
Chapter 2
Hypergraphs: First Properties

In the first chapter we saw that hypergraphs generalize standard graphs by defining
edges between multiple vertices instead of only two vertices. Hence some prop-

erties must be a generalization of graph properties In this chapter, we introduce some
basic properties of hypergraphs which will be used throughout this book.

2.1 Graphs versus Hypergraphs

2.1.1 Graphs

A multigraph, Γ = (V ; E) is a hypergraph such that the rank of Γ is at most two. The
hyperedges are called edges. If the hypergraph is simple, without loop, it is a graph.
Consequently any definition for hypergraphs holds for graphs. Given a graph Γ , we
denote by Γ (x) the neighborhood of a vertex x , i.e. the set formed by all the vertices
which form a edge with x :

Γ (x) = {y ∈ V : {x, y} ∈ E}

In the same way, we define the neighborhood of A ⊆ V as

Γ (A) =
⋃

x∈A

Γ (x).

The open neighborhood of A is

Γ o(A) = Γ (A) \ A.

An induced subgraph generated by V
′ ⊆ V is denoted by Γ (V

′
).

A graph Γ = (V ; E) is bipartite if
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24 2 Hypergraphs: First Properties

V = V1 ∪ V2 with V1 ∩ V2 = ∅

and every edge joins a vertex of V1 to a vertex V2.
It is well known that a graph Γ = (V ; E) is bipartite if and only if it does not contain
any cycle with an odd length [Wes01, Vol02].
A graph is complete if any pair of vertices is an edge. A clique of a graph Γ = (V ; E)

is a complete subgraph of Γ .
The maximal cardinality of a clique of a graph Γ is denoted by ω(Γ ).
Remember that a graph is chordal if each of its cycles of four or more vertices has a
chord, that is, an edge joining two non-consecutive vertices in the cycle.
For more informations about graphs see [Bol98, BLS99, BFH12, CL05, CZ04,
GY06].

2.1.2 Graphs and Hypergraphs

Let H = (V ; E = (ei )i∈I ) be a hypergraph such that E �= ∅. The line-graph
(or representative graph, but also intersection graph) of H is the graph L(H) =
(V ′; E ′) such that:

1. V ′ := I or V ′ := E when H is without repeated hyperedge;
2. {i, j} ∈ E ′ (i �= j) if and only if ei ∩ e j �= ∅.

Figure 2.1 illustrates this definition.
Some properties of hypergraphs can be seen on the line-graph, for instance it is easy
to show that:

Lemma 2.1 The hypergraph H is connected if and only if L(H) is.

Proposition 2.1 Any non trivial graph Γ is the line-graph of a linear hypergraph.

Proof Let Γ = (V ; E) be a graph with V = {x1, x2, . . . xn}. Without loosing gener-
ality, we suppose that Γ is connected (otherwise we treat the connected components
one by one). We can construct a hypergraph H = (W ; X) in the following way:

• the set of vertices is the set of edges of Γ , i. e. W := E . It is possible since Γ is
simple;

• the collection of hyperedges X is the family of Xi where Xi is the set of edges of
Γ having xi as incidence vertex.

So we can write:
H = (E; X = (X1, X2, . . . , Xn))

with:
Xi = {e ∈ E : xi ∈ e} where i ∈ {1, 2, 3, . . . n}
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Fig. 2.1 Figure above shows a hypergraph H = (V ; E), where V = {x1, x2, x3, . . . , x9, }, E =
{e1, e2, e3, e4, e5}, and its representative. The vertices of L(H) are the black dots and its edges are
the curves between these dots

Notice that if Γ has only one edge then

V = {x1, x2} and X1 = X2.

