Chapter 2
Social and Communication Networks

For all practical purposes, our behavior is random.
Unpredictable. Episodic. Indeterminable. Unforeseeable.
Irregular. There’s only one problem with this assumption. It’s
simply wrong.

—Albert-Lazl6 Barabasi.

As any progress in science, also the current description of social networks has been
accomplished one step at a time. Traditionally, the study of social and complex net-
works has been the territory of graph theory, which allows to define a network for any
system by means of the simple representation of a graph. Since the 1950’s real net-
works have been described as completely random graphs (Bollobds 1985), proposed
as the simplest description of connections between entities and which mathematical
formulation inheres in the work of Paul Erdos and Alfréd Rény (Erdds and Rényi
1959, 1960). According to this formulation, any member of the network has the same
probability to be connected to any one else, thus all members have approximately
the same number of connections. This vision radically changed in the late ‘90’s
with the empirical evidence that actually the structure of real complex systems is far
from random (Barabdsi and Albert 1999; Watts and Strogatz 1998). In fact, in many
real social networks, individuals exhibit preferential connectivity (higher probability
that one of them will be linked to another one that already has a large number of
connections), some connections are much more strong (or important) than others,
social interactions are organized in tight groups or communities (Barabdsi and Albert
1999; Granovetter 1973; Watts and Strogatz 1998). Due to the increasing evidences
of these structural heterogeneities, a big effort has been done from the scientific com-
munity to measure the topological properties and to understand, model and predict the
mechanisms which regulate the formation of such structure and their impact on real
phenomena. The standard way to address this has been focused on determining the
contact network (who interacts with whom) in given time window, then characterize
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its elements by the aggregated properties measured in that time window and try to
model the network dynamics to explain the observed structure. According to this
frame, a time-aggregated and static picture of the network is given, where any inher-
ent dynamics characterizing human behavior is neglected: the aggregated volume of
interaction or the flux passing through a given link is the main quantity to assess the
importance of that connection thus it fully determines its strength (or importance),
interactions can happen at any time, there is no causality between events, communi-
cation is homogeneous in time, etc. This traditional approach, to which we will refer
as static approach, was motivated by the expectancy that the characterization of the
network structure would lead to a better knowledge of its dynamical and functional
behavior. However, real social networks are dynamical objects, whose interactions
between their members happen at a given time, may have a given duration and a causal
relation. In this respect, the assumption of projecting out the temporal dimension may
discard important information about the dynamical properties of real networks, their
correlations with the topological ones and the dynamics of real phenomena. Only
in the very last years, the large availability of massive databases of human behavior
and interaction patterns such as e-mail, phone calls or online interactions databases
led to the observation of non-trivial temporal properties of real social networks, with
important implications on the way in which social networks and real phenomena have
been traditionally understood and modeled. It has been observed, for example, that
contrary to the predictions of statics approaches, individual actions do not happen
at any time nor with the same probability to any other member of the network, that
social interactions are not everlasting but, in contrast, they appear to be very unstable
and volatile (Barabdsi 2005; Eckmann et al. 2004; Hidalgo and Rodriguez-Sickert
2008; Kossinets and Watts 2006; Vazquez et al. 2006). These results indicate that, as
well as the (static) connections between members of a network, not even the temporal
patterns of human actions and interactions can be modeled as random. Once again,
therefore, the vision of how to model real networks is experiencing a radical change.

Without claiming to be complete, this chapter is intended to serve as a brief intro-
duction of what social networks are, how they can be characterized and what are their
main properties and features known in the literature. The first part of the chapter is
dedicated to those topological properties of social networks that will be referenced in
the rest of the thesis, what they represent and how they have been traditionally mea-
sured. Then we get more into the particular case of social networks that constitutes
the main subject of this thesis: communication networks. We concentrate mainly
on those aspects of communication networks that make them different from other
social networks. After presenting the basic guideline of how the topology of social
networks have been historically modeled, we discuss the main limitation of such
traditional approaches on the basis of those temporal aspects of social networks that
have been observed and measured only in the very last years. The latter part offers a
first overview of the crucial role played by temporal aspects of human interaction into
the characterization of social networks. At the same time it constitutes the starting
point of all the work done in this thesis, presented in the following chapters.
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2.1 Topology of Social Networks

Quantifying the topology is the first step towards detecting patterns in the network.
The understanding of how a graph is wired, whether its member are equally con-
nected or not or if every zone of the graph is reachable from any other one, gives
very important insights on the network and the dynamical system it represents. For
example, the way in which a disease or a piece of information would spread across
society or how opinions form depends, above all, on the topology of the underlying
graph. Nevertheless in many cases what we observe of a network is not the struc-
ture itself, but several instantaneous interactions between agents. Recover the very
structure of how individuals are wired can be, therefore, a hard task. In most network
studies the solution has been to aggregate all the interactions observed in the whole
observation time window between any two members into a static edge between them,
and possibly use the total number of interactions to asses the intensity or importance
of the connection. Although, as we will see in the rest of this thesis, it represents only
the first approximation of a network, this approach allowed to define an abundance of
useful quantities to measure the main properties of real networks (Costa et al. 2007)
and led to the discovery of several features which make them peculiar with respect
to other types of networks, such as technological and biological networks (Newman
and Park 2003).

2.1.1 Definitions and Notations

A network is a set of items, called vertices (or nodes), with connections between
them, called edges (or links or ties) (Fig.2.1). In mathematical terms a network is
represented by a graph (West 1995). A undirected (directed) graph is a pair of sets
G = {P, £}, where P is a set of N nodes (or vertices) p1, p2, ..py and € is a set of
M edges (or links) that connect two elements of P. A vertex typically represents an
object (or an individual), while an edge represents a relation between two objects (or
the same object). In a undirected graph, as the one depicted in Fig.2.1a, each of the
links is defined by a couple of nodes i and j, and is denoted as (i, j), e;; or simply
ij. In a directed graph, the order of the two nodes is important: e;; stands for a link
fromi to j, and e;; # ej;. The property that two nodes in a directed network point
to each other is called reciprocity. For a graph G with A/ nodes, the number of edges
M is at least 0 and at most V(A — 1)/2 (when all the nodes are pairwise adjacent).
Graphs are usually represented as a set of dots, corresponding to the nodes, which
are joined together by a segment if the corresponding nodes are connected by a link
(see Fig.2.1). Usually, it may be useful to consider a matricial representation of a
graph. Given a graph G = {P, £}, it can be in fact completely described by giving the
adjacency matrix A, which is a " x A/ matrix whose element a;; (i, j = 1, ..., n)
is equal to 1 if an edge ¢;; exists and O otherwise. For undirected graphs A is thus
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Fig.2.1 Schematic representation of a a undirected, b a directed and ¢ a weighted (and undirected)
graph with N = 7 nodes and M = 14 edges. Adapted from “Complex networks: Structure and
dynamics”, Boccaletti et al. (2006)

a symmetric matrix. A subgraph G' = {P’, £’} of the graph G = {P, £} is a graph
with P’ CPand & C &.

Although two nodes are not adjacent, they may however be reachable from one to
the other. An important concept in graph theory is in fact the concept of walk or path
from node i to node j, defined as a sequence of nodes and edges that begins with
i and ends with j. The length of the walk is defined as the number of edges in the
sequence.

In the case of social networks nodes represent a set of individuals or social entities
linked through some kind of social interactions among them such as friendship, kin-
ship, status, sexual, business or political, which define the links among them (Scott
2000; Wasserman and Faust 1994). Due to the recent development of communi-
cation systems, such as Internet or mobile phones, many other examples of social
networks can be actually defined (Wellman et al. 1996; Wellman 2001), such as
networks of human interaction through e-mail, Web forms, mobile phone or online
social networks and services as Facebook, LinkedIn, Twitter. We refer to the latter
as communication or interaction networks.

