
Chapter 2
Black Holes in String Theory

Iosif Bena, Sheer El-Showk and Bert Vercnocke

Abstract These lectures notes provide a fast-track introduction to modern develop-
ments in black hole physics within string theory, including microscopic computations
of the black hole entropy as well as construction and quantization of microstates using
supergravity. These notes are largely self-contained and should be accessible to stu-
dents at an early PhD or Masters level. Topics covered include the black holes in
supergravity, D-branes, Strominger-Vafa’s computation of the black hole entropy via
D-branes, AdS-CFT and its applications to black hole phyisics, multicenter solutions,
and the geometric quantization of the latter.

2.1 Why Black Holes?

This is a lecture series about black holes, but that does not mean that every little
detail about what a black hole is will be explained. Our purpose is not to give a
comprehensive review of the subject, but rather to fast-track interested students and
researchers to the “juicy” aspects of the field using as little sophistication as possible.
Students who wish to devote the rest of their life to the study of black holes in string
theory, while they may find this overview useful, are urged to follow the “classical”
route of learning first all the gory details of string theory, then all the gory details of
black holes in general relativity, then read ten or fifteen foundational articles from
the glorious nineties, as well as a few more recent ones in their preferred sub-area of
research.
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We start these notes in this section by reviewing the main questions of black hole
physics. For more details on the (GR) aspects of black holes, see for instance the
Course de Physique at IPhT by Nathalie Deruelle in 2009 [1] and references therein.

Note: In these lecture notes, we choose for a pedagogical referencing style. We
refer to useful books, lectures and reviews as much as possible, and we will give only
the most relevant original papers when appropriate. More references can be found
in the reviews and pedagogical papers we refer to.

2.1.1 Classical Black Holes

Black holes are classical solutions that appear naturally in GR. The first black hole
metric was written down for the first time almost a century ago by Karl Schwarzschild
(although at that point it was only used to model the geometry outside of a spherically
symmetric object as the Sun or the Earth). It is a solution to the Einstein equations
determined by one parameter, the mass.

Very crudely, we can picture such a black hole as a region of spacetime in which
things can fall, or be thrown in, but nothing comes out, see Fig. 2.1 for a cartoon.
The boundary from which no round-trip tickets are available any more, is called the
event horizon. The name “black hole” fits very well: classically, a black hole does
not emit anything, not even light.

We can say more than just drawing cartoons. In GR, there is a very well-defined
picture one can make of a spacetime that showcases its causal properties, while
it still fits on a page: the Penrose diagram. It can be obtained by performing a
conformal transformation (scaling) on the metric. The Penrose diagram is then a
two-dimensional picture of the conformal metric. The key feature is that time-like
surfaces (light-rays) are still at 45° angles and we can therefore easily infer the causal
structure of the spacetime. The Penrose diagram for the Schwarzschild black hole is
shown in Fig. 2.2.

Any object travels on a causal curve: it has to stay within its future lightcone.
We see that once something falls into the horizon, it can never get out again. From

Fig. 2.1 A classical black
hole is the ultimate solution
for those smelly diapers of
your one-year-old daughter,
nagging mother-in-laws or
ageing national monuments:
you can throw things in, but
nothing comes out
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Fig. 2.2 The Penrose diagram for the Schwardschild metric. Some lightcones and particle trajec-
tories are drawn outside and inside the black hole horizon. Note that the singularity (sawtooth line)
is in the causal future of any object that falls behind the horizon

the Penrose diagram, we also see that anything that falls in will further collapse and
eventually hit the singularity.

Two important observations where made by Carter, Hawking, Penrose…from the
1960s onwards:

• No memory in horizon region of what the black hole is made of, this region is
smooth and has no special features:
“Black holes have no hair”

• Black hole uniqueness theorems (1960s–1970s):
A static black hole is fully characterized by its mass.1

A black hole of a certain mass could thus be made up out of anything: ipods,
elephants, grad students…from the outside it will look the same.

2.1.2 A Little Bit of Quantum Mechanics

What happens if we add quantum mechanics to the game? The region of spacetime
around the horizon of a black hole has a curvature and hence a certain energy density.
We know that in QFT, energy can decay into a particle-antiparticle pair. This idea has
led Hawking to perform a semiclassical analysis of QFT in a black hole background.
Through the Hawking process, pairs will be created and once in a while one of the
two falls into the black hole horizon, while the other escapes off to spatial infinity.

1 The more general time-independent solution, a stationary black hole, is fully determined by its
mass ánd angular momentum. When GR is coupled to an electromagnetic field, a black hole can
have an electric and a magnetic charge as well. However, there is no additional memory of what
formed the black hole: there are no higher multipole moments etc.
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Fig. 2.3 A cartoon of the Hawking process. The black hole geometry is pictured as a point, the
singularity, surrounded by a horizon. A QFT calculation in the black hole spacetime leads to pairwise
particle creation such that close to the horizon, one of these particles can fall into the horizon, the
other escaping to infinity

The net result is that the black hole mass is lowered and energy, under the form of
thermal radiation, escapes to infinity, see Fig. 2.3.

The black hole behaves as a black body, with a temperature proportional to the
strength of the gravitational field at the horizon. One finds this temperature is inversely
proportional to the black hole mass:

T = �c3

kB

1

8πG4 M
� 6× 10−8

(
M

M⊙
)

Kelvin (2.1)

where M⊙ � 2 × 1030 kg is the mass of the sun. The bigger the black hole is
(more mass), the lower its gravitational field a the horizon and hence how lower its
temperature. For a typical astrophysical black hole, ranging from several to several
million solar masses, this is a very small temperature.

By the laws of black hole thermodynamics, a black hole also has an entropy. It
was first conjectured by Bekenstein [2] and later proven by Hawking [3] that this
entropy is proportional to the area of the black hole horizon:

SB H = AH

4G N
, (2.2)

where G N is Newton’s constant, related to the Planck length as G N ∼ l2
P . In Planck

units, we thus have SB H = AH /4l2
P with lP � 1.6 × 10−35 m. The entropy of a

typical black hole will thus be very large. For a Schwarzschild black hole, we find
that the Bekenstein-Hawking entropy is proportional to the square of the black hole
mass:

SSchw � 1076 ×
(

M

M⊙
)2

. (2.3)

This is a huge entropy! For a solar mass black hole (which would have a radius of
about 3 km) we find 1076, for the black hole in the center of our galaxy of several
million solar masses, we find about SGal � 1090.
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How should we understand this entropy? Boltzmann has taught us that the entropy
is related to a number N of microstates, microscopic configurations with the same
macroscopic properties:

S = log(N ). (2.4)

We would hence conclude that the quantum mechanics of black holes leads to an
incredibly large amounts of microstates: NQM ∼ e1076

. However, in the classical GR
picture we do not understand this number, as there is only one stationary solution with
the black hole mass (the macroscopic parameter of the configuration): NG R = 1.
This numerical discrepancy is the largest unexplained number in theoretical physics.2

2.1.3 Problems

• Where are the microstates? Maybe the N = exp(SB H ) states live in the region
of the singularity, and GR just does not see them? Recent arguments by Mathur
and others point out that this would not solve the information paradox (second
point), and black hole microstates should differ from the black hole significantly
also at horizon scales. Such ‘microstate geometries’ do not exist within general
relativity.
• Information paradox. The Hawking radiation process has positive feedback: as

a black hole radiates, it loses mass, increasing its temperature, which increases
the rate of radiation. If we wait long enough, by the Hawking process a black
hole will continue radiating until all of its mass is radiated away and we are left
with only thermal radiation. This leads to a problem: where has the information
of the initial state gone? Once a black hole forms, the spacetime is completely
determined by the mass. All other information of the initial state that went into the
black hole seems gone: whether we make a black hole out of 2 seven-ton elephants,
or 200 seventy-kilogram graduate students, the classical black hole geometry is
indistinguishible. As the black hole evaporates, only the thermal radiation comes
out, there is no information about the initial state in the Hawking radiation neither.

Note that a black hole we start from that goes to a universe without black hole,
but filled with thermal radiation cannot be obtained by unitary evolution. People
have come up with many ideas to solve this problem: maybe physics is not unitary,
or the black hole does not evaporate completely and there is a remnant with high
entropy, and other explanations. Not one has proven satisfactory. Currently, the most
popular viewpoint among string theorists is that the physics is nuitary, the information
paradox is just an artefact of semiclassical gravitational physics.

We would like to solve these problems. The solution is in the study of black holes
in a quantum gravity theory, that can unify classical GR with quantum mechanics.

2 For comparison, the famous cosmological constant problem is the large ratio ΛQFT /Λobs ∼ 10120

between the “expected” value ΛQFT and the observed value Λobs . This number is peanuts compared
to the required number of black hole microstates!
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String theory is a powerful mathematical framework that does exactly this. We do
not have to believe that this theory describes the real world. As a quantum gravity
theory, string theory can be tested by its answers to the issues related to black holes
(information problem, entropy problem). If it does not pass this test, and cannot
solve these problems, we throw it to the garbage as a quantum theory of gravity. If
it does, we can start thinking about other tests and problems to attack—and maybe
start believing it describes the real world after all.

2.2 Building Blocks

In this section, we provide the tools to construct black hole solutions of string theory.
It is not our intention to give a lecture series on string theory: We will not tell you how
to build the computer, but how to programme it. For further information on string
theory basics, see the textbooks [4–9], and for supergravity, the low-energy limit of
string theory, see [10].

2.2.1 Caught in the Web

String theory is a framework that has grown dynamically over the past thirty or so
years. Various limits of this theory have been studied, see Fig. 2.4. Historically all the
corners of this diagram were constructed as different theories and only about 15 years
ago it was realized that they were all related through various dualities, and can be
seen as limits of one theory. We reserve the term “string theory” for the encompassing
framework.3

In these lectures, we will only consider M-theory, type IIA and type IIB string
theory. The natural geometric interpretation of M-theory is 11-dimensional, while
the type II strings live in ten dimensions. We will mainly study the low-energy limits
of string theory. “Low energy” is relative. We mean that we stick to the zero mass

Fig. 2.4 We should view
string theory as a web, of
which we understand several
corners, where perturbative
and other techniques can be
used. In these lectures, we will
only consider M-theory, type
IIA and type IIB string theory

3 Often people refer to the entire framework as “M-theory”. We like to view this eleven-dimensional
theory as one of the corners of the string web instead.
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Table 2.1 The theories we
work in

Theory Low-energy limit

M 11d supergravity
IIA 10d IIA supergravity
IIB 10d IIB supergravity

fields of the string spectrum. The low-energy limits of string theories are supergravity
theories: gravity theories that are extensions of general relativity with other fields,
whose couplings are fixed by the requirement of supersymmetry. See Table 2.1.

2.2.2 An Analogy for M Theory

To get a grip on the field content of these higher-dimensional beasts, we first make
an analogy with Maxwell theory in four dimensions.

Maxwell Theory

The action for Maxwell theory coupled to gravity is:

S =
∫

d4x
√−g (R + 1

4 FμνFμν), (2.5)

where Fμν is the electromagnetic field strength Fμν = ∂μAν − ∂ν Aμ ≡ 2∂[μAν].
What are the fundamental objects in this theory?

• Electrons. An electrically charged particle with electric charge e couples to the
electric field as

Sel = e
∫ [

Aμ
dxμ

dτ

]
dτ , (2.6)

where τ parameterizes the world-line of the particle and xμ(τ ) describes the
embedding of the particle’s world-line in space-time (Fig. 2.5). A particle that
is not moving in a certain reference frame, couples to the time component of the
electric field as e

∫
A0dx0 with x0 = τ . The electric field profile sourced by such

a field is
A0 = e

r
, E = ∇A0 = − e

r2 ur , (2.7)

where ur is a unit vector in the radial direction. Note that a moving electron couples
to magnetic components Ai of the gauge field as well.
The electric field of a charged particle solves Maxwell’s equation’s (the equations
of motion for the field Aμ) with a delta-function source:

∇2 A0 = eδ(r). (2.8)
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Fig. 2.5 Magnetic field lines
from a magnetic monopole.
The total charge is measured
by integrating the flux over
a surface (for instance a
two-sphere) surrounding the
source

• Magnetic monopoles. In theory, there can also be magnetically charged particles
in four dimensions. These are monopole sources of the magnetic field. The charge
of these particles can be measured by integrating the magnetic field lines over a
two-sphere surrounding the charge (see Fig. 2.6a):

gM = 1

4π

∫
S2

Fμνdxμdxν . (2.9)

The magnetic monopole sources a profile for the magnetic field. For a flat metric
gμν = ημν , we have:

Fi j = −εi jk Bk . (2.10)

The coupling to the electromagnetic field is found in an indirect way. Just as the
electron couples to the gauge field, the magnetic monopole couples to the (Hodge)
dual electric field:

F̃μν = 1

2

√−gεμνρσFρσ, (2.11)

as

(a) (b)

Fig. 2.6 A charged particle traces out a one-dimensional world line, its higher dimensional analogue
(a p-brane) traces out a (p+ 1)-dimensional world volume, sourcing a (p+ 1)-form potential. For
a p-brane, we parametrize the world volume in terms of σi (i = 0 . . . p). a A charged particle.
b A p-brane
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Smag = gM

∫ [
Ãμ

dxμ

dτ

]
dτ . (2.12)

The dual field sourced by a static magnetic monopole is then

Ã0 = gM

r
. (2.13)

In flat space with metric ds2 = dr2+r2(dθ2+sin2 θdφ2), this gives the magnetic
field in polar coordinates (using 2.11)

Fθφ = gM sin θ , or B = −gM

r2 ur . (2.14)

where ur is a unit vector in the radial direction.

Exercise 2.2.1 Show that the magnetic monopole field solves the Bianchi identity
up to a delta-function source:

∂r Fθφ + ∂θFφr + ∂φFrθ = gMδ(r). (2.15)

Hint: integrate the equation on a ball of arbitrary radius R centered at r = 0 (ball
means a ‘filled’ two-sphere here). You can use the integral

∫ r=R
r=0
√
gdrθdφ with the

metric
ds2 = dr2 + r2(dθ2 + sin2 θdφ2). (2.16)

Eleven-Dimensional Supergravity

The features of eleven-dimensional supergravity (the low-energy limit of M-theory)
are very similar to those of four-dimensional Einstein-Maxwell theory. The bosonic
fields are again the metric and a gauge field, which is now a three-form potential
Aμνρ, instead of the one-form of Maxwell theory. These fields and their couplings
are dictated by supersymmetry: supergravity theories are theories of gravity that are
(locally) supersymmetric, and due to this extra symmetry, the possible fields and
their couplings are constrained.

The three-form has a four-form field strength. We will often use form notation
instead of writing everything out in components. The four-form field strength of
M-theory is written as

F4 = 1

4! Fμνρσdxμ ∧ dxν ∧ dxρ ∧ dxσ. (2.17)

where Fμνρσ are the components of a four-form gauge field

Fμνρσ = 4!∂[μAνρσ]. (2.18)
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The Lagrangian for eleven-dimensional supergravity is [11]

S =
∫

d11x
√−g (

R + 1
2

1
4! FμνρσFμνρσ

)+ 1

3

∫
A3 ∧ F4 ∧ F4, (2.19)

The last term does not contain the metric, it is topological. For single electric or
magnetic sources this so-called Chern-Simons term does not contribute. We focus
only on the other terms in the action, which are the straightforward generalization of
Einstein-Maxwell theory.

What are the fundamental charged objects of this theory?

• Electric object: M2-brane. The counterpart of the electron (which couples to
the gauge field component A0) is an object that couples to the electric compo-
nent of the three-form potential C0i j . Because of the additional directions, this
potential couples naturally to a two-dimensional extended object or membrane,
with a three-dimensional world volume Σ (generalizing the particle with a one-
dimensional world volume). This membrane of M-theory is also called M2-brane.
For a membrane extended along the directions x1, x2 we have:

SM2 = QM2

∫
Σ

C012dx0dx1dx2. (2.20)

where QM2 is proportional to the charge of the M2-branes.
• Magnetic object: M5-brane. In analogy with the magnetic particle, we can also

consider a magnetic monopole charge for the field strength Fμνρσ . To measure its
charge, we have to integrate the field strength over a four-sphere, see Fig. 2.7:

QM5 = 1

vol(S4)

∫
S4

Fμνρσdxμdxνdxρdxσ, (2.21)

From Fig. 2.7 we can also find the dimensionality of the magnetic monopole of
M-theory. The field lines run in a five-dimensional transverse plane (directions

Fig. 2.7 Magnetic field lines from the M-theory magnetic are integrated over an S4 in the transverse
R

5(x1 . . . x5). Hence, this magnetic monopole is a membrane extending in five space dimensions
(x6 . . . x10)
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1,2,3,4,5) and the magnetic monopole takes up the remaining five dimensions
(6,7,8,9,11).4 This object is called the M5-brane.

2.2.3 Type II String Theory

We relate ten-dimensional string theories and M-theory. See Chap. 8 of [8] for a more
detailed account.

Type IIA Supergravity from Dimensional Reduction

Consider eleven-dimensional M-theory. We imagine making the direction x11 small
and ‘compactifying’ it on a circle. See Fig. 2.8. What happens to the objects of
M-theory? There are two distinct possibilities for each fundamental object: either
the world-volume of the object is wrapped on x11, meaning that one of its directions
shrinks away, or the world-volume is completely inside the ten large dimensions of
space-time. We summarize the possibilities for M-theory objects in Table 2.2.

An important new object is the momentum wave. Because we compactify on a
circle, momentum along x11 is quantized and momentum waves excitations have a
discrete mass spectrum:

m = 1

�11
,

2

�11
,

3

�11
. . . (2.22)

Fig. 2.8 Curling up one out of D dimensions makes a space-time look essentially (D − 1)-
dimensional. An object that is wrapped on the compact dimension has a world-volume of one
dimension lower (a membrane becomes a string, a string becomes a point etc.), an unwrapped
object remains of the same dimension

Table 2.2 Objects in IIA after compactifying M-theory on a circle

M-theory IIA supergravity
Object Directions Object Directions

M2 0, 1, 11 String 0, 1
0, 1, 2 Membrane 0, 1, 2

M5 0, 1, 2, 3, 4, 11 4d membrane 0, 1, 2, 3, 4
0, 1, 2, 3, 4, 5 5d membrane 0, 1, 2, 3, 4, 5

Mom. wave 0, 11 Particle 0

4 We choose to write the time directions as x0 and space time directions x1, x2, . . .. However, we
choose the ‘eleventh’ dimensions to be x11 and skip x10.
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where �11 is the radius of the circle. Upon compactification, momentum waves have
quantized excitations and become point particles.

We can now interpret all these new objects after compactification. The resulting
ten-dimensional theory is called IIA string theory.5 Its low-energy limit is IIA super-
gravity. It was found independently in the 1980s and only in the mid-1990s people
realized its connection to eleven-dimensional supergravity and M-theory through
compactification. The objects of IIA string theory, which were found earlier through
quantization of the IIA string, correspond exactly to what we found above from
compactifying M-theory (see [7] and references therein to guide you to the original
works on the quantization of the IIA string). These are organized in two sectors6:

The NS–NS Sector

It contains the following objects:

• F1: the fundamental quantized string of IIA string theory. It comes from an
M2-brane wrapped on x11.
• NS5-brane: this is not a D-brane, but is in fact the ‘magnetic monopole’ associated

to the ‘electric’ F1. It descends from the non-wrapped M5-brane.

The R–R Sector

These are Dirichlet branes, or D-branes for short. They arise from possible Dirichlet
boundary conditions one can put on an open fundamental string. One finds that,
depending on the type of string theory, only certain dimensionalities of submanifolds
of space-time can provide such Dirichlet-boundary conditions while remaining stable
objects. These are the allowed D-branes. In IIA one only finds stable D-branes of
even dimensions (D0, D2, D4…). Surprisingly, one finds that these D-branes not
only describe boundary conditions for strings, but they can also have a dynamics of
their own. We will expand on this as we go on.

The relation of the D-branes to M-theory is:

• D0-brane: or D-particle, coming from a momentum wave along the compact
eleventh dimension (eleven-dimensional metric degree of freedom).
• D2-brane: the D2-brane is an M2-brane that is not wrapped on the compact direc-

tion.

5 Type IIA supergravity is one of the two possible ten-dimensional supergravity theories invariant
under N = 2 supersymmetry, namely the one for which the two supersymmetry generators (spinors)
have opposite chirality. The other N = 2 supergravity in ten dimensions is type IIB supergravity,
the low-energy limit of IIB superstring theory, which has two supersymmetry generators with the
same chirality.
6 Different boundary conditions for the fermionic fields living on the world-volume of the type II
string give different possible fields in the string spectrum. In the massless spectrum we observe that
Neveu-Schwarz-boundary conditions (anti-periodic) give the NS-fields: metric gμν , B-field Bμν ,
and dilaton φ. Ramond boundary conditions (periodic) give RR fields C (0), C (2), C (4).
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• D4-brane: an M5-brane wrapped on x11. It is the magnetic monopole associated
to the D2-brane.
• D6-brane: yet another D-brane in the string spectrum. It descends from a certain

smooth type of geometry in M-theory known as the Kaluza-Klein monopole, and
is the magnetic equivalent of the D0-brane.

IIA Supergravity Action

We have seen what are the objects that appear in IIA string theory. Let us summarize
the fields they couple to, and give the low-energy effective action of type IIA string
theory. (‘Low energy’ is relative and means energies E well below the scale set by
the string length E � 1/ ls . The energies reached in present-day accelerators are
‘low’ in this terminology.) In this limit, the only vibration modes of the string that are
of relevance are the massless modes. They are described by type IIA supergravity.
We are only concerned with the bosonic content of the theory, given by the following
fields.

• The ten-dimensional metric, with components gμν . Its excitations are gravitons.
• The dilaton φ. This is a scalar field. Its vacuum expectation value sets the value

of the string coupling as gs = 〈eφ〉. In eleven-dimensional M-theory, it is a metric
component that sets the size of the eleventh direction. It plays an important role in
string theory – it sets the value of the string coupling and determines the validity of
perturbative string theory. When the eleventh dimension is small, we get weakly
coupled IIA string theory and conversely, the strongly coupled limit of IIA theory
opens up an extra space-time dimension giving M-theory. We will not consider
the dilaton further.
• An antisymmetric two-form field with components BM N . This is the gauge field

three-form potential C of M-theory with one compactified direction:

Bμν ≡ Cμν11. (2.23)

This field couples electrically to the F1 string and magnetically to the NS5-brane.
• Higher-form gauge fields. These are generalizations of the Maxwell field Aμ of

four dimensions. We have a one-form potential with components Cμ and a three-
form with components Cμνρ.7 The gauge field Cμ for the D0-brane is related to

the eleven-dimensional metric g(11)
μν as Cμ = g(11)

μ11 (up to a factor involving the
dilaton). Its magnetic monopole source is the D6-brane. In a similar fashion, the
components of the three-form gauge field Cμνρ ≡ Aμνρ in ten dimensions define
the Ramond-Ramond three-form gauge field and they couple electrically to the
D2 branes and magnetically to the D4-branes.

From now on, we use differential form notation and write B2, C1, C3 (for instance
C1 = CM dx M and B2 = 1

2 BM N dx M ∧ dx N ) with associated field strengths

7 We adopt common notation C for the Ramon-Ramond gauge field in ten dimensions that couple
to D-branes, and A for the gauge field in elven dimensions that couples to M-branes.
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H3 = d B2, F2 = dC1, F4 = dC3. All the fields above form the bosonic con-
tent of the type IIA supergravity action, which is, up to two derivatives, completely
determined by supersymmetry to have the form [7]

S = 1

16πG10

∫
d10x e−2φ√−g

(
R − 1

2
|H(3)|2 − 1

2
∂μφ∂

μφ− 1

2
|F(2))|2 − 1

2
|F̃(4)|2

)

− 1

16πG10

∫
1

2
B(2) ∧ F(4) ∧ F(4). (2.24)

where G10 is Newton’s constant in ten dimensions, we introduced F̃(4) ≡ F(4) −
C(1) ∧ H(3) and we have the notation |F(n)|2 = 1

n! Fμ1...μn Fμ1...μn and likewise for
|H(3)|2.

Historically, all these higher-form gauge fields were first found in the spectrum
of string theory, but people had at that point (the 1980s) no idea what objects they
coupled to. It took until the mid-1990s ago before it was realized that the objects the
R–R fields couple to are in fact the Dirichlet-branes.

In a similar way, IIB string theory has a plethora of higher-dimensional objects.
The NS-sector (including the F1 string and the NS5 brane) also appears, but IIB
has only stable branes of uneven dimensionality, versus the even branes of IIA. See
Table 2.3.

Dualities

One may wonder how to relate IIB to IIA and M-theory, since at this point we wrote
down the fields in a rather ad hoc way. The clue lies in several dualities of the string
spectrum.

S-duality

We first focus on a symmetry of the spectrum of the IIB string. We observe that the
spectrum can be organised in pairs of the same dimensions: F1–D1, NS5–D5 (we

Table 2.3 Coupling of branes to n-form potentials. In ten dimensions, an n = (p + 1)-form
potential couples to a p-brane through an electric coupling and to a (6 − p) through a magnetic
coupling

Potential IIA IIB
B2 C1 C3 B2 C0 C2 C4

Electric F1 D0 D2 F1 D(−1) D1 D3
Magnetic NS5 D6 D4 NS5 D7 D5 D3

We give the brane couplings of the NS–NS sector (F1 stands for fundamental string, NS5 for the
magnetically dual five-brane) and R–R sector of type IIA and type IIB string theory. (We do not
consider the IIA (magnetic) D8-brane and its electric counterpart. The D(−1) brane should be seen
as an instanton.)
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also have NS7–D7, but that example is a little special so we ignore it further and
refer the interested reader to the literature [12, 13] and [14–16]). This corresponds
to the pairing of the B-field Bμν with the RR two-form Cμν and the same for their
magnetic dual fields B̃ and C̃ (which are in fact 6-forms as Exercise 2.2.2 asks you
to show).

Exercise 2.2.2 Generalize the dualization rule (2.11) for two-forms in four space-
time dimensions to arbitrary dimensions D and arbitrary p-forms (you need the
inverse metric to raise indices). This operation is called Hodge duality (see for
instance []). Use this to write down which form couples to which brane in both IIA
and IIB theory.