It is the only case where H has a repeated hyperedge.
If |E | > 1, if i �= j and Xi ∩ X j �= ∅; there is exactly one, (since Γ is a simple

graph) e ∈ E such that e ∈ Xi ∩ X j with e = {xi , x j }. It is clear that Γ is the
line-graph of H (Fig. 2.2). �

This proposition is illustrated in Fig. 6.3.
Let H = (V ; E) be a hypergraph, the 2-section of H is the graph, denoted by [H ]2,
which vertices are the vertices of H and where two distinct vertices form an edge if
and only if they are in the same hyperedge of H . An example of 2-section is given
in Fig. 2.3.
We can generalize the 2-section in the following way:
Given a hypergraph H = (V ; E) with |V | = n and |E | = m, we build a labeled-edge
multigraph denoted by G[H ]2 and called generalized 2-section as follows:

V (G[H ]2) = V

and the vertices x and y are connected by an edge, labeled with e, when {x, y} ⊆ e.
We frequently denote by (xy, e), the labelled-edges of G[H ]2, where xy is an edge

and e is one hyperedge label of xy. Note that the total number of edges xy in G[H ]2 is

http://dx.doi.org/10.1007/978-3-319-00080-0_6
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Fig. 2.2 Figure above illustrates Proposition 2.1
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Fig. 2.3 Figure above shows the 2-section of a hypergraph

m∑

i=1

(|ei |(|ei | − 1)/2,

which is of order bounded by
O(mr(H)2).
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H

Fig. 2.4 Above a hypergraph which has nine vertices and five hyperedges

Furthermore, the maximal degree Δ(G[H ]2) of a vertex in G[H ]2 is clearly
bounded by

r(H)Δ(H).

The incidence graph of a hypergraph H = (V ; E) is a bipartite graph IG(H)

with a vertex set S = V 	 E , and where x ∈ V and e ∈ E are adjacent if and only if
x ∈ e.

Let H = (V ; E) be a hypergraph, the degree of a hyperedge, e ∈ E is its cardi-
nality, that is d(e) = |e| (Fig. 2.4).

Proposition 2.2 Let H = (V ; E) be a hypergraph, we have :

∑

x∈V

d(x) =
∑

e∈E

d(e).

Proof Let I G(H) be the incidence graph of H . We sum the degrees in the part E
and in the part V in I G(H). Since the sum of the degrees in these two parts are equal
we obtain the result (Fig. 2.5). �

1 2 3 4 5

1 2 3 4 5 6 7 8 9

Fig. 2.5 The incidence graph associated with the hypergraph H
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Fig. 2.6 Figure above shows
a neighborhood hypergraph
HΓ = (V, (ex = {x}∪Γ (x)))

associated with a graph Γ
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Proposition 2.3 The dual H∗ of a linear hypergraph without isolated vertex is also
linear.

Proof Let H be a linear hypergraph. Assume that H∗ is not linear. There is two
distinct hyperedges Xi and X j of H∗ which intersect with at least two vertices e1
and e2. The definition of duality implies that xi and x j belong to e1 and e2 (the
hyperedges of H standing for the vertices e1, e2 of H∗ respectively) so H is not
linear. Contradiction (Fig. 2.6). �

We have seen several methods to associate a graph to a hypergraph, the converse can
be done also. Indeed, let Γ = (V ; E) be a graph, we can associate a hypergraph
called neighborhood hypergraph to this graph (Fig. 2.7):

HΓ = (V, (ex = {x} ∪ Γ (x))x∈V ).

We can also associate a hypergraph without repeated hyperedge called without
repeated hyperedge neighborhood hypergraph:

HΓ = (V, {ex = {x} ∪ Γ (x) : x ∈ V }).

We will say that the hyperedge ex is generated by x . This concept is illustrated
Fig. 2.6.
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Fig. 2.7 Intersecting family
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Fig. 2.8 The hypergraph
above has not the Helly
property since the intersecting
family e1, e3, e4 has an empty
intersection, that is, e1 ∩ e3 ∩
e4 = ∅

1

2

3

4

1

2

3

4

5

6

7

8
9

2.2 Intersecting Families, Helly Property

2.2.1 Intersecting Families

Let H = (V ; E = (ei )i∈I ) be a hypergraph. A subfamily of hyperedges (e j ) j∈J ,
where J ⊆ I is an intersecting family if every pair of hyperedges has a non empty
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intersection. The maximum cardinality of |J | (of an intersecting family of H ) is
denoted by Δ0(H).