Node Degree and Assortative Mixing

The degree or connectivity k; of anode i is the number of edges it has to other nodes
and can be defined in terms of the adjacency matrix A as:

ki = Zaij. (2.1

jeN

In the case of a directed graph, the degree of a node is defined as the sum of
the out-degree kf“’ = > j dij and the in-degree k" = 3’ jajis which measure
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respectively the number of outgoing and ingoing edges. Connectivity is a fundamen-
tal concept for networks. In real networks, not all nodes have the same number of
edges and a first characterization of the network can be indeed obtained by dividing
it in groups of nodes according to their connectivity. Especially for large networks,
a more convenient characterization is obtained in terms of a distribution function
(degree distribution) P (k), which gives the probability that a randomly selected
node has k edges. For directed networks, both P (k") and P (k°*') are defined. The
n-moment of P (k) is given by:

(k") = D" k" P (k). (2.2)
k

The first moment (k) defines the mean degree of the graph G and the second moment
(k) measures the fluctuations of the degree distribution. As mentioned above, until
the late ‘90’s many real networks have been modeled as random graphs (Erdos and
Rényi 1959). A key prediction of random network theory is that most nodes have
approximately the same degree, close to the average (k) of the network. In this case
the degree distribution is a bell-shaped Poisson distribution with a peak at P ((k)),
as the one depicted in Fig.2.2a. Finding nodes that have a significantly greater or
smaller number of links than a randomly chosen node is therefore rare. One also
refers to random networks as exponential networks since the probability that a node
is connected to other k nodes decreases exponentially (Haight 1967). For many
real networks however, it has been found that P (k) displays a power law shaped
degree distribution P (k) ~ k~7 (see Fig.2.2b), with exponent varying in the range
2 < v < 3 (Albert et al. 1999; Faloutsos et al. 1999; Jeong et al. 2000). In these
networks, the average degree (k) is therefore well defined and bounded, while the
variance 02 = (k%) — (k)2 is dominated by the second moment of the distribution,
which is highly fluctuating. Contrary to random networks, the average degree is not
anymore a meaningful characterization of the network properties. Due to the property
of power-laws of having the same functional form at all scales, such networks are
referred as scale-free networks (Barabasi and Albert 1999) and have been the focus
of a great deal of attention in the literature (Albert and Barabdasi 2002; Dorogovtsev
and Mendes 2002; Strogatz 2001). For many real networks, actually, P (k) displays
an exponential cutoff. However, its functional form still deviates significantly from
the Poisson distribution expected for a random graph. Indeed, contrary to random
networks, scale-free networks have a highly heterogeneous degree distribution, which
results in the simultaneous presence of a few nodes (also called hubs) linked to many
other nodes, and a large number of poorly connected elements.

The most known model to explain the origin of this scale invariance is the Albert-
Barabdsi model (Barabdsi and Albert 1999) which is based on two basic ingredients:
growth and preferential attachment, two key features of real networks. According
to this model, a node with more links increases its connectivity faster than nodes
with fewer links, since incoming nodes tend to connect to it with higher probabil-
ity, a mechanisms that actually leads to the appearance of an hub hierarchy that
exemplifies the scale-free structure (Bollobas et al. 2001; Dorogovtsev et al. 2000).
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Fig. 2.2 Degree distribution P (k) for a a random and b scale-free network. For random networks
P (k) follows a bell-shaped Poisson distribution where most nodes have the same number of connec-
tions. In contrast, in scale free-networks the degree distribution is power-law shaped and indicates
that most nodes have only a few connections, while a few nodes are very highly connected (hubs).
Adapted from “The architecture of complexity”, Barabasi (2007)

The Albert-Barabdsi model has attracted an exceptional amount of attention in the
literature. In addition to analytic and numerical studies of the model itself, many
authors have proposed modifications and generalizations to make the model a more
realistic representation of real networks such as models with nonlinear preferential
attachment, dynamic edge rewiring, fitness models and hierarchically and deter-
ministically growing models (Albert and Barabasi 2002; Dorogovtesev and Mendes
2001; Huberman and Adamic 1999; Goh et al. 2002; Gémez-Gardefies and Moreno
2004).

Another class of models is based on three mechanisms: duplication (a randomly
selected node and all its connections are duplicated); divergence (connections of a
duplicated node are re-moved with a give probability) and mutation (connections
are added from the duplicated node to a fraction of nodes which are not neighbors
of the original node). The latter model also produces power-law degree distribution,
although it fails to predict other properties of real networks that we will introduce
in the rest of the chapter, such as degree correlations and the clustering coefficient
(Solé et al. 2002). A better prediction for clustering coefficient is instead given by
models that only includes duplication and divergence (Vazquez et al. 2003).

The fat tail of the degree distribution and the divergence of the second moment
can affect the properties of a network, such as the clustering coefficient (Newman and
Park 2003), which in many real social networks is much higher than the one expected
for the corresponding random model (Amaral et al. 2000; Newman et al. 2002; Watts
and Strogatz 1998). The heterogeneity of scale-free connectivity patterns also affects
the behavior of dynamical processes that take place over the graph such as spreading
processes. It has been shown, for example, that the presence of large degrees nodes
favors epidemic spreading not only by suppressing the epidemic threshold, but also by
accelerating the virus propagation in the population (Barthélemy et al. 2004; Moreno
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et al. 2002; Pastor-Satorras and Vespignani 2001b), a topic that will be analyzed
in Chap.5. The implications of this result can be very important in the set-up of
dynamic control strategies, such as targeted immunization strategies, in populations
with heterogeneous connectivity patterns (Pastor-Satorras and Vespignani 2002).
The degree distribution P (k) describes all the statistical properties of uncorrelated
networks. However, in many real networks the probability that a node with degree k
is connected to a node with degree k’, depends on k (correlated networks). In these
cases, it is convenient to define the conditional probability P (k’|k) which represents
the probability that a node with degree k is connected to anode with degree k’. Another
measure of degree-degree correlation is the average nearest neighbors degree of a

node i:

1 1 <

kuni = 1= D ki =10 2 aijky. (2.3)
JEN; =1

where N; is the set of neighbors of node i. By means of this definition one can
calculate the average degree of the nearest neighbors of nodes with degree k. The
latter quantity, denoted as &y, (k), is related to the conditional probability as &, (k) =
>« k" P (k’|k) and implicitly incorporates the dependence on k. In absence of degree
correlations one gets kp, = (k) /(k), which shows the independence of k,, on k.
For correlated graphs, instead, k,,, depends on k. Depending on whether k,, is an
increasing or decreasing function of k, this properties is known as assortative or
disassortative mixing (Newman 2002a). While in assortative networks nodes tend to
connect with nodes with similar degree, in disassortative networks nodes with high
degree are more likely connected with lowly connected ones.

Degree correlations and assortative mixing are very important properties in social
networks since they have implications for questions as diffusion of information,
network resilience or vaccination strategies (Callaway et al. 2000; Pastor-Satorras
and Vespignani 2002). In disassortative networks, for example, a path between pairs
of vertices can be destroyed by the removal of just a few of the highest degree
nodes. Attacks on the highest degree vertices are therefore much more effective
since the removal of few of them leads to a fast collapse of the whole network. On
the contrary, in assortative networks, the removal of high-degree nodes is a relatively
inefficient strategy for destroying network connectivity, since these vertices tend to
be clustered together, thus their removal would result to be ineffective (Newman
2002a). In Sect.2.2.1 we will see that in many social networks assortativity emerges
as a natural phenomenon not only in the degree, but also with respect to a variety of
psychological, sociodemographic and behavioral attributes (Christakis and Fowler
2007; Lewis et al. 2008; McPherson et al. 2001).

Shortest Path Length, Diameter and Betweenness

The shortest path d;; between two nodes i and j measures the geodesic or optimal
path way that go from i to j. A measure of the typical separation between two nodes
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in a graph G is given by the average shortest path length [, defined as the mean
geodesic distance between nodes pairs (Watts 1999):

1
| =
NN =12 ienizj

dij. (2.4)

The maximum value of d;; is called the diameter of the graph. In networks with
more than one component (maximally connected induced subgraph), the definition
in (2.4) can be problematic since there exist nodes pairs that have no connecting
path. One can assign infinite geodesic distance to such pairs, but then the value of /
also becomes infinite. For this reason, on such networks one usually defines [ as the
mean geodesic distance between all pairs of nodes belonging to the largest connected
component (Latora and Marchiori 2001). Despite their large size, most of the real
networks usually show a relatively short path between any two nodes. This feature
is known as the small-world effect and is mathematically characterized by [, that
depends at most logarithmically on the network size N (Watts and Strogatz 1998;
Watts 1999).

In the social context, the small-world effect was first investigated by Milgram
in the 1960s, in a series of experiments to estimate the actual number of steps in
a chain of acquaintances (Milgram 1967). In its first experiment, Milgram asked
randomly selected people in Nebraska to send letters to a distant target individual in
Boston, identified only by his name, occupation and rough location. The letters could
only be sent to someone whom the current holder knew by first name, and who was
presumably closer to the final recipient. Milgram kept track of the paths followed
by the letters and of the demographic characteristics of their handlers. Although the
common guess was that it might take hundreds of these steps for the letters to reach
their final destination, for those letters which arrived at destination, Milgram found
that it had only taken an average of six steps for a letter to get from Nebraska to
Boston. He labeled this situation “six degrees of separation” (Guare 1990), a phrase
which since then has passed into popular folklore. Although the experiment certainly
contained many possible sources of error, the general result that two randomly chosen
persons can be connected by a short chain of intermediate acquaintances has been
subsequently verified, and it is now widely accepted (Dodds et al. 2003; Korte and
Milgram 1970).