What about the D3 brane? What does it pair up with? The D3-brane couples
electrically to a four-form potential, with a five-form field strength F5. In fact, in IIB
supergravity, F5 obeys the property

Fμ1...μ5 = F̃μ1...μ5 ≡
1

5!
√−gεμ1...μ5 μ6...μ10 Fμ6...μ10 (2.25)

and therefore, using Exercise 2.2.2, the five-form field strength that couples to the D3
brane is self-dual F5 = F̃5. Hence the D3 brane ‘pairs up with itself’: the D3-brane
is a dyon, it is both an electrically charged brane and a magnetic monopole! We will
see below that this dyonic nature separates the D3-brane from the other branes.

There exists a clean symmetry interchanging the fields B2 with C2, while leav-
ing F5 unaltered. This transformations is called S-duality and it interchanges F1’s
with D1’s, D5’s with NS5’s and leaves the D3 brane as it is. It is a very useful
transformation in navigating through the zoo of brane solutions.8

T-duality

There is another symmetry that maps the string spectra of different string theories
onto each other. Imagine wrapping the IIA string on a circle of radius R. A string
wrapped on the compact dimension has a mass proportional to its tension TF1 times
the radius R of the string. The string length �s is related to the string tension as
TF1 = 1/2π(�s)

2, so this mass comes in fundamental units of R/�2
s . The number of

units is a topological number and describes how many times the string winds along
the compactified dimensions. We call them (string) winding modes.

We can also put momentum modes on the string. These momentum modes should
be viewed as oscillations travelling on the string. Again, these fundamental string
excitations come in quanta, proportional to 1/R; for larger radius R, the energy cost
of a momentum mode goes down. We can play the same game for IIB string theory
compactified on a circle of radius R̃. See Table 2.4 and Fig. 2.9.

8 In the near-horizon geometry of a D3 brane, which is Ad S5 × S5 as we will see below, S-duality
becomes the strong-weak coupling duality of N = 4 super Yang-mills, the theory dual to the
Ad S5 × S5 background through the AdS/CFT duality.
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Table 2.4 The mass m of winding and momentum modes of IIA string theory compactified on a
circle of radius R and IIB theory compactified on a circle of radius R̃
IIA Winding Momentum IIB Winding Momentum

m = R
(�s )2

1
R m = R̃

(�s )2
1
R̃

2R
(�s )2

2
R

2R̃
(�s )2

2
R̃

3R
(�s )2

3
R

3R̃
(�s )2

3
R̃

… … … …

Fig. 2.9 Left (in red): a string winding one or several times around the compact dimensions, right
(blue): a vibrational or momentum mode of the string

It turns out that the spectra of IIA and IIB compactified on circles of radius R
and R̃ = (�s)

2/R are exactly mapped into each other under T-duality: momentum
modes map to winding modes and vice versa. See also Table 2.4. We reserve p for the
units of momentum charge and F1 for the amount of string winding. Schematically,
T-duality thus acts as:

IIA IIB
F1 ←→ p
p ←→ F1

The symmetry of the string spectra in these two different string theories opens up a
huge portion of parameter space where we can actually have a geometric interpreta-
tion of string theory. Say we consider type IIA string theory. As long as R is large
compared to the string scale, we have a pretty good control because string excitations
behave as particles and we can use the supergravity approximation (action contains
no more than two space-time derivatives). However, when the size of the circle is
small compared to the string length scale, corrections due to the stringy nature are
huge and we lose this control. Then T-duality makes it possible to go to type IIB
theory with R̃ 
 �s . (Note that for circle radius R � �s , we still cannot say too
much.)

Dualities for D-branes

Consider the setup of Fig. 2.10. We compactify string theory on a circle. A brane that
is wrapped on this circle, will no longer extend along this direction after T-duality.
Conversely, a D-brane that does not wrap the T-duality circle, will become a D-brane
of one dimension higher wrapping the circle after T-duality.

To get the gist of it, we apply T-duality on the (supersymmetric) intersection of
two species of D-branes. Let us start from a D3-D3 brane intersection in type IIB
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Fig. 2.10 Under T-duality, a D-brane wrapping the circle is mapped to a D-brane of one dimension
lower and vice versa

IIB : D3 0 1 2 3
D3 0 3 4 5

Say we compactify the 3-direction. Under a T-duality to IIA, we get the branes:

IIA D2 0 1 2
D2 0 4 5

We can continue on this, see Exercise 2.2.3.

Exercise 2.2.3 Show that three additional T-dualities on the two orthogonal
D2-branes, along directions 1, 2 and 3 give the D1-D5 brane intersection:

IIB : D1 0 3
D5 0 1 2 3 4 5

We will use this brane setup (‘D1-D5 system’) a lot in the study of black holes
and their entropy.

Similarly, we can consider S-dualities. For instance, the D1-D5 setup of Exercise
2.2.3 becomes after S-duality:

IIB : F1 0 3
NS5 0 1 2 3 4 5

We see that the dualities give some insight in an entire zoo of complicated D-brane
configurations. On the level of supergravity, they form a solution generating tool (see
the next section). We can interpret all these two-brane intersections as really one
solution, which takes on different forms in different ‘duality frames’. We can get the
supergravity solution in any frame in no time from the T-duality rules. This applies
equally well to any other brane solution.

We will make extensive use of T- and S-dualities on black hole solutions. This
will map to black holes which may look a bit different, but all have the same physical
properties (entropy, temperature…). We will always work in the duality frame most
adapted to the questions we are asking at that moment. In particular, we will often
work in the D1-D5 duality frame of Exercise 2.2.3.
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2.2.4 p-brane Supergravity Solutions

Let us consider some actual supergravity limits of Dp-brane solutions. For further
references, see the complete, but extremely short account of [17], some more infor-
mation for instance in [18, 19] or [20] for a more black hole oriented Dp-brane review
(p runs over the allowed integers).

2-Brane Solution

For concreteness, we discuss the D2-brane solution of IIA supergravity, extending
along directions 0,1,2 (time and two space directions). As in the analogy with electro-
magnetism, this brane sources a three-form potential C012. It has a non-zero tension
or mass density and hence it also couples to the metric. There is a third field it sources,
the dilaton.

The exact way the D2 brane source affects those fields, is through one function
of the space-time coordinates. We call that function Z . One finds the metric

ds2 ≡ gμνdxμdxν = Z−1/2(−dx2
0 + dx2

1 + dx2
2 )+ Z1/2(dx2

3 + . . .+ dx2
9 ) (2.26)

and the other non-zero fields are the three-form that couples to the 2-brane and the
dilaton:

C012 = Z−1 , eφ = Z1/4. (2.27)

We will not consider the dilaton φ any further. Concentrating on the other fields, we
see that the solution has Lorentz invariance along the D2 brane directions 0, 1, 2 and
Euclidean symmetry in the transverse directions.

The D2 brane behaves as a point particle in the transverse R
7. The function Z

plays the role of the Maxwell potential in the transverse R
7. From the supergravity

equations of motion, one finds that it obeys the Laplace equation on R
7:

Δ7 Z = 0. (2.28)

In the presence of sources, this is modified to

Δ7 Z = ρD2. (2.29)

For a stack of ND2 D2-branes sitting at the origin of our coordinate system, the
source is a delta function ρD2 = ND2δ(r7) and we find the solution

Z = 1+ ND2

r5
, (2.30)
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where r is the radius of the transverse space r2 ≡ x2
3 + . . . x2

9 . The integration
constant can always be set to one by a constant rescaling of the coordinates.

As r → 0, we approach the D2-brane source and Z →∞. From the expression
for the metric, we see that the R

1,2 factor shrinks, while the R
7 blows up. This is not

just a coordinate singularity, but r = 0 is a singular locus in space-time. This can be
seen from the three-form potential C012. It goes to zero at r = 0 but the energy of
the C-field

E = 1

4! FμνρσFμ′ν ′ρ′σ′g
μμ′gνν

′
gρρ
′
gσσ

′
(2.31)

blows up as r → 0 and we conclude that the D2 brane solution contains a singularity,
which is not shielded by a horizon (‘naked singularity’).9

Note that the equations of motion are linear in the sense that we can add multiple
(singular) D2-brane sources:

Δ7 Z = Naδ(r− ra)+ Nbδ(r− rb)+ . . . . (2.32)

We consider all D2-branes of the same ‘species’, with the world volume along the
0, 1, 2 directions.

Then the only thing that changes is that the function Z becomes a sum of harmonic
functions, sourced at different locations:

Z = 1+ Nb

|r− rb|5 +
Na

|r− rb|5 + . . . . (2.33)

We see that this solution can describe any density of D2-branes, even a continuous
one.

D3-Brane from T-duality

Start from a continuous distribution of D2 branes along a line in the transverse space
(this is also called ‘smearing’ the D-brane charge). Say that we put this smeared
D2-branes along the x7 direction, see Fig. 2.11.

Because the solution is now homogeneous in x7, we can compactify this direction.
Then the solution for such a continuous distribution of D2-brane charge on a finite
line segment goes as:

Z = 1+ ND2/L7

r4 , (2.34)

9 Although there is a naked singularity in the supergravity solution, as a solution to string theory,
a D-brane is well-defined. As r → 0, the dilaton φ blows up. Since it sets the length of the
eleven-dimensional compactification circle of M-theory, the eleventh dimension decompactifies
near r → 0. We hence get the near-M2-brane solution of eleven-dimensional M-theory, which is
well-defined in all of space-time.
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Fig. 2.11 A D2 brane
smeared along x7

with L7 the length of the compactified direction. Next we perform a T-duality along
x7 to a D3-brane solution of type IIB string theory. What does this solution look
like? Remember that the size of the compact circle is inverted after this duality
transformation

√
g77 → (�s)

2/
√
g77, and hence the metric of the resulting solution

is (we set �s = 1 for simplicity):

ds2 = Z−1/2(−dx2
0 + dx2

1 + dx2
2 + dx2

3 + dx2
7 )+ Z1/2ds2

6d. (2.35)

The three-form gets an additional leg to become the IIB four-form:

C0127 = Z−1. (2.36)

and the solution for the function Z is

Z = 1+ ND3

r4 . (2.37)

Near-Solution and Brane Throat

What does the geometry look like close to the D3-brane? We approach the D3-brane
as we take r → 0. This means that in the function Z , we can effectively drop the
constant and write Z = ND3/r4 as r → 0.

To reinstate the correct dimensions, we write Z = R4/r4, with R some reference
radius. First write the transverse six-dimensional space in terms of polar coordinates
as

ds2
6d = dr2 + r2dΩ2

5 , (2.38)

Then the near-geometry of the D3-brane is

ds2
near =

r2

R2 (−dt2 + dx2
1 + dx2

2 + dx2
7 )+ R2 dr2

r2 + R2dΩ2
5 . (2.39)

What has the D3-brane done? It has opened up a “throat”: as we approach r → 0
from infinity, the S5 will get smaller and smaller. But near the D3 brane it attains
a finite size, set by the radius R. Note that the metric distance to r = 0 from any
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Fig. 2.12 A cartoon of the
D3-brane geometry. As we
approach the D3 brane, an
infinity throat opens with
constant transverse S5 size

other point in space-time with r > 0 is actually infinite and the D3-brane throat is
infinitely deep.

Physically, the D3-brane solution forces the Ad S5 × S5 geometry to appear.10

This is a special feature of the D3-brane that the other D-branes do not possess (in
fact, all the D0, D1…D6-branes have a naked singularity if we consider them in ten-
dimensional supergravity). The origin lies in the dyonic nature of the D3 brane: it is
both an electric and a magnetic charge for the four-form potential C0127 (Fig. 2.12).

The Ad S5×S5 geometry is the riding horse of holography. Classical gravitational
physics on this background is dual, through the AdS/CFT correspondence, to strongly
coupled conformal field theory in N = 4 Super-Yang-Mills. We will come back to
this later.

BPS Property: Mass = Charge

The charge of a D3 brane is given by integrating the gauge field that couples mag-
netically to it over a surface surrounding the brane (as for the magnetic monopole of
electromagnetism)

Q D3 = 1

5!
∫

S5
Fi jklm dxi dx j dxkdxldxm, (2.40)

where the field strength is Fi jklm = 5!∂[i C jklm]. So far, we have only given the
electric component of the gauge field C0123. Exercise 2.2.4 asks you to derive the
magnetic component of the field strength: since the five-form F5 of IIB string theory
is self-dual, it must have magnetic components as well.

Exercise 2.2.4 Derive, using the duality

Fν1...ν5 = F̃ν1...ν5 ≡
1

5!
√−gεν1...ν5 μ1μ2μ3μ4g

μ1μ
′
1gμ2μ

′
2gμ3μ

′
3gμ4μ

′
4gμ5μ

′
5 Fμ′1μ′2μ′3μ′4μ′5 .

(2.41)
and the expression for the electric components of the field strength

10 For the aficionados: this is the same mechanism that forces the extremal Reissner-Nordstrom
black hole to have a near-horizon region of the form Ad S2 × S2.
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F0123r = ∂r Z−1. (2.42)

the form of the magnetic components F45678.

With this result, we find that from integrating over an S5 at r → ∞ to cover the
entire flux emanating from the D3 brane, that the charge of the D-brane is

Q D3 = ND3, (2.43)

up to some numerical coefficient that we set to one for simplicity’s sake.
The mass of the D3-brane can be derived from the component gt t of the metric,

following the prescription of Arnowit, Deser and Misner (ADM) (see [21] for more
details on the ADM formalism in GR, and [20] for a discussion in p-brane space-
times). In particular, when expanding this component for large r , in asymptotically
flat D-dimensional space-time the leading terms for a point-like source are:

gt t = −1+ 16πG N

(D − 2)ΩD−2

M

rD−3
(2.44)

where G N is Newton’s constant and Ωn is the area of the n-sphere of unit radius Sn .
A D3-brane is effectively like a point in D = 7 and we see from (2.35) and (2.37)
that M is proportional to the number ND3 of D-branes. We have not been too careful
about prefactors in the expression for the metric, so we only state the dependence on
gs of the end result:

MD3 = ND3

gs
, (2.45)

where gs (“g-string”) is the string coupling constant. This is an interesting feature:
the masses of all D-branes are inversely proportional to the string coupling constant.
This should be contrasted with electromagnetism. The mass of the electron, the
fundamental object, is independent of the coupling (let’s call it g). On the other
hand, the mass of a soliton in field theory goes as 1/g2. The magnetic monopole’s
mass has this behaviour. So we see that the D-brane is neither a fundamental object
nor a soliton of string theory.

The mass of the fundamental string, the fundamental object of string theory, is
independent of gs (we have seen that the string tension, or mass density, is TF1 =
1/2π�2

s ). One finds that the mass of the NS5 brane goes as

MN S5 ∼ 1

g2
s
, (2.46)

and the NS5 brane is really a soliton of string theory. The different dependence on gs

of the masses of all these objects shows up in the ‘warp factor’ Z of the supergravity
solutions. We track the dependence on gs and drop other proportionality factors, such
as the string length �s . Newton’s constant G N goes as G N ∼ g2

s (this follows from
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the low-energy supergravity action of ten-dimensional string theories). In general we
have

Z = 1+ G N M

r# . (2.47)

where # is the appropriate power. For a D-brane, this gives

ZD−brane = 1+ NDgs

r# , (2.48)

for an NS5 and a string we have

ZNS5 = 1+ NNS5

r# ,

ZF1 = 1+ NF1g
2
s

r# . (2.49)

Going back to the D3 brane, we find in ‘dimensionless’ units that

Q D3 = MD3. (2.50)

We interpret this as: “the mass (density) of a D3-brane is equal to its charge (density)”.
What does this mean physically? The gravitational attraction and the electric

repulsion are exactly balanced, even though both forces are huge. This is why we
can have D-brane solutions with sources at many points and still remain stable. This
is different in electromagnetism, where two electrons would fly apart; the electric
repulsion always takes the upper hand and we cannot build multi-center electron-
solutions.

Note that there is an underlying physical bound M ≥ Q for any charged object.
When the mass is smaller than the charge, then the solution is unphysical (more on
this in the next section). This bound is called BPS bound after Bogomol’nyi, Prasad
and Sommerfield. Note that this bound typically appears in supersymmetric theories.
In the real world, supersymmetry is not manifest and elementary particles such as
electrons do not satisfy the BPS bound: e > me in the units we are using here.

We call the equal mass and charge of the D3 brane a BPS property. The BPS-ness
of the D3-brane and all the other D-branes is a consequence of supersymmetry. All
D-brane solutions (and the F1 and NS5) are invariant under a set of supersymmetry
transformations, and the mass of any supersymmetric object is equal to its charge in
natural units.

General Dp-Brane Solution

For completeness, we give the solution for a Dp-brane to the IIA action given in
(2.24) with general p. It has the non-zero fields:
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ds2 = H−1/2(−dt2 + dxmdxm)+ H1/2( dr2 + r2dΩ2
(q−1))

e2φ = H−
1
2 (p−3)

Ct μ1...μpr = Z−1 (2.51)

where H is a harmonic function

Z(r) = 1+ Q p

r7−p
. (2.52)

Also the Dp-branes of type IIB supergravity have this form for uneven p.

2.3 Black Hole Solutions

We discuss how to obtain black hole solutions from D-branes that are wrapped on
compact spaces. For completeness, we first show how to make a black D-brane. We
will later focus on supersymmetric black holes, because these are easier to construct
and understand microscopically.

2.3.1 Non-extremal Black Holes

Let us forget about supersymmetry for a moment, and see if we can make a black
hole with M > Q. We do not try to make a multi-D-brane solution or anything like
that, but just want to make a black hole, or a black object, with more mass than
charge. An easy such solution is a black D3-brane. Its metric is given by

ds2 = −Z−1/2
(
− f (r)dt2 + dx2

1 + dx2
2 + dx2

3

)
+ Z1/2

(
dr2

f (r)
+ r2dΩ2

5

)
.

(2.53)
and the gauge field takes the same form as for the ordinary D3-brane

C0123 = Z−1. (2.54)

When the function f (r) = 1, this is just the supersymmetric D3 brane we have
encountered before. By adding the function f (r), the D3-brane is turned into a “black
brane”. The function f obeys the same Laplace equation in transverse space as Z :

Δ f = 0. (2.55)

Typically, one considers the solution

f (r) = 1− ΔM

r4 . (2.56)
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Table 2.5 Near-horizon geometry of black D3-brane and thermal physics in field theory

String theory on Ad S5 × S5 N = 4 Super-Yang-Mills (4d)

Weak coupling Strong coupling

Black hole in Ad S5 × S5 N = 4 SYM
at temperature T at temperature T

The warp factor Z = c + N/r4, where c is a constant. When c = 1 the metric
describes a black membrane in ten dimensions, with flat asymptotics. When c = 0,
the metric describes a black hole in the Ad S5 factor of the Ad S5 × S5 near-horizon
geometry of D3-branes (2.39). We consider the former. The charge for this solution
is still given as for the normal D3 brane

Q =
∫

F5 = N . (2.57)

The mass (obtained from gt t as before) is now

M = Q +ΔM (2.58)

We make two remarks. First note that when ΔM < 0, this describes a singular
solution with a naked singularity. Hence we consider ΔM > 0 for physical reasons.
Also, we see that unlike the supersymmetric D3 brane, two (or more) of these objects
are not in equilibrium any more. Two black branes will attract and eventually col-
lapse to a single black object, because the gravitational attraction is larger than the
electrostatic repulsion.

A black hole, or black brane, that saturates the BPS bound M = Q is also called
extremal. Such a black object has zero Hawking temperature and does not emit
radiation. When M > Q, the black object has a non-zero temperature and is called
non-extremal. For small ΔM , the temperature is proportional to the mass excess:

T ∼ ΔM. (2.59)

We see that by the f (r) “black deformation”, we can create a solution with non-trivial
mass, charge and temperature.

This solution is very useful for holography. In the near-brane region r → 0, we
have Z ∼ 1/r4 and the black brane metric describes a black hole in Ad S5 × S5.
Following the AdS/CFT correspondence, this maps to turning on a temperature in
N = 4 Super-Yang Mills theory in four dimensions, see Table 2.5. So a black hole
corresponds to warming up the field theory. Conversely, a temperature in field theory
gives a black hole in Ad S5.

In conclusion, we see that by warming up the D3 brane with f (r), we can study
the dual field theory and its properties (conductivity, transport coefficients …) from
weakly coupled strings in the Ad S5 × S5 black hole background. We could call this
field “applied string theory”. A lot of people nowadays use string theory no longer
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as a theory that describes the real world, but as a sort of calculator that we can use
to teach us valuable information in other, strongly coupled, systems.

• What about quantum effects? Quantum effects are controlled by gs , the string
coupling. In the limit we consider (horizon area AH and charge Q very large
in Planck units, for instance AH 
 �2

P with �P the Planck length) such that
supergravity is a good description, we expect quantum effects to not destroy the
geometry. Of course, when we only consider one D-brane, this limit does not hold
and the question of quantum corrections becomes really important. More on this
in Sect. 2.4.1.

Note that other D-branes also have such a non-extremal version. We can get
for instance a black D2-brane very easily by T-duality. See Exercise 2.3.5. Black
p-branes all have

M > Q T > 0, (2.60)

and they are found from a deformation of the metric by one function f (r) determined
by

Δd f = 0, (2.61)

where d is the number of transverse dimensions.

Exercise 2.3.5 T-dualize the metric (2.53) and four-form potential (2.54) of the black
D3 brane along direction x3. Show that this becomes a smeared black 2-brane. In
particular, repeat the mass calculation from the gt t metric component and show that
M = Q +ΔM.

2.3.2 Supersymmetric Black Holes in Four Dimensions

For the largest part of these lectures, we concentrate on supersymmetric black holes.
The reason is that when a black hole solution preserves supersymmetry, it can be
constructed more easily and even be understood microscopically.

Consider again the orthogonal D2-brane system

IIA : D2 0 1 2
D2 0 3 4

Normally any two objects that we put together would either attract or repel. However,
this combination of D2-branes is supersymmetric and feels a flat potential: super-
symmetry exactly amounts to canceling forces and we can put the branes together in
a stable fashion.

We can even do more. It turns out to be possible to add an extra D2-brane and even
a D6 brane, while still preserving supersymmetry, in the following configuration:
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Fig. 2.13 Four-dimensional black hole from compactification on a six-torus. The T 6 has a different
size and shape at each point of four-dimensional spacetime M4. At the position of the black hole,
there are branes present that are wrapped on T 6

IIA : D21 0 1 2 − − − −
D22 0 − − 3 4 − −
D23 0 − − − − 5 6
D64 0 1 2 3 4 5 6

This combination of branes experiences a flat potential and is stable. This follows
from the supersymmetry it preserves. To show this, we would need to check the
supersymmetry algebra; we will not do this in these lectures. For the black hole
discussion, we smear the D2 branes on their transverse directions inside x1 . . . x6,
which we denote by “–” and we number the branes from 1 to 4 for practical reasons.

The solution for the D2-D6 system can actually be written down! The metric takes
a very intuitive form:

ds2 = −(Z1 Z2 Z3 Z4)
−1/2dt2 + (Z1 Z2 Z3 Z4)

1/2(dx2
7 + dx2

8 + dx2
9 )

+ (Z2 Z3)
1/2

(Z1 Z4)1/2 (dx2
1 + dx2

2 )+ (Z1 Z3)
1/2

(Z2 Z4)1/2 (dx2
3 + dx2

4 )+ (Z1 Z2)
1/2

(Z3 Z4)1/2 (dx2
5 + dx2

6 ).

(2.62)

This solution reduces to any single brane solution when only one of the four branes is
present (for say Z1 non-trivial, and the other ones constant, Z2 = Z3 = Z4 = 1, we
retrieve the metric of the D2-brane). Amazingly, this D2-D2-D2-D6 solution, which
is constructed from the same “harmonic function rule” we had for single Dp-branes
(Z−1/2 metric component when the brane worldvolume is along that direction, Z1/2

when it is orthogonal) applies to all of the Zi individually, regardless of the presence
of the other branes. This is a very non-trivial feature and would not happen for a
generic solution; it is only for such a special class of supersymmetric solutions, that
we get such a nice structure at the end of the day. For more information, see the
original references [22].

Exercise 2.3.6 Consider the directions x1 . . . x6 to be compact and to describe a
six-torus, or T 6. T-dualize the D2-D2-D2-D6 metric 6 times along x1, . . . , x6. Write
down the resulting D4-D4-D4-D0 metric.
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In order to write down the explicit solution, we need to smear the D2 branes uni-
formly along the transverse directions in T 6 (the compact directions x1 . . . x6).11

This means we have to smear D21 along directions 3456, D22 along 1256 and
D23 along 1234. Then all branes are points in three-dimensional space spanned
by x7, x8, x9. Therefore the warp factors Zi obey (Fig. 2.13):

Δ3 Zi = 0 → Zi = 1+ Qi

r
. (2.63)

We will show in the next section how the dimensionful charges Qi are related to the
integers Ni counting the number of D-branes.

Exercise 2.3.7 Convince yourself that smearing a D-brane along a spacelike direc-
tion changes the radial dependence of Z in the correct way. For example, take a D2
brane along directions x1, x2 and smear it along the circular dimension x3 with a
homogeneous density ρsmear ∼ 1/R3, where R3 is the radius of the 3-circle. Show
that in this process, the solution to the Laplace equation becomes Z = 1+ Q̃ D2/r4

rather than Z = 1+ Q D2/r5, with Q̃ D2 = Q D2/R3.

What is our solution? We study the asymptotic limits.