Remember that a star H(x) centered in x is the family of hyperedges (e j ) j∈J

containing x . The maximum cardinality of |J | is denoted by Δ(H). Since a star
is an intersecting family, obviously we have Δ0(H) ≥ Δ(H). An intersecting
family with 3 hyperedges e1, e3, e3 and e1 ∩ e3 ∩ e3 = ∅ is called a triangle.
In the sequel sometimes we will write ei ∩ e j for V (ei ) ∩ V (e j ).

2.2.2 Helly Property

The Helly property plays a very important role in the theory of hypergraphs as the
most important hypergraphs have this property [BUZ02, Vol02, Vol09]. A hyper-
graph has the Helly property if each intersecting family has a non-empty intersection
(belonging to a star). It is obvious that if a hypergraph contains a triangle it has
not the Helly property. A hypergraph having the Helly property will be called Helly
hypergraph.
A hypergraph has the strong Helly property if each partial induced subhypergraph
has the Helly property. The hypergraph shown in Fig. 2.9 has the Helly property but
it has not the strong Helly property.

In the sequel, we write euv to express that the hyperedge euv contains the
vertices u, v.

We can characterize the strong Helly property by the following:

Theorem 2.1 Let H be a hypergraph. Any partial induced subhypergraph of H
has the Helly property if and only if for any three vertices x, y, z and any three
hyperedges exy, exz, eyz of H, where x ∈ exy ∩ exz, y ∈ exy ∩ eyz, z ∈ exz ∩ eyz

there exists v ∈ {x, y, z} such that v ∈ exy ∩ exz ∩ eyz.

Proof Assume that any partial induced subhypergraph of H has the Helly property.
Then, for any three hyperedges exy, exz, eyz of H , where

x ∈ exy ∩ exz, y ∈ exy ∩ eyz, z ∈ exz ∩ eyz,

just take the partial subhypergraph H(Y ) induced by the set Y = {x, y, z} to see that
there is a vertex v ∈ {x, y, z} such that:

v ∈ exy ∩ exz ∩ eyz .
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Fig. 2.9 The hypergraph
above has the Helly property
but not the strong Helly
property because the induced
subhypergraph on Y = V \
{x4} contains the triangle:
e′

1 = e1 ∩ Y , e′
2 = e2 ∩ Y ,

e′
3 = e3 ∩ Y
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We prove the reversed implication by induction on �, the maximal size of an
intersecting family of an induced subhypergraph of H . The assertion is clearly true
for � = 3. Assume that for i = 3, 4, . . . , � any partial induced subhypergraph of H
with intersecting families of at most � hyperedges has the Helly property. Let

e1, e2, . . . , e�+1

be an arbitrary intersecting family of hyperedges of H . By induction,

∃x ∈ ∩i �=1ei , ∃y ∈ ∩i �=2ei , ∃z ∈ ∩i �=3ei .

As {e1, e2, e3} is an intersecting family, there is a vertex

ξ ∈ {x, y, z}

which is in the intersection e1 ∩ e2 ∩ e3. Hence, ξ ∈ ∩i ei and the assertion holds for
(� + 1). �

By using the same arguments than in the proof of Theorem 2.1, we can deduce
the following Gilmore’s characterization of the Helly property:
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Corollary 2.1 (Gilmore) A hypergraph H has the Helly property if and only if,
for any three vertices x, y, z, the family of all hyperedges containing at least two of
these vertices has a nonempty intersection.