Two nodes i and & that are not directly connected by an edge in a graph, can be
linked through the nodes belonging to all the paths connecting i and k. In this regard,
a measure of the relevance of a given node is given by its betweenness b; which
measures the number of geodesics going through it and is defined as:

h= > @ 2.5)
jkeN jzk ik

where 7 is the number of shortest paths connecting j and k, while n (i) is the
number of shortest paths connecting j and k passing through i. Together with the
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degree, the betweenness of a node is one of the standard measures of the centrality
of a node in a network (Scott 2000). Betweenness centrality can also be viewed
as a measure of network resilience, indicating how much effect on path length the
removal of a vertex will have (Holme et al. 2002; Newman 2003b).

Clustering or Transitivity

In many networks it is found that if node i is connected to node j and node j to
node k, then there is a high probability that node i will also be connected to node k.
In the language of social relationships, this translate in: the friend of your friend is
likely also to be your friend (Wasserman and Faust 1994). In the study of networks,
this property is known as transitivity or clustering and, in terms of a generic graph
G it means the presence of a high number of triangles (sets of three vertices each
of which is connected to each of the others). This can be quantified by defining the
clustering coefficient C thus:

c_ 3 x number of triangles in the graph 2.6)
"~ number of connected triples of vertices in the graph’ '

where a triple consists of three nodes connected by two (open triple) or three (close
triple) and the factor 3 in the numerator accounts for the fact that each triangle con-
tributes to three triples and ensures that C lies in the range 0 < C < co. An alternative
definition of the clustering coefficient has been given by Watts and Strogatz (Watts
and Strogatz 1998). It is obtained by defining a local clustering coefficient of a node
L number of triangles connected to node i 2.7

~ number of connected triples centered on node i’

One assumes C; = 0 for nodes with degree 0 or 1, for which both numerator and
denominator are zero. The clustering coefficient for the whole network is given by
the average

C= %ZC"’ (2.8)

and, by definition, 0 < C < 1. In sociologic literature, the local clustering coefficient
Ci hasbeen widely used as ameasure of the “network density” (Scott 2000). In general
for social networks, regardless of which definition of the clustering coefficient is
used, the values of C tend to be considerably higher than for a random graph with a
similar number of vertices and edges. This indicates that nodes tend to create tightly
connected groups characterized by arelatively high density of ties (Watts and Strogatz
1998). According to Newman and Park, together with the degree correlations, this
property is what makes social networks different from other networks (Newman and
Park 2003).
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Communities

Given a graph G, a community is a cohesive subgraph G’ whose nodes are tightly
connected. Since the structural cohesion of the nodes of a graph can be quantified
in several different ways, there are many formal definitions of community structures
(Ahuja et al. 1993; Everitt 1974; Girvan and Newman 2002; Guimer4 et al. 2003;
Holme 2002; Newman and Girvan 2004; Wilkinson and Huberman 2004). The most
known definition is based on the concept of a cligue and requires that all pairs
of community members have relationships with each other. A clique is a maximal
complete subgraph of three or more nodes, that is a subset of nodes all of which
are adjacent to each other, and such that no other nodes exist adjacent to all of
them. By extending this definition, a n-clique is a maximal subgraph in which the
largest geodesic distance between any two nodes is no greater than n. Community
structures are a typical feature of social networks; it is a matter of common experience
that people divide into groups along lines of interest, occupation, location, age or
family ties (Newman and Girvan 2004). The different way in which an individual
is embedded in the structure within the network is also related to the behavior or
function he is likely to practice. Individuals belonging to tightly connected group may
be crucial in providing emotional and material support to each other (Granovetter
1973; Wellman 2007), while individuals who act as bridges between groups may
provide access to a greater variety of information (Eagle et al. 2010; Onnela et al.
2007b).

Social analysts were the first to formalize the idea of communities and develop
mathematical measures and methods to define the cohesion of communities and
identify subgroups (Wasserman and Faust 1994; Scott 2000). In the last few years
there has been an increasing interest and research in this area, which has become one
of the most prominent areas of network science (Arenas et al. 2010; Blondel et al.
2008; Danon et al. 2008; Kumpula et al. 2009; Lancichinetti et al. 2010a,b; McDaid
2010; Newman and Girvan 2004; Raghavan et al. 2007; Rosvall and Bergstrom 2008;
Toivonen et al. 2006, 2007). Finding the communities within a network is in fact a
powerful tool for understanding not only the structure and the growth mechanisms of
a network, but also its functioning: a community in a social network might indicate
a circle of friends, a community in the World Wide Web might indicate a group of
pages on closely related topics, and a community in a cellular or genetic network
might be related to a functional module.

Motifs

A motif M in a network is a pattern of interconnections occurring in a graph G at a
number significantly higher than in randomized versions of the graph, i.e. in graphs
with the same number of nodes, links and degree distribution as the original one, but
where the links are distributed at random. M can be considered as a sub-graph of
G. The concept of motif was first studied for biological networks (Milo et al. 2002;
Mangan and Alon 2003) and then extended to other networks from neurobiology
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and ecology to social networks (Zhao and Oliver 2010). The reasons of the high
frequency of different subgraphs in a specific network are not totally understood.
There are at least two possible explanations. On the one hand, it is possible that
certain constraints on the growth mechanism of a network as a whole determine
which motifs become abundant. On the other hand, it is well known that the structure
has important consequences on the network dynamics and functional robustness
(Valverde and Solé 2005; Vazquez et al. 2004). So that a particular sub-graph can
become overrepresented because, due to its structure, it possesses some relevant
functional properties (Milo et al. 2002). As we will see in Sect. 2.4.3 the presence of
motifs can also reveal important correlations between the agents, which may have a
causal explanation.

2.1.2 Weighted Networks

Up to now, we have focused on networks in which edges between nodes have a binary
nature, in the sense that they are either present or not. This networks are known as
unweighted networks and each connection is assumed to be equivalent to any other.
Nevertheless, in many real networks not all edges have the same importance of role
and display instead a large heterogeneity in the capacity and the intensity of the
connections. For example, social relationships with family members are usually dif-
ferent from friends or acquaintances (Granovetter 1973; Roberts 2010; Wellman and
Wortley 1990). In all these cases it may be useful to assign to edges attributes that
somehow should allow to distinguish connections of different type. These systems
are better described in terms of weighted networks, i.e. networks in which each
link carries a numerical value w;; measuring the strength or weight of the connec-
tion (see Fig.2.1c). Depending on their weight, ties can be distinguished between
“strong” (large weight) and “weak” ties (small weight). Examples of strong and weak
ties are found in social networks (Barabasi et al. 2002; Granovetter 1973; Latora and
Marchiori 2001; Newman 2001a) as well as other types of networks such as neural
networks (Latora and Marchiori 2001, 2003; Sporns 2003), airline networks (Barrat
et al. 2004; Guimerd et al. 2005), network of pages on the Internet (Pastor-Satorras
and Vespignani 2004), biological systems (Csermely 2004). In most of these net-
works, tie strength quantifies the attention or the flow of information through that
connection. As we will see in the next section, in the case of social networks such as
mobile phone, e-mail or online social networks, the weight of a tie is usually assigned
depending on the volume of interaction between the two involved individuals in a
given time window, which has been found to correlate with the intensity of the social
relationship (Baym et al. 2004; Wellman and Haythornthwaite 2003). Exploring the
strength of the ties in social networks helps in the understanding of the structure
of the network and also of the dynamics of many phenomena that involve human
behavior, such as communities formation, information spreading and social influence
(Grabowicz et al. 2012; Onnela et al. 2007b; Toivonen et al. 2007; Watts 2004). To
measure the level of edge reciprocity in weighted (directed) networks, one can also
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define the bias b;; = w;;/(w;; + wj;) (which takes values from O to 1), where w;;
and wj; are respectively the number of calls from i to j and from j to i. Several gen-
eralizations of the quantities defined in the previous section for unweighted networks
(average nearest neighbors degree, the shortest path length, the clustering coefficient
or motifs) have been proposed to characterize the complex statistical properties and
heterogeneity of weighted social networks (Barrat et al. 2004; Boccaletti et al. 2006;
Onnela et al. 2005; Saramiki et al. 2007).