• At r → ∞: The metric becomes that of four-dimensional Minkowski spacetime
times a flat torus with fixed radii:

ds2
r→∞ = −dt2 + ds2(R3)+ ds2(T 6) (2.64)

This means we have compactified string theory on a six-torus to a four-dimensional
theory. The leading terms in the 1/r expansion of the gt t metric component are

gt t = 1− 1

2

Q1 + Q2 + Q3 + Q4

r
, (2.65)

and we see that the mass of this solution is (up to factors we do not care about at
this point)

M = Q1 + Q2 + Q3 + Q4. (2.66)

Again, this solution saturates the BPS bound and is extremal (the minimal amount
of gravitational mass for given charges and angular momenta): its mass is the
sum of the charges of the individual branes; there is no binding energy. This is a
consequence of supersymmetry.
• At r → 0: all the 1’s drop out of the warp factors Zi and the metric becomes

11 If we did not smear the individual D-branes making up the black hole solution, then the metric
would depend on some of the internal coordinates as well. We only want dependence on four-
dimensionsional space-time. In addition, if we T-dualize one D-brane, then the result becomes
smeared along the dualization direction. To get a four-dimensional black hole that looks the same in
all duality frames, we need to work in a duality frame where the branes are smeared on orthogonal
compact directions.
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ds2
r→0 =−

r2

R2 dt2 + R2

r2 (dx2
7 + dx2

8 + dx2
9 )+

(
Q2 Q3

Q1 Q4

)1/2

(dx2
1 + dx2

2 )

+
(

Q1 Q3

Q2 Q4

)1/2

(dx2
3 + dx2

4 )+
(

Q1 Q2

Q3 Q4

)1/2

(dx2
5 + dx2

6 ). (2.67)

The six-torus spanned by the directions x1 . . . x6 has constant radii. If we go to
polar coordinates in R

3 spanned by x7, x8, x9, then the metric is

ds2 = − r2

R2 dt2 + R2 dr2

r2 + R2dΩ2
2 + ds2(T 6). (2.68)

The first two terms describe Ad S2. The other terms describe an S2 and a T 6 of con-
stant radii. Therefore, the r → 0 limit of the D2-D2-D2-D6 spacetime describes
a compactification of string theory on T 6 to the four-dimensional Ad S2 × S2

geometry.
We also observe that gt t vanishes as r → 0 and hence r → 0 describes an event
horizon.

From these facts we conclude that the metric of this D2-D2-D2-D6 brane system
describes a real black hole in four dimensions. We will refer to this four-dimensional
black hole as the “four-charge black hole”.

Note that all the Qi appearing in the metric are positive. Only the gauge fields
(which we have not given) are sensitive to the sign of the charges. The gravitational
field sourced by a positive or a negative charge is exactly the same. An anti-D2 brane
would have the same metric and mass as a D2-brane, but opposite electric field.

To understand the full spacetime, we make our lives a bit easier and restrict to all
charges equal:

Qi ≡ Q , Zi ≡ Z = 1+ Q

r
. (2.69)

The black hole metric (2.62) becomes

ds2 = −
(

1+ Q

r

)−2

dt2 +
(

1+ Q

r

)2

(dr2 + r2dΩ2
2 )+ ds2(T 6). (2.70)

The T 6 has a constant metric and does not play a role in the physics. We further
concentrate only on the four-dimensional part of the geometry.

Our claim is that this metric represents a black hole. A very special one even, with
M = Q. Let us go over the textbook black hole teachings to see if our claim is valid.

1. The first black hole you learn about in classical GR, is the Schwarzschild black
hole. It is a solution to vacuum gravity, described by the metric

ds2
S = −

(
1− 2M

ρ

)
dt2 +

(
1− 2M

ρ

)−1

dρ2 + ρ2dΩ2
2 . (2.71)
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This is clearly not the same as our solution. We need to include a charge for the
black hole.

2. Luckily there is also the second black hole you encounter in your favourite clas-
sical GR course. It is the Reissner-Nordström black hole. This black hole is a
solution to Einstein-Maxwell theory (the Lagrangian (2.5)). It is given by

ds2
RN = −

(
1− 2M

ρ
+ Q

ρ2

)
dt2+

(
1− 2M

ρ
+ Q

ρ2

)−1

dρ2+ρ2dΩ2
2 . (2.72)

It has a very interesting limit
M = Q. (2.73)

Then the metric becomes

ds2
RN = −

(
1− Q

ρ

)2

dt2 +
(

1− Q

ρ

)−2

dρ2 + ρ2dΩ2
2 . (2.74)

What does this have to do with our black hole metric, which has gt t = Z−2 =
1/(1+ Q/r)2? If we redefine

r = ρ− Q, (2.75)

then we find the D-brane black hole solution on the nose!

These “M = Q” black holes are the ones we can construct most easily in string
theory. They are extremal and are frozen at zero temperature:

TB H = 0, (2.76)

but have a non-zero mass M and entropy SB H . The Bekenstein-Hawking entropy is
given by the horizon area (we ignore numerical factors)

SB H = AH

4G N
= πR4 = 2π

√
Q1 Q2 Q3 Q4, (2.77)

or
SB H = 2πQ2 (2.78)

when all Qi = Q. This entropy comes from some microscopic states. Who makes
this entropy? We will answer this in the sections to come.

In ρ-coordinates, this is clearly a black hole. The horizon is at ρ = Q, where
gt t = 0. The coordinate r we used for the string theory metric is only well-defined
outside the horizon (r > 0).12 Note that in the single D2-brane solution, the coordi-
nate r is a measure for the distance from the brane at r = 0 (the same goes for D0,

12 At the position of the horizon, we have a degenerate coordinate system, but there is no physical
singularity at r = 0.
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D1, D4, D5 and D6 brane solutions). For the supersymmetric black hole, space is
“created” behind the r = 0 point and a large Ad S2 × S2 throat develops. The way
to see this is by passing through a set of coordinates for which the metric extends
beyond the horizon to the black hole singularity.

We come back to the regime of validity of supergravity. One can perform a calcu-
lation to show that the curvature of a D-brane goes as 1/Q. In terms of the number
N of D-branes, this gives a curvature proportional to 1/gs N . Therefore the solutions
we have considered are only valid when gs N 
 1 (small curvature, we can trust
classical physics). When the number of branes is too small and gs N � 1, supergrav-
ity can no longer be used to describe the solution. The large curvature of spacetime
takes us out of the low-energy description and higher energy modes should be taken
into account. Note that this does not mean there is no D-brane any more. Think
of classical electromagnetism. The electron is also a singular solution, but this gets
resolved in the quantum theory. Similarly, string theory takes over for the quantum
description of D-branes when gs N ∼ 1: string loops are suppressed by gs N , rather
than gs . We discuss this in Sect. 2.4.

2.3.3 Supersymmetric Black Holes in Five Dimensions

For phenomenological and other existential reasons, we like four dimensions.
Nonetheless, we make the switch to five dimensions, because five-dimensional black
holes are easier to construct and analyze. Using dualities and dimensional reduction,
a lot of what we do can be connected to four-dimensional physics.

Consider eleven-dimensional supergravity, with three orthogonal M2 branes as:

M21 0 1 2 − − − −
M22 0 − − 3 4 − −
M23 0 − − − − 5 6

We consider the directions x1 . . . x6 to be compactified such that they again form
a T 6. As for the four-dimensional black hole, the branes are smeared on their trans-
verse directions on T 6, denoted by “–” in the table. Therefore the M2-branes are all
pointlike in the transverse R

4 spanned by x7, x8, x9, x10. The solution is determined
by three functions:

Z1 = 1+ Q1

ρ2 , Z2 = 1+ Q2

ρ2 , Z3 = 1+ Q3

ρ2 . (2.79)

We will use ρ for the radius for black holes in five-dimensional space-time, to dis-
tinguish from r for four-dimensional black holes. Note the power 1/ρ2 for harmonic
functions on in five dimensional space-time.

It turns out that for an eleven-dimensional supergravity solution, we can play the
same game with the harmonic functions. The only difference is that different powers
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appear in the metric. When an M2 brane is wrapped along a direction, we multiply
the corresponding metric component with an extra factor Z−2/3, when the brane is
transverse, we multiply it with Z1/3. In particular, the supergravity solution for the
(supersymmetric) M2-M2-M2 brane system is

ds2 = −(Z1 Z2 Z3)
−2/3dt2 + (Z1 Z2 Z3)

1/3(dρ2 + ρ2dΩ2
3 )

+
(

Z2 Z3

Z2
1

)1/3

(dx2
1 + dx2

2 )+
(

Z1 Z3

Z2
2

)1/3

(dx2
3 + dx2

4 )

+
(

Z1 Z2

Z2
3

)1/3

(dx2
5 + dx2

6 ). (2.80)

This solution describes a black hole in five spacetime dimensions. This can be
seen from the limits

• r →∞: The metric describes a direct product of five-dimensional flat Minkowski
spacetime with a six-torus with constant radii. This is a compactification of flat
eleven-dimension spacetime to five dimensions.
• r → 0: This is the horizon of the black hole. Write the transverse R

4 metric in
polar coordinates dx2

78910 = dr2 + r2dΩ2
3 . Then for r → 0, the metric looks like

ds2 = − r4

R4 dt2 + R2 dr2

r2 + R2dΩ2
3 + ds2(T 6), (2.81)

where R2 = (Q1 Q2 Q3)
1/3 and the last term describes a torus of constant radii.

By the coordinate redefinition ρ = r2, we see that the first two terms form the
metric of Ad S2 (gt t → 0 and grr → ∞ in such a way to give Ad S2) and the S3

has constant radius. Hence the near-horizon geometry is Ad S2 × S3 × T 6.

We have encountered many examples of Ad Sp × Sq geometries from D-branes:
Ad S5×S5 from the D3 brane, Ad S2×S2×T 6 from D2-D2-D2-D6, Ad S2×S3×T 6

from M2-M2-M2. We will later also encounter Ad S3 × S3 × T 4.

Entropy in Gory Detail

We want to give the exact expression for the Bekenstein-Hawking entropy of the
black hole. This entropy is proportional to the horizon area in Planck units, or more
precisely

SB H = AH

4G N
. (2.82)

Note that this looks independent of the dimension. However, if we use the horizon
area in D dimensions, we should also use Newton’s constant in D dimensions.

Let us get our hands dirty and derive this beast. The horizon area of the eleven-
dimensional metric is really the area of S3 × T 6 at r = 0:
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AH =
∫

S3×T 6

√
g =

∫
S3

√
gS3

∫
T 6

√
gT 6

∣∣∣∣
r→0

. (2.83)

The area of the S3 in the metric (2.81) is:∫
S3

√
gS3 =

√
R6 Ω3 = 2π2

√
Q1 Q2 Q3, (2.84)

where Ω3 = 2π2 is the area of a three-sphere with unit radius. The area of the T 6

for the metric (2.81) is

∫
T 6

√
gT 6 =

∫
dx1 . . . dx6

√√√√(
Z2 Z3

Z2
1

)1/3 (
Z1 Z3

Z2
2

)1/3 (
Z1 Z2

Z2
3

)1/3

=
6∏

i=1

(2πLi ), (2.85)

where Li are the radii of the xi circles.13

We want to express the entropy in terms of a dimensionless number that can be
related to a number of microstates. Before we can continue, we have to find the
exact relation of the supergravity charges Qi to the actual integer numbers that count
the number of M2 branes of type i that source the supergravity solution. So far, we
have been sloppy with the distinction between the supergravity charges Qi (with
dimensions of length squared and appearing in the functions Zi ) and the actual brane
numbers Ni . All numerical factors in the exact relation Qi = (. . .)Ni are extremely
important: these will become prefactors in the entropy, which is exponentiated to get
the number of black hole microstates. A mistake of a factor of 2 in a number as eN

or e2N has huge consequences!
To find the relation between Qi and Ni , we first consider the gauge fields of the

solution. These are given by

C012 = Z−1
1 , C034 = Z−1

2 , C056 = Z−1
3 . (2.86)

Remember that Qi represent densities of M2-branes, smeared on some directions.
For instance, Q1 describes the density of N1 M2-branes smeared on the directions
x3, x4, x5, x6. Hence on general grounds, we expect that such a density should scale
as

Q1 = N1

L3L4L5L6
(. . .). (2.87)

The exact coefficient (. . .) is left to as a homework problem in Exercise 2.3.8.

13 The T 6 radii Li are defined by identifying the xi periodically as xi = xi + 2πLi .
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Exercise 2.3.8 The number of M2-branes can be read off by integrating the magnetic
gauge field strength over a surface that surrounds the M2-branes as14:

(2π�P )6 NM2 =
∫

Σ7

F7, (2.88)

where �P is Planck’s constant (in eleven dimensions) and Σ7 is the surface sur-
rounding the M2-branes. For the two-torus T 2

12 spanned by x1, x2, this is:

Σ7 = T 2
34 × T 2

56 × S3, (2.89)

The magnetic seven-form gauge field is found from the Hodge dualization relation
F7 = �11 F4, which is written out as

Fi1...i7 =
1

4!
√−gεi1...i7; j8 j9 j10 j11g

j8 j ′8g j9 j ′9g j10 j ′10g j11 j ′11 Fj8 j9 j10 j11 . (2.90)

Take the metric (2.81) and the four-form field strength F4 = dC with components

F012r = ∂r C012 = ∂r (Z−1
1 ), (2.91)

and analogously for F034r and F056r . Calculate the dual seven-form and use (2.88)
to express the charges Qi in terms of the integers Ni that count the number of branes.
Show that the exact relation is

Q1 = N1(�P )6

L3L4L5L6
, Q2 = N2(�P )6

L1L2L5L6
, Q3 = N3(�P )6

L1L2L3L4
, (2.92)

where Li are the radii of the circles at infinity.

We continue with the horizon area (2.83). It is given in terms of the charges as

AH = 2π2
√

Q1 Q2 Q3

6∏
i=1

(2πLi ). (2.93)

By substituting the result from Exercise 2.3.8, Eq. (2.92), we get

AH = 2π2(2π)6(�P )9
√

N1 N2 N3. (2.94)

We want to we evaluate the entropy SB H = AH /4G N . The definition of the Planck
length in terms of Newton’s constant for any dimension D is:

14 Remember the analogy with electromagnetism, for a magnetic monopole we find the quantized
monopole charge N is N ∝ ∫

S2 F2.
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16πG N = (2π)D−3(�P )D−2. (2.95)

Plugging this into SB H = AH /4G N for D = 11, we conclude that the Bekenstein-
Hawking entropy of the black hole is

SB H = 2π
√

N1 N2 N3 . (2.96)

A few remarks are in order. Note that we began with D-branes on a torus. As the
torus gets smaller or larger (by changing Li ), the solution changes drastically. We get
different black holes because the Qi ’s change. But: the entropy does not care whether
the torus is of diameter 1 mm or 1 Mpc. This is a very interesting fact: SB H does not
change as you change the torus radii. For a non-supersymmetric solution, you would
expect that the entropy depends on the parameters of the torus; the invariance of SB H

under variations of the torus radii is a feature due to supersymmetry.
We can use this feature to do dualities on the internal torus. The five-dimensional

black hole will have the same entropy, but the black hole can be made up out of
different branes in some other string theory. Take for instance the duality chain:
(1) reduce along x6 to IIA, (2) two T-dualities along x1, x2, (3) a T-duality along x5:

IIA: IIA: IIB:
D2 0 1 2 – – – T D0 0 – – – – – T D1 0 – – – – 5
D2 0 – – 3 4 – → D4 0 1 2 3 4 – → D5 0 1 2 3 4 5
F1 0 – – – – 5 x1,2 F1 0 – – – – 5 x5 p 0 – – – – 5

For this T-dualization, you need to know that for F1’s that do not wrap the T-duality
circle, nothing happens at all: they remain F1’s.) The end result of this little exercise
is an intersection of D5 branes with D1 branes and momentum along the common
direction. This is the celebrated D1-D5-P system. We will mainly study the three-
charge black hole in five-dimensions in this duality frame.

Exercise 2.3.9 Use dimensional reduction and the T-duality chain from the
M2-M2-M2 system to the D1-D5-P frame to show that the metric becomes

ds2 = −(Z1 Z5)
−1/2(dt2 + dz2)+ (Z1 Z5)

−1/2(Z−1
p − 1)(dz − dt)2

+ (Z1 Z5)
1/2dx2

78910 + (Z1 Z5)
−1/2dx2

1234. (2.97)

You will need to perform a minor change of coordinates and use that the reduction
ansatz from M-theory to IIA supergravity is

ds2
11 = e2φ/3ds2

10 + e−4φ/3dx2
10, (2.98)

with φ the dilaton and ds2
10 the ten-dimensional metric.
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When p = 0, there is no momentum charge. The metric only depends on the
functions

Z1,5 = 1+ gs N1,5

r2 , Z p = 1+ (gs)
2 Np

r2 . (2.99)

In the limit r → 0, we can drop the 1’s in the harmonic functions and the metric
becomes Ad S3× S3× T 4, see Exercise 2.3.10. Also this geometry is very useful for
holography. String theory on this background is dual to a (1+ 1)-dimensional CFT.

Exercise 2.3.10 Show that for r → 0, the metric (2.97) with p = 0 (Z p = 1), the
metric becomes

ds2 = r2(−dt2 + dx2
5 )+ dr2

r2 + dΩ2
3 + ds2(T 4), (2.100)

where the last term describes the metric on a T 4 with constant radii.

But …there is a “but”: for Z p = 1 (no momentum charge) the horizon area is zero.
This can be seen from the metric. At r = 0 it is singular and one can show that
the Ricci scalar in five-dimensional spacetime blows up at r = 0 and the horizon
coincides with a curvature singularity.

When p �= 0, the entropy is

SB H = 2π
√

N1 N5 Np. (2.101)

String theory on the near-horizon region is dual to the same (1 + 1)-dimensional
CFT as for the p = 0 solution. Now there is a non-trivial momentum in the game,
which translates into an extra charge of that the CFT states that are dual to the black
hole can have.

The D1-D5-P black hole entropy comes from the many ways in the which the
CFT can carry this momentum p. This result is proven in the next section. It is
most amazing: the entropy of a black hole is recovered from counting states in a
(1+ 1)-dimensional CFT!

2.4 Black Hole Microscopics

To properly account for the entropy of the black hole we first have to learn some very
basic string theory. In the spirit of the rest of the lectures we’ll eschew any details
we don’t need and ask the reader to trust us since we’re supposed to be experts.

We explain how to derive the black hole entropy from a microscopic counting of
states for a:

1. D1-D5-P black hole (also “three-charge black hole”) with entropy:

SB H = 2π
√

N1 N5 Np. (2.102)
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(a) (b)

Fig. 2.14 Strings can be of two types, depending on the boundary conditions we put on the string:
closed or open strings. The end-point of open strings are confined to D-branes. a Open strings end
on D-branes. b Closed strings propagating in spacetime

2. D6-D2-D2-D2 black hole (also: “four-charge black hole”) with entropy:

SB H ∼
√

ND2 ND2 ND2 ND6. (2.103)

When all the charges above are equal this black hole has a very nice interpretation
as the extremal Reissner-Nordtström black hole in four dimensions.

We will discuss the three-charge black hole first. Historically, this was the first
black hole for which a microscopic counting was done that could explain the entropy
(by Strominger and Vafa [23]). We will treat the four-charge black hole in four
dimensions afterwards. It is the latter one which may have more appeal, as it describes
the extremal black hole of Einstein-Maxwell theory in four dimensions (‘extremal
Reissner-Nordström black hole’).15

2.4.1 A Brief Review of Open and Closed String Theory

String theory is a theory of (surprise, surprise:) strings. Strings come in two types:
closed strings form closed loops in spacetime with no end-points (imagine rubber
bands floating around in spacetime), while open strings have two ends (imagine a
strand of rope stretched between…between what?), see Fig. 2.14.

In general the ends of open strings are not free to move in all directions of space-
time but are constrained to lie along higher dimensional “membranes”. It turns out
that these membranes are nothing other than the D-branes we found before as solu-

15 This does not mean that it is a realistic astrophysical black hole. In nature, black holes will shed
(almost) all their charge and be charge neutral. Supersymmetric black holes are extremal; they have
the maximum amount of charge allowed for their mass and are hence not the black holes we observe
in the sky.
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tions to supergravity! Although it is hard to see why this is so, we will try to argue
it briefly later.

Scales and Limits

One of the nice features of string theory is that it very naturally introduces a new
length scale, �s , the string length. This is because fundamental strings (like all strings)
have a tension, τF1, and this can be defined in terms of the string length, �s , a new
fundemental length scale defined by this tension,

τF1 = 1

�2
s
. (2.104)

Note that the length dimension of τF1 is defined so that integrating the tension over
a one-dimensional volume yields a unit of mass, namely the mass of a string.

Oscillations on a world-volume of a string have an energy cost dependent on the
string tension just like a regular guitar string. The mass of the harmonic modes is
quantized in units of the string mass

Ms ∝ 1

�s
. (2.105)

When this value is large then stringy modes are very massive and we can, to a
good approximation, restrict ourselves to only the lowest lying sector corresponding
to massless strings, see Fig. 2.15. In this limit when the string mass is very large and
only a few modes remain strings essentially look like point particles and (owing to
the various possible massless oscillations possible) generate a spectrum of fields in
spacetime, see Table 2.6.

Even though we will not generally need the details of this spectrum, it is important
to realize that the closed string spectrum generates supergravity with the associated
fields. Open strings, on the other hand, are described at low energy by a gauge theory
since Aμ has the degrees of freedom to be a gauge field (coupled to matter and

Fig. 2.15 When we probe strings at energy scales far below the string scale, E � Ms , then we
can’t excite oscillators on the strings so they look and act like point particles
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Table 2.6 The massless
spectrum of closed and open
strings

String type Spacetime fields generated

Closed gμν , Bμν , C (3)
μ1μ2μ3 ,ψ

α
μ , . . .

Open Aμ,φ,ψα, . . .

fermions). This theory however does not live on all of spacetime but only on the
D-branes on which the open strings are restricted to end.

In any gravity theory, including string theory, there is a fundamental length scale
related to Newton’s constant and the strength of gravitational interactions: the Planck
scale. This is set by the Planck length �P , through the relation with Newton’s constant
(in D dimensions of spacetime):

G N = (2π)D−3(�P )D−2. (2.106)

The introduction of a second fundamental length scale in string theory, �s , means
that string theory has an associated dimensionless constant, the string coupling or
g-string

gs = f

(
�s

�P

)
. (2.107)

The exact dependence can be derived using the fact that the low-energy limit of closed
string scattering (which depends on gs and �s , as explained below) can be related to
graviton scattering (which depends on G N ). A graviton propagator is controlled by
Newton’s constant. If we interpret this as a string exchange, we get two factors of
gs , one for emitting and one for absorbing a closed string. This gives

G N ∝ �D−2
P ∝ g2

s �D−2
s , (2.108)

and we find

gs ∝ �s

�P
. (2.109)

From this we see that gs controls the hiarachy of scales in string theory. When gs � 1
we have �s � �P so stringy excitations are much less massive than the Planck scale
and we can do “classical string theory”. On the other hand when gs 
 1 then any
stringy excitations is more massive than the Planck scale and thus highly quantum.
Therefore gs acts as a dimensionless coupling in string theory telling us when the
theory can be treated classically versus when it is necessarily strongly coupled.

While tuning gs puts us in a theory with a certain string and Planck scale we have
a further freedom to choose the energy scale at which we probe this theory. In any
given physical process there is an associated dimensionalful energy scale such as
e.g. the mass of the heaviest particle we consider, the energy of a scattering process,
etc…. Thus even if we choose gs � 1 we have the further freedom to consider only
processes with E restricted to
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E � Ms � MP , (2.110)

which means that the scale of our physics is smaller than the string scale (which in
turn is lower than the Planck scale). The limit Ms � MP (or gs � 1) means that
string perturbation theory is valid and that we can look at classical string theory.
The limit E � Ms means that strings effectively look like point particles (we only
look at those excitations that have very low energy compared to the scale set by the
string length and we cannot distinguish the stringy nature of the string). This limit,
in which semi-classical particle physics is a good approximation, is one in which we
will often find ourselves.

String Perturbation Theory

Above we motivated gs as a dimensionless coupling emerging from comparing the
dimensionful �s and �P but within string theory this can actually be derived. String
perturbation theory is described in terms of the mathematical “genus” of the string
world-sheet (the two dimensional submanifold describing the strings path in space-
time). Let’s take a look at the loop expansion of a string process. As a Feynman
diagram represents the worldlines of in- and outgoing particles and intermediate
processes (propagators, loops), a string diagram represents the worldvolume of a
string.

We represent perturbation theory for an ingoing closed string to an outgoing closed
string in Fig. 2.16, which explaines visually the genus expansion. For every number
of loops, there is exactly one type (topology) of string worldvolume.

Every loop in a closed string diagram introduces an extra factor of (gs)
2. The

limit where gs → 0 suppressed the loops and hence also quantum effects: this is the
classical limit. If we further impose the extra “low-energy limit” E � Ms , such that
the strings look like particles then the string diagrams reduce to standard Feynman
diagrams because in this limit we send �s → 0 so the worldsheet compresses down
to a world-line (see also Fig. 2.16).

Fig. 2.16 String perturbation theory is a genus (# holes) expansion of string world-sheets. For
closed strings, every hole introduces a factor of (gs)

2 in the expansion. For excitations well below
the string scale, strings behave like particles and we recover ordinary Feynman diagrams
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We will generally work in this regime and keep only the zero-mass excitations
of the string.16 Then the closed string gives exactly the fields of supergravity, see
Table 2.6: the metric, dilaton and B-field and the gauge potentials that we have seen
when discussing D-branes (Ramond-Ramond fields). Thus one can think of super-
gravity as the low energy limit of weakly coupled string theory (and indeed this is
where we will mostly be working).

If we consider Fig. 2.16 with in- and out-going graviton states (in the
E�Ms�MP limit) then the prefactor for the first loop diagram (in the bottom
row) is G N . Computing this same diagram in string theory one finds a pre-factor
g2

s �D−2
s where the gs factors come from the genus-counting and the �s dependence

must follow from dimensional analysis (�s is the only length scale in string pertur-
bation theory). This is the origin of Eq. (2.108).

What about open string perturbation theory? Open strings strech between
D-branes and their end-points are labelled by the branes they end on. Thus open string
perturbation theory gains an additional factor, N , the number of D-branes, from the
degeneracy of open string considered in any scattering process (see Fig. 2.17). Thus
the perturbative series is a power series in gs N . This is similar to the expansion in
a gauge theory with Nc colors, where we get an expansion in powers of gNc, and
indeed as we will see below this resemblance is no accident.

The low lying (massless) sector of the open strings are a vector field Aμ, a number
of spinors ψα (fermions) and scalar fields φi , see Table 2.6. These fields are bound to
the brane, because the open string endpoints are. The gauge fields can be interpreted
as describing the D-brane dynamics: the scalars describe the transverse motion of the
brane (there is one scalar for every direction transverse to the brane worldvolume),
the vector (which has only directions on the worldvolume) describes a gauge theory
living on the brane and the fermions are needed for supersymmetry. Note that if we
only consider open strings, we cannot get a metric: a metric (gravitons) sits only in
the closed string spectrum.