From this characterization we can deduce the following algorithms:

Algorithm 2: StrongHelly
Data: H = (V ; E) a hypergraph and G[H ]2 its generalized 2-section
Result: H has or has not the strong Helly property
begin

foreach (xy, e1) ∈ E(G[H ]2) do
foreach pair of edges (xz, e2), (yz, e3) ∈ E(G[H ]2) do

if x �∈ e1 ∩ e2 ∩ e3 and y �∈ e1 ∩ e2 ∩ e3 and z �∈ e1 ∩ e2 ∩ e3 then
output(the strong Helly property does not hold.)

end
end

end
end

For the Helly property we have the following algorithm:

Algorithm 3: Helly
Data: H = (V ; E) a hypergraph and G[H ]2 its generalized 2-section
Result: H has or has not the Helly property
begin

foreach pair of vertices x, y of H do
Xxy := all hyperedges containing both x and y;
foreach vertex v of H do

if x and y are both neighbors of v then
Xxv := all hyperedges containing both x and v
X yv := all hyperedges containing both y and v
X := Xxy ∪ Xxv ∪ X yv;
if the intersection of all elements of X is empty then

output(the Helly property
does not hold)

end
end

end
end

end
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2.3 Subtree Hypergraphs

let H = (V ; E) be a hypergraph. This hypergraph is called a subtree hypergraph if

• there is a tree Γ with vertex set V such that each hyperedge e ∈ E induces a
subtree in Γ .

Notice that, for the same hypergraph we may have several generated trees
using the above method. Moreover if H = (V ;E) is not a subtree hypergraph,
for any tree on V , there is at least one hyperedge which induces a disconnected
subgraph.

Conversely, let Γ = (V ; A) be a tree, i.e. a connected graph without cycle. We
build a connected hypergraph H in the following way:

• the set of vertices of H is the set of vertices of Γ ;
• the set of hyperedges is a family E = (ei )i∈{1,2,...,m} of subset V such that the

induced subgraph Γ (V (ei )) is a subtree of Γ , (subgraph which is a tree).

Notice that, for the same tree we may have several hypergraphs generated by the
method above. An example of subtree hypergraph is given in Fig. 2.10.
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Fig. 2.10 A subtree hypergraph associated with a tree
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Proposition 2.4 Let Γ = (V ; A) be a tree and H be a subtree hypergraph associ-
ated with Γ , H has the Helly property.

Proof We are going to use Corollary 2.1. In a tree Γ , there is exactly one path
denoted by Pa[x, y] between two vertices x, y, otherwise Γ would contain a cycle.
Let u, v, w be three vertices of H . The paths

Pa[u, v], Pa[v, w] and Pa[w, u]

have one common vertex, otherwise Γ would contain a cycle. Consequently, any
family of hyperedges for which every hyperedge contains at least two of these vertices
u, v, w has a nonempty intersection. �

Proposition 2.5 Let Γ = (V ; A) be a tree and H be a subtree hypergraph, associ-
ated with Γ then L(H) is chordal.

Proof Let Γ = (V, A) be a tree and H = (V ; E) be a subtree hypergraph associated
with it.
If |V | = 1, H has just one vertex and one hyperedge. So, the linegraph of H has just
one vertex and it is a clique, hence it is chordal.
Assume now that the assertion is true for any tree Γ with n − 1 vertices, n > 1.

Let Γ be a tree with n vertices. Let x ∈ V be a leaf (a vertex with a unique
neighbor y). Remember that in a tree with at least 2 vertices there are at least 2
leaves. Let

Γ
′ = (V \ {x}; A′)

where Γ
′

is the subgraph on V \ {x}; and

H ′(V \ {x}) = (V \ {x}; E ′), |V | > 1.

The graph
Γ

′ = (V \ {x}; A′)

is a tree and
H ′ = (V \ {x}; E ′)

is an induced subtree hypergraph associated with Γ
′
.

