelin (1982), Dittrich et al. (2000), Bockenholt
(2001), Francis et al. (2002), Skrondal and Rabe-Hesketh (2003), and Gormley
and Murphy (2008b). All of these authors use the generalized linear modeling
framework.

Most methods that are mainstream in the classification community follow the
first approach, that is, they use an algorithm model (e.g., hierarchical clustering,
construction of phylogenetic trees), or try to optimize some badness-of-fit function
(e.g., K-means, fuzzy clustering, PCA, MDS). Some of them analyze a rank
ordering of dissimilarities, which makes the results order-invariant, meaning that
order-preserving transformations of the data have no effect. However, there are
very few proposals in the classification community directly addressing clustering
of multiple rankings, or prediction of rankings based on explanatory variables
characterizing the source of them (covariates). Our objective is to fill this gap, and
to catch up with the statisticians.'

Common to all approaches is that they have to deal with the sample space of
rankings, which has a number of very specific properties. Also, most methods either
implicitly or explicitly use some measure of correlation or distance among rankings.
Therefore, we start our discussion with a brief introduction in the geometry of
rankings in Sect. 2, and how it naturally leads to measures of correlation and
distance in Sect. 3. We then move to the median ranking in Sect. 4, give a brief
sketch in Sect. 5 of how we propose to formulate a clustering procedure and to build
a prediction tree for rankings, and conclude in Sect. 6.

'During the Frankfurt DAGM-GfKI1-2011-conference, Eyke Hiillermeier kindly pointed out that
there is related work in the computer science community under the name “preference learning” (in
particular, Cheng et al. (2009), and more generally, Fiirnkranz and Hiillermeier 2010).
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Fig. 1 Permutation polytope for all 24 full rankings of four objects, supplemented by all partial
rankings with one tie-block of two or three objects, or two tie-blocks of two objects. Full rankings
have equal distance towards the center; partial rankings lie strictly within this sphere. For clarity,
mirror images at the back of the polytope are not labeled

2  Geometry of Rankings

The 24 full rankings that can be formed from four objects form a permutation
polytope that has the shape of a truncated octahedron (cf. Thompson 1993; Heiser
2004). Thompson offered an thorough study of the permutation structure of partial
rankings, showing that the 12 partial rankings with a tie in last position form a
truncated tetrahedron, as do the 12 partial rankings with a tie in first position. The 12
partial rankings with a tie in middle position, however, are the intersection of a cube
and an octahedron, forming a cuboctahedron. Then there are six partial rankings
with two tie-blocks forming an octahedron, and finally four partial rankings with
tie-blocks of three in last position or in first position, each forming a tetrahedron.

It should be noted that these generalized permutation polytopes can be connected
with each other in a single graph if we introduce nodes in the original truncated
octahedron that are half-way the nodes of the full rankings. This integrated graph of
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all full and partial rankings is given in Fig. 1. All lines in this graph now indicate
a reversal or switch from one inequality to an equality, or vice versa, except for the
lines in the hexagons that connect to partial rankings with tie-blocks of three, which
represent two switches. The natural graphical distance in the integrated permutation
polytope is the sum of the line segments that need to be traversed along the shortest
path in going from one node to another, and this distance is equivalent to the
count of the minimum number of interchanges of two adjacent elements required
to transform one (partial) ranking into another.

More generally, it will be clear that the sample space of rankings has the
following characteristic properties: it is finite and discrete, it has many symmetries
(for every ranking there is a reverse ranking), it is endowed with a graphical
metric, and it intersects with a hypersphere: all full rankings are equidistant towards
the zero ranking in which all objects are tied. All partial rankings lie strictly
within the hypersphere. For a discussion of the consequences of this geometry for
various ranking and choice models, we refer to Zhang (2004). Rankings can also
arise indirectly as a consequence of doing pairwise discriminant analyses among
m populations (Kamiya and Takemura 1997, 2005). Under the unfolding model,
only a limited amount of rankings can occur (Coombs 1964; Kamiya et al. 20006,
2011). The probabilistic models mentioned in the Introduction describe specific
distributions across the polytope.

3 Kendall’s T and the Kemeny Distance

Although there was earlier relevant work (see Kruskal 1958, Sect. 17), Kendall
(1938) marks the beginnings of the first wave of contributions to the study of
rankings as a separate topic in statistics. Kendall defined t as a coefficient that
“measures the closeness of correspondence between two given rankings in the sense
that it measures how accurate either ranking would be if the other were objective”
(Kendall 1938, p. 85). He then derived its exact sampling distribution and standard
error, assuming one given order and a universe in which all the possible rankings
occur an equal number of times, and he showed that this distribution is already
close to normal for relatively small sample size. In Kendall (1948), he also gave a
second definition of t as a “coefficient of disarray”. Calling the minimum number
of switches which transform any ranking into any other ranking of the same number
of objects s, he showed that

2s

T=1-—4 .
En(n—l)

This equivalence between t and s establishes their connection with the permu-
tation polytope, and thus their fundamental relevance for the study of rankings,
because s is just the graphical distance defined in the previous section. The minimum
move metric s is called the Kendall distance (cf. Marden 1995, p. 25).
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Emond and Mason (2002) noted that there is a problem with the Kendall distance
in the case of partial rankings. In that case, it is easy to show that it violates the
triangle inequality (e.g., consider A(BC), ABC, and (AB)C), so it is not a proper
metric. This anomaly is due to the way in which Kendall (1948, Chap. 3) defined
when there are tied ranks.