Questions from the audience:

Fig. 2.17 Open string perturbation theory is an expansion in gs N where N is the number of branes.
This is because each loop increases the genus by one (another factor of gs ) and also generates an
additional trace over the N gauge factors (another factor of N ). Note there is an additional overall
factor of gs above; we show only the relative gs factors

16 These are not the lowest-energy modes of the string. Those are tachyonic (negative energy)
modes, that can be consistently projected out of the spectrum of string theory.
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• Have we not introduced a cut-off E by restricting our energies to E � Ms . No
because what we mean by E � Ms is that we consider only massless excitations
so the cuttoff is actually E ∼ 0. Or said better we are sending Ms/E →∞ so we
decouple stringy excitations. We assume that any dynamics or additional scales
we introduce will be small with respect to Ms unless we explicitly state otherwise.
Note that the number of massless excitations can be very large: for open strings
on N D-branes, we get a U (N ) gauge theory, which has many (massless) fields.
• Why and how do open strings leave a D-brane? We have not yet said what closed

strings do with a D-brane. Figure 2.19 shows the process by which a closed string
leaves a D-brane.

The gauge/gravity duality we mentioned before, is really an open/closed string
duality. The theory living on the worldvolume of a string (the so-called worldsheet
theory) which describes the propagation of a string in spacetime has a symmetry
allowing us to interchange proper time (τ ) and proper length (σ) on the worldsheet
(it is a symmetry of the string itself). Then a loop diagram in open string theory,
looks like a tree level diagram describing the exchange of closed strings between
two D-branes, see Fig. 2.18. We will return to this later.

From Fig. 2.19, we see that a process of a closed string interacting with a D-brane
has a factor of (gs)

2: we can see this as a graviton exchange. This is another way to
see why G N ∼ (gs)

2.
For the discussion of the black hole entropy, we will take the limit gs → 0. In this

limit, open and closed strings naively decouple, since their interaction (Fig. 2.19) is
suppressed. Note however that the open-closed diagram receives an enhancement
from the degeneracy of open strings so the final effective coupling controlling the
interaction of closed and open strings will be gs N , the same coupling that governs
interactions between open strings. Thus by taking gs → 0 but with gs N fixed we can
supress quantum gravity effects but still allow open-strings, or D-branes, to source
closed strings (yielding the supergravity solutions described in previous sections).
We will return to this later.

Fig. 2.18 By exchanging the role of string time (τ ) and length σ, we can interpret this diagram
as an exchange of closed string between D-branes (left), or a loop diagram in open string theory
(right)
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Fig. 2.19 Interpretation of
a closed string leaving from
a D-brane from open string
interaction. Note that each
interaction (each pair of end
points joining) introduces a
factor of gs in the amplitude
of this process

The Stringy D1-D5-P Black Hole

We consider the D1-D5-P system along the following directions. The D5 branes are
on compact directions in spacetime, the D1 and the momentum are along one of the
directions of the D5:

We can picture this as in Fig. 2.20.
Question from the audience:

• What is “P”, the momentum, exactly? This can be thought of as a gravitational
wave propagating along the S1 direction. We can see this by a manipulation of the
metric (2.97). By changing coordinates, x− → x5 − t , the metric looks like

ds2 = −(Z1 Z5)
−1/2dt2 + (Z1 Z5)

1/2dx2− + Z−1
p dtdx−

+ (Z1 Z5)
1/2(dr2 + r2dΩ2

3 )+ ds2(T 4), Zi = 1+ Qi

r2 . (2.111)

Fig. 2.20 The D1-D5-P system. The D5’s are wrapped on T 4 × S1, along the S1 we also wrap
D1’s and we put gravitational waves (momentum), denoted P
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The angular momentum of this solution is related to the mixed time-space com-
ponents of the metric: in this case p ∼ ∂/∂x5 is given by the 1/r2 term
Z−1

p = 1− Q p/r2 + . . ., so Q p is indeed the momentum charge.

Remember that the supergravity charges are actually charge densities (we omit
numerical factors):

Q1 ∼ gs(�s)
2 N1 Q5 ∼ gs(�s)

2 N5 , Q p ∼ g2
s Np. (2.112)

The horizon area depends on the string length and the string coupling:

AH ∼
√

Q1 Q5 Q p ∼ g2
s (�s)

3
√

N1 N5 Np, (2.113)

but the Bekenstein-Hawking entropy is independent of the coupling and length scales:

SB H = AH

4G N
= 2π

√
N1 N5 Np. (2.114)

From D-branes to Black Holes

Let us now use the observation that SB H is independent of gs to our advantage.
Namely we will argue that by tuning gs we can interpolate between a regime where
the system is described by open strings ending on D-branes to a regime where the
system is a black hole with a horizon area which is large in string units AH /�3

s 
 1
(i.e. a regular looking supergravity black hole). To do this let us recall:

• gs is the perturbative parameter in both string theory and gravity. gs � 1 is the
(semi)classical regime while gs ∼ 1 is the quantum regime.
• The coupling between closed and open strings, on the other hand, is controlled

by gs N so if we fix gs N to be large then D-branes back-react on closed strings
(giving geometry) even if we send gs → 0. This is analogous to saying we can send
G N → 0 (the exactly classical limit of GR) while keeping G N M fixed for some
source so we have a reasonable non-trivial limit giving classical GR solutions.
• Thus our approach will be to fix the entropy by fixing the N ’s (number of branes)

to some very large value but then tune gs such that we vary from gs N ∼ 0 to
gs N 
 1. At gs N ∼ 0 we can describe the system in terms of weakly coupled
open strings on stacks of N D-branes. Closed and open strings decouple in this
regime and we can neglect gravity. At gs N 
 1, on the other hand, the D-branes
back react and form a large black hole

Let us see this all in more detail.

Black Holes at gs N 
 1

The scale of the supergravity solution is set by the charges Qi in the warp factors.
Remember that the supergravity charges appear as Z = 1+Qi/r2 and they determine
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Fig. 2.21 Tuning the cou-
pling in closed string per-
turbation theory. Kepping
only the low energy (zero
mass) modes, we have a
theory of particles, supergrav-
ity. We restrict to small gs ,
and only consider classical
supergravity

the size of the solution. In general, we have Qi = G N Mi , see Eqs. (2.47–2.49). For
a D-brane, we have MD = N/gs and hence Z ∼ gs ND , while for the momentum
excitations, we have Mp = Np (just an excitation) and hence Z ∼ g2

s Np. If gs N is
small (order 1), the area of the black hole is small in string units. Hence we cannot use
supergravity to describe it: massive string modes become important, and supergravity
only describes the massless modes. This violates our earlier physical requirement
E � Ms (put another way such black holes would involve curvature of the order
of the inverse of the string length and thus probing them would involve energies at
this scale). We see that we need the horizon to be large in string units to describe
(super)gravity black holes and thus we consider instead the regime:

gs N 
 1. (2.115)

We further impose gs → 0. Closed string theory is non-interacting in this regime
as this limit suppresses quantum gravity corrections. This is true whether you are
in string theory or in gravity since at low energy a closed string loop looks like a
graviton loop, see Fig. 2.21. Thus in the limit gs N 
 1 with gs → 0 the D1-D5-P
system resembles a large supergravity black hole.

Open Strings at gs N � 1

For a large (semi-classical) black hole, we need AH to be large both in string units,
AH 
 (�s)

3, and in Plank units so, via (2.113–2.114), we must take N1 N5 Np to be
very large; thus we take the “N →∞” where this is understood to apply to all the
N ’s.

But as we may still vary gs we can dial the coupling gs N allowing us to interpolate
between the large black hole like description above (at large gs N ) and a weakly-
coupled open string description where the open strings end on the branes and don’t
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Fig. 2.22 By dialling the
coupling gs N (while keeping
gs small), we can interpret
the D1-D5-P system as a
black hole or as open strings
stretching between D-branes.
Since the torus volume goes as
VT 4 ∼ Q1/Q5 in string units,
it disappears from the picture
and we only retain the five-
dimensional geometry. Note
that the lower left region is
non-existent (since we always
have that gs N > gs )

interact with closed strings and gravity (and open string perturbation theory is valid
since gs N � 1). This tuning is depicted in Fig. 2.22.

Because the entropy is independent of the coupling, gs , we expect to be able
to reproduce the entropy from a counting of supersymmetric states in the weakly
coupled open string picture. Note that we take gs → 0 throughout this diagram so
closed strings and gravity are always semi-classical but the open string coupling
is gs N so if we also take gs N → 0 open strings become weakly coupled and
furthermore there is no interaction between the closed and open string sector (even
though closed string perturbation theory goes with powers of gs the couplings to N
D-branes goes as gs N so only in this limit do D-branes not source gravitons). Thus
the limit gs → 0 with gs N → 0 gives weakly coupled open strings on D-branes in
flat spacetime.

We summarize:

• If gs → 0, you always suppress closed string loop effects (quantum gravity effects)
• gs N tells you how much closed strings (and gravitons) feel the source. From an

open string perspective tuning gs N is turning open string loop effects on/off.
• If gS N � 1, you can count the number of states of these strings stretching between

the D-branes, because essentially we get a free (open string) theory (loop effects
suppressed). This is reminiscent of holography, where we have gs N � 1 giving
Yang-Mills weakly coupled, no gravity, and gs N 
 1 giving Yang-Mills strongly
coupled, or Ad S5 gravity.

Note that if the entropy did depend on gs , then none of this would make sense.
A toy model will follow with a rigourous proof that it is gs is independent.17

A question from the audience:

• Can we get the gravity solution from open string calculations? Yes you can, but it’s
a pain. Say we want to find the metric. You can expand the gravitational solution

17 Extrapolating from toy models is many a string theoriest’s idea of a mathematical proof of
complicated string theory effects.
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in the open string coupling gs N

gt t = (Z1 Z5)
−1/2 ∼ 1+ gs N + (gs N )2 + g3

s + . . . (2.116)

One can then try to match this to an open string loop expansion. The one-loop
computation is doable and has been done (Stefano Giusto, a former postdoc at IPhT
is doing this). Higher loops are extremely tough; solving supergravity equations
of motion is much simpler.

2.4.2 Supersymmetric Indices

We have just argued that the D1-D5-P system looks like a black hole for gs N 
 1,
and like a system of very weakly coupled strings for gs N � 1. We want to count the
states that make up the entropy in the weakly coupled theory. Why can we trust such
a computation? The answer is that in supersymmetric theories certain quantities are
protected and cannot depend on continuous parameters such as gs . Although we will
not give a proof of this for the D1-D5-P system we illustrate the idea with a simpler
toy model.

Consider supersymmetric quantum mechanics. It is defined by the Hamiltonian

H = {Q, Q†} ≡ Q† Q + Q Q†. (2.117)

The operator Q is fermionic, and anticommutes with itself:

{Q, Q} = 2Q2 = 0 (2.118)

We define BPS states (or “supersymmetric states”) as states that are annihilated
by Q, but are not given by acting with Q on another state (Q-closed but not Q-exact):

|ψ〉BPS : Q|ψ〉BPS = 0 , |ψ〉BPS �= Q|ψ′〉. (2.119)

Exercise 2.4.11 Prove the following properties:

1. The Hamiltonian H has only positive eigenvalues. Show that BPS states are states
of minimal (zero) energy:

H |ψ〉BPS = 0. (2.120)

2. Let |φ〉 be a non-BPS state. Prove that φ is degenerate to

|φ′〉 = Q|φ〉, Eφ = Eφ′ . (2.121)

Introduce the operator (−1)F , defined through its action on bosonic and fermionic
states as:
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(−1)F |boson〉 = |boson〉, (−1)F |fermion〉 = −|fermion〉. (2.122)

This operator Z2-grades the Hilbert space. Note that it anticommutes with the oper-
ator Q:

{(−1)F , Q} = 0. (2.123)

Define the Witten index
Z = Tr [(−1)F e−βH ], (2.124)

where β is a number.

3. Show that

Z = (# bosonic BPS states)− (# fermionic BPS states) (2.125)

4. Show that
∂Z

∂β
= 0. (2.126)

5. Redo the calculation with the Hamilatonian

H = H0 + gH1, (2.127)

where both the original Hamiltonian H0 and the perturbed Hamiltonian H obey
the supersymmetry property

H0 = {Q0, Q†
0}, H = {Q, Q†} (2.128)

for two different fermionic operators Q0, Q. Show that the function Z is inde-
pendent of g.

In this exercise, you have proven that the Witten index, which counts the differ-
ence in the number of bosonic and fermionic ground states, is independent of the
coupling g. The key thing to note is that at strong coupling, the total number of
ground states is equal to the Witten index. By its independence on the coupling g,
we can calculate the Witten index at weak coupling to count the number of ground
states at strong coupling.

We rephrase that in a more mathematical language. Define the trace over the BPS
Hilbert space:

ZBPS = TrBPS (e−βH ) = Tr)BPS1 = #bosons+ #fermions. (2.129)

This counts the total number of ground states (in the exercise you have proven that
the BPS states are exactly the ground states of the Hamiltonian). Note that this is
always larger than the Witten index:
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ZBPS > ZWitten. (2.130)

At weak coupling, we expect that this is much larger. But at large values of
the coupling, you expect that the number of BPS states will match the index
because “Anything that can lift, will lift”; i.e. perturbing the system enough will lift
degenerate boson/fermions pairs until we have only one species or the other left (i.e.
the minimum necessary to preserve the Witten index which cannot vary as we mess
around with the couplings). Thus at strong coupling we expect the number of states
to match the Witten index. Since the latter is independent of the value of the coupling,
we can calculate it at weak coupling and use it to know the number of BPS states at
strong coupling.

Question:

• Are there any restrictions on the validity of the extrapolation to strong coupling?
One way it could break down, is because of a phase transition or discontinuity.
There are no walls of marginal stability for this index, so that does not pose a
problem. However for extended-supersymmetry theories, where you have several
operators Qi :

H =
n∑

i, j=1

εi j {Qi , Q†
j }, (2.131)

the counting of 1/n BPS states (that are only annihilated by 1 of the n operators
Qi ), is a lot more subtle. And the black hole states are exactly of this form—but
we will not go into the details.

2.4.3 Counting States for the Three-Charge Black Hole

We study the D1-D5-P system of Fig. 2.20 in the limit R4 
 VT 4 , which means in
terms of the charges

Q p

Q1 Q5

 1. (2.132)

In this regime the S1 is much larger than the other compact directions on which the
branes are wrapped so the theories on the D1 and D5 reduce to a theory living on the
S1 with radius R as depicted in Fig. 2.23. The rotation (momentum along x5) of the
D1 and D5 will translate into rotation of the open strings, so we put momentum on
the strings to account for Q p.

We motivate everything from the open string picture. It is not easy to show that
D1/D5 momentum follows from F1 with momentum, so you will have to take our
word for it. In principle, we can divide momentum over all possibilities: open F1,
closed F1, D1’s, D5’s one or several branes, combinations, single wrapping, multiple
wrapping etc: everything can carry momentum. We are interested in the typical,
dominant contributions. We will find that we get the most entropy by putting all of
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Fig. 2.23 In the limit R4 
 VT 4 we can largely ignore excitation on the torus and the physics is
effectively described by an open string stretched between the D1- and D-5 branes which wrap the
circle. The open string also carries momentum along the S1

the momentum in the open string sector because of fractional momentum quantization
described on the next page.

To arrive at this picture of the black whole we have to go to weak coupling by
tuning gs → 0 such that gs N � 1; in this regime the D-branes are heavy static
objects (their mass goes as N/gs) but they decouple from gravity and are entirely
described weakly interacting open strings ending on them. Moreover because we are
interested in supersymmetric configurations (as our black hole is supersymmetric)
it suffices to restrict to the ground states of the open strings as excited modes break
more supersymmetry (recall from the exercises above that supersymmetry tends to
require minimal energy). Thus the open strings essentially become point particles
connecting two coincident branes. Moreover, at very small gs N the open strings are
essentially free so their wavefunctions are momentum eigenstates on the S1

ψ(x5) =
∑

n

e−
2πn

R x5 . (2.133)

The wave function of a particle normally has to be single valued as we go around
a circle but, because these particles carry additional labels, corresponding to the
D-brane they’re ending on, this is no longer the case. For instance a string ending
on a D1 that wraps twice around the circle carries a coordinate, x (1), its location on
the D1 and this coordinate itself is not single-valued on the S1 (i.e. the coordinate
length is 4π). This lack of single-valuedness may be familiar from fermions which
need not be periodic on a circle because they carry internal (spinorial) indices. Here
the additional internal data is just the coordinate on the brane the string endpoint is
attached to.

Let us now consider a string with two endpoints going around the circle several
times. Take for example a string stretched between a D1 brane that wraps the circle
twice, and a D5 brane that wrap the circle three times.18 If we unwrap the circle, this
configuration looks like Fig. 2.23.

The open string wave function depends on the string coordinate x5 and has two
labels, coordinates on the D1-branes and D5-branes (Fig. 2.24):

18 Note that for “2 D-branes” on a compact circle, we have either 2 distinct D-branes or a D-brane
wrapping the circle 2 times.
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Fig. 2.24 A D1 brane wrapping the circle twice and a D5 brane wrapping the circle three times.
We need to go six times around the circle before we reach the same point again

ψ(x (1), x (5)). (2.134)

Depending on the label, we have the periodicities:

x (1) ∼ x (1) + 2R , x (5) ∼ x (5) + 3R. (2.135)

The wave function of the string then, depending on both x (1) and x (5) is not periodic
in R, but rather has a periodicity of 6R:

ψ(x (1), x (5)) = ψ(x (1) + 6R, x (5) + 6R). (2.136)

For a general number of branes, we conclude that the string wave function is
periodic in N1 N5 R (at least if N1 and N5 are coprime). Thus we can expand any
such wavefunction in a set of modes with this periodicity:

ψ(x5) ∼ e
−2π n

N1 N5 R x5 (2.137)

The number n denotes the number of momentum units; momentum on such D1-D5-
string is quantized in units of 1/N1 N5 R rather than 1/R. This phenomena is referred
to as momentum fractionalization because momenta can now come in fractional
units.

Note that the total spacetime momentum, Np, as measured e.g. at infinity in black
hole solution, is still quantized in units of 1/R because metric modes (which carry
the momentum) are single valued around the S1. But the individual open strings
carrying the momentum can carry fractional momentum – it is only the sum of all
the momenta that must be integrally quantized (in units of 1/R).

What about non-coprime N1, N5? We can always consider the nearest-coprime
number by subtracting a small number m � N1,5 such that N1 − m and N5 are
coprime. Then the leading contribution to the entropy is still N1 N5 Np as any differ-
ence will be suppressed by powers of m/N1. As we will explain below it is always
entropically favourable to be in the configuration with maximal fractionalization so
this configuration will dominate.

We want to put Np units of momentum on the D1-D5-string system but there are
many ways of doing this by putting different amounts of momenta on different open
strings. Thus the entropy of the system is given by considering:
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In how many ways can we get the momentum p = Np/R from partitioning the
momentum over the D1-D5 open strings (with wave function (2.137)?

We can translate this to counting the number of partitions

∞∑
m=1

nmm

N1 N5 R
= Np

R
. (2.138)

The number m counts the momentum in units of 1/N1 N5 R added by nm strings of this
type. For instance, the easiest (but not most entropic) way to get such a partitioning
is to take one string with m = Np N1 N5 units of momenta.

We count the number of different ways to form free strings (free excitations)

M ≡ N1 N5 Np =
∞∑

m=1

nmm. (2.139)

This is a counting of partitions of integers. We claim that this is counted by the
partition function

Z = (1+ q + q2 + . . .)(1+ q2 + q4 + . . .)(1+ q3 + q6 + . . .)(. . .). (2.140)

The first contributions are

Z = 1+ q + 2q2 + 3q3 + . . . (2.141)

and the coefficients of qn indeed count the partitions of the numbers n: one parti-
tioning of 1, two of the number 2 (1+ 1 and 2), three for 3 (1+ 2, 2+ 1 and 3) and
so on. If we write the partition function as

Z =
∞∑

n=0

dnqn, (2.142)

then dn counts the number of partitions of the integer n.
Using our knowledge of a geometric series for q < 1:

∞∑
n=0

qn = 1

1− q
. (2.143)

we see that the partition function can be written as the product

Z =
∞∏

n=1

1

1− qn
. (2.144)
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How can we evaluate this partition function? We perform a calculation in the
canonical ensemble: rather than fixing M we fix a dual “effective inverse temperature”
β and we will go to a “high temperature”-limit. First we write q as

q = e−β . (2.145)

We calculate the average occupation number

〈n〉 = 1

Z

∑
n

n dne−βn = ∂

∂β
log Z . (2.146)

This number will give us the leading contribution to the entropy.
First we evaluate the logarithm of the partition function:

log Z = −
∞∑

n=1

log(1− qn)

=
∞∑

n=1

∞∑
m=1

(qn)m

m

=
∞∑

m=1

1

m

∞∑
n=1

(qm)n

=
∞∑

m=1

1

m

∞∑
n=1

(
1

1− qm
− 1

)

=
∞∑

m=1

1

m

qm

1− qm
. (2.147)

In the second to last line we used (2.143), and compensated for the over counting for
n = 0.

Now we take a “high temperature”-limit, by taking β � 1:

q � 1. (2.148)

Then 〈n〉 will be large because we get the large n contributions of the sum Z =∑
n dnqn . The leading terms in this limit are

q = 1− β +O(β2) , qm = 1− mβ +O(β2). (2.149)

The logarithm of the partition function becomes

log Z = 1

β

∑
m

m−2 +O(β0). (2.150)
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We can rewrite this in terms of ζ(n), Riemann’s ζ function, which gives for n an
integer:

ζ(n) ≡
∞∑

m=1

1

mn
. (2.151)

Then the average particle number is

〈n〉 = ζ(2)

β2 . (2.152)

Standard thermodynamics gives us that the entropy in the canonical ensemble is

S = log Z + β〈n〉, (2.153)

and this gives

S = 2

β
ζ(2). (2.154)

To express the entropy in terms of the number M ≡ 〈n〉, we invert the relation
(2.152), β = √ζ(2)/M , and we use that ζ(z) = π2/6. This gives the entropy:

S = 2π

√
M

6
= 2π

√
N1 N5 Np

6
. (2.155)

There is a factor of 6 off in the square root compared to the supergravity result! Did
we make a counting mistake?

Some remarks:

• Why do we count in canonical ensemble in terms of 〈n〉 instead of counting the
dn directly for d = M (i.e. working in the microcanonical ensemble)? Recall
that for large occupation numbers the canonical and microconincal ensemble are
equivalent and we are interested in the large M asymptotics. This is exactly what
we do in standard statistical mechanics: E in the canonical ensemble is replaced
by 〈H〉, the expectation value of the Hamiltonian.
• We assumed β → 0. We need to check this was a valid assumption. By

β =
√
ζ(2)

M
, (2.156)

this gives M →∞: this is exactly the regime we are interested in from the validity
of the supergravity solution.

Let us get back to this factor of 6. With the results of Exercise 2.4.12 , we find that
the entropy for a “supersymmetric system” (equal number of fermionic and bosonic
excitations) is
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S = 2π

√
cM

4
, (2.157)

with c the number of bosons. We count the number of massless modes on S1,
but the entropically dominant strings are those stretching between the D1 and the
D5-branes. Those 1–5 strings have four bosonic degrees of freedom from their free-
dom of moving around in T 4 (and these modes have 4 fermionic superpartners
justifying the use of the supersymmetric counting formula).19

Therefore, the D1-D5-P system has c = 4 and we reproduce the black hole entropy
on the nose:

S = 2π
√

N1 N5 Np. (2.158)

Hooray to string theory!

Exercise 2.4.12 Prove the following statements:

• For the partition function

Zc =
( ∞∏

n=1

1

1− qn

)c

, c ∈ N, (2.159)

the entropy in the large temperature limit is

S = 2π

√
cN

6
. (2.160)

In a free theory, this formula is easy to show. This partition function is nothing but
the partition function of c free bosonic oscillators.
• Zc was the partition function for c bosons. For fermions, which have either occu-

pation number 0 or 1, we need to put in something extra. Using similar reasoning
as for c = 1 boson partition function, show that the partition function for fermions
is

Zfermions =
∏
n=1

(1+ qn). (2.161)

Show that for the partition function for c bosonic and fermionic string excitations
is

Z =
[ ∞∏

n=1

(
1+ qn

1− qn

)]
(2.162)

and that in the high temperature limit, this gives the entropy

19 There are also contributions from 1-1 and 5-5 strings, but these have momentum quantized in
units of p ∼ 1/N1 and − ∼ 1/N5 and are hence subleading.
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S = 2π

√
cN

4
. (2.163)

2.5 AdS/CFT

In this section we will “formalize” the counting arguments of the previous section by
putting it in the much larger context of AdS/CFT, a very deep duality between gauge
theory and gravity (or between open and closed strings), discussed first in [24–26].

We have seen that gs , the string coupling, and the number of D-branes N allow
us to interpolate between different regimes, see Figs. 2.21 and 2.22. The coupling
gs sets the “quantum” nature of closed string interactions. When gs � 1: we have
Ms � MP and string theory is classical. Low-lying string excitations are not so
massive as to require quantum gravity to understand them. When gs 
 1 on the
other hand, any massive stringy excitation (except the point-like ground states) are
in the quantum gravity regime and there is no such thing as classical string theory.

Recall that in the previous section we very heuristically suggested that there is
a general duality between open and closed strings: in the presence of a D-brane
tree-level closed string diagrams can alternately be interpreted as an open string loop
diagrams (see e.g. Fig. 2.18). While we believe this duality holds in general it is quite
hard to study because its rather difficult to study excited stringy states. What has been
studied and demonstrated in great detail however is a very particular low-energy limit
of this duality: AdS/CFT.

In this section, we wish to motivate and study this particular limit and the asso-
ciated duality. We consider string theory with N D-branes and take a low-energy
limit by fixing the energy at asymptotic infinity such that E � Ms (in a sense we
will describe in more detail below). In this low-energy limit we want to consider the
regimes:

• gs N � 1: Open string theory reduces to a weakly coupled gauge theory describing
the system. As we will explain below the description in terms of closed strings is
not very tractable in this regime because the near-brane geometry has string-scale
curvature and would require the full complex machinery of closed string theory to
describe it (i.e. a reduction to massless supergravity modes is not sufficient).
• gs N 
 1: The same gauge theory above is now strongly coupled and while we can

still think of it in terms of open strings this description is not very traceable. Rather
a more tractable description is the dual closed string or supergravity picture with
D-branes back-reacting and giving a near-brane geometry with a low curvature
scale.