By induction, L(H ′) is chordal.
If |E | = |E ′| then

L(H) 
 L(H ′)

({x} is not a hyperedge of H and all hyperedges containing x contain the neighbor
y of x in Γ ) and L(H) is chordal.
If |E | �= |E ′| then

{x} ∈ E and |E | > |E ′|.
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It is easy to show that the neighborhood of {x} in L(H) is a clique (this neighborhood
stand for the hyperedges containing x (excepted {x}) ). So any cycle passing through
{x} is chordal in L(H) and so L(H) is chordal. �

Using Propositions 2.4, 2.5, it can be shown ([Sla78]) that

Theorem 2.2 The hypergraph H is a subtree hypergraph if and only if H has the
Helly property and its line graph is chordal.

The dual of a subtree hypergraph is a concept used in relational database theory
[Fag83].
From Proposition 2.6 and Proposition 2.7 below we have:

Corollary 2.2 The dual of a hypergraph H is conformal and its 2-section is chordal
if and only if H is a subtree hypergraph.

2.4 Conformal Hypergraphs

A hypergraph H is conformal if any maximal clique (for the inclusion) of the
2-section [H ]2 is a hyperedge of H .
Figure 2.11 shows the 2-section of a hypergraph H . It may be noticed that this
hypergraph is not conformal.

Fig. 2.11 The hypergraph
above is not conformal
since the maximal clique
{x1, x3, x5} is not a hyper-
edge. It may be noticed that if
we add this clique as a hyper-
edge, the hypergraph becomes
conformal but does not have
the Helly property
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Proposition 2.6 A hypergraph is conformal if and only if its dual has the Helly
property.

Proof Let H = (V ; E) be a hypergraph. Assume that H is conformal.
Let

X = {X∗
1, X∗

2, X∗
3, . . . X∗

k } be a maximal intersecting family of H∗.

For all i, j ∈ {1, 2, . . . , k}, X∗
i ∩ X∗

j �= ∅,

which implies that there is a hyperedge ei, j ∈ E which contains xi , x j (the vertices
of H standing for the hyperedges X∗

i , X∗
j respectively) for all i, j ∈ {1, 2, . . . , k}.

Hence the family X stands for a set of vertices of a maximal clique Kk of [H ]2.
Since H is conformal, the clique Kk is contained in a hyperedge e which stands for
a vertex of H∗, consequently

e ∈
⋂

j∈{1,2,...k}
X∗

j

and X is a star in H∗.
Conversely, assume that H∗ has the Helly property. Let Kk be a maximal clique

of [H ]2. By definition of the 2-section, for all xi , x j ∈ Kk there is a hyperedge which
contains these two vertices. So the set of vertices of Kk stands for an intersecting
family X of H∗ which is included into a star since H has the Helly property. Hence
there is a vertex of H∗ which is common to any element of X . But this vertex stands
for a hyperedge of H which contains any vertex of Kk . So H is conformal. �

Proposition 2.7 The line graph L(H) of a hypergraph H is the 2-section of H∗, i.e.

L(H) 
 [H∗]2.

Moreover the two following statements are equivalent, where Γ is a graph:

(i) H verifies the Helly property and Γ is the line graph of H.
(ii) Maximal hyperedges (for inclusion) of H∗ are maximal cliques of Γ .

Proof The vertices of both L(H) and H∗ are the hyperedges of H . A pair of vertices
ei , e j of L(H) is an edge if and only if the corresponding hyperedges have a non-
empty intersection. So these two vertices belong to the same hyperedge of H∗.
Consequently {ei , e j } is an edge of [H∗]2. The converse inclusion is done in a
similar way. Hence L(H) is isomorphic to [H∗]2 (modulo loops, since H∗ may have
some).