Fortunately, there is a well-founded distance without these problems, called the
Kemeny distance, conceived independently in the context of social choice theory
(Kemeny 1959; Kemeny and Snell 1962). Kemeny had set up a set of reasonable
axioms of which perhaps the most characteristic one is that the distance be invariant
under addition of equally ranked first and/or last objects. The unique distance
satisfying all axioms turns out to be:

dKem (Rm Rt) = %

m m
i=

> v = x|

1j=1

where R, and R; are any two rankings, m is the number of objects, and x,); is defined
as equal to 1 if object i is preferred to object j in ranking s, equal to —1 if the reverse
is true, and equal to O if the two objects are tied. Clearly, the Kemeny distance is of
the city-block type in the space of pair comparisons.

When there are no ties, the Kemeny distance is equal to the Kendall distance.
From its definition, it is not hard to see that it counts the number of interchanges
of pairs of elements required to transform one (partial) ranking into another, so
it is equal to the graphical distance among any two elements in the integrated
permutation polytope in Fig. 1.

4 Finding a Central Ranking: The Median Ranking

There is an extensive literature on finding a central ranking for a given set
of individual rankings, also called the social choice problem, or the consensus
problem. But when the Kemeny distance is the metric of choice, it will lead us to one
specific central ranking. Consider a set of individual rankings R;, withs =1, ..., n,
and let us indicate the center to be found by S. Then we have

S = argmsm ZWSdK‘—”" (Rs,S).

s=1

Here we have used a weighted version, with weights w; for ranking R; (one
obvious choice of weights is the relative frequency with which each unique ranking
occurs). Center S so defined is usually called the consensus ranking in the social
choice literature, as well as in discrete mathematics, and the median ranking in
statistics. For a review of ranking models for the consensus problem, see Cook
(2006).
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Emond and Mason (2002) proposed a new rank correlation coefficient for the
case of partial rankings, called tx (r-extended), to resolve the difficulty with the
Kendall distance mentioned in the previous section. It is equal to Kendall’s t
for complete rankings, while for partial rankings 1 — tx is equivalent to Kemeny
distance. Maximizing the weighted sum of tx leads to the same median ranking.
Now, it is well known that finding S is an NP-hard problem (Barthélemy et al. 1989).
Emond and Mason’s reformulation has the advantage that it allows a branch-and-
bound algorithm that is practical up to about 20 objects and an unlimited number of
rankers, and deals correctly with partial rankings.

S Application to Clustering and Recursive Partitioning

We will now give a brief sketch of how we are using the Kemeny distance and
the median ranking for classification of multiple rankings. First, we outline a non-
hierarchical clustering algorithm and next we show how to use explanatory variables
(covariates) to build a prediction tree. For clustering, we follow a generalized
K-means method, and for building the prediction tree, we use standard CART
methodology (Breiman et al. 1984) involving a binary segmentation procedure that
recursively partitions the set of rankings, with a specific impurity measure in the
splitting rule. But of course, other choices are possible.

Ben-Israel and lyigun’s (2008) probabilistic distance clustering framework
allows for probabilistic allocation of cases to classes. So it is a form of fuzzy
clustering, rather than hard clustering. It is based on the principle that probability
and distance are inversely related. Shepard (1987) accumulated lots of evidence for
a similar principle governing contingencies of behavior. Under this principle, we
define a loss function for K-Median Cluster Component Analysis (CCA) as follows:

n K

CCA(P. Sy, . Sk) = > > pi (Ry) dgem (Rs. St) .

s=1 k=1

where p(R;) is the probability of allocating ranking s to cluster component k, Sy is
the center of component k for k=1, ..., K, and P is the n x K matrix of allocation
probabilities. If we differentiate the CCA function with respect to pi(Ry), subject
to the constraint that allocation probabilities for a given ranking sum to one, we
obtain the stationary equation pi(R;) dkem(R;s, Sx) = constant depending on R;. So
the stationary equations of the CCA optimization problem are consistent with the
principle of probability being inversely related to distance. Since the CCA function
splits into K parts, finding S; given some given values of the allocation probabilities
P reduces to finding a median ranking using the kth column of P. For finding P given
K median rankings an explicit formula is available. A more detailed description and
evaluation of K-median cluster component analysis is in preparation (Heiser and
D’ Ambrosio 2011).
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Now consider the case in which we have a set of explanatory variables (or
covariates) giving one point z, in predictor space for each ranking R,. The aim is
to predict the differences between the rankings. Tree-based methods partition the
predictor space into a set of rectangular regions parallel to the coordinate axes (i.e.,
the explanatory variables), and fit a simple model in each of them (Hastie et al.
2001). During the recursive partitioning process in which we form a nested sequence
of subsamples, we have to determine, for each possible split along the coordinate
axis of any variable, the impurity of the subsamples formed. The impurity measure
Q/(T) that we choose for a subsample in subtree T at node / representing a region
G; containing the profiles of n; rankings is

nj nj
01(T) = L Z Z diem (Rg, R,), with s > ¢.
Fn(n=1)
z,€G; 7% €G)