Node Strength and Strength Distributions

In a weighted graph each edge has a weight w;;, which is equal to O if the nodes
i and j are not connected. It has been found that the weights characterizing the
various connections exhibit generally complex statistical features with highly varying
distributions and power-law behaviors (Almaas et al. 2004; Colizza et al. 2006; Goh
etal. 2001; Onnela et al. 2007b). For anode i, the sum of w;; over all his connections
defines the node strength s;:

si= Y wij, (2.9)

J

which is a measure of node strength in terms of the total weight of its connections
(Barrat et al. 2004; Yook et al. 2001; Onnela et al. 2003). When the weights are
independent on the topology, the strength of nodes of degree k is s(k) ~ (w) k,
where (w) is the average tie weight across the whole network. In the presence of
correlations, instead, one has s(k) ~ A k” with 3 # 1 and A # (w) (Barrat et al.
2004; Miritello et al. 2012b). Together with the degree distribution P (k), the strength
distribution P (s), which measures the probability that a node have strength s, gives
useful information about the network. In many real network the node strength is
related to the node degree, thus P (s) is also heavy-tailed. The same is observed for
the distribution of tie weights. The local coupling between node and tie strength
and network topology has important consequences for the network’s global stability
if ties are removed, as well as for the spread of news and ideas within a network
(Onnela et al. 2007b).

Node Disparity

For a node i with a given connectivity k; and a given strength s;, there are different
combinations of w; ;. In the two limit cases, all weights can be of the same order s; / k;
or, in contrast, only one or few weights can dominate over the others. To measure
this level of diversity, a quantity which is widely used in network literature is the
disparity Y; (Almaas et al. 2004; Barthélemy et al. 2003, 2005; Boccaletti et al. 2006;
Miritello et al. 2012b), given by:
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The disparity is a measure of local heterogeneity and it has an implicit dependence on
k;. In the homogeneous case, in which all edges have comparable weights, Y; (k) ~
1/k since w;; = s;/k;. In contrast, if the weight of a single edge dominates, then
Y (k) >~ 1 and it is independent of k. Other measures to quantify the topological
diversity in a network have also been used, as the Shannon Entropy H; or the Rényi
Disparity D;(7y), where vy is a tunable constant (Eagle et al. 2009; Lee et al. 2010).
These quantities however are strongly related to each other: in fact H; behaves like
1/Y; and D; reduces to 1/Y; in the case v = 2, while for v = 1 it reduces to the
Shannon disparity, which is the exponential of the Shannon entropy.

2.2 Communication Networks

Communication (or interaction) networks, as the same word indicates, are a particu-
lar case of social networks where interactions between individuals refer to sequences
of communication events. Examples of communication networks include e-mail net-
works, text messages or phone-calls, communication via blogs, online friendship
networks as Facebook or micro-blogging services as Twitter. The increasing under-
standing and modeling of many real social networks can actually be attributed to
the analysis of communication networks derived from massive electronic data set
generated by millions of people through all these communication channels (Lazer
et al. 2009). These records, which are routinely collected on websites, communi-
cation companies or electronic providers, represent a very rich laboratory to study
how humans act and interact and to understand phenomena such as computer viruses
or disease spreading (Anderson and May 1992; Newman 2002b; Newman et al.
2002), diffusion of information, innovations and products (Aral and Van Alsyne 2007;
Dodds and Watts 2003; Szab6 and Barabdsi 2006), opinion and influence dynamics
(Friedkin and Johnsen 1990; Quattrocchi et al. 2010), teams formation (Guimera
et al. 2005) and so on. In contrast to others social networks, edges in communication
networks typically arise from instant communication events and capture relationships
as they happen. At any given instant, in fact, the network consists of the collection
of ties connecting the people who are currently having a conversation. Together
with the large dimension of these databases, this is certainly one of the main advan-
tages of the study of communication networks. However, while in networks such as
co-authorship networks a relationship between two scientists can be easily inferred
whenever they coauthored at least one paper together (Newman 2001a), in many
communication networks the problem of tie definition is usually not so trivial. For
example, in mobile phone networks not all the observed events necessarily corre-
spond to a social relationship between the individuals involved, since they may refer
to calls to the operator or to wrong numbers. At the same way, declared “friends” in
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Facebook may not correspond to the real individual social circle, since users actually
interact only with few of them (Baym et al. 2004; Feld 1991). In this respect, to infer
unobserved social relationships from the observed communication events is usually
a hard task (De Choudhury et al. 2010; Wuchty 2009). Another important thing to
bear in mind when dealing with networks of human communication is the different
nature they may have. Although it is not always relevant, sometimes it can be impor-
tant to distinguish between offline and online networks, where offline usually refer
to phone calls or short messages (SMS) networks, to distinguish them from online
communication such as blog interaction, Facebook, LinkedIn or Twitter networks.
Another possible classification is related to the number of individuals involved at
each interaction event. In this respect, while mobile phone or text services networks
typically represent one-to-one communication networks, in the case of e-mail, Twit-
ter or Facebook one may talk about one-to-many communication networks, since
interaction can involve many recipients. Finally, it is often important to account
for the directional/undirectional nature of the communication. While a phone call
allows a bidirectional communication and the party that initiates the call may be
only partially relevant, when dealing with SMS, e-mails or direct messages, to dis-
tinguish between the sender and the receiver may be instead crucial to characterize
the underlying social relationship.

Each of these communication channels represents of course only one of the several
possible ways in which two individuals may be connected in the real life. However, the
use of electronic data as a proxy for social interactions has already proved successful
in several recent investigations. For example, in the case of mobile phone networks,
it has been observed that communication ties constitute an accurate representation of
face-to-face interaction and self-reported friendships as measured using traditional
sociometric methods (Eagle et al. 2009). This allows the quantification of previously
rather elusive quantities such as tie strength that serve as signatures of work, family
or acquaintances relationships (Onnela et al. 2007a,b), led to analyze how social
groups evolve and change over time (Palla et al. 2007a,b). Other studies of e-mail
communication networks have also shown that the use of e-mail in local social circles
is strongly correlated with face-to-face and telephone interactions (Baym et al. 2004;
Wellman and Haythornthwaite 2003; Wuchty and Uzzi 2011) and that the patterns of
e-mail communication are related to the underlying social structure, shared activities,
and personal attributes (Kossinets and Watts 2006; Wuchty and Uzzi 2011). Questions
like how well electronic communication represent real social relationships or until
what extent social media can predict the intimacy of a social relationships have
been addressed also in online settings (Adamic and Adar 2003; Golder et al. 2007,
Kivran-Swaine et al. 2011; Ugander et al. 2011). For example, a comparison between
a network of Facebook interactions and self-reported data revealed that it is possible
to infer the existence and the importance of a offline social contact by looking at
the online network of the involved individuals and its properties such as the number
of exchanged messages, number of common friends, etc. (Gilbert and Karahalios
2009). Furthermore, location-based networks such as Foursquare or GPS records of
mobile phone networks provide important information on the physical places that
people visit and how they move (Scellato et al. 2011; Volkovich et al. 2012), by
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providing more interesting insights about human mobility patterns (Candia et al.
2008; Gonzalez et al. 2008) or the relations between friendships and mobility (Cho
et al. 2011; Cranshaw et al. 2010).