Assume that H has the Helly property. Hence H∗ is conformal by Proposition 2.6.
So (i) implies that Γ = [H∗]2 has the maximal hyperedges of H∗ as maximal cliques.
In the same way we have (ii) implies (i). �
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2.5 Stable (or Independent), Transversal and Matching

Let H = (V ; (ei )i∈I ) be a hypergraph without isolated vertex.
A set A ⊆ V is a stable or an independent (resp. a strong stable) if no hyperedge is
contained in A (resp. |A ∩ V (ei )| ≤ 1, for every i ∈ I ).
The stability number α(H) (resp. the strong stability number α′(H)) is the maximum
cardinality of a stable (resp. of a strong stable).

A set B ⊆ V is a transversal if it meets every hyperedge i.e.

for all e ∈ E, B ∩ V (e) �= ∅.

The minimum cardinality of a transversal is the transversal number. It is denoted by
τ(H).

A matching is a set of pairwise disjoint hyperedges of H .
The matching number ν(H) of H is the maximum cardinality of a matching.
A hyperedge cover is a subset of hyperedges:

(e j ) j∈J , (J ⊆ I ) such that:
⋃

j∈J

e j = V .

The hyperedge covering number, ρ(H) is the minimum cardinality of a hyperedge
cover.
Figure 2.12 illustrates these definitions and numbers.
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Fig. 2.12 The set {x1; x3; x5; x9; x11; x13} is a stable of the hypergraph above but it is not a strong
stable. The set {x3; x8; x11; x13} is a transversal; τ(H) = 3, ρ(H) = 4 and ν(H) = 3. It is
conformal and it has the Helly property
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2.5.1 Examples:

(1) The problem of scheduling the presentations in a conference is an example of
the maximum independent set problem. Let us suppose that people are going to
present their works, where each work may have more than one author and each
person may have more than one work.
The goal is to assign as many presentations as possible to the same time slot
under the condition that each person can present at most one work in the same
time slot.
We construct a hypergraph with a vertex for each work and a hyperedge for each
person, it is the set of works that he (or she) presents. Then a maximum strong
independent set represents the maximum number of presentations that can be
given at the same time.

(2) The problem of hiring a set of engineers at a factory is an example of the minimum
transversal set problem.
Let us suppose that engineers apply for positions with the lists of proficiency they
may have, the factory management then tries to hire the least possible number
of engineers so that each proficiency that the factory needs is covered by at least
one engineer.
We construct a hypergraph with a vertex for each engineer and an hyperedge for
each proficiency, then a minimum transversal set represents the minimum group
of engineers that need to be hired to cover all proficiencies at this factory.

Lemma 2.2 Let H = (V ; E) be a hypergraph without isolated vertex. We have the
following properties.

(i) ν(H) ≤ τ(H).
(ii) ρ(H) = τ(H∗).

(iii) α′(H) = ν(H∗).
(iv) α′(H) ≤ ρ(H).

Proof Notice that for T a transversal and C a matching, we have:

|T ∩ V (e)| ≤ 1 for each e ∈ C,

consequently
|C | ≤ |T |.

So
ν(H) ≤ τ(H).

A hyperedge minimum covering of H becomes a transversal in H∗ and conversely
every minimum transversal of H∗ becomes a minimum covering of H .

Indeed the elements of a hyperedge covering in H becomes a set of vertices which
meets every hyperedge in H∗. So
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ρ(H) = τ(H∗).

In the similar way
α′(H) = ν(H∗)

and so (ii) is proved.
Hence

α′(H) = ν(H∗) ≤ τ(H∗) = ρ(H)

and (iii) is proved. �

2.6 König Property and Dual König Property

The hypergraph H has the König property if

ν(H) = τ(H)

and the dual König property if and only if

α′(H) = ρ(H).

The hypergraph in Fig. 2.13 has the Konig property and it has also the dual Konig
property since

α
′
(H) = ρ(H) = 2.

Proposition 2.8 Let Γ = (V ; E) be a tree and let H be a subtree hypergraph
associated with Γ . Then H has the König property, i.e.

ν(H) = τ(H).