The main point is that open-closed duality implies either picture is valid but one may
be more computationally tractable in a certain regime than the other. Here we will
motivate this duality primarily in its low-energy limit where it becomes the AdS/CFT
correspondence.
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2.5.1 ‘Deriving’ AdS/CFT

For simplicity in the exposition below we will take N1 = N5 = N . We further define

λ = gs N . (2.164)

We represent the small λ and large λ system in Fig. 2.22.

An Open String Perspective (λ � 1)

Let us start by considering the weak coupling picture, gs N � 1, where we have a
description in terms of perturbative closed and open strings with the latter ending on
infinitely heavy, static D-branes. We will restrict ourselves to low energy excitations
in this regime as we explain in more detail below.

The spacetime geometry at λ = gs N � 1 is:

M1,10 = R
1,4 × S1 × T 4. (2.165)

In flat space there is a globally defined notion of energy which is the same for an
observer near the brane as for an asymptotic observer:

E0 = E∞. (2.166)

Here E0 is the energy of an observer in the bulk, or near the brane (this distinction
will become important at strong coupling where warp factors shift energies measured
at infinity with respect to those near the brane).

How does a process where open strings interact with closed strings depend on
the this characteristic energy scale? Such a process was depicted in Fig. 2.19. At low
energy, we have gravitons leaving the brane. The amplitude for such a process is
proportional to:

g2
s �D−2

s N 2 = G N N 2. (2.167)

From a closed string perspective this is just a gravitational interaction that must be
proportional to the masses and G N . From an open perspective there is one factor
of gs N for each open string endpoint on N D-branes. For instance, for the D1-D5
system, we have to sum over all the ways we can get this process, and there are N1 N5
possible ways of making 1–5 strings, see Fig. 2.25. The gs factors follow because as
evident from Fig. 2.18 closed emission from a brane looks like an open loop diagram.

Let us take a six-dimensional emission perspective, focusing on R
1,4× S1 (drop-

ping the T 4 part of the geometry). The dimensionless rate is fixed, on dimensional
grounds to depend on the energy E of the process as

E4G N = (gs N )2�D−2
s E4 = λ2(E�s)

4. (2.168)
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Fig. 2.25 Strings stretching
between N1 D1 branes and N5
D5 branes. There are N1 N5
ways of making D1-D5 strings

We would like to work at low enough energies so this process is highly suppressed
and the physics of the brane effectively decouples from that of the rest of spacetime.
Thus we need to consider energies such that

E�s � 1/
√
λ

In the limit above the open string physics on the brane decouples from interactions
with bulk closed strings but open string theory is still rather complicated so let us
consider a further limit E�s � 1. In this limit stringy excitations are very massive
and can be integrated out and open string theory on the brane reduces to gauge theory.
Thus the limit we really want to consider is

E�s = E∞�s � min (1, 1/
√
λ). (2.169)

In this limit the physics of the D-brane “decouples” from that of the bulk and gives,
at λ = gs N � 1, a weakly coupled gauge theory living on the brane. The gauge
theory is weakly coupled because λ is nothing other than the ’t Hooft parameter—
the natural coupling constant of a large N gauge theory (see [27] for a pedagogical
exposition of large N gauge theories). But notice that we could also have taken the
same limit at largeλ and this should in principle describe the strongly coupled version
of this gauge theory. Because we restrict to energies satisfying both E�s � 1 and
E�s � 1/

√
λ for any value of λ the decoupling of the brane from the rest of the

geometry should remain valid as should the “gauge theory limit” of the open strings.
The only thing that changes is that the gauge theory becomes strongly coupled. Can
we understand this from the closed string perspective?

A Closed String Perspective (λ � 1)

Let’s now move to the closed string perspective at λ 
 1. Take the metric of the
D1-D5-P system

ds2 = 1√
Z1 Z5

(−dt2 + dx2
5 + Z pdx2−)+√

Z1 Z5dx2
4, (2.170)
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with the light-cone coordinate
x− = t − x5. (2.171)

This metric describes a momentum excitation along one direction, because the light-
cone coordinate x+ is absent.

Remember that this metric has the following regions:

• Asymptotically flat R
1,4 × S1 × T 4.

• Near horizon region. There is an Ad S3×S3×T 4 throat and the black hole horizon
sits at the bottom of this throat. The quick way to get this decoupled region is to
drop the constants in the Z1 and Z5 harmonic function but keeping the constant
in the Z p harmonic function. See e.g. [28] for a more detailed exposition of this
limit.

so the metric and spacetime at infinity look the same as in the weak coupling limit;
only the region near the branes changes.

From the metric, we know that the charges Q in the harmonic functions Z =
1+ Q/r2 go as Q ∼ gs N (�s)

2 =: λ(�s)
2. Therefore the scale of the throat is set by

L ∼ √λ�s . (2.172)

Low Energy Excitations

As above we want to work with “low energy excitations”. But: what is energy in this
setup? Let us start with the energy E∞ measured by an observer at infinity in the
black hole spacetime and let us restrict, once more, to20

E∞�s � 1. (2.173)

This means that no strings are excited and we only see gravity modes. Asymptotically,
string theory reduces to just (super)gravity.

On the other hand, the throat also has a characteristic energy scale set by Ethroat =
1/L ∼ 1/

√
λ�s . Any asymptotic excitation with an energy lower than

E∞�s <
1√
λ

(2.174)

decouples from the throat: its wave length is larger than the scale of the throat and
any such mode shot in from infinity will fly by and not be absorbed by the throat.

Thus at this scale asymptotic excitations decouple from excitations in the throat
just as they did in the open string analysis at gs N � 1. The low energy limit (2.169)
thus has the effect of isolating the “near-horizon” physics down the throat from what
happens further away. This “decoupling” is an essential feature of AdS/CFT so we
will always work, for all values of λ, in the limit

20 In natural units �= c = 1, energy is measured in dimensions of inverse length [E] = L−1 .



118 I. Bena et al.

E∞�s � min (1, 1/
√
λ). (2.175)

Another way to phrase this is that we consider the theory defined by excitations
whose (asymptotic) energy remains finite as we send �s →∞.

So far we have phrased this limit in terms of the energy measured at infinity and
shown that asymptotically stringy excitations become infinitely massive and can be
ignored in this limit. What about the near-horizon throat region?

In a gravitational theory energy can only be defined locally. The redshift relates the
energy between two observers at r1 and r2 as

∫ r2
r1

√
gt t . Approximating this integral

by its value down the throat, the energy E0 of a local observer at say r = 1 in the
throat is related to the asymptotically measured energy as

E∞ ∼ (Z1 Z5)
1/4 E0 =

√
λE0. (2.176)

What does this imply about the energy of excitations down the throat in our limit
(2.175)? Consider the two cases:

1. λ > 1: Then by (2.175) we have
√
λE0�s � 1/

√
λ, which can be written as:

E0�s � 1/λ < 1. (2.177)

There are no stringy excitations down the throat.
2. λ� 1; Then by (2.175) we have

√
λE0�s � 1, or:

E0�s � 1/
√
λ, (2.178)

but we also have 1/
√
λ 
 1 and thus we can have stringy modes down the

throat. This happens because the energy of these modes is so red-shifted that, at
infinity, we still have E∞ = √λE0 � 1 even if we consider excitations with e.g.
E0�s ∼ n 
 1 so long as n

√
λ� 1.

We conclude that there can be stringy excitations down the throat only when λ� 1.
These are decoupled from the asymptotic region due to the redshift.

Thus the closed string picture we arrive at is one where the spacetime has a
throat region and an asymptotically flat region and, at low energies, these regions
are decoupled from each other. As in the open picture we are interested in the throat
region near the brane itself let us examine what that region looks like in more detail
(Fig. 2.26).

Throat Geometry

Let us consider the geometry of the throat. First we put Z p = 1 effectively setting
Q p = 0. We can later add the momentum as excitations on the throat geometry.
Deep in the throat we have r � √λ �s and hence
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Fig. 2.26 We consider low-energy excitations E∞�s < min (1, 1/
√
λ). Left in the regime λ
 1,

we have a field theory describing open string theory, right for λ � 1, we can have a “stringy”
black hole, with (open) string excitations and gravitons down the throat, which decouple from the
asymptotic geometry

Z1,5 ∼ λ(�s)
2

r2 . (2.179)

The geometry becomes

ds2 = r2

λ�2
s
(−dt2 + dx2

5 + . . .)+ (λ�2
s )

dr2

r2 + λ�2
s dΩ2

3 + ds2(T 4). (2.180)

This is the geometry of Ad S3 × S3 (times a constant volume T 4). The radius of
anti-de Sitter space and the three-sphere are equal and set by λ in string units:

RAd S = RS =
√
λ�s . (2.181)

Note that the geometry Ad S3 × S3 × T 4 is a solution to the equations of motion
itself, essentially because the equations for the warp factors

ΔZi = 0, (2.182)

are insensitive to the presence or absence of the integration constant, h, in the
harmonic functions Z = h + Q/r2 and it is this feature which distinguishes the
Ad S3 × S3 solution from the flat-space one.

2.5.2 Putting it All Together: AdS/CFT

Let us now put together the various pieces we have assembled. Recall that we claim
that there is an open-closed duality meaning that we are free to use open or closed
strings to describe a given system. The system we are interested in is the D1-D5-P
system. We study this system in the particular low-energy limit (2.169). Note that
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this limit is phrased in terms of dimensionless parameters E�s so it is a consistent
“decoupling” limit; we can formally take a limit sending E∞�s → 0 and this defines
a completely independent subsector of the original string theory.

When taking this limit what we find is that:

• In the open description the open strings on the brane decouple from the physics
off the brane and furthermore only the massless open strings survive. Thus open
string theory reduces to supersymmetric Yang-Mills on the D-brane. At λ � 1
this theory is weakly coupled and can be studied. When λ 
 1 this becomes a
strongly coupled gauge theory and it is hard to compute anything.
• In the closed description the closed strings near the horizon (down the throat)

decouple from those asymptotically far away so there is a self-contained closed
string theory living on Ad S3 × S3 × T 4. When λ 
 1 only light excitations
survive the low-energy limit so we are left with supergravity on the aforementioned
spacetime but when λ� 1 stringy modes can be excited so the theory really is a
full string theory.

The statement of AdS/CFT, which we see is just a low-energy limit of open-closed
duality, is that the two descriptions listed above are in fact equivelent! Put another
way supersymmetric Yang-Mills on a D-brane is equivelant to a string theory on
an AdS spacetime. When the gauge theory is weakly coupled (λ � 1) the AdS is
very stringy and thus its hard to study it (many massive string modes are excited).
On the other hand, when the gauge theory is strongly coupled (λ 
 1) the closed
string theory on AdS reduces to supergravity leading to the remarkable observation
that we can understand strongly coupled gauge theories by studying semi-classical
supergravity! This is the primary reason why AdS/CFT has been so fruitful in the
last years.

It should be emphasized that all the statements made above were made in the
limit of sending N → ∞ and gs → 0 while keeping the combination λ = gs N
as a free parameter. Thus the gauge theories above always have very large gauge
groups SU (N ) with N → ∞. The duality between gauge theory and closed string
theory is believed to hold even for finite N and there are numerous computations
checking 1/N corrections to the above. This regime is much harder to study however
as making N and λ finite means that gs can no longer be zero and we need to consider
higher loop diagrams in string theory or supergravity and this is quite hard.

2.5.3 AdS/CFT Dictionary

In Table 2.7 we collect the various equivalences implied by AdS/CFT. When the field
theory is weakly coupled, the AdS space has a very small radius L and string theory
corrections are important (strongly coupled string theory on AdS). When the field
theory is strongly coupled, the AdS space is large and well described by classical
supergravity. In terms of couplings this means that for small λ, we have good control
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Table 2.7 Equivalence between open string and closed string theory for various values of λ

Yang-Mills on a D-brane Closed string theory on AdS

Decoupled sector: Closed strings
gauge theory on a brane down the throat
No strings/no gravity Full, closed string theory
λ: gauge (’t Hooft) coupling constant λ = L/�s : size of AdS in string units
N : rank of gauge group N = L/�p: size of AdS in Planck units
λ small: weakly coupled AdS small→ stringy
Control No control
λ large: strongly coupled AdS large→ Supergravity
No control Control

of the gauge theory, whereas for large λ, we have good control of the gravitational
anti-de Sitter physics.

Note that unlike string theory in flat space where the only parameter is gs ∼
f (�s/�p) in AdS there is an additional dimensionful scale, L , the AdS radius, allow-
ing us to define two independent parameters: N and λ. Following the discussion
above we see that in gauge theory, N is the rank of the gauge group while in gravity,
N is the size of the AdS space in Planck units (while λ is the size of AdS in string
units). The inverse AdS radius measured in Plank units, 1/N , provides the natural
perturbative parameter for quantum gravity in the bulk; i.e. this parameter enters in
loop corrections for both gravity and string theory. Thus the limit of an infinite num-
ber of colors, N → ∞ is nothing other than the classical limit in the AdS theory!
While this may seem like a somewhat strange statement it in fact parallels a well
known statement in gauge theory that at large N the dynamics of the gauge theory
become much simpler (see [27] for an explanation).

Exercise 2.5.13 Show that the AdS length (size of the D1-D5 black hole throat) in
string units is set by λ, and in Planck length by N:

λ = L/�s, N = (L/�P )n (2.183)

for some number n. Find n.

Because supergravity is only valid at large N , we only understand large N gauge
groups from supergravity. On the other hand, we could invert this to maybe learn
quantum gravity from small N gauge groups. For instance, for N = 2, 3 the size of
AdS space is a few Planck units and gravity is strongly coupled.

Note that the AdS/CFT correspondence is a conjecture. We haven’t proven any-
thing, we have just given motivation! It is very hard to prove: a proof would require
a detailed knowledge of strongly coupled field theories. However, it is very well
established as many very non-trivial computations (not necessarily protected by
symmetry) have been found to match on both sides and thus most string theorists
hold it to be true. In some sense it is nothing more than the low energy limit of the
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much more powerful open/closed string duality hinted at by Fig. 2.18. The closed
string exchange between D-branes, which can be interpreted as a tree level open
string diagram, has all the massive modes implicit. For AdS/CFT, we only consider
the massless, non-oscillatory modes.

Formal AdS/CFT Duality

The correspondence can be formalized by equating the path integrals of the two
theories:

ZCFT(λ, N ) = Z string
IIB (λ, N )|on asympt. AdS space . (2.184)

This equality summarizes the AdS/CFT conjecture.
We often restrict to λ very large, and then we get an equivalence between large ’t

Hooft coupling CFT and IIB supergravity on an asymptotically Ad S space:

ZCFT(λ→∞, N ) = Z sugra
IIB (N )|AdS, (2.185)

where sugra stands for supergravity. Schematically, we can write the supergravity
path integral as

Z sugra
IIB (N ) =

∫
Dg exp

(
−

∫ √−g(gravitons+ . . .)

)
, (2.186)

there are other fields besides the metric g, but let’s just forget about them for the
sake of the argument. When N is large, we are doing classical supergravity: at fixed
λ = gs N , loops are suppressed because gs is small. Then we can perform a saddle
point approximation around the minima of the action (the classical solutions to the
equations of motion), and the large N approximation is

Z sugra
IIB (N →∞) =

∑
i

e−Si , (2.187)

The sum runs over solutions to the equations of motion (saddle points) and it is
actually possible to calculate its main contributions. In the limit λ → ∞ (large ’t
Hooft coupling) and N → ∞ (planar limit), states in the CFT are hence related to
classical solutions in AdS.

The left-hand side of (2.185) is always well-defined because CFTs are formally
well-defined objects. Thus, as a consequence of the AdS/CFT correspondence, the
right-hand side is also well defined: quantum gravity on AdS spaces is hence better
defined than a generic QFT!
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2.5.4 Entropy Counting

A black hole solution has an entropy and a temperature. Thus the natural candidate
dual in the CFT is an ensemble of states corresponding to a thermal density matrix
with the same quantum numbers as the black hole (in particular the mass). Such a
density matrix has the following form

ρB H =
∑
ψ

e−βH |ψ〉〈ψ|. (2.188)

At high temperature there is no difference between the microcanonical and the canon-
ical ensemble. Therefore we can work with the temperature, the thermodynamic dual
of the mass, rather than with the mass itself.

Remember the set-up of the D1-D5-P system wrapped on T 4×S1 of Fig. 2.20. The
CFT that describes this system lives on the two-dimensional spacetime formed by
the common circle on which the branes are wrapped and the time direction: S1×Rt .
(This is the CFT dual to the Ad S3 near-horizon geometry of the D1-D5 black hole.)

Cardy gave us a formula for the entropy in a CFT at high temperature, irrespective
of the coupling:

S ∼
√

cL0

6
, (2.189)

where L0 is the momentum along one direction, and c is the central charge. Although
we will not justify this formula (it is a standard result in the study of 2d CFTs) let
us note that it gives the number of states at a given level, L0, in a CFT with central
charge c. Because we are assuming the black hole to correspond to a thermal ensemble
which is essentially a sum over all states we can use this formula and simply substitute
in the black hole quantum numbers that give c and L0 via AdS/CFT.

Note that Cardy’s formula has the same form as the entropy computed using our
a simple free oscillator counting. There c was the “entropy density”. For a boson
in a free theory, c = 1, for a free fermion one has c = 1/2. But the CFT we are
considering here is strongly coupled since we want a large classical black hole so
λ 
 1 (as is N ). Thus we cannot simply model the system using free fields but the
great virtue of Cardy’s formula is that it holds for any CFT, even a strongly coupled
one. Moreover, it does not rely on any assumption of supersymmetry so this is a
qualitatively different way of computing the degeneracy (recall that we were able
to use a “free” open string picture in our previous counting because we argued, via
supersymmetry, that we could work in the small λ = gs N regime and then simply
tune λ to large values without changing the number of supersymmetric states).

For gravity on an AdS space, the central charge of the dual CFT is the AdS length
in Planck units (we will motivate this partially below):

c = L

�P
, (2.190)
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Note, as expected (for the entropy to be invariant), this quantity is independent of
the coupling but depends only on the D1-D5 charges:

c = N1 N5. (2.191)

On the other hand this would not be the case if the central charge was the AdS length
in string units, because then c would be equal to

√
gs
√

N1 N5 and hence coupling-
dependent. The fact that c is independent of the string coupling gs is very important,
because it assures that the entropy (through the Cardy formula) is independent of the
coupling as well.

If we put the momentum excitations on the D1-D5 Ad S3 throat to match the full
D1-D5-P black hole solution then in the dual CFT this corresponds adding light-like
momentum along the string that the dual CFT lives on. Although we will not review
this in detail it simply follows because the quantum numbers in the CFT can be
matched to those in AdS and under this identification momentum waves in the bulk
simply correspond to momenta along the CFT worldsheet. Thus, like the spacetime
momentum21 the momentum in the CFT is chiral and thus corresponds to a state
with non-vanishing L0 ∼ Np. Thus Cardy’s formula gives the entropy

S ∼
√

N1 N5 Np

6
. (2.193)

This does not rely on weak coupling but rather is valid for any value of gs .
We have now argued, via AdS/CFT correspondence, that a thermal ensemble in

a strongly coupled CFT is dual to a black hole geometry, and that we can use the
Cardy formula to compute the entropy. Let us briefly motivate the identification of
the central charge which we recall is

c = N1 N5. (2.194)

From the original brane theory this is not hard to believe as the dominant degrees of
freedom are the 1-5 strings and there are N1 N5 of them (recall that the central charge
of a CFT is some measure of the degrees of freedom). This can be seen another way:
in a 2d CFT, the partition function at high temperature goes as

ZCFT ∼ ecT , (2.195)

and hence the entropy goes as

S ∼ log ZCFT ∼ cT . (2.196)

21 Remember that the metric of the D1-D5-P system looks like

ds2 = −dt2 + dx2
5 + Z pdx2−, (2.192)

with dx− = dt − dx5. This fixes a particular chirality of the plane wave.
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Table 2.8 For
supersymmetric black holes,
we can match the
Bekenstein-Hawking entropy
from a weak coupling
computation

Smicro
BH = Smacro

BH

↓ ↓
log(N ) AH /4G N

Weak coupling Strong coupling

This also shows why we can interpret c as the entropy density.
Questions from the audience:

• The black hole is extremal. How can there be a (CFT) temperature? In CFT, there
is a left and a right temperature, related to the total amount of left- and right moving
excitations. Using the null circle x− (or x+ if we would have that coordinate in
the metric), gives a length of this thermal circle that gives a temperature TL (TR

for x+). The total temperature of a thermal ensemble of states is related to those
temperatures as

1

T
= 1

TR
+ 1

TL
. (2.197)

TL and TR are in fact chemical potentials for the quantum numbers L0 and L̄0 in the
CFT; these measure the number of left and right moving light-light momentum
waves. In the extremal D1-D5 setup, we only have left-moving excitations and
hence TL �= 0, but still TR = 0. Therefore the BH temperature T is zero, even
though there is a “left-moving temperature” TL .
• We have treated AdS/CFT. Here we had Ad S3 of the near-horizon plus the dual

CFT. What happens if you insert a black hole inside an asymptotically AdS space?
Consider AdS with a black hole inside it. This corresponds to a CFT at a non-zero
temperature T (so both TL and TR are non-zero), see Table 2.5.

2.5.5 Non-supersymmetric Black Holes

For supersymmetric black holes, we have seen that the microscopic entropy matches
the macroscopic one as in Table 2.8.

We have seen two arguments why the weak-coupling, microscopic calculation
gives the correct result for the entropy of the black hole at strong coupling:

• An index which is protected by supersymmetry: it can be calculated at weak
coupling and continued to strong coupling.
• AdS/CFT correspondence. The result for the entropy uses the Cardy formula and

can be calculated regardless of the coupling, as long as we high temperature states
in the CFT (here temperature includes left or right moving temperature).

Both these arguments rely on supersymmetry but in different ways. The first
argument requires supersymmetry by construction whereas Cardy’s formula holds
in any 2d CFT, even one without supersymmetry. Unfortunately only supersymmetric
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black holes have near-horizon AdS3 factor which allow us to use AdS3/CFT2 and
invoke Cardy’s formula. What about non-supersymmetric solutions in asymptotically
flat spacetime? The index will no longer be protected, and we cannot rely on the
AdS/CFT correspondence anymore, because the near-horizon solution of a non-
extremal black hole does not have an AdS factor.

On the other hand we can consider non-supersymmetric asymptotically AdS black
holes (black holes embedded in an AdS spacetime rather than flat space). We can put
a non-extremal black hole (black hole with a non-zero temperature) in Ad S5 × S5.
Without the black hole, the geometry is dual to a conformal field theory, namely
N = 4 Super-Yang Mills theory. It is a supersymmetric and conformal (there is no
dimensionful scale) field theory that is very similar to QCD.

When we put a black hole in spacetime, this is dual by the AdS/CFT correspon-
dence to heating up the CFT, and hence introducing a scale. This is the setup of
Table 2.5.

A high temperature excites the many states of this field theory (gluons, fermi-
ons…), and therefore you get an entropy, a number of states that are excited at a
given temperature. The temperature breaks both conformal invariance and super-
symmetry in the field theory and we get a non-supersymmetric state corresponding
to the black hole.

We can repeat the counting of the previous section and find the entropy, both in
the field theory (a non-trivial calculation involving fermions, SU (N ) gauge groups
and so on) and in gravity (an easy calculation using the horizon entropy). One finds:

with

a(N ) = 2π2

3
N 2. (2.198)

A pedagogical derivation of this result can be found in [29].
The supergravity entropy only sees three quarters of the entropy of the microscopic

counting. We can interpret this as the degrees of freedom that are changing. The field
theory computation above is done at weak coupling (λ � 1) where we can easily
compute whereas the black hole, which must be large in string units, corresponds
to large values of λ. Thus there is some less of states as the spectrum shifts about
from weak to strong coupling in Fig. 2.27. Note that this does not happen in the
supersymmetric case because of the supersymmetric index is a protected quantity.

The fact that the entropy at a fixed energy changes as we vary the coupling should
not be too surprising. Asλ is increased various states will receive quantum corrections
to their energy and the spectrum will shift about in a complicated way.
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Fig. 2.27 A sketch of the
entropy as a function of the
coupling for the black hole in
Ad S5 × S5 (see Fig. 2 in [30]
for a detailed graph)

It turns out that there are other quantities which are also relatively robust so we
may hope to compute them using AdS/CFT. That is to say there are quantities which
are shared by a large class of theories—a universality class—which we may hope
contains both N = 4 SYM (the CFT which is dual to string theory on AdS5) and
other more physically relevant theories like QCD (or perhaps all Yang-Mills like
theories). Since such quantities don’t depend strongly on the detailed structure of the
theory we can try to apply AdS/CFT to compute them even if we do not yet know
the dual of QCD. Another way of thinking of this is that the gravity dual of N = 4
SYM captures the strong coupling dynamics of a gauge theory and it may be that at
strong coupling gauge theories display certain universal behavior.

As an example, take two fundamental properties of fluids in such theories: the
entropy density s and the viscosity η. The entropy to viscosity ratio η/s for the
quark gluon plasma of QCD can be observed experimentally. In the large N limit the
value of η/s can be found exactly in N = 4 SYM, from a weakly coupled gravity
computation, and this value is of the same order as the observed value in the RHIC
collider, see Table 2.9. Moreover, any calculation in the string theory ballpark always
gives the same value of η/s = 1/4π. This is all the more intriguing because existing
QCD theories (in which it is difficult to compute strongly coupled quantities) find a
number which is off by an order of magnitude.

For this reason, people use AdS/CFT to describe strongly coupled QCD, and
also strongly coupled condensed matter theories (so-called AdS/CMT, for instance
for superconductors at strong coupling). In fact, this has been the main use of the
AdS/CFT correspondence so far and this entire field can be put under the name
“holography”. There are many articles which can lead you in this direction, see for
instance the previous courses on holography at IPhT [31, 32] (see also [33]).

Table 2.9 Entropy to
viscosity ratio

η/s Theory/Experiment

1/4π ∼= 0.0796 N = 4 SYM
0.12± . . . QCD (Experiment)
O(1) QCD (Theory)



128 I. Bena et al.

2.6 The Fuzzball Proposal and Black Hole Hair

In this section, we elucidate the idea that black hole entropy is explained by the
existence of a large number of ‘black hole microstate’ solutions. These are geome-
tries that are solutions to the equations of motion of string theory, have no horizon
themselves, but should come in large enough numbers to account for the black hole
entropy.