However, despite the success of the use of electronic communication to repre-
sent and study social relationships, in social network analysis the measurement and
characterization of what constitutes a social link remains still an unanswered issue.
As mentioned above, this is mainly due to the fact that networks of electronic com-
munication significantly differ from the physical one in one substantial thing: by
quoting Tang et al. (2011) “physical social networks are colorful (‘family members’,
‘colleagues’, and ‘classmates’)” while when looking at electronic networks they are
usually “black-and-white”, in the sense that no information is given by the activity
data on the type of the underlying social tie. To give a representation of social ties
close to the real one, one usually keeps only ties that are reciprocated and assign them
a weight that should reflect its importance and nature in real life (see Sect.2.1.2).
Of course there are several ways to assess tie reciprocity and as much in which tie
weights can be defined and assigned. In line with aggregated and static approaches
traditionally used to model social networks, one usually assesses the reciprocal char-
acter of a tie between two individuals depending on whether there has been at least
one reciprocated pair of communication events between them during the whole obser-
vation time window under investigation. Within the same picture, communication tie
weights are usually taken as the total volume or intensity of communication between
any pair of individuals in the whole time period (e.g. number or duration of calls in
mobile-phone networks or number of directed messages in Twitter) (Huberman et al.
2009; Onnela et al. 2007b). Indeed, it has been shown that the volume of commu-
nication correlates with the importance of the face-to-face relationship (Eagle et al.
2009). As we will see in this section, the interpretation of tie strength leads to obser-
vation and validation of many structural properties that were already known from
smaller and/or face-to-face networks (Baym et al. 2004; Wellman and Haythorn-
thwaite 2003). As a particular case of social networks, communication networks
present many of the topological properties described in Sect. 2.1: large heterogeneity
in both the social connectivity and the strength of nodes and ties; non-trivial cluster-
ing or network transitivity; positive correlations or assortative mixing between the
degrees of adjacent vertices; they are often divided into groups or communities that,
as it has recently been suggested by Newman (2003a), may account for the observed
clustering. The aim of this section is to present some of the most outstanding results
about communication networks known in literature, with a particular focus on all
those topological aspects which make them different from other social networks.
All the results presented have been obtained by considering a static snapshot of the
network, resulting from the aggregation of all communication events over a given
time window. There are however several limitations to this description, starting from
the definition of tie weight as the mere volume of communication, limitations that
will be discussed in more details in Sect. 2.3.
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2.2.1 Topological Properties

As discussed in Sect. 2.1, a basic network characteristic is the degree distribution. We
have seen that many social networks show in general a skewed degree distribution
which follows a power-law behavior P (k) ~ k~7 with exponent y between 2 and 3,
indicating the existence of hubs or people with a very large number of connections.
In this aspect, communication networks slightly differ from other social networks.
For e-mail communication networks, for example, it has been observed that the dis-
tribution of the number k of a node’s next neighbors obeys an exponential behavior
P (k) o exp(—k) (Guimerd et al. 2003). According to other studies (Amaral et al.
2000; Newman et al. 2002), the truncation of the scale-free behavior in real world
networks is due to the physical costs of adding ties and the limited capacity of an
individual (Bonney 1956). Other results indicate instead a heavily skewed degree
distributions for e-mail where a power-law P (k) ~ k7 with an exponent v ~ —1.8
(Ebel et al. 2002; Ferrara 2012). Small deviations from a power-law behavior with
v € [2, 3] have been observed also for online social networks, where in general
two different regimes are observed for P (k): a rapid decay (y ~ 4 — 5) for small
k and a heavy tailed (v ~ 1 — 2) for large values of k (Ahn et al. 2007; Ferrara
2012; Kwak et al. 2010; Mislove et al. 2007). The range of large k for this type of
networks is usually associated to atypical users, i.e. those individuals with a large
audience whose messages get broadcasted. A rapid decay of P (k) has also been
observed in mobile phone communication networks where, although the tail of the
degree distribution is better approximated by a power-law that an exponential, the
obtained exponent is significantly higher. Onnela et al. (2007a) for example, found
an exponent v = 8.4, in which cases the power-law distribution can be easily con-
fused with exponential (Clauset et al. 2009). Despite the differences, most results for
communication networks show however a decay in the degree distribution which is
faster than a power-law, indicating that the hubs are few. In phone communication
networks this decay is probably due to the fact that business numbers are usually
filtered out from the analysis and that each event usually represents a one-to-one
communication (Miritello et al. 2012b; Onnela et al. 2007b), in contrast with e-mail
or instant messaging networks, in which the recipients of the message can be many
and well-connected hubs are observed (Ebel et al. 2002). Other times the observed
differences may depend on the way in which interaction ties are defined. In networks
as Twitter, for example, the social graph resulting from the following/follower rela-
tions can significantly change from the interaction one, where a tie between two
persons is considered only if there has been direct communication between them
(Huberman et al. 2009).

Consistently with general results about social networks, also communication net-
works show a well organized structure typically characterized by the existence of
communities of individuals. Since the existence of communities between individ-
uals is intuitively clear in human society, it is not surprising to find communities
also in all those networks that represent interactions between individuals. Generally,
the distribution of community sizes shows a slow decay, indicating that there is no
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characteristic group size (Ferrara 2011; Grabowicz et al. 2012; Guimerd et al. 2003).
In large online social networks such as Facebook however, it has been found that
there is a high probability of finding a high number of communities that contain few
individuals and a lower probability of finding communities constituted by a large
number of members (Ferrara 2012; Leskovec et al. 2009). The latter result suggests
that individuals are more likely to aggregate in small communities, such as those
representing family, friends or colleagues, rather than in large communities. On the
other hand, for some networks such as e-mail or mobile phone networks, results
show that there exists an important number of communities with a large amount of
individuals, constituting the heavy long tail of the observed power law distribution
(Blondel et al. 2008). As well as for other social networks, also in communication
networks the existence of a community structure can be associated to the assortative
mixing of some attribute of the vertices. As mentioned in Sect. 2.1, social networks
are assortative: people with many friends are connected to others who also have
many friends. This has been observed for online communication networks (Kwak
etal. 2010) as well as for mobile-phone networks (Onnela et al. 2007a). This human
tendency to interact with individuals similar to themselves is also know as affinity
or homophily and emerges not only in the degree, but also with respect to a variety
of attributes from psychological states such as loneliness or happiness (Bliss et al.
2012; McPherson et al. 2001) or health attributes and habits (Christakis and Fowler
2007, 2008), to tastes and interests (Lazarsfeld and Merton 1954; Lewis et al. 2008)
and sociodemographic features such as age or race (Ibarra 2002; Mollica et al. 2003).
As we will show in Chap. 3, the inherent homophilous nature of humans not only
emerges in topological or psychological and exogenous factors, but also in dynami-
cal processes of human interaction which have not been thoroughly investigated so
far (Miritello et al. 2012a).

Since the nodes of a network may have positions in space, in many cases, it
is reasonable to assume that geographical proximity plays a role in deciding how
to connect the nodes, something that has indeed been observed for many real net-
works (Barthélemy et al. 2003; Boguiia et al. 2004; Kleinberg 2000). For example,
in mobile phone and online social networks it has been observed that the proba-
bility for two individuals to be connected decays with their geographical distance
(Lambiotte et al. 2008; Onnela et al. 2011). On the other hand, most of these net-
works also appear to be geographically disperse (Barthélemy 2003; Lambiotte et al.
2008; Kwak et al. 2010). This result can be easily understood since, although the
geographical proximity is an essential condition for face-to-face interactions, this is
not true for the majority of communication networks whose function is indeed to
enable the interaction with people who do not necessarily share the same physical
place. Despite their geographical dispersion, however, communication networks are
highly connected in terms of graph-distance and they appear to be even smaller than
other social networks. A very recent study of Facebook interaction network show for
example that the average number of intermediate ties between two randomly chosen
humans (shortest path length) is almost 4 (Backstrom et al. 2012). This value, which
is significantly smaller than the 6-degrees found in the original experiment by Mil-
gram (Milgram 1967), indicates that, when considering another person in the world,
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“a friend of your friend knows a friend of their friend, on average” (Backstrom et al.
2012).

2.2.2 Correlation Between Topological Structure and Tie Weights

Topological Overlap and the Strength of Weak Ties

As mentioned in the previous section, people tend to form groups with other peo-
ple similar to themselves. This suggests that in general ties within communities
have different properties than ties connecting the communities (bridges). One of the
most known result in this respect, hypothesized by the american sociologist Mark
Granovetter (Granovetter 1973), is that ties within communities tend to be stronger
that the ones between them (Onnela et al. 2007b; Lewis et al. 2008). This hypoth-
esis is known as the weak ties hypothesis and implies the existence of important
correlations between local network structure at the level of communities, and inter-
actions strengths. One way to measure this correlation is by looking at the relation
between the tie strength w;; between two nodes i and j in a network and the relative
topological overlap of their common neighbors, defined as:
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where k; and k; are respectively the degrees of the two nodes and n;; the number of
neighbors common to both of them (Onnela et al. 2007b). If i and j have no common
acquaintances, then O;; = 0 and the tie between the two nodes represents a potential
bridge between two different communities. On the contrary, if i and j are part of
exactly the same circle of friends, then O;; = 1. A positive correlation between wj;
and O;; has been observed, for example, in mobile communication networks (Onnela
etal. 2007b). By defining w;; as the total volume of communication between i and j
over a given time window, Onnela et al. found that the more the time two individuals
spend talking together is, the more their friends overlap or the other way around,
which is in line with the strength of weak ties hypothesis. As a consequence, the
network structure in the vicinity of a randomly selected individual is similar to the
one depicted in Fig. 2.3: consistent to the weak ties hypothesis, the majority of strong
ties are found within the clusters, while most links connecting different communities
are much weaker. An alternative measure of the topological overlap is given by the
Adamic-Adar index s44 which refines the simple counting of common neighbors by
giving the lower-connected neighbors more weights (Adamic and Adar 2003). It is
defined as slf;‘A = ZzeN(i)mN(j) 1/log(k(z)), where N (i) and N (j) are, respectively,
the neighbors of i and j.