Proof Let V
′ ⊆ V such that the induced subgraph Γ (V

′
) is a tree which contains

a minimal transversal T of H in such a way that |V ′ | is minimum.
A leaf x1 of Γ (V

′
) belongs to T , otherwise Γ (V

′ \ {x1}) would be a tree which
contains T contradicting the fact that |V ′ | is minimum.

The family
E(H1) = (e ∈ E(H), V (e) ∩ T = {x1})

is non empty.
Indeed, T being a minimal transversal, there is e ∈ E(H) such that

V (e) ∩ T � x1.
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Fig. 2.13 In the hypergraph above we have: τ(H) = 2, ρ(H) = 2, ν(H) = 2 and α
′
(H) = 2. So

this hypergraph has the König property and the dual König property

If we assume now that, for all ei ∈ H(x1), there is xi ∈ T , xi �= x1, such that
{x1, xi } ∈ ei then T \ {x1} would be a transversal, contradicting the minimality of T .
Now, since

T \ {x1} ⊆ V ′ \ {x1}

where Γ (V ′ \ {x1}) is a tree, there is a connected component Γ (V \{x1}) of Γ which
contains T \ {x1}.
Let H ′ be the partial hypergraph obtained by deleting all hyperedges which contains
x1, that is, E(H ′) = E(H) \ H(x1). Clearly H ′ has a transversal:

T ′ ⊆ T \ {x1} ⊆ V ′ \ {x1}

such that
τ(H ′) = |T | − 1.

Since T ′ is a transversal and because the hyperedges of H ′ are subtrees, we have

V (E(H ′)) ⊆ V \ {x1}.

By induction hypothesis

τ(H ′) = |T | − 1 = ν(H ′).



2.6 König Property and Dual König Property 41

There is
e1 ∈ E(H1), such that V (e1) ∩ V ′ = {x1}.

Indeed otherwise, for all e ∈ E(H1), we would have |V (e1) ∩ V ′| ≥ 2 and V ′ \ {x1}
would contain a transversal. Hence it would contain a minimal transversal of H ;
consequently |V ′ | would not be minimum. So

V (e1) ∩ V ′ \ {x1} = ∅.

Now let C ′ be a maximum matching of H ′, C ′ ∪ {e1} is a matching of H with a
cardinality |T |, consequently ν(H) ≥ τ(H). From Lemma 2.2 we get

ν(H) = τ(H).

�

2.7 linear Spaces

We remind the reader that a linear space is a hypergraph in which each pair of distinct
vertices is contained in precisely one edge. A trivial linear space is a hypergraph with
only one hyperedge which contains all vertices.

Theorem 2.3 If a non-trivial, non-empty linear space has n vertices and m edges
then m ≥ n.

Proof Assume that H = (V ; E) is a linear space, with |V | = n and |E | = m.
Suppose 1 < m ≤ n. Choose a vertex v ∈ V and e ∈ E such that v /∈ e. Since H is
a linear space we have: d(v) ≥ |e|. So from this and m ≥ n, it follows:

1

n(m − d(v)
≥ 1

m(n − |e|) .

Hence by Adding these inequalities for all pairs v /∈ e we have:

1 =
∑

v∈V

∑

e ��v

1

n(m − d(v))
≥

∑

e∈E

∑

v/∈e

1

m(n − |e|) = 1.

Indeed the inner sums are never empty since 1 < m. Moreover
For the first inner sum:

• fix a vertex v, there are exactly m − d(v) hyperedges which do not contain v.

For the second inner sum:

• fix a hyperedge e, there are exaclty n − |e| vertices which are not in e.
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Therefore we have:

∑

v∈V

∑

e ��v

1

n(m − d(v))
=

∑

e∈E

∑

v/∈e

1

m(n − |e|) .

Consequently:
∑

v∈V

1

n
=

∑

e∈E

1

m
;

hence
n − 1

n
− m − 1

m
= 1

n
− 1

m
;

which implies
n − m = m − n;

so, n = m. �
JAILLIT
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