Let us get back to the main problem. We have a microscopic and a microscopic
entropy, which agree numerically, but both are valid in different regimes. As an
example, think about the air in a room. It is made up out of many molecules. Still, we
can extract the entropy without reference to the microscopic state of the molecules
through equations of state:

pV = n RT,

d E = T d S + pdV . (2.199)

We can determine the entropy S without knowing what air is made of—thermody
namically, the entropy is a measure of the energy change in a system on which we
have no control or understanding (in contrast to the work term pdV , which we control
very well).

So much for thermodynamics, on to statistical mechanics. Boltzmann has taught
us that for a given energy E and temperature T , all N different states of the molecules
in the room make up the entropy as:

Smicro = log(N ). (2.200)

This connection between statistical mechanics and thermodynamics is already 150
years old. Does it work for a black hole too? Can we find a number of microstates
N for a black hole with a given set of mass and charges, such that SB H = log(N )?

At this point, the programme we followed so far is incomplete. The microscopic
calculation (“statistical mechanics”) takes place in one regime, but this statistical
description is not valid when gs N � 1. We have the following question:

• Say you take a state that makes up the entropy in the microscopic calculation.
What happens if you follow such states one by one and bring them over to strong
coupling?

People believed for a long time that as gravity grows stronger, a horizon forms
around the D-branes and the objects end up “being” the black hole [34–38], see
Fig. 2.28. Because gravity is always attractive, you expect that as you make New-
ton’s constant larger, increasing the gravitational attraction, “normal” objects only
becomes smaller. Only a black hole grows with increasing G N , as the horizon radius
for a (Schwarzschild) black hole scales with Newton’s constant as

rH = 2G N M, (2.201)
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Fig. 2.28 At low G N
(gs � 1), the would-be black
hole horizon is of smaller or
equal size as the brane system.
For large G N , the black hole
horizon is much bigger than
the size of the D-brane system
at weak coupling

with M the mass of the black hole. Thus the horizon actually grows when you make
gravity stronger. Take for instance a neutron star. This is a charge neutral object.
Imagine a thought experiment in which we scale up Newton’s constant G N . The
horizon radius of a black hole that has the same mass as the neutron star will become
larger until for a certain large value of G N , the neutron star collapses into a black hole.
This intuition caused people to think for a long time that whatever state you take out
of the exp(2π

√
N1 N2 N3) black hole microstates in the weak coupling description,

all of them become a black hole with a singularity in the middle.
We can represent this pictorially. Say we have three microstates made up out

of open strings on D1-D5 branes in the decoupled regime, as in Fig. 2.29. As we
make gravity stronger, all of these would seem to fall behind the horizon and the
information of the state making up the black hole is in the region near the singularity.

We discussed earlier the information paradox: We can throw anything into the
black hole, but within GR, this information gets lost and never comes out, as the black
hole evaporates into thermal radiation. Since the Hawking radiation process deals
with the region around the black hole horizon, the intuitive picture of what happens
to a brane microstate does not solve the problem. The horizon region is in the causal
past of the singularity and physics in this region has no idea of what happens at the

Fig. 2.29 In the naive picture, cranking up G N puts the information of the microstate 1,2 or 3 into
the garbage near the singularity
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Fig. 2.30 The ‘fuzzball pro-
posal’: cranking up gs gives
a complicated state of strings
and branes of horizon size

singularity. All information still sits near the singularity and the information paradox
is still there.22 In fact, if we want to evade the information problem, arguments by
Mathur show that one needs large corrections to the black hole geometry near the
horizon [39].

Through the D1-D5-P black hole and the AdS/CFT duality, we should be able to
find the CFT process dual to Hawking radiation. In CFT, we can actually address
this problem.

In recent years, it has become clear that certain black hole microstates actually
grow with G N just as the black hole does! Look at a microstate. As gs grows large,
they actually become bigger and will be of the same size as the would-be black hole
horizon, see Fig. 2.30. It is an ongoing task to find the actual geometries describing
the strong coupling equivalent of the D-brane microstates. For such microstates that
are of a size comparable to the black hole’s, Hawking evaporation will know about
what information made the black hole.

The main problem with this proposal is that you need to explicitly construct
‘microstates’ of the same size as the black hole horizon. The black hole horizon
grows as G N , but most things get smaller for increasing G N . We need some very
special objects. We will show how to build such growing states that correspond to
the CFT we counted at gs small. These will not have a horizon at large gs .

The largest success of this proposal has been in the constructing of supersym-
metric microstate geometries, see [40–45] for reviews. However, supersymmetric
black holes do not radiate, and there is no comparison of the Hawking process. For
non-supersymmetric radiating black holes, some large G N microstates (‘microstate
geometries’) have been constructed [46, 47]. They radiate and the Hawking radiation
rate of the black hole agrees nicely with the decay of these states [45, 48–51].

We will review how to count the number of microstate geometries for supersym-
metric black holes, using an appropriate quantization technique. So far, the number of
microstate geometries found is subleading when compared to the black hole entropy.
Ongoing research tries to construct more microstate geometries, see [52–54]. For
work on non-supersymmetric multi-center solutions and microstate geometries, see
[55–58].

22 The information paradox leads to a breakdown of unitarity in quantum theory and hence a
breakdown of quantum mechanics itself. If we want to save quantum mechanics, we need to make
sure there is no information loss.
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Note that we have come at the frontier of research: we have some hints about
it, but people do not know yet if the proposal is generally true or not. In the next
section we will show how to build (certain) fuzzball solutions for the supersymmetric
3-charge black hole.

2.7 Multi-Center Solutions

In this section, we show how to construct five-dimensional multi-center solutions
that generalize the string theory black holes we have seen earlier. The microstate
geometries for the black hole, or classical fuzzballs, will be in this class.

2.7.1 Preliminaries

In this section, we discuss some necessary basics on differential forms and their
application in electromagnetism, and we explain the notation we use in the remainder
of the text. We also give some exercises that illustrate an important new term (as
opposed to Maxwell theory) in the supergravity action, the Chern-Simons term. This
new terms allows for solutions with ‘charge dissolved in fluxes’, a crucial ingredient
for the construction of microstate geometries. The reader familiar with these concepts
can skip to the next section on the construction of multi-center solutions.

Differential Forms, Einstein-Maxwell, Sources

We review the following notions, by means of exercises:

• Differential forms, form notation and the definition of the Hodge star operator �.
• ‘True’ magnetic sources (monopoles) versus ‘moving electrons’.
• Sourced electromagnetism in flat space and in curved space (Einstein-Maxwell).

Consider electromagnetism. The anti-symmetric two-form is related to the electric
field E and magnetic field B as

Fμν =

⎛
⎜⎜⎝

0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

⎞
⎟⎟⎠. (2.202)

In terms of this matrix, the Maxwell equations in vacuum are:
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∂μFμν = 0,

∂[μFμν] = 0. (2.203)

In form notation they are equivalent to

d � F = 0,

d F = 0. (2.204)

The first expression is the equation of motion that follows from the Lagrangian of
electromagnetism:

S = 1

2

∫
�F ∧ F = 1

4

∫
FμνFμν . (2.205)

The second equation is the Bianchi identity, which just says that locally F is the
exterior derivative of a potential F = d A, or Fμν = ∂μAν − ∂ν Aμ in form notation.

Exercise 2.7.14 If you are not familiar with the expressions (2.204) (exterior deriv-
ative, Hodge star operator �), read up on it in a book on differential geometry and
show that the Eqs. (2.203) and (2.204) are equivalent.

In particulate, we normalize m-forms as

A = 1

m! Aμ1...μm dxμ1 ∧ . . . dxμm . (2.206)

The exterior derivative acts on an m-form to produce an (m + 1)-form as

d Am = ∂Aμ1...μm

∂xν
dxν ∧ dxμ1 ∧ . . . dxμm , (2.207)

and in d dimensions the Hodge star � takes an m-form to an n = d − m form as
follows

(�λ)μ1...μn :=
1

m!
√
g εμ1...μnν1...νm g

ν1ρ1 . . . gνmρmλρ1...ρm . (2.208)

Here ε is the totally antisymmetric tensor.

Recall that in electromagnetism we can generate a magnetic field by accelerating
an electron. However, while a speeding electron generates a magnetic field it does
not generate a magnetic charge. This is because electric charge only appears in the
equation

d � F = q δ(x), (2.209)

whereas the magnetic charge sources the Bianchi identity

d F = m δ(x). (2.210)
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The difference between these two is the following. If m = 0 then d F = 0 everywhere.
In flat space this implies there exists a globally defined one-form, A = Aμdxμ, the
vector potential, such that F = d A. If on the other hand m �= 0 then at the origin
F is not closed. Hence there is no globally defined object A such that F = d A.
However, we can still define an object A everywhere away from the origin (or define
it patch-wise). As a side note one might object that solving the electric equation
requires something like A0 = q/r , which is singular at the origin. However, we can
always smoothen this singular source by allowing a charge distribution (for instance
by replacing qδ(x) with a Gaussian qe−qr2

). The same trick will not work for m
because the Eq. (2.210) has d F = dd A which is identically zero if A is globally
defined.

To write a general field strength that includes both electric and magnetic charge
we can do the following. We write

F = d A +Θ, (2.211)

with A a global one form encoding the electric charge (and perhaps some part of the
magnetic field) via d�d A = qδ(x). The two-form Θ on the other hand is not globally
of the form d(something) but rather satisfies dΘ = mδ(x) and hence encodes the
part of the field strength coming from the magnetic charge. To see this recall that the
definition of the magnetic charge is the integral of the flux through an S2 around the
origin:

m = 1

4π

∫
S2

F = 1

4π

∫
S2

(d A +Θ) = 1

4π

∫
S2

Θ, (2.212)

where the last equality follows because S2 is a compact manifold without boundary
and d A is a total derivative of a globally defined object. Hence the integral

∫
d A

vanishes by Stokes’ theorem.
The ‘electric part’ of the gauge field, A, solves d � d A = qδ(x). It can be found

by thinking of A as harmonic ∇2 A = δ(x). This equation has solutions of the form
A = q

r dt (actually there is a larger class of solutions constructed of polynomials of
the coordinates but the latter are not normalizable). For the solution of Θ , we refer
to Exercise 2.7.15.

Exercise 2.7.15 Write Θ = d B where B is only locally defined such that the integral
(2.212) gives the magnetic charge m. (Find the form of B first). Hint: Explicitly
construct

B = f (θ)dθ ∧ dφ, (2.213)

using polar coordinates for the flat metric ds2
3,flat = dr2+r2(dθ2+sin2 θdφ2), such

that
∫

d B = 4πm, with m a constant.

Note that when we couple electromagnetism to gravity (Einstein-Maxwell theory),
the equation d � F = δ(x) involves the metric via the Hodge star. Hence the solution
becomes more complicated. It turns out that the metrics of the D-brane type have
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solutions that look like
A = H−1dt, (2.214)

where H is some harmonic function that determines the solutions and appears in
the metric. Typically, in four dimensions harmonic functions are H = 1+ q/r , and
asymptotically (r →∞), we recover the flat space solution A = −q/r dt .

Important Exercises: Chern-Simons Action

We show how the appearance of new terms in the supergravity Lagrangians (com-
pared to electromagnetism) can allow for ‘fuzzball’ solutions.

The Lagrangian of electromagnetism coupled to gravity in four dimensions is

L4 = 1
4

√−gFμνFρσg
μρgνσ (2.215)

= 1
2 � F ∧ F. (2.216)

This is the gauge and Lorentz invariant action for the Maxwell field Aμ. In five
dimensions, an extra term is possible:

L5 = 1
4

√−gFμνFμν + 1
12 ε

μνρστ AμFνρFστ

= 1
2 � F ∧ F + 1

3 A ∧ F ∧ F. (2.217)

This new term seems to be breaking gauge invariance. Consider the gauge transfor-
mation:

Aμ→ Aμ + ∂μλ, (2.218)

with λ a function. The field strength Fμν = ∂μAν −∂ν Aμ is clearly gauge invariant.
The second term in the five-dimensional Lagrangian has a “naked” Aμ and you might
expect it is gauge non-invariant. The exercise asks you to prove this intuition wrong.

Exercise 2.7.16 Show that in five dimensions, the Chern-Simons action

SC S =
∫
εμνρστ AμFνρFστ . (2.219)

is invariant under gauge transformations (2.218). It suffices to show that the integrand
is invariant up to a total derivative.

Most extensions of general relativity based on string theory (in particular super-
gravity) have such a term. So it is important to study its physical consequences.23

23 It is also important for confinement in supersymmetric holographically dual gauge theories
through the AdS/CFT correspondence, but that is another matter. See [59, 60].
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Choose coordinates x0, x1, x2, x3, x4 in five dimensions. Remember that a static
electron couples to the gauge field as

∫
A0dt. (2.220)

Because of the term (2.219), a non-trivial A0 is sourced by magnetic terms F12 F34
through the equations of motion, which schematically have the form ∂i F0i = F12 F34
(see Exercise 2.7.17). Even if you don’t have electrons, but just magnetic fields of
two different kinds, you can have electric fields!

Exercise 2.7.17 Derive the equations of motion for Aμ following from the action
(2.217):

d � F = F ∧ F. (2.221)

Show that you can source electric fields with magnetic fields along different direc-
tions, by working this out in components (including the metric components involved
in the Hodge star operation).

In the literature, one refers to solutions with this mechanism (magnetic fluxes
giving a net electric charge) as solutions with charges dissolved in fluxes.

We will use this kind of solutions with charge dissolved in flux to build microstate
geometries. In fact, this mechanism is crucial for the existence of microstate geome-
tries. The absence of such a term in regular electromagnetism is also the reason
people had not found black hole microstate geometries before the advent of string
theory. This mechanism is widely used in other solutions as well, such as flux com-
pactifications used for the construction of string vacua, see [61] for a review.

2.7.2 Building General Solutions

We discuss how to obtain new solutions with ‘charge dissolved in fluxes’. We do this
in a stepwise fashion: first we discuss the five-dimensional black hole (without and
with rotation), and then we show how to put in magnetic charges.

M2-M2-M2 Black Hole

Let us write down a five dimensional electrically charged black hole by starting
in M-theory (11-dimensions) and writing a solution down that involves a compact
six-torus. Recall in particular, the supergravity solution for the (supersymmetric)
M2-M2-M2 brane system
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ds2 = −(Z1 Z2 Z3)
−2/3dt2 + (Z1 Z2 Z3)

1/3ds2(R4)

+ (Z2 Z3)
1/3

Z1/3
1

(dx2
1 + dx2

2 )+ (Z1 Z3)
1/3

Z1/3
2

(dx2
3 + dx2

4 )+ (Z1 Z2)
1/3

Z1/3
3

(dx2
5 + dx2

6 ).

(2.222)

This solution describes five space-time dimensions because we actually take the
coordinates x1, . . . , x6 to be compact (xi ∼ xi + 2πLi for i = 1, . . . , 6. They
describe a six-torus T 6. We write the T 6 as the product of three two-tori T 2.

The M2-branes are all point-like in the transverse R
4 spanned by x7, x8, x9, x10

which we can write in radial coordinates

ds2
4 = dρ2 + ρ2dΩ2

3 (2.223)

and the five-dimensional black hole is determined by the functions:

Z1 = 1+ Q1

ρ2 , Z2 = 1+ Q2

ρ2 , Z3 = 1+ Q3

ρ2 . (2.224)

The unusual power 2 rather than 1 in the denominator is because we are solving this
equation in four rather than three space dimensions. Note that we refer to the radius
in R

4 as ρ, to avoid confusion with r for the radius of R
3.

These functions are defined simply by requiring them to solve the equation:

�4 Z I (x) = QI δ(ρ) (2.225)

where �4 · = √g4
−1∂i (

√
g4g

i j
4 ∂ j ·) is defined with respect to the four-dimensional

flat metric in the solution above (on R
4). This equation says that we have M2 sources

sitting at the origin of R
4 with charges QI . The 1 in the equation above is simply

a homogeneous solution we are free to add to any given solution to the Eq. (2.225).
Since this equation is linear we are free to superimpose solutions (adding delta
function sources). Hence the most general solution corresponds to an arbitrary num-
ber of M2 sources at various positions ρp ∈ R

4 and p labels the “centers”:

Z I = constant+
∑

p

Q p

|ρ− ρp|2 (2.226)

See Fig. 2.31.
Recall that in M-theory we have a 3-form gauge potential and for the solution

above it has the following form

C012 = Z−1
1 , C034 = Z−1

2 , C056 = Z−1
3 . (2.227)

By “compactifying” on the x1, . . . , x6 directions we can think of this as a five-
dimensional solution times T 6 and one can show that this six-torus is actually small
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Fig. 2.31 Multiple M2-brane sources in R
4. Each source can correspond to three types of M2-branes

wrapped on a T 2 inside T 6, and smeared in the other torus directions

(the length of each cycle is order 1 in string units) so at low energies this space-time
looks five-dimensional. In this case the different components of the three-form C3
reduce to three independent gauge fields AI

μ in five dimensions:

A(1)
μ = Cμ12, A(2)

μ = Cμ34, A(3)
μ = Cμ56 (2.228)

And likewise there are three field-strengths, F (I ) = d A(I ) with I = 1, 2, 3. In form
notation, the four-form F4 = dC3 of M-theory is then given by

F4 = F (I ) ∧ ωI = d(Z−1
I dt) ∧ ωI = (∂ρZ−1

I )dρ ∧ dt ∧ ωI , (2.229)

where we defined the volume forms on eqch two-torus:

ω1 = dx1 ∧ dx2 , ω2 = dx3 ∧ dx4 , ω3 = dx5 ∧ dx6. (2.230)

In five dimensions the solution given by the functions Z I of (2.224) is a spherically
symmetric, electrically charged black hole in R

1,4. We can generalize this solution
in three ways, and we will do so in the remainder of this section, by:

• Adding angular momentum
• Adding magnetic charge
• Adding a more complicated base space (instead of R

4)
• (Adding a more general internal space that preserves supersymmetry in five dimen-

sions: a Calabi-Yau manifold instead of a T 6. We will not do this explicitly in these
lectures.)

Multi-center solutions with these ingredients can describe black hole microstate
geometries.

Adding Angular Momentum

The first generalization is to add angular momentum to this solution. We do this by
replacing dt in the metric with dt + k where k = ki (x)dxi (i = 7, 8, 9, 10) is a
one-form in the four-dimensional base space:
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ds2
5 = −(Z1 Z2 Z3)

−2/3(dt + k)2 + (Z1 Z2 Z3)
1/3ds2(R4) (2.231)

We will only consider the five non-compact directions from now on. Since the gauge
field and metric are coupled via the equations of motion, adding angular momentum
to the metric modifies the gauge field as well:

F (I ) = d(Z−1
I (dt + k)) = d(Z−1

I ) ∧ (dt + k)+ Z−1
I dk. (2.232)

Note this field strength has magnetic F (I )
i j components (from ∂i k j ), because we have

a moving charge. Remember from Sect. 2.7.1 that this does not represent a genuine
magnetic monopole charge. This setup allows to describe a rotating supersymmetric
black hole [62].

By adding a k = ki (x)dxi term to the metric we get non-vanishing gti cross-
terms in the metric. Such terms imply that the space-time itself carries angular
momentum. This is not to be confused with being time-dependent. None of the
fields above, including the metric, contains any explicit dependence on the time
coordinate. A rather good analogy is to consider a featureless spinning ring in for
instance R

3, see Fig. 2.32. Since the ring is featureless nothing changes in time: the
ring is always just sitting there spinning and from one instance to the next every-
thing looks identical. Nonetheless, this solution carries angular momentum. In GR,
such solutions with mixed gti components but no time-dependence are referred to as
stationary. Solutions with no time dependence and gti = 0 are static.24

In R
4 there are two independent angular momenta, because we can think of R

4 as
R

2 × R
2: we have one independent angular momentum in each plane. For a single

centered black hole, supersymmetry, is only preserved if we force these two angular
momenta to be equal. This condition can be generalized as

(1+ �4)dk = 0 (2.233)

which implies k is self-dual. Here �4 is the Hodge dual defined on the flat R
4 given

by x7, . . . , x10. Note that acting on this with d we find d � dk = 0, meaning k is

Fig. 2.32 A uniformly
spinning ring with angular
momentum J around its sym-
metry axis

24 Stated without reference to a set of coordinates, ‘static’ means that the metric admits a global,
nowhere zero, time-like hypersurface orthogonal Killing vector field. A generalization are the ‘sta-
tionary’ space-times, which admit a global, nowhere zero time-like Killing vector field.
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a harmonic one-form. We will see later that by turning on additional fields, we can
relax the condition of equal angular momenta for supersymmetric solutions.

Exercise 2.7.18 Show that Eq. (2.233) is solved by (2.235). The constant J is pro-
portional to the angular momentum of space-time. See for instance Sect.2.2 in [20]
for more information on asymptotic charges.

Recall that without k we had the entropy SB H = √Q1 Q2 Q3 (up to numerical
factors). When we turn on k we get an asymptotic angular momentum J . It can be
read off from the asymptotic expansion of k in terms of the angles φ1 and φ2 in the
two orthogonal R

2-planes.
If we write the metric on R

4 = R
2 × R

2 as

ds2 = dρ2 + ρ2(dθ2 + sin2 θdφ2
1 + cos2 θdφ2

2), (2.234)

the asymptotically leading terms of the momentum one-form k are

k = J

ρ2 sin2 θdφ1 + J

ρ2 cos2 θdφ2, (2.235)

with J a constant.
One can compute the horizon area to be (up to a numerical prefactor)

S =
√

Q1 Q2 Q3 − J 2, (2.236)

We see that angular momentum reduces the entropy. From a macroscopic point of
view this is not hard to understand as the horizon is spinning very fast and this
causes it to Lorentz contract and shrink. If we try to spin it up too fast, to the point
that J 2 = Q1 Q2 Q3, the horizon shrinks to zero size and we cannot go further (at
least not with this ansatz). Although we will not say much about it, it is possible
to reproduce this entropy using techniques quite similar to those of Sect. 2.4 (and
indeed this was done shortly after the J = 0 entropy was first reproduced in [62]).
The supersymmetric black hole with rotation is often called BMPV black hole after
the authors of [62]. The interested reader can read more on microstate counting for
these rotating black holes in [20].

Magnetic Charges

Above we added angular momentum to the metric. Even though this sourced magnetic
components of the field strength, this was only so in much the same way as a moving
electron generates a magnetic field. While a speeding electron generates a magnetic
field it does not generate a magnetic charge as discussed in the preliminaries of
Sect. 2.7.1.

If we want magnetic charges we need to add a closed but not exact term to each
of the electromagnetic fields F (I ) which we denote by Θ(I ). The field strengths
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becomes
F (I ) = d

(
Z−1

I (dt + k)
)
+Θ(I ). (2.237)

Of course this would not be consistent without modifying the form of the metric as
well. It turns out this modification is rather straightforward. Recall that in the original
metric, the Z I were potentials sourced by delta-function sources at the locations of
the M2’s:

�4 Z I (x) =
∑

p

QI δ(x p) (2.238)

This source naturally corresponds to an electric field which must satisfy

d � F (I ) =
∑

p

QI δ(x p), d F (I ) = 0. (2.239)

Recall that in string theory we have peculiar terms in the action such as

S = 1

2

∫
F ∧ �F + 1

3

∫
A ∧ F ∧ F, (2.240)

which implies that magnetic flux in this theory can source electric charge via the
equation of motion

d � F = F ∧ F. (2.241)

This equation translates, in this setting, into a constraint on the functions Z I which
now are no longer simply sourced by a delta-function but look like

�4 Z I (x) = QI δ(x)+
∣∣∣�4[Θ(J ) ∧Θ(K )]

∣∣∣ , (2.242)

with I, J, K all different.
It is important to realize that what is happening here is that if we have two pairs

of magnetic charges in this theory they can induce electric charge. Thus even if
our solution has no explicit electric source (no delta function on the right-hand
side of (2.242)) there can be non-trivial electric charge carried by the fields F (I )

themselves. Note that this phenomenon, and even the equation above, should look
very familiar from non-abelian gauge theories where the gauge field sources itself
and carries electric charge (think of glueballs in QCD). The difference is that here
we are dealing with an abelian theory, and the non-linear interactions arise because
of the strange second term in the action (2.240).

While it is obvious that Θ(I ) must be closed away from sources this is not the only
constraint they must satisfy. It is harder to show but it turns out that supersymmetry
also imposes that the Θ’s appearing above are self-dual so that

Θ(I ) = �4Θ
(I ). (2.243)



2 Black Holes in String Theory 141

Angular Momentum from Crossed Fields

Recall from electromagnetism that when the electromagnetic field has both an electric
and magnetic component it carries angular momentum in the form of a Poynting
vector

J = E × B. (2.244)

While the original solution given above had angular momentum coming from the
metric (2.231) encoded in the mixed metric components gti ∼ ki , the addition of a
magnetic field changes the angular momentum. This comes from the supergravity
equation

(1+ �4)dk = Z1Θ
(1) + Z2Θ

(2) + Z3Θ
(3), (2.245)

which modifies (2.233) in a way that is essentially analogous to (2.244) with Z I

encoding the electric field and Θ(I ) the magnetic.

Exercise 2.7.19 For a flavour of why a constraint like (2.243) might follow from
supersymmetry consider the action for electromagnetism in four space-time dimen-
sions

S =
∫

F ∧ �F (2.246)

and decompose F = F+ + F− into self-dual and anti-self-dual parts F± =
1
2 (1± �)F. Rewriting the action in terms of F± show that it takes the form

S =
∫ (

F+ ∧ F+ − F− ∧ F−
)
. (2.247)

If we put F = F+ (or put otherwise F− = 0) then the action is a positive definite
perfect square. This is related, morally, to supersymmetry because the latter has a
Hamiltonian H = {Q†, Q}which is also a sum of squares implying that the energy is
always greater an zero. In both cases solving the quadratic equations can be reduced
to solving linear ones:

F+ = 0, vs. Q|φ〉 = 0, (2.248)

and the solutions are minimal action and minimal energy configurations.