The structural configuration of a network can have global implications on its
stability and functionality since links may have a different role or function in the
system depending on their strength and/or their location with respect to the groups.
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Fig.2.3 Structure of a mobile phone network around a randomly selected individual (marked by the
black circle), where only nodes which are at distance less that six from the selected one are shown.
Each tie represents a reciprocated tie (mutual calls) between the involved users and tie weight is
defined as the aggregated call duration in minutes (see color bar). Adapted from “Structure and tie
strengths in mobile communication networks”, Onnela et al. (2007b)

It has been observed, for example, that weaker ties are crucial for maintaining the
network’s structural integrity and that a removal of few of them from the whole
network drives the system into a rapid disintegration. On the contrary, given that
strong ties are predominantly within the communities, their removal only disintegrate
a community but does not affect the overall integrity of the network (Onnela et al.
2007b).

This finding shows a significant difference between social networks and biolog-
ical or technological ones, where exactly the opposite is observed and immediate
network’s collapse is caused by the removal of strong links (Barthélemy et al. 2004).
Weak ties play an important role also in the dissemination of information within a
network, since they help to link together different parts of a system while strong
ties significantly slow information flow, trapping it in communities (Onnela et al.
2007b). Recently it has been proven that the weak ties hypothesis also applies to
online networks (Grabowicz et al. 2012; Ferrara 2011). For example, by defining
the strength of a tie i as the total number of personal messages exchanged between
i and j over the period of observation, Grabowicz et al. (2012) found that weak
links are typically connections between persons not sharing neighbors and also in
this case they contribute to more efficient information flow. In fact, while personal
messages tend to concentrate inside the communities, retweets, which are associated
to information propagation events, appear with higher probability in links between
groups.

Dunbar’s Number

Despite the large size of many real-world communication networks and their small
diameter, they appear to organize in relatively small size communities of 50-200
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individuals (Leskovec et al. 2009; Ferrara 2011). This observation agrees well with
the so-called Dunbar’s theory which predicts that the cognitive limit to the number
of people with whom each person can have a close relationship is roughly 150. This
number takes its name from the anthropologist Robin Dunbar who in 1992 mea-
sured the correlation between neocortical volume and typically social group size in a
wide range of primates and human communities (Dunbar 1992). In real-world social
interactions, beside the biological constraints, also other physical limitation may play
their role, first of all the fact that time and attention are scarce resources and people
have a finite amount of it to dedicate to social relations. Recently, Dunbar’s theory
has been tested with regard to Twitter users, and it was found that the new mode
of communication did not have a significant impact on the human biological and
cognitive limits to social interactions, with Twitter users maintaining a maximum
of 100-200 stable relationships (Gongalves et al. 2011). The Dunbar’s theory also
asserts that numbers of social relationships larger than 100-200 have generally a
higher cost and require more effort to maintain a stable connection. This is in line
with that found in Grabowicz et al. (2012) with regard to Twitter users: despite the
existence of communities with size significantly larger than Dunbar’s number, links
with direct messages are much more abundant within groups of size up to 150 users.
A similar result has been observed in Facebook communication where, despite the
large number of declared friends, users only poke and message a small number of
people (Golder et al. 2007).

As we will show in Chap. 3, we obtain similar results for mobile phone communi-
cation networks. We observe however a slightly smaller limit of the social capacity,
probably because beside the cognitive limit, also temporal and monetary constraints
play their role in phone communication (Miritello et al. 2012b).

2.3 Traditional Network Modeling

Up to now we have seen how to characterize the structure of a network, focusing on
how the main properties of its elements have been traditionally defined and measured.
We have also seen that in some cases the simple modeling framework can be made
more powerful by including additional levels of details, as for example ties weights,
whose correlations with the network topology give also important insights on how
people behave, interact and organize. In the last years, the understanding of the
structure of many communication networks has received huge interest among the
scientific community and a lot of literature has been produced based on the analysis of
phone call networks (Akoglu and Dalvi 2010; Hidalgo and Rodriguez-Sickert 2008;
Nanavati et al. 2008; Onnela et al. 2007b), e-mail networks (Ebel et al. 2002; Eckmann
etal. 2004; Guimera et al. 2006; Kossinets and Watts 2006) and online social networks
(Ahn et al. 2007; Ferrara 2012; Mislove et al. 2007; Ugander et al. 2011; Kwak et al.
2010; Huberman et al. 2009). The majority of studies on social networks structure
have focused mainly on (i) the way real networks deviate from completely random
networks, (ii) how the observed structure can emerge from individual behavior and
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(iii) how the observed network topology can be modeled. This type of analysis
constitutes the first step to characterize network topology, understand which nodes
play a similar role in a given system and the way in which they are connected to each
other. Characterizing network topology not only helps in the understanding of how
a part of the network differs from others, but also in the description and modeling
of dynamical processes such as information spreading (Iribarren and Moro 201 1a;
Ugander et al. 2011) or influence (Aral and Walker 2012). All these processes, in fact,
are constrained by the way in which whom and how each individual is connected to
and located within the network. The fact that in social networks the flux of information
that passes through each tie is unevenly distributed, some individuals are much more
connected than others and social relationships are organized in communities, must
indeed reflect in the way in which information, opinions or influence spread.

Paradoxically, the majority of these studies are based on aggregated statistics and
ignore one inherent property of real social networks: the fact that they tend to change
dynamically. Most social and communication networks are in fact temporal net-
works, not only in the sense that they are subject to a continuous evolution over time,
but also because interactions between agents happen at a given time and may have a
given duration (Holme and Saraméki 2012). Traditional network models are instead
essentially static and all information about the time at which social interactions take
place is discarded. The contact network is in fact obtained by aggregating over time
all the interaction events observed in a given time window. This representation results
therefore in a static snapshot of social interactions where the temporal dimension
is completely projected out. In this representation all nodes and ties are considered
as appearing at the same time and are assumed continuously active. In addition, the
nature of social relationships reduces to a static strength which, although it incor-
porates the volume of communication between two individuals, it does not include
any information about the way in which the involved individuals interact in time.
The implications of these assumptions are very strong since they imply that people
can interact with the same probability with any other individual in their social circle
and that interaction can happen at any time and that there is no causal correlation
between interaction events.