Alternatively, we could have chosen the weighted sum of Kemeny distances
towards the median ranking, but that would force us to solve a hard combinatorial
problem many times when growing the tree. Our pruning strategy is cost-complexity
pruning (Hastie et al. 2001, p. 270; also see: Mingers (1989); Cappelli et al. 2002).
For the pruned tree, we calculate in each terminal node the consensus ranking as
described in Sect. 4 and its corresponding Ty, and determine for the internal nodes
of the tree the weighted average tx. For a more detailed description and evaluation
of our distance-based prediction tree, we refer to D’ Ambrosio and Heiser (2011),
which is based on earlier work of D’ Ambrosio (2007).

In one of our test applications, on a real dataset with 500 rankings of 15 objects
and 128 explanatory variables, we first obtained a maximum tree with 24 terminal
nodes. In Fig. 2, the top panel shows how the impurity in the training sample (bottom
line) goes down monotonically, while in the test sample (upper line) the impurity
goes up when tree size passes 11, which is the size of the pruned tree. The bottom
panel of Fig. 2 shows the average tx weighted by node size, which gives a better
interpretable scale. At the root node, overall 7y =0.387, a moderate correlation,
which reaches tx = 0.489 on average for the maximum tree. Some of the terminal
nodes in the pruned tree even reach tx = 0.510, but others are lower.

6 Concluding Remarks

Kemeny distance is the natural graphical distance on the permutation polytope,
which is the sample space of rankings. The polytope can be extended to accom-
modate partial rankings. It provides a standard for other approaches that use
more assumptions or proceed by first embedding the polytope in Euclidean space.
Minimizing the sum of Kemeny distances leads to the median ranking as a center.
For full rankings, one minus Kendall’s 7 is equivalent to the Kemeny distance. Often
the median ranking has ties, or the data are partial rankings to start with. In that
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Fig. 2 Pruning sequence to decide on the depth of the tree. Training error rate is based on 350
rankings, cross-validated error rate is based on 150 rankings (using tenfold cross-validation). Top
panel gives error rates (impurity), bottom panel gives the average Ty

case, one minus Kendall’s t is faulted as a distance, because it no longer satisfies
the metric axioms. Emond and Mason (2002) provided a different definition of ¢
for partial rankings, called ty, for which 1 —tx is equal to the Kemeny distance.
The new definition is welcome, because the scale of ty is easier to interpret than a
distance scale: it is comparable across different numbers of objects.

We believe that loss-function based methods enjoy general advantages compared
to methods based on probability models. They do not depend on assumptions that
may be unrealistic for certain data. For rankings, in particular, the probability
rationale often refers to replicated judgment processes, which is not so relevant
for ranking the States of the United States (O’Leary Morgan and Morgan 2010),
where the raw data are rates or percentages in the population. Note that in our
use of probabilistic distance clustering, the term “probabilistic” merely expresses
the uncertainty in the allocation of rankings to clusters, and does not imply an
assumption about the data generating process, as in probability models.

Loss-function based methods generally tend to lead to better understood compu-
tational processes. Inclusion of weights in loss functions allows greater flexibility
and generality, and in our case we profit from it in the median ranking and in the
clustering algorithm. But weights can also be useful to emulate maximum likelihood
estimation or to down-weight unreliable parts of the data. Some people hold, for
example, that the beginning and the end of a ranking is more reliable than the
middle.

Our clustering method could be compared with probabilistic models like Croon
(1989), Murphy and Martin (2003), and Gormley and Murphy (2008a). Note that
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when we cluster rankings, we are clustering variables, not objects. For applications
where objects are to be clustered on the basis of ordinal variables, a method like
GROUPALS (Van Buuren and Heiser 1989) would be a good possibility. The
here adopted framework also gives us a way to adjust for cluster size (Iyigun and
Ben-Israel 2008), or to develop semi-supervised learning techniques (Iyigun and
Ben-Israel 2010). Our distance-based prediction tree method enjoys the general
advantages of CART-like methods, such as easy interpretability and well-understood
computational processes. It could be compared to methodology known under the
name hierarchical mixtures of experts, based on probability models. An example
of the mixture of experts approach is Gormley and Murphy (2008b). Another
competitor for our method would be the ordinal unfolding approach with restrictions
on the ideal points (Busing et al. 2010).
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