Overview Before Continuing

We have derived the following system of equations that describes a solution with 3
electric charges, 3 magnetic charges and angular momentum:
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Θ(I ) = �4Θ
(I ),

�4 Z I (x) = 1

2
CI J K

∣∣∣�4[Θ(J ) ∧Θ(K )]
∣∣∣ ,

(1+ �)dk = Z I Θ
(I ), (2.249)

where CI J K = 1 when all I, J, K are different and zero otherwise and the sum
over repeated indices is implied. On the right-hand side of the last two equations, we
silently assume the possibility of delta-function sources as well.

We wrote the equations in a suggestive order. To solve these equations, we first
have to find a set of self-dual two-forms Θ(I ) on R

4. Then we can solve the functions
Z I in terms of those two-forms. Finally, we need to construct the momentum k from
Z I and Θ(I ). Amazingly, this is a solution of supergravity, the low-energy limit of
string theory, and a solution to these equations is a supersymmetric supergravity
solution.

Before we solve this system in the specified order, we extend the four-dimensional
space R

4 to a non-trivial base space.

Non-trivial Base Space

So far we have taken the four-dimensional metric ds2
4 to be flat. However, it turns out

that supersymmetry does not require this space to be trivial but to be a more general
metric of hyperkähler type [63].

An interesting and pretty general class of four-dimensional metrics that are hyper-
kähler are the Gibbons-Hawking and Taub-NUT metrics which take the form of a
circle fibre (coordinate ψ) over flat three-dimensional R

3:

ds2
4 = V−1(dψ + A)2 + V (dr2 + r2(dθ2 + sin2 θdφ2)), (2.250)

where V depends only on the three-dimensional coordinates r, θ,φ and the one-form
A satisfies

∇ × A = ∇V . (2.251)

The fibre coordinate is periodically identified as ψ ∼ ψ + 4π.
The harmonic V on this space has the general form

V = ε0 +
∑

i

q0
i

ri
(2.252)

where now ri = |r− ri | and ri ∈ R
3. When working on R

3 space instead of R
4 we

will use the Hodge dual �3 and radial coordinate r instead of �4 and ρ.
Near a pole of V , the Gibbons-Hawking metric looks like R

4, as Exercise (2.7.20)
asks you to show. Asymptotically, at large r , the four-dimensional space is R

3× S1.
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Fig. 2.33 Taub-NUT space with the harmonic function V = 1 + n/r looks like a cigar. Near
r → 0, the ψ circle shrinks to zero size smoothly and space is locally R

4/Zn . Asymptotically, the
ψ circle is of constant radius and space-time asymptotes to R

3 × S1

Fig. 2.34 Multi-center taub-NUT space is a “bubbled geometry”. At each center, the size of the
ψ circle goes to zero and the geometry looks like smooth R

4/Zn . Asymptotically, the geometry is
R

3 × S1

We can read the radius of S1 from the asymptotic expansion of the metric as the
constant 1/

√
ε0. By varying ε0, we can thus interpolate between a compactification

to three dimensional flat space, and R
4 asymptotics by taking ε0 to be zero. See

Figs. 2.33 and 2.34 for depictions of single and multi-centered Taub-NUT spaces.

Exercise 2.7.20 Show that if we choose V = 1/r (with r the radial distance in
the R

3) we recover the trivial metric on R
4 globally. Hint: Change coordinates to

ρ = 2
√

r and show that the metric for small ρ becomes

ds2
4 = dρ2 + ρ2dΩ2

3 , (2.253)

with dΩ2
3 the metric on an S3 of unit radius. In doing so you show that the ψ circle

shrinks to zero size smoothly at the location of any pole in V since, whatever the
form of V , near a pole it looks like V = 1/r . Hence the space-time is smooth at
the location of the poles. (In fact, near a pole the function V looks like n/r for
some charge n. This leads to an orbifold singularity S3/Zn. Since string theory is
well-defined on orbifold backgrounds, we still consider this as a regular space-time.)

Exercise 2.7.21 invites you to explore the full eleven- and ten-dimensional solu-
tion with a Taub-NUT center and no M2-branes. They give respectively the eleven-
dimensional Kaluza-Klein monopole and the 6-brane of IIA supergravity.

Exercise 2.7.21 If we set Z I = 1 and V = 1 + n
r and we take the product of the

space-time (2.6) with R
1,6 then we get an 11-dimensional metric that is a solution
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of M-theory. As shown in the previous exercise this metric is smooth since the poles
in V actually do not give any singularities in space-time. Now check that we can
reduce on ψ and get a 10-dimensional solution corresponding to a D6-brane in IIA
supergravity (Hint: see Sect.2.4 of Amanda Peet’s lecture notes [20] or Polchinski [6]
Chap. 8 to see how to do the dimensional reduction). As a consequence, D6-branes in
M-theory lift to smooth geometries in M-theory since the D6-brane poles correspond
to poles in the V function which are smooth in 11-dimensional space-time.

2.7.3 Solutions to the Equations of Motion and Supersymmetry

We specify how to find the complete solution to the equations of motion and the
supersymmetry equations. These five-dimensional solutions were first described in
[64, 65]. First we repeat the ansatz for a torus compactification of M-theory to a
five-dimensional supersymmetric solution:

ds2 = −(Z1 Z2 Z3)
−2/3dt2 + (Z1 Z2 Z3)

1/3ds2
4 +

3∑
I=1

(Z1 Z2 Z3)
1/3

Z2/3
I

ds2
I , (2.254)

where dsI , I = 1, 2, 3 are the metrics on three T 2’s (for example ds2
1 = dx2

1+dx2
2 ).

The four-form field strength decomposes into three two-form field strengths as:

F4 = F (I ) ∧ ωI , F (I ) = d
(

Z−1
I (dt + k)

)
+Θ(I ). (2.255)

For the four-dimensional base space, we take the general class of Gibbons-Hawking
or multi-centered Taub-NUT metrics25

ds2
4 = V−1(dψ + A)2 + V (dr2 + r2(dθ2 + sin2 θdφ2))︸ ︷︷ ︸

R3

. (2.256)

For the rest of this chapter we work directly in five dimensions and will no longer
consider the compact part of the geometry (though that is easy to add in).

The solutions above involve unknowns k = ki dxi , Z I and Θ(I ) = 1
2Θ

(I )
i j

dxi ∧ dx j . They only depend on the coordinates of the three-dimensional flat base
space (the Taub-NUT angle ψ is an isometry of the solution). We take the base
space to be fixed but of course this means we should specify a V and then fix A
via ∇ × A = ∇V . When the base space is Taub-NUT (asymptotically R

3 × S1),
the five-dimensional solutions can be compactified to the four-dimensional solutions
found in [66, 67].

25 In fact, the requirement of supersymmetry only requires the base space to be hyperkähler. The
additional constraint of a Taub-NUT of Gibbons-Hawking metric makes it possible to solve for the
metric explicitly. For more information, see [41] and reference therein.
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Supersymmetry and the equations of motion can be simply repackaged into the
following conditions

Θ I = �4Θ
(I ), (2.257)

∇2 Z I = 1
2 CI J K

∣∣∣�4[Θ(J ) ∧Θ(K )]
∣∣∣ , (2.258)

(1+ �4)dk = Z I Θ
(I ), (2.259)

where CI J K is a completely symmetric tensor. For a more general supersymmetry-
preserving compactification of M-theory on a six-dimensional Calabi-Yau manifold,
CI J K is given by the triple intersection products of a basis of two-cycles on the
Calabi-Yau. We restrict to T 6 compactifications, for which CI J K = |εI J K |. Note
that in the second equation we write no longer �4 Z I but ∇2 Z I , since the solution
does not depend on the Gibbons-Hawking coordinateψ. We will also omit the explicit
possible delta function sources from now on.

As we noted before, now that we have specified the base space, we can solve this
system in three steps: first we need to give the self-dual closed two-forms Θ(I ), then
we solve functions Z I , and then we can solve k. Note that in every step, the procedure
is linear in the “new” unknown; hence this is a very tractable problem. We follow
the three steps now.

1. Self-Dual Two-Forms

First we construct the Θ(I ). On Taub-NUT space, like R
4, it is not hard to solve

Θ = �4Θ . First define the vielbeins

e0 = V−1/2(dψ + A), ei = V 1/2dyi , (2.260)

such that the four-dimensional Taub-NUT metric (2.6) is written as a sum of squares:

ds2 = (e0)2 + (e1)2 + (e2)2 + (e3)2. (2.261)

Then one can check that the two-form

Ω = (e0 ∧ e1 + e2 ∧ e3) (2.262)

is self-dual (Ω = �4Ω). There are actually three such self-dual Ω’s we can construct
by permuting the indices on the first term (the sign of the permuted second term is
fixed by self-duality).

Exercise 2.7.22 Check the above statement. First prove that

�4 (eA ∧ eB) = 1

2
εABC D(eC ∧ eD) (2.263)
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for A, B, C, D from 0 to 3. Then prove that the three Ωa defined as

Ω1 = e0 ∧ e1 + e2 ∧ e3, Ω2 = e0 ∧ e2 + e3 ∧ e1, Ω3 = e0 ∧ e3 + e1 ∧ e2,

(2.264)

are self-dual two-forms under �4.

The two-forms Θ(I ) must not only be self-dual but also locally closed (and hence
co-closed because they are harmonic). Thus we start with Ωa , a = 1, 2, 3 and
construct a closed self-dual two-form Θ as

Θ = ∂a

(
K

V

)
Ωa (2.265)

Exercise 2.7.23 asks you to prove that Θ is closed only if K is harmonic on the flat
three-dimensional space.

Exercise 2.7.23 Show that Θ defined in (2.265) is closed if K is harmonic on R
3

(∇2 K = 0).

Recall that a harmonic function K on R
3 satisfies∇2 K = 0 which has the general

solution
K = h +

∑
q

pq

|r− rq | . (2.266)

where rp are arbitrary vectors in R
3 at which H can be singular and the charges pp

and asymptotic value h are constants. In fact ∇2 H = 0 only holds away from rp and
this equation should be understood as∇2 K = pp δ(r−rp). We see that our solution
can have an arbitrary number of centers (‘sources’) on R

3.
Hence the magnetic fluxes of the solution are the self-dual and closed two-forms

Θ(I ) = ∂a

(
K I

V

)
Ωa, (2.267)

with K I three harmonic functions. We will write the harmonic function K I in terms
of charges and asymptotic constants as:

K I = hI +
N∑

q=1

pI
q

|r− rq | . (2.268)

2. Warp Factors

The system of Eq. (2.257) is essentially linear if solved in the right order (there are no
quadratic interactions or fields sourcing themselves quadratically). So once we have
Θ we can plug it into (2.258) and solve for the ‘warp factors’ Z I . The solution must
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be sourced by the right-hand side of (2.258) but can also include a homogeneous
contribution that solves the equation ∇2 Z I = 0. Combining these we get

Z I = CI J K K J K K

V
+ L I , (2.269)

where L I are three more independent harmonic functions (on R
3) satisfying

∇2L I = 0:

L I = hI +
N∑

p=1

qI,p

|r− rp| (2.270)

Exercise 2.7.24 Check that Z I given in Eq. (2.269) satisfies (2.258).

3. Rotation One-Form

The final Eq. (2.259) simply reproduces the (anti-)self-duality condition we men-
tioned above (dk = − � dk) in the absence of explicit magnetic source (Θ = 0).
When such sources are turned on we solve this equation by decomposing k through
the following ansatz:

k = μ(dψ + A)+ ω, (2.271)

with ω = ωi dxi a form on R
3 and μ a function of the three-dimensional coordinates.

Exercise 2.7.25 Show that plugging the ansatz (2.271) into (2.259) yields an equa-
tion for ω and μ:

∇ × ω = (V ∇μ− μ∇V )− V Z I ∇
(

K I

V

)
(2.272)

where as always we sum over I = 1, . . . , 3.

To solve the Eq. (2.272) forωwe take a further divergence and use ∇ ·(∇×ω) = 0
to obtain

V∇2μ = ∇ ·
(

V Z I ∇
(

K I

V

))
. (2.273)

Exercise 2.7.26 Show that this can be solved as

μ = 1

6
CI J K

K I K J K K

V 2 + 1

2

K I L I

V
+ M, (2.274)

with M a harmonic function. The corresponding solution for ω satisfies

∇ × ω = V ∇M − M∇V + 1
2 (K I ∇L I − L I ∇K I ) (2.275)
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There is a nice and clean way of writing the solution for ω in terms of the harmonic
functions. Write the harmonic functions as a vector

H ≡ (V, L1, L2, L3;M, K1, K2, K3). (2.276)

Then the right-hand side of (2.275) defines a symplectic product of such matrices:

∇ × ω = 〈H,∇H〉. (2.277)

While it is possible to get an explicit form for ω in simple examples, one generally
has to resort to patches to specify the solution for ω given the harmonics V, K I , L I

and M .

Exercise 2.7.27 Show that on a flat base in absence of magnetic charges (Θ(I ) = 0),
you reproduce the earlier expression for k of Eq. (2.235). Use Exercise 2.7.20 for the
coordinate transformation to flat space

ds2
4 = dρ2 + ρ2(dθ2 + sin2 θ dφ2

1 + cos2 θ dφ2
2), (2.278)

and take a single center with M = m/r . Determine the relation between J and m.

2.7.4 Physical Solution and Fuzzballs

Above we have shown that the solution can be specified in terms of eight harmonic
functions V, K I , L I and M . We started with a black hole with harmonic functions
Z I = L I , encoding three electric charges, and angular momentum encoded by the
harmonic function M . In terms of eleven-dimensional M-theory, we have the brane
interpretation:

M2’s: L1, L2, L3 Angular Momentum: M

Now we have also 3 magnetic fields, given by the harmonic functions K I , and a
magnetic geometric charge (of the Gibbons-Hawking space), encoded by V . The
black hole charge can be dissolved in the magnetic fields. In M-theory language,
these correspond to

M5’s: K 1, K 2, K 3 Kaluza-Klein monopole: V

For concreteness, we fix a notation for the charges and constants of the harmonic
functions. We organize the harmonic functions in a symplectic vector H :

H = (H0, H I , HI , H0) ≡ (V, K I , L I , M). (2.279)

The symplectic vector of harmonic functions is written in terms of a symplectic array
of constants h and charges Γ at each center:
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H = h +
N∑

q=1

Γq

|r− rq | , (2.280)

with
h = (h0, hI ; hI , h0), Γ ≡ (p0, pI , qI , q0). (2.281)

For later use, we define the symplectic product of any two symplectic vectors A, B
as:

〈A, B〉 = A0 B0 − A0 B0 + 1
2 (AI BI − AI B I ). (2.282)

In the remainder of this section, we give the physical requirements one has to
impose on the solutions, and we show how we can construct microstate geometries.

Physical Requirements

At this point, getting the solution from harmonic functions is like blindly using a
computer. We still have many questions: Are these solution physical? What are their
properties? Are there singularities? We will answer these questions now.

We start with the vector ω that describes the angular momentum of the metric in
R

3. To have it well-defined in space-time, the divergence of (2.277) should be zero:

∇ · (∇ × ω) = 0. (2.283)

This gives a condition on the harmonic functions. First we write them as the sym-
plectic product of the vector of harmonic functions H :

H = h +
∑

i

Γi

|r− ri | . (2.284)

Then (2.283) gives the condition:

〈H,∇2 H〉 = V∇2 M − M∇2V + 1
2 (K I∇2L I − L I∇2 K I ) = 0. (2.285)

The leading terms are those at the positions of the centers. Writing the charges for a
harmonic functions at each center as Γi = (p0

i , pI
i , qI,i , q0,i ), we have

∑
j

〈H, Γ j 〉δ(r j ) = 0. (2.286)

Demanding that each delta function contribution is zero gives one condition for each
center ri :
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0 = 〈Γi , h〉 +
∑

j

〈Γi , Γ j 〉
ri j

, (2.287)

with the relative distances
ri j = |ri − r j |. (2.288)

The physical interpretation of these equations is to assure there are no Dirac-Misner
strings in the geometry (such that there is no source on the right-hand side of (2.283)).

Once the charges are fixed, the Eq. (2.286) then give constraints on the center posi-
tions ri : these equations tell you where the points are. We call these ‘bubble equations’
(giving rp’s in terms of Q’s), because the resulting geometries have ‘bubbles’ (non-
trivial two-cycles). Other names for these equations are ‘integrability equations’
(term coined by the original discoverer, Denef [66, 67]) and ‘Denef equations’, in
the context of the related four-dimensional solutions.

Two-Center Solution Space

What is the space of solutions of the bubble equations? For simplicity, we restrict to
two centers first. Then there is only one equation:

〈Γ1, Γ2〉
r12

+ 〈Γ1, h〉 = 0. (2.289)

We should have 〈Γ1, h〉〈Γ1, Γ2〉 < 0 to find a solution. This equation then fixes the
distance r12. The space of solutions is given by 2 points fixed by a rigid rod. The
system has two degrees of freedom: two points in space-time have three degrees of
freedom in R

3 (three for each point, minus three for the center of mass), and the
bubble equation fixes one. The solution space is the S2 of possible positions of the
second point at a distance r12 of the first one.

The vector of constants, h, determines the asymptotics of the harmonic functions
through Hr→∞ = h and it determines what the space looks like asymptotically (for
instance it contains a constant h0 for the harmonic function V = h0 + p0/r in the
metric). For fixed charges Γ1, Γ2, the constants h also describe an interesting moduli
space. Fix the charges such that 〈Γ1, Γ2〉 > 0. The value of h then determines if we can
find a solution to the bubble Eq. (2.289). Take for instance a geometry with constants
h such that 〈Γ1, h〉 < 0 and the bubble Eq. (2.289) have a solution. By tuning the
asymptotic parameters h, we could go from 〈Γ1, h〉 < 0 to 〈Γ1, h〉 = 0 and even
〈Γ1, h〉 > 0: the solution disappears. It is no longer a valid physical solution. If we
look at the solution space in function of the asymptotic parameters, the boundary
〈Γ1, h〉 = 0 determines a “wall of marginal stability”. When crossing a wall of
marginal stability (“wall-crossing”), these states just disappear. When 〈Γ1, h〉 < 0,
the solution is part of the solution space, and we have an entropy associated to them
(the ‘number’ of such states). When we cross the wall of marginal stability in the
moduli space of allowed constant parameters h, the solution is gone and the entropy
that counts all allowed solutions jumps.
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Three-Center Solution Space

We turn to the more interesting solution space for three centers. The vector of har-
monic functions is.

H = Γ1

|r− r1| +
Γ2

|r− r2| +
Γ3

|r− r3| + h. (2.290)

From (2.286), we get three equations, one at each center (from the δ(ri )-contributions)

〈Γ1, Γ2〉
r12

+ 〈Γ1, Γ3〉
r13

+ 〈Γ1, h〉 = 0,

〈Γ2, Γ1〉
r12

+ 〈Γ2, Γ3〉
r23

+ 〈Γ2, h〉 = 0,

〈Γ1, Γ3〉
r13

+ 〈Γ2, Γ3〉
r23

+ 〈Γ3, h〉 = 0. (2.291)

These equations can be thought of as describing a balance of forces. The symplectic
products pairs electric with magnetic charges (M, L I are electric, K I , V magnetic).
We get a huge angular momentum forcing the points away from each other. But
because of supersymmetry, all forces cancel and any solution is perfectly stable.

Define
Ai j ≡ 〈Γi , Γ j 〉. (2.292)

Note that the symplectic product is antisymmetric and hence so is the matrix A. By
a cyclic permutation of charges at the different centers, we can always take

A12 > 0, A23 > 0, A31 > 0. (2.293)

Then the bubble equations are

A12

r12
− A31

r13
+ h1 = 0,

− A12

r12
+ A23

r23
+ h2 = 0,

A12

r12
− A23

r23
+ h3 = 0, (2.294)

where the constants hi are defined as hi = 〈Γi , h〉. Only two of these equations are
independent (for instance the sum of the first two gives the third one), and they leave
only one of the distances ri j unfixed. In total, three centers in R

3 have 6 degrees of
freedom (or “dof’s”), three for each center minus three for the center of mass (only
relative positions are important). The bubble equations fix two more. We thus have
4 degrees of freedom left. We can take these to be
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• The radius r13 (1 dof)
• The orientation of r13 (2 dof’s)
• The U (1) angle around r13 (1 dof)

When we would consider n points instead of 3, the bubble equations allow for a
2(n − 1)-dimensional space of solutions (Fig. 2.35).

Scaling Solutions

One solution looks very interesting. If the triangle inequalities are satisfied:

|A12| + |A23| ≥ |A31|, (2.295)

(and cyclic), there is a limit where the radii go to zero:

r12 = |A12|ε+O(ε2),

r13 = |A13|ε+O(ε2),

r23 = |A23|ε+O(ε2). (2.296)

As ε→ 0, the bubble equations are satisfied up to first order, because the constants
hi can be suitable ‘eaten up’ by order O(ε) terms in

Ai j
ri j
= 1

ε +O(ε). The ri j ’s are the
lengths of the sides of a triangle and always satisfy triangle inequalities. The limit
ε→ 0 can only be done when also the |Ai j | satisfy the triangle inequalities. We then
have a limit where all radii go to zero. The points sit on a fixed triangle which gets
smaller and smaller. If the triangle inequalities are not satisfied, we cannot have such
a scaling limit.

Scaling Solutions

What is so special about these solutions? We have stated before the idea to replace
the black hole geometry with some other object. In this section, we have made this
more concrete. We can find an object with the same (electric/M2) charges as the
black hole, but which also has magnetic dipole charges. The black hole is replaced

(a) (b) (c)

Fig. 2.35 A three-center configuration has 4 free parameters by the bubble equations. a S2 of
orientations of r13. b Scale of r13. c U (1) angle around r13
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by a solution with many centers and magnetic charges, by finding the solution from
the harmonic functions H = (V, K I , L I , M).26

The solutions can ‘go scaling’, such that the several centers can come closer and
closer, by sending some control parameter ε→ 0, as in Eq. (2.296). When ε = 0 and
the centers are on top of each other, we recover the black hole (Fig. 2.36).

Remember that we were considering extremal black holes. These have an infinitely
deep throat.27 A scaling solution with scaling size ε, has a throat of length L ∝ − ln ε.
As ε → 0, you get a throat with a cap that gets longer and longer. These solutions
form an infinite family, see Fig. 2.37 for an illustration.

A paradox

The scaling solutions form an infinite family: we can make ε smaller and smaller,
we always find good solutions. But from AdS/CFT, we know that there is a finite
entropy

S = √
Q1 Q2 Q3, (2.297)

which tells us there is a finite number of states. This is a puzzle [68]:

• Nmicro = eSB H is large but finite.
• Nclass. grav. (number of smooth solutions) is infinite.28

How to reconcile these pictures? That’s for the next section!

Fig. 2.36 Replacing the
black hole with a multi-center
configuration

26 In fact, there are certain conditions the harmonic functions H have to obey such that the multi-
center geometry is also smooth and horizonless at each center. We will not dwell on that, see [41]
for more information.
27 By ‘infinite throat’, people mean that the spatial metric distance

∫
ds to the horizon from any

point outside the horizon blows up.
28 Note: only a subset of this multi-center solutions are actual fuzzballs. We need some more
information to discuss them, we will leave it at this for the moment.
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Fig. 2.37 For every value of
ε we find a scaling solution
with a deep throat. As ε→ 0,
we recover the infinitely deep
black hole throat

2.8 Quantizing Geometries

So far we have studied a large class of supersymmetric multi-centered solutions
and have suggested that they are related to the microstates of large supersymmetric
black holes. But to make this connection between classical geometries and quantum
states we have to “quantize”. Since these are gravitational solutions quantizing them
seems rather daunting and certainly we do not know how to do this in full generality.
Rather here we will introduce a powerful covariant formalism for quantizing systems
without resorting to a Hamiltonian formulation (which would be tedious in this case).
In particular we will show how the solution space of a system is formally equivalent
to the phase space and how we can thus construct states directly on this space. This
construction usually goes under the name of “geometric quantization” but we will
eschew many of the mathematical technicalities that usually are associated with this.
Rather we will focus on explaining why this makes sense.

Note that we will make heavy use of supersymmetry as we do not have access to
the full solution space of the theory but rather only some supersymmetric truncation
of the latter. Quantizing a sub-space of a system is not necessarily a consistent thing
to do but in this case we can rely on supersymmetry-based arguments (and explicit
matching with expectations) to see that the Hilbert spaces we generate are a good
approximation to the actual Hilbert space of the system.

2.8.1 Constraint Equations and Solution Space

To keep this chapter well-contained, we choose to recall the necessary background
material discussed in previous sections.

We start in eleven-dimensions from the metric and gauge field

ds2 = (Z1 Z2 Z3)
−2/3dt2 + (Z1 Z2 Z3)

1/3ds2
4 + ds2(T 6),

F4 = [d(Z−1
1 (dt + k))+Θ I ] ∧ dx1 ∧ dx2 + · · · (2.298)
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Fig. 2.38 The multi-center
solutions are sourced on
multiple positions in the R

3

base of Taub-NUT space

with the four-dimensional multi-center Taub-NUT metric

ds2
4 = V−1(dψ + A)+ V ds2(R3). (2.299)

The functions Z I , one-form k and two-forms Θ I that determine the solution are
found from the harmonic functions

H ≡ (V, K I , L I , M), (2.300)

as explained in the previous section (Fig. 2.38).
The harmonic functions satisfy a sourced harmonic equation:

∇2 H =
∑

i

Γpδ(r− rp). (2.301)

The solution is

H =
N∑

p=1

Γp

|r− rp| + h0, (2.302)

where rp are the position vectors of the different centers in R
3 and h0 is a vector of

constants for the different harmonic functions. The charges at each center give poles
in the harmonic functions, corresponding to multiple sources, and each may or may
not have a horizon (depending on the charge Γp at the center).

Given a set of asymptotic charges Γ =∑N
p=1 Γp the space of all possible solu-

tions with N centers is given by all the possible ways of arranging these centers
in R

3.
At first glance, we would think this space is R

3N−3, the space of locations of N
centers on R

3.29

However, the positions of the centers are constrained in terms of the charges, by
the bubble or Denef equations introduced in the last section:

29 Only the relative positions are of importance, hence the degrees of freedom of one of the centers
do not count and we get 3N − 3 coordinates that specify a physical solution with N centers.
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∀p :
N∑

q = 1
q �= p

〈Γp, Γq〉
|rp − rq | + 〈Γp, h〉 = 0. (2.303)

We write the harmonic functions and charges as symplectic vectors:

H = ( V, K I︸ ︷︷ ︸
elec.