In contrast, everyday life experience suggests that none of these assumptions
actually holds: people do not communicate everyday with any other people they
know; interaction with one of our friends or colleagues may trigger the short-term
interaction with other people; while some social relationship can last for years, oth-
ers are very short in time or more occasional. Therefore, although the volume of
communication may be an indicator of the importance or the role that a particular
person has in our life, it does not capture any information on the temporal duration
of a social tie or the way in which such a volume of interaction events is distrib-
uted within a given time window. In Chap.4 we will show that, actually, the same
tie strength can correspond to ties with very different temporal features and that
static approaches thus radically misrepresent the real patterns of interactions and
miss important aspects and tendencies of dynamical networks. As we will see in
Chap.3 and 5, the ongoing change of the networks may affect the instantaneous
structure of the network, playing a fundamental role in the evolution of communities
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(Palla et al. 2007a; Tantipathananand et al. 2007) and individual’s communication
strategies (Miritello et al. 2012a) and the way in which communication events are
distributed in time is crucial in spreading phenomena (Iribarren and Moro 2009;
Karsai et al. 2011; Miritello et al. 2011; Rocha et al. 2010; Vazquez et al. 2007).
One of the standard approaches to take into account temporal properties of inter-
action when modeling temporal networks has been to divide the time period under
consideration into smaller time windows, then aggregate the social network in each
window separately (Sarkar and Moore 2005; Snijders 2001). These approaches are,
however, still static since they do not account for the fact that social relationships
are mostly instantiated intermittently over time. An alternative method is given by
the time-respecting graph where a tie (i, j) is defined as a time-labelled tie (i, j, 7),
where paths need to obey the time order of the appearance of ties (Kempe et al.
2002). According to this model however, temporally disconnected nodes are not
considered and the frequency of contacts between nodes is not taken into account.
A similar approach has been proposed where nodes, instead of ties, are labeled
at each time instant they appear and, whenever a connection between two nodes is
observed, a link between them is established, with weight equal to the time difference
between the nodes’ time appearances (Kostakos 2009). The main problem of these
approaches is however the fact that, as we will show in Chap. 3, due to the strong
heterogeneities of human interactions, nodes and/or ties activity can be confused
with their appearance and, although no activity between i and j is observed at time
t, a connection between them can, instead, exist. Other approaches use the concept
of reachability to define temporal distance metrics where a directed tie from i to j
is considered if there is a time-respecting path from i to j (Moody 2002; Tang et al.
2009, 2010). In contrast to others, the latter methods are able to capture the duration
and time order of contact and have been show to be useful to quantify information
diffusion processes (Holme 2005; Tang et al. 2009). To take into account the time
between two consecutive contact on a path, generalizations of time-respecting path
approaches which set a limit to the maximum allowed waiting time at a node have
been also proposed (Pan and Saramiki 2011). All these methods certainly represent
an improvement over the static aggregated approaches. However, a general frame
of how to model dynamical social networks by taking into account both topological
and temporal aspects of human behavior, as well as the correlations between them,
is still lacking. The main reason why the temporal dimension has been neglected
in traditional network modeling is certainly due to the fact that it is usually much
easier to analyze static graphs. However, there are at least two other reasons why the
underlying static network and the dynamical system usually appear separated and
little is known about how to model temporal networks and their dynamical processes.
The first reason, addressed in Chap. 3, is based on the belief that temporal processes
happen very slowly such that the structure of the network is not remarkably affected.
Although in many cases the temporal dimension can indeed be too insignificant
over the periods of study used to be included in the network analysis, it can be of
paramount importance in other cases. The second reason is associated to the lack
of longitudinal data until few years ago. In fact, as mentioned above, the interest in
modeling dynamically temporal networks has enormously increased only in the last
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few years with the rapid appearance of fine grained electronic longitudinal data, such
as phone-communication records, emails, web, blogs and online social networks. The
availability of this data has sparked numerous investigations into not only the topo-
logical, but also into the temporal properties of human interactions (Barabdasi 2005;
Gaito et al. 2012; Goh and Barabasi 2008; Kleinberg 2008; Kossinets et al. 2008;
Kovanen et al. 2011; Jo et al. 2012; Rybski et al. 2010). What emerges is that tem-
poral patterns of human interaction are actually very complex and articulated to be
neglected in the description and characterization of social networks. Actually, as we
will see in the next section, the inherent properties of temporal activity patterns also
play a crucial role in all those processes where the temporal ordering of events is
important, such as spreading phenomena, emergence of collective behavior, opin-
ion formation or human synchronization, indicating that traditional models of social
networks need to be revised.

2.4 Temporal Properties of Social Networks

As we have seen in the previous section, static descriptions of networks usually
neglect the temporal dimension of human activity. Among others, some of the implicit
assumption of this approach are that (i) nodes, edges, communities do not change in
time, (ii) human actions are markovian and randomly distributed in time, therefore
well approximated by Poisson processes, and (iii) there is no correlation or causality
between interaction events. In recent years, however, there has been an increasing
evidence that none of these hypothesis applies for real social networks. In this section
we will see that these recent findings show that the dynamics of social networks is
much more articulated and evolves as, contrary to static descriptions, social interac-
tions are dynamical, tie decay/form and nodes enter/exit the social network. Since
the understanding of how each of these properties affect the current way of model-
ing social networks is the main goal of this thesis, we will also discuss some of the
implications that temporal patterns of communication have on the static description
of the underlying contact network. This should serve to the reader as a preliminary
baseline for all the results presented in rest of this work.

2.4.1 Nodes and Ties are Not Persistent

One of the basic assumption of traditional networks models is that nodes and ties
within a network are continuously active. However, in the majority of real systems
they are not since people may join and leave the network over time (Hidalgo and
Rodriguez-Sickert 2008; Kossinets and Watts 2006). This makes the number of total
nodes in the network not constant in time, thus changing the whole network structure
and its properties (Ebel et al. 2002). For example, in co-authorship networks new
authors can appear or abandon the network over time (Barabasi et al. 2002), an effect



32 2 Social and Communication Networks

that has also be observed in other networks as internet dating (Holme et al. 2004)
and mobile communication networks (Palla et al. 2007a). As well as individuals, also
social relations are not always active in time and are characterized by very different
lifetimes. As we will see in Chap.4, while some relationship is observed only for
the duration of an interaction, others may last beyond the interaction with which
they began. In some cases this is due to the very definition of a link: since interac-
tions usually have a given duration in time, ties activation and deactivation reflects
the continuous changes in the activity and communication patterns of individuals.
In all these cases, the instantaneous picture of the network can be significantly dif-
ferent from the aggregated one, where all the nodes and interactions observed in
the entire observation period are taken into account. Moreover, the fact that indi-
viduals activate and deactivate social ties over time not only alters the structure of
the networks in which they participate but also affect the dynamics of many phe-
nomena that happen through the network, from communities formation (Palla et al.
2007a; Tantipathananand et al. 2007) to spreading processes (Iribarren and Moro
2009; Karsai et al. 2011; Miritello et al. 2011). There are many forces that govern
the activation/deactivation of social relationships and the tendency for relations to
weaken and disappear. The problem to identify under what conditions some ties are
more likely to dissolve or persist, which will be the main focus of Chap.4, is know
in the literature as the link prediction problem and it has been the objective of many
studies in recent years. The most exemplary work on edge decay in social networks is
probably that of Burt who studied the social networks of the most important bankers
over time and analyzed those factors that contribute to the disappearance of edges
between them (Burt 2000, 2002) . Several other studies have focused on link char-
acterization in other communication networks as phone and SMS networks (Akoglu
and Dalvi 2010; Hidalgo and Rodriguez-Sickert 2008; Raeder et al. 2011), online
networks (Aiello et al. 2010; Crandall et al. 2008; Gilbert and Karahalios 2009;
Kivran-Swaine et al. 2011; Romero et al. 2011) and off-line settings (Burt 2000;
Martin and Yeung 2006).

One of the main substantive conclusions that emerge from these studies is that links
exhibit a memory, meaning that old links are more likely to persist in time than
newly-formed ones (where the “age” and persistence of a link is defined in terms of
observed communication events or when the link is registered or deleted in on-line
social networks). Several other factors influence edge decay/persistence including
structural properties of ties as reciprocation, neighborhood overlap or clustering
coefficient, temporal properties as the time since the last communication (Raeder
et al. 2011), homophily (Crandall et al. 2008) or geographical aspects as individual
location and distance (Liben-Nowell et al. 2005; Lee et al. 2009). Tie creation or
decay may also signal changes in the community structure and the condition for
stability for large communities is strictly related to the continuous changes in their
membership (Palla et al. 2007a).

Taking into account the ongoing appearance and disappearance of nodes and
edges in the modeling of real social networks can lead to a characterization that
significantly differs from the aggregated static one. In Chap.3, for example, we
will show that, since many social interactions are not always active over time, the
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instantaneous number of connections of an individual is actually much smaller than
the time-aggregated one. This indicates that the standard social connectivity (defined
in Sect. 2.1.1) usually overestimates the actual peoples social capacity of maintaining
ties. We will show that according to the volatility of social relationships, it is possible
to identify different individual communication strategies, from exploratory to stable.
Depending on the adopted strategy, individuals also play a different role in spreading
phenomena. Again, the dynamics of tie creation/removal is crucial since, in contrast,
aggregated models assume that all connections are equally stable over time and that
all users have the same communication strategy. Due to the importance that both
social connectivity and its correlations with tie weights have on the characterization
of network topology and on the modeling of many real phenomena as information
spreading or network resilience, the consequence of accounting or not for the ongoing
dynamics of human interactions may be therefore considerable.

2.4.2 Inter-Event Times and Bursty Behavior

As mentioned above, one of the implications of considering a static and aggregated
snapshot of temporal interactions is that human interactions are randomly distributed
in time, thus well approximated by homogeneous and memoryless Poisson processes
(Greene 1997; Haight 1967; Reynolds 2003). Homogeneous Poisson processes have
two main statistical properties: the number of events during a time interval of duration
T follows a Poisson distribution with mean pT and the time ¢ between consecutive
events, called the inter-event or waiting times, follows an exponential distribution
p(dt) ~ pexp(—pdt). As a consequence, individual actions happen at relatively
regular time intervals &¢ and very short or very long inter-event times occur with
small probability (see Fig.2.4a). However, in real networks, this is usually not the
case.

One of the main results that has emerged in the last few years from observing social
interactions is that temporal patterns of human individuals are strongly inhomoge-
neous. This is reflected in the slowly decaying of the inter-event time distribution,
which has been found to have a heavy tail with a power-law decay as P (1) ~ 6t~ 7,
with v >~ 1 (Barabdasi 2005). As shown schematically in Fig.2.4, the latter is in
stark contrast with the prediction of a homogeneous Poisson process. This behavior
seems to be a universal feature of human activity. It has in fact been observed in
several systems driven by human activity sequences (Barabdsi 2010; Eckmann et al.
2004; Goh and Barabdsi 2008; Oliveira and Barabdasi 2005; Rybski et al. 2010) and is
known in literature as bursty behavior since long periods of inactivity are separated
by intense bursts of activity. According to other studies (Karsai et al. 2011; Rybski
et al. 2010), in Chap. 5 we will show that bursty behavior is observed not only in the
way an individual executes tasks, but also in the interaction between two individu-
als (Miritello et al. 2011). The heavy-tailed nature of the distribution of inter-event
times generated a huge interest in the last years in the understanding what are the
mechanisms responsible for its emergence. Two main classes of mechanisms have
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Fig. 2.4 Schematic representation of the difference between the homogeneous activity pattern
predicted by a Poisson process and the heterogeneous behavior observed in human dynamics. a
According to a Poissonian process the events are homogeneously distributed in time, thus the
inter-event time d7 follows an exponential distribution. b Bursty pattern of activity observed in real
systems, in which bursts of events are followed by periods of inactivity giving rise to an heavy-tailed
distribution for the inter-event time ¢

been suggested: (i) human behavior is driven by external factors such as circadian and
weekly cycles, which introduce a set of different time scales that give rise to the heavy
tails (Malmgren et al. 2008); (ii) temporal inhomogeneities are caused from human
task execution behavior, which is driven by a priority selection mechanism which
introduce correlations in activity (Barabasi 2005; Vazquez et al. 2006; Waleaevens
etal. 2012). This latter mechanism is supported by a recent finding by Jo et al. (2012)
who, after removing circadian and weekly patterns in the time-series by applying
de-seasoning methods, observe the robustness of the inter-event times distribution
of mobile phone communication events of individuals. The bursty dynamics of tie
interactions has very important and at times drastic effects in the characterization of
the underlying social network. For example, one of the implications of a Poissonian
description of human dynamics is that social ties are characterized only by the num-
ber of communication events between the involved individuals, which regulates the
rate of the process. This implies that all ties having the same weight are equiva-
lent. In contrast, as we will show in Chap.4, ties with exactly the same number of
communication events can be instead characterized by a very different distribution of
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these events within their lifetime period. The bursty dynamics of human interactions,
together with the temporal correlations between interactions, also have significant
implications on many dynamical phenomena happening on the network in which the
time ordering and delay is crucial, such as spreading processes. In recent experiments
of electronic recommendation, indeed, it has been shown that the large heterogeneity
found in the waiting times is responsible for the slow dynamics of information at
the collective level (Iribarren and Moro 2009), which makes the observed dynamics
significantly different from the Poissonian expectations (Iribarren and Moro 2011b;
Karsai et al. 2011; Miritello et al. 2011; Vazquez et al. 2007). The latter topic will
be discussed in details in Chap. 5.

2.4.3 Temporal Correlations: Motifs and Group Conversations

In Sect.2.1.1 we have seen that the topology of many social networks is character-
ized by motifs, e.g. patterns of interconnections that appear with significantly high
frequency. When dealing with temporal networks, however, these patterns can be
affected by the temporal order at which interactions take place. Several ways have
been proposed to extend the concept of motifs in order to take into account the
changes in the network structure over time. Some of these consider snapshots of the
network at different times, then look at the aggregated ties in each sub-window and
count the different networks in these snapshots (Braha and Bar-Yam 2008), while
others use the temporal information for defining the subgraphs of interest (Kossinets
and Watts 2006; Kovanen et al. 2011; Zhao and Oliver 2010). The latter approach
gives a more precise description of real temporal motifs since the sequences of events
are based on temporal order of the events, instead of considering aggregated snap-
shot windows. The results show that the number of such paths is significantly larger
when compared with reference networks, where the event times have been randomly
reshuffled. Understanding recurrent temporally ordered patterns might yield a lot of
insights on network analysis, especially in social and interaction networks, since it
reveals the existence of correlations between patterns of communication, which may
have a causal explanation. In communication networks, the presence of correlations
between events has also been observed by looking at the distribution of the relay time
7ij, also called inter-contact time, which measures the time it takes for the individual
i to interact with j after having interacted with any other person * # j (Cattuto et al.
2010; Eckmann et al. 2004; Isella et al. 2011; Miritello et al. 2011; Wu et al. 2010;
Zhao and Oliver 2010). The relay time 7;; depends not only on the inter-event times
d0tjjinthei <> j communication, but also on the possible correlations with the * <> i
events (Newman 2002b), thus on the way in which group conversations happen. In
a first approximation, where the latter correlation is neglected, the relation between
7;j and 61;; is given by the waiting time density for 6z;;:


http://dx.doi.org/10.1007/978-3-319-00110-4_5

36 2 Social and Communication Networks

o0
P(1ij) = _L/ P((St,'j) d5t,~.,~, (2.12)
Ot j I
where 01 ;j is the average inter-event time. The heavy-tail properties of the distrib-
ution P (dt;;) of inter-event times are therefore inherited by P (7;;), which appears
to be skewed with a long-tail (Miritello et al. 2011; Karsai et al. 2011; Rybski et al.
2009). Interestingly, the results for P (1) also show that not only large, but also very
small relay times are much more probable when compared with the series of time-
reshuffled events. This reveals indeed the existence of group conversations between
individuals. As well as the other temporal inhomogeneities of human interactions
described above, also correlations between events have crucial implications on the
dynamics of real processes. Indeed, in Chap.5 we will show that, together with the
bursty behavior, group conversations are the main dynamical ingredient in the under-
standing of the spread of information in social networks and the principal responsible
for the observed disagreement between Poissonian expectations and empirical results
(Miritello et al. 2011).

2.5 Discussion

The purpose of this chapter has been to introduce the basic concepts and the main
properties of social networks, with a particular interest on communication networks,
which are the focus of this thesis. In communication networks each node usually
represents an individual and the ties between individuals represent one or more
communication events between them, such as phone-call, e-mail or online message
communication.
We have seen that these networks, as well as many other social networks, are charac-
terized by a very heterogeneous structure: some individual is much more connected
than others, the flux of information which passes through social connection is not
evenly distributed and social relationships are organized within communities. We
have also presented how all these properties can be measured and analyzed in order
to get insights on how people act and interact and have discussed the traditional way
in which social networks have been modeled. We have seen that most of the analysis
present in the literature has been restricted on characterizing the network topologi-
cal structure in a given observation time window and on modeling its dynamics. In
this analysis, real networks have been usually modeled by following what we call
static approaches, where the temporal dimension is completely projected out: nodes
and relationships between them are considered active during the whole period under
investigation, interactions are basically characterized by the volume of interaction
between the two end-nodes and can happen at any time and that the communication
patterns are homogeneous in time, thus well approximated by Poissonian processes.
In contrast, many real systems are temporal networks, characterized by non trivial
temporal patterns (Holme and Saramiki 2012). We have seen, in fact, that in many


http://dx.doi.org/10.1007/978-3-319-00110-4_5

2.5 Discussion 37

social networks relationships appear and disappear in time, leading to an instan-
taneous contact network which may be different from the one that emerges when
they are considered everlasting (Hidalgo and Rodriguez-Sickert 2008; Kossinets and
Watts 2006; Palla et al. 2007b). We have also seen that interaction events are corre-
lated and human actions are bursty (Barabdsi 2005; Eckmann et al. 2004; Kossinets
and Watts 2006; Vazquez et al. 2006) thus can not be modeled by homogeneous Pois-
sonian processes. All these properties, which can not be captured by static network
models, are emerging only in the very last years, thanks to the increasing availabil-
ity of large electronic data sets of human communication that contain fine-grained
temporal information of how people act and interact. We have also mentioned that,
as well as topological features of human interaction, temporal properties are cru-
cial to understand and characterize the underlying social network and the dynamical
processes happening through it (Iribarren and Moro 2009; Vazquez et al. 2007),
something that we will analyze in more details in the next chapters.
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