, L I , M︸ ︷︷ ︸
magn.

), Γ = (p0, pI , qI , q0). (2.304)

with I = 1, 2, 3 giving us either possible charges at each center.
Given two symplectic vectors of harmonic functions H and H ′ recall that there

exists a symplectic inner product that couples electric and magnetic components

〈H, H ′〉 = V M ′ − MV ′ + K I L ′I − L I K ′ I . (2.305)

Note that this pairing is antisymmetric. You should think of it as giving momentum
from crossed electric and magnetic fields, similar to the Poynting vector in electro-
magnetism:

J = E × B. (2.306)

The constraints (2.303) have a clear physical meaning. The first way to understand
them is through supersymmetry. Each individual center breaks N = 2 supersym-
metry of the supergravity theory to a particular N = 1 subgroup. Generically all
the centers break N = 2 to a different residual N = 1 (encoded in a U (1) valued
phase) but when the distances between the centers satisfy the Eq. (2.303) the N = 1
supersymmetry preserved by all the centers are compatible and thus the combined
system preserves an overall N = 1 supersymmetry.

There is a second interpretation of the constraints (2.303). Consider for concrete-
ness a solution with two centers. The Poynting vector gives an angular momentum
“binding”. For electromagnetism in flat space, we get for a magnetic charge m and
an electric charge q that

J = qm

2
, (2.307)

no matter what the distance is between the two centers. With gravity, the angular
momentum depends on the distance between the centers:

J = qm

r
, (2.308)

and there is a non-zero force. The constraint equations can be interpreted as the
condition for all those forces to balance.

Exercise 2.8.28 Show that the sum over p (from 1 tot N) of (2.303) is zero.
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From Exercise 2.8.28, we see that there are in fact only N − 1 independent
constraints. Therefore, the solution space is a (2N − 2) dimensional submanifold of
R

3N−3:
M2N−2 ⊂ R

3N−3. (2.309)

For instance, for two centers we get

M2 ⊂ R
3. (2.310)

The constraint fixes the distance r12 = |r1 − r2| so M2 corresponds to the possible
rotations of the position r2 around r1 with fixed inter-center separation r12. This is
of course nothing but a two-sphere

M2 = S2. (2.311)

The constraint equations should be understood as follows. When we fix the asymp-
totic charges, there is still a continuous family of positions we can vary. Hence the
solution space itself is a function of the charges M2N−2(Γp).

Our goal here will be to calculate the “number of states” in a fixed solution space.
The reason to undertake such a computation is the following. For a given charge vector
Γ , if we consider all possible decompositions in to multiple centers Γ = ∑

p Γp

and compute the states from each such solution space, we may hope that this can
reproduce the entropy of a single center black hole with total charge Γ . If so then
we have a found a good supergravity realization of the black hole microstates. But
to convert the solutions above into “microstates” we have to quantize the solution
space. Therefore we first give some basic quantum mechanics to see how to get a
quantum space out of a classical solution space.

2.8.2 Basic Quantum Mechanics

We recall classical mechanics in the Hamiltonian symplectic formalism, its quanti-
zation and the concepts of phase space and its relation to the space of solutions.

Hamiltonian Formulation

Let us recall the basic simple formulation of quantum mechanics (which is not
covariant) and then try to modify it to make it more covariant. If we start with a
Lagrangian of a system with positions q:

L(qi , q̇i ). (2.312)

with i = 1, · · · , n then the generalized momenta are
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pi = ∂L

∂q̇i
. (2.313)

From this Lagrangian we can derive an associated Hamiltonian which is a function
of the positions and generalized momenta only (for ease of notation we will mostly
suppress indices on position and momentum vectors)

H(q, p) = pq̇ − L . (2.314)

In terms of which the equations of motion are

ṗ = −∂H

∂q
,

q̇ = ∂H

∂ p
, (2.315)

Of course we could have foregone a Lagrangian and simply postulated a Hamiltonian
system directly but the connection with a Lagrangian formulation will be important
in what follows. The Hamiltonian formulation is based on the phase space which is
the space of positions q and momenta p on a fixed time slice. It is this dependence
of a choice of time slice (and direction) that makes the formulation non-covariant.

An essential ingredient in the Hamiltonian formulation of classical mechanics is
the Poisson bracket, defined on any functions on the phase space, via

{ f, g} = ∂ f

∂ p

∂g

∂q
− ∂ f

∂q

∂g

∂q
. (2.316)

In the simple systems first encountered in physics we often have {q, p} = 1 but this
need not always be the case and this is one of the reasons a more general formulation
is necessary. More generally we expect some bivector ω such that

{qi , p j } = ωi j . (2.317)

While locally we can find coordinates such that ω is diagonal this need not hold
globally. It is very important, however, that ωi j be invertible as this allows us to find
a symplectic two-form:

ω ≡ ωi j dqi ∧ dp j . (2.318)

which defines a symplectic structure on the phase space. Thus in general the Hamil-
tonian formulation requires the set of data (p, q, H,ωi j ).

We have tacitly assumed above that there is some natural choice of p’s and q’s
on the entire phase space but if the latter is some non-trivial manifold then we need
to cover it with patches. How then does one define, on each patch, which local
coordinates should be thought of as positions and which momenta?
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Fig. 2.39 A n-dimensional
subspace Mn

A more covariant way to do this is to consider n-dimensional subspace Mn of the
2n-dimensional phase space, as in Fig. 2.39, on which the pullback of the symplectic
form vanishes:

ω|Mn = 0, (2.319)

Such subspaces are referred to as Lagrangian submanifolds and they are interesting
because if we consider any local coordinates, xi , on them then by virtue of (2.319)
we have

{xi , x j } = 0, (2.320)

This is non-trivial because the x may be some non-trivial combination of p and q.
The fact that they nonetheless have vanishing Poisson brackets mean they can be
thought of as a new set of canonical positions. Thus Lagrangians in phase space are
a covariant generalization of the splitting of phase space coordinates into canonical
position and momenta.

So far we have used classical notions such as Poisson brackets but this discussion
generalizes to quantum mechanics. To quantize a classical system we replace the
Poisson bracket by a commutator (or anti-commutator for fermions)

[q, p] = i�. (2.321)

Thus the p’s and q’s can no longer correspond to 2n numbers but rather half of them
are now operators. Normally, we take the q’s to be commuting numbers, and p are
their derivatives

p = �

i

∂

∂q
. (2.322)

Thus we see a Lagrangian subspace is nothing other than a space of mutually com-
muting variables

[xi , x j ] = 0, (2.323)

Once more such manifolds define (in a covariant way) natural slices of phase space
that we can think of as position spaces.

This notion is quite important because in quantum mechanics states must be
functions of only one set of canonical variables – the position or the momenta but
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not both. Thus Lagrangian submanifolds allow us to define the Hilbert space of states
in a nice covariant way as the space of (wave) functions on a Lagrangian submanifolds

H = {ψ(x) ∈ L2(Mn, C)}. (2.324)

The advantage here over the usual formulation is that we have covariantized our
approach as the Eq. (2.319) is a coordinate-invariant statement. Moreover this
approach generalizes to more complex systems where the phase space (the space
of (qi , pi )) is not merely R

2d but some more complex manifold. Of course we are
implicitly assuming there is some nice foliation of the phase space into time slice
Mn(t) where t is some parameterization of time.

A consequence of this more formal description of the quantum phase space is that
it yields another way to compute the number of states. This is simply the symplectic
volume of the phase space: (up to some subtleties that we can neglect)

# states =
∫

phase space
ωn . (2.325)

where we note that ωn is a 2n-form that we can integrate over the entire space.
Classically this does not count states because it is not integer quantized. In quantum
mechanics, however, we think of ω as partitioning the phase space into Plank-sized
cells. As a consequence its volume must be normalized such that the volume is
integrally quantized (Fig. 2.40).

Mathematically, this can be justified because the wave functions are actually
sections of a bundle defined on Mn and associated with ω (which is essentially its
curvature). Thus the integral above computes (again, up to some subtleties) the index
of an operator D associated with this bundle:

ind D =
∫

(. . .). (2.326)

Recall that an index counts the number of (chiral) zero modes of a particular operator
and this is an integral quantity. In our setup, things are simple enough that the (. . .)
are just ωn .

The current treatment raises an important question:

• Classically, we expect an infinite number of states (everything is continuous).
Hence we should be able to go anywhere in phase space and have an infinite
number of allowed states. But

∫
ωn should be finite? Is there a clash?

We will answer this question explicitly in an example below. Yes, classically the
number of states is infinite, but the volume of phase space is finite. Only in quantum
mechanics, the volume is the number of states.

Exercise 2.8.29 Consider a particle in a box of length L.

1. Compute the number of quantum states: calculate the integral
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(a) (b)

Fig. 2.40 Classical versus quantum phase space. The volume of classical phase space can be a
real number, in quantum mechanics it is an integer. a Classically, we can continuously integrate
histories. b In quantum mechanics, phase space is a discrete grid of points

∫ L

0

∫ pmax

0
ω, (2.327)

with
[x, p] = ω−1 (2.328)

and pmax should be allowed quantum values (see a textbook on quantum mechan-
ics). Convince yourself this integral counts the number of states.

2. Repeat the calculation for a two-dimensional box.

Let us consider a simple example to get a better feel for this formalism. Take the
Hamiltonian of a free particle

H = 1
2 p2. (2.329)

Given q and p, we can always define the complex coordinates on phase space:

z = q + i p , z̄ = q − i p. (2.330)

Then we have the commutation relation

[z, z̄] = 1. (2.331)

In terms of z, z̄ it is no longer obvious which coordinate is a “position” and which
a “momentum” and we must make an arbitrary choice. We can, for instance, take
wave functions to depend only on z:

ψ(z). (2.332)

Now the number of states is counted by an index
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ind (∂̄) = # states, (2.333)

with ∂̄ the Dolbeault operator because clearly ∂̄ψ(z) = 0 so wave functions are
simply functions annihilated by ∂̄. Note that this method needs a complex structure
on phase space, which can not always be defined. For a simple manifold like R

2n it
can be done. If there is a complex structure, then it turns out that the above gives a
good way to quantize.

Consider now a slight extension of the free particle model. Couple it to an elec-
tromagnetic field. The Lagrangian is

L = 1
2 (q̇ + Aq)2. (2.334)

The canonical momentum is
p = q̇ + Aq. (2.335)

This is very different from previous examples! Even if there is no velocity, q̇ = 0,
there is still a non-vanishing momentum. When there are space components of the
gauge field

Ai �= 0, (2.336)

the position themselves no longer commute:

ωi j = [qi , p j ] = A j [qi , q j ] �= 0. (2.337)

The non-commutativity of phase space becomes a non-commutativity of the physical
space due to the magnetic field Ai .

From Phase Space to Solution Space

So far we have reformulated quantum mechanics in a slightly more covariant and
general language but let us see what this is useful for. Here we will try to prove the
following claims:

1. The number of states is the symplectic volume of phase space.
2. Phase space is isomorphic to solution space (up to some caveats).

and hence:

• The number of states is the symplectic volume of solution space.

The first claim we have already argued in the previous section. The last one follows
trivially from the other two. Thus we are left with demonstrating the validity of our
second claim above.

Given any initial point in phase space {q0, p0} there is a prescription to generate
an entire “history”: namely we integrate using the equations of motion with initial
conditions {q0, p0}. The p’s act morally as velocities, and they allow us to integrate
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q(t0) for any t0 to a further time step (see Fig. 2.41). Thus any point in phase space
corresponds to a full solution to the equations of motion (a “history” of the particle
or system).

Conversely, given a solution q(t) to the equations of motion and a choice of time
slice at for instance t0, we can unique extract a point in the phase space by simply
reading off {q(t0), p(t0)} evaluated on the solution q(t) at time t0. Thus, once a time-
slice is fixed, each solution uniquely maps to a point in the phase space (Fig. 2.41).
Combining these observations we have now proved our second claim above.

What’s more there is a natural way to compute the symplectic form directly in
the Lagrangian formulation. This allows us to use the solution space to compute
both the number of states and their explicit form without ever needing to use a
Hamiltonian formulation (going to the phase space and formulating everything in
terms of conjugate variables).

An important subtlety, however, is that the arguments made above apply to the
full solution space and phase space—it is these full spaces that are isomorphic. It is
not clear, if we restrict to a subspace of the solution space, whether this maps to a
proper phase space. This is important in this situation because the supersymmetric
solution space is exactly such a truncation.

2.8.3 Intermezzo: From QM to QFT and GR

We want to go from quantum mechanics (QM) to Quantum Field Theory (QFT). In
QM, the points at time t are unconstrained, and the wave function ψ(x) is a function
of the unconstrained positions. In QFT, the points on each time slice are now fields
φ that are constrained by the equations of motion, and the wave functional Ψ (φ) is a
function of those constrained fields. Note that we use the formulation of time slices
and evolution of the fields from one to the other defining wave functions on each
slice. This is equivalent to the path integral formulation

〈ψ′|ei Ht |ψ〉 =
∫

De−S . (2.338)

Fig. 2.41 Left given an initial
configuration at t = t0, we
can integrate the equations
of motion to obtain the full
solution q(t), p(t). Right
given a solution q(t), we have
a phase space at every t

(a) (b)
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In field theory, the coordinates and momenta are replaced by fields:

q → φ(x)

p→ Π(x) = ∂L

∂φ̇
. (2.339)

As before for quantum mechanics, in field theory we consider the fields on a spatial
slice such as the one in Fig. 2.42.

In GR, things are a little more tricky than in field theory because the background
is not fixed. We will not address these subtleties here but will simply assume we find
a nice foliation of all the space-times we consider. We define spatial slices Σ such
as the one in Fig. 2.43 and we use a metric adapted to the slices

ds2 = (N 2 + βkβ
k)dt2 + 2βkdxkdt + hi j dxi dx j , (2.340)

in terms of the data
(hi j ,βk, N ). (2.341)

where now hi j is a metric on the spatial slice.
One finds that βk and N are non-dynamical variables as their momenta are zero:

Πβ = 0, Π N = 0. (2.342)

These equations can be interpreted as constraints on the other fields. The only dynam-
ical variables are then the three-dimensional metric hi j and its momenta Πh :

Π
i j
h ≡

δL

δ∂t hi j
. (2.343)

What terms contribute to the momentum Πh? These are terms in the Lagrangian
of the form:

Fig. 2.42 Fields on a spatial
slice of constant t
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Fig. 2.43 GR on a spatial
slices Σ

L = · · · + ∂t hi jΩ
t,i j + · · · (2.344)

Assume first that βk = 0. Then the metric has no mixed spatial-temporal compo-
nents:

gμν = gi j + gt t , (2.345)

and ∂t hi j can only talk to something else (Ω t,i j ) with another time derivative and
hence

Π i j ∼ ḣi j . (2.346)

For time-independent solutions we would thus have Π i j = 0. Thus if we consider
families of static solutions (time-independent and no mixed terms in the metric) they
cannot map to a full phase space as they contain no momentum-like variables. Instead
such solutions map to a Lagrangian submanifold of the full phase space (they form
a “configuration space” rather than a phase space).

If, on the other hand, βk �= 0 then ∂t hi j can couple to terms like ∂igt j etc., with
spatial derivatives. Therefore,

Π i j ∼ time independent terms, (2.347)

which means Π i j �= 0 even for time-independent solutions. Remember that the
multi-center metrics we were looking are of this sort since they are stationary (time-
independent with mixed terms gti ∼ ki terms coming from a (dt + ki dxi )2).

Therefore, the commutation relations go as

[hi j ,Π
kl ] ∼ [hi j , hkl ], (2.348)

analogous to the previous example of a particle in a magnetic field with

[qi , p j ] ∼ [qi , q j ]. (2.349)

The spatial metrics no longer commute on the phase space. This will be very important
for getting the number of states.



166 I. Bena et al.

Crnkovic-Witten-Zuckerman Formalism

Since we are working with solution spaces we want a covariant formalism rather
than the non-covariant GR Hamiltonian formalism we discussed above. Let us see
how to arrive at this. Consider a class of solutions with a spatial foliation with each
time slice being a Cauchy surface

Σ = Cauchy surface. (2.350)

Define

ω :=
∫

Σ

dΣ� J �, (2.351)

Here J � is the “symplectic current” associated with the action (see below). We have
introduced the (D − 1)-form

dΣ� = Σμ1...μD−1�dx1 ∧ . . . ∧ dx D−1. (2.352)

which is just the volume form on the Cauchy surface. Then ω is a two-form on the
space of fields. The symplectic current is

J� = δ
[

δL

δ∂�φk

]
∧ δφk, (2.353)

where φk runs over the fields. If � = 0, we get J0 = dΠ ∧ dφ, reminiscent of the
symplectic form in mechanics dp ∧ dq. But unlike the standard formulation this
is covariant as we have not fixed a coordinatized notion of time. Rather by using
spacelike foliation we get a covariant notion of time as the direction normal to the
slices (but with no reference to a coordinate system).

Exercise 2.8.30 Play around with ω:

1. Show that ω is closed under a field variation

δφω = 0. (2.354)

2. Show that the symplectic current is conserved

∂� J � = 0. (2.355)

You need to impose the equations of motion for one of these.

From the exercise we see that ω does not vary from slice to slice (because it is
conserved).
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Fig. 2.44 At large gs N , we have the supergravity multi-center solution. Each center can be either
a black hole (with a horizon), or some horizonless singularity, or a smooth center etc. For small
gs N , we just have non-back-reacting branes at several positions in flat space-time

2.8.4 Back to Solution Space

Now we have the pieces in place to quantize our space of solutions. We begin by
evaluating the symplectic form for the Lagrangian of M-theory. The fields are the
metric and the four-form and are evaluated at the positions on solution space:

φ� = {gμν[rp], Fμνρσ[rp]}. (2.356)

The symplectic form looks like

J � = δ
[

δL

δ∂�g[rp]
]
∧ δg[rp] + four-form term. (2.357)

The two-form ω will be something like

(. . .) ∧ drp, (2.358)

where each {rp} parametrizes a metric; these are the “coordinates” of our solution.
How to do this? Remember that the constraint equations come from the integra-

bility condition of the defining equation for ω (which is part of the metric gμν):

∇ × ω = V ∇M + · · · . (2.359)

We need to find ω(rp), construct g(ω) and then we can find J �. This is very difficult
because inverting Eq. (2.359) cannot be easily done.

We will follow the lazy string theorist approach and use supersymmetry to our
advantage. The back-reacted supergravity system is valid for gs N 
 1. As we
discussed in previous sections, when gs N � 1, we just have a quantum mechanical
theory on branes at the positions of the centers on eleven-dimensional flat space-time
R

3 × T 6 × Rt , see Fig. 2.44.
It can be shown that on each gs N side the solution space and the symplectic form

are protected because of supersymmetry (the proof uses the fact that both are deter-
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mined by the certain terms in the Lagrangian whose form is fixed by supersymmetry
and thus cannot change even as we vary gs N ). Moreover one can check by explicit
computation that the solution spaces at strong and weak coupling are exactly the
same. For instance, for 2 centers, we still find S2 as the solution space. Thus we are
free to compute the symplectic form directly in the brane quantum mechanics which
is a much easier computation.

The result we get from the gs N � 1 quantum-mechanics-on-branes calculation
is

ω = 1
4

∑
p,q

〈Γp, Γq〉
r i

pq

|rpq |2 εi jkδr
j
pq ∧ δrk

pq , (2.360)

and we defined
rpq = rp − rq . (2.361)

The real coordinates in this calculation are the rpq , vectors between the centers. While
we do not show the detailed derivation of this formula here (the interested reader
can find it in [69]) its origin is very easy to understand. Recall from the discussion
in the previous section that an electrically charge particle in the background of a
magnetic field has a coupling (q̇ + eAq), with e the electric charge, and this leads
to a canonical momentum of the form

p = eA(q) q. (2.362)

The symplectic form (2.360) is exactly of this form: each center feels, via 〈Γp, Γq〉
an electric-magnetic coupling to the gauge field generated by any other center which
is “magnetically” charged with respect to it. So (2.360) is really just of the form
ω = A(q)δq ∧ δq where we have plugged in the appropriate value for A(q).

Morally, the δr j
pq ∧δrk

pq are like the dxi ∧dx j contributions in quantum mechan-
ics. As before, this means that coordinates do not commute:

[r i
pq , r j

pq ] = ωi j �= 0. (2.363)

Note that the r i
pq only talk with the r j

p′q ′ when p = p′, q = q ′: the several compo-

nents of a the vector between the pth and q th centers are non-commutative, but they
commute with all the other components of all the other inter-center vectors. There is
only pairwise non-commutativity.

The angular momentum is:

J = 1

2

∑
p,q

〈Γp, Γq〉 rpq

|rpq | . (2.364)
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It is a sum of contributions from each pair of points. Each individual contribution is a
vector along the line connecting two points (unit vectors rpq

|rpq | ) with size the angular
momentum from the crossed electric and magnetic fields 〈Γp, Γq〉.

Two-Center Solutions

Let us make things more clear using an explicit example with two centers. Write
J = 〈Γ1, Γ2〉, then the volume form on phase space is

ω = J sin θ dθ ∧ dφ, (2.365)

the standard symplectic form on a two-sphere. (Remember that the solution space
for two center is the S2 of orientations of the fixed rod r12.) The normalization of the
two-form is the angular momentum between the two centers.

The number of states is then ∫
S2
ω = 2|J | + 1. (2.366)

We get 2|J | + 1 rather than 2|J | because of subtleties with fermions. This is exactly
the number of states for an angular momentum multiplet (Fig. 2.45).

Exercise 2.8.31 “Meaningless algebra” for the two-center solution space:

• Check that
dω = 0 (2.367)

• Check that ωS2 defined as (2.360) evaluates to (2.365).

Three-Center Solutions

Solution space is 2N−2 dimensional. For N = 3, we get a four-dimensional solution
space M4. The bubble equations fix two distances in terms of the third, say r23(r12)

and r13(r12). The four remaining parameters are

• The distance r12.
• The U (1) of orientations around segment r12.
• The orientation of r12 in space (an S2 as for the two-center solution space).

Therefore the solution space is:

Fig. 2.45 Two-center solu-
tion
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M4 = I ×U (1)× S2, (2.368)

where I is the line segment of r12. The second product is a non-trivial fibration.
Note that the size of the angular momentum is a function of the distance r12 as

well:
J (r12). (2.369)

By the bubble equations the interval I of allowed r12 values is constrained

I = [rmin
12 , rmax

12 ]. (2.370)

Hence also the angular momentum is bounded between Jmin and Jmax, see Fig. 2.46.
We can see the system as a whole range of angular momentum multiplets, see

Fig. 2.47. Let us note an important caveat here when discussing entropy. We are
referring here only to the configuration entropy coming from the different ways of
arranging the centers. Each individual center, if it has a horizon, may have additional
entropy associated with that horizon. In our discussion of entropy above we neglect
this because we are mostly interested in looking for black hole microstates. That is
to say we want to find a realization of the black hole entropy via horizonless smooth
solutions. If the centers are themselves black holes with horizons, we are not counting
the horizon entropy of a single black hole with the total charge of all the centers.

More Centers?

Let us fix the total charge, Γ , and consider an N -center decomposition

Γ =
∞∑

N=1

⎛
⎝ N∑

q=1

Γq

⎞
⎠. (2.371)

For large charge Γ the number of centers N can be quite large and we can also
arrange the centers all to be horizonless. What are all possible states corresponding
to these charges? We fix Γ first, then we fix the sectors we want to divide over, and
we divide the charges. All these states are in one Hilbert space, of total charge Γ .
Are all these possible states reproducing the black hole entropy of a single black

Fig. 2.46 The angular
momentum is a function
of the size of r12
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Fig. 2.47 The angular
momentum is a function
of the size of r12. The states
are divided into one angular
momentum multiplet for each
allowed value of J

hole with charge Γ ? Should we use smooth centers? How many can we put? Can we
reproduce the entropy?

The result in the literature so far is:

• For fully interacting centers (〈Γp, Γq〉 �= 0), this counting has only been done
in full generality for 2 and 3 centers. It has been extended to N + 1 centers,
where the first N have all charges equal Γ1 = . . . = ΓN and the other center has
non-vanishing 〈Γp, ΓN+1〉 with all the others.

Note that classically, there can be a problem due to configurations with runaway
behaviour. One of the centers can go off to infinity in the bubble equations, and this
screws up the asymptotics, see Fig. 2.48.

After quantization, there is a density on M4 = R×U (1)× S2. This gives a finite
volume. There is no more runaway, because the wave function for the positions of
the centers has no support at infinity, ‘the tail is vanishing’. This renders 〈rp〉 finite.
See Fig. 2.49.

2.8.5 Scaling Solutions

Let us go to solutions where the centers can come arbitrarily close. We stay in the
three-center example. Remember that the bubble equations look like

Fig. 2.48 Classically, one
of the centers can run of to
infinity
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Fig. 2.49 In quantum
mechanics, the wave func-
tion has no support at infinity

0

Fig. 2.50 The angular momentum multiplet triangle is completed for scaling solutions, since the
solution space contains the limit λ→ 0, such that Jmin = 0

〈Γ1, Γ2〉
r12

+ 〈Γ1, Γ3〉
r13

= c1,

〈Γ2, Γ1〉
r12

+ 〈Γ2, Γ3〉
r13

= c2,

〈Γ3, Γ1〉
r13

+ 〈Γ3, Γ2〉
r23

= c3, (2.372)

with cp = −〈Γp, h〉. We look for solutions with

rpq = λ〈Γp, Γq〉 +O(λ2), (2.373)

such that we can send λ→ 0. Then we find that 〈Γp, Γq〉 = α rpq for some constant
α. Hence we can only take this limit when the Γpq ≡ 〈Γp, Γq〉 satisfy the triangle
inequalities.

As a consequence, the angular momentum is zero when λ = 0:

J =
∑

Γpq
rpq

rpq
= α

∑
rpq = 0, (2.374)

where the last equality follows because the rpq form a closed triangle. Therefore, near
λ→ 0, we have J → 0. This means that we ‘complete’ the triangle of states in the
angular momentum multiplets of Fig. 2.47 to that of Fig. 2.50. We can parametrize
the region near Jmin = 0 by the scaling parameter λ.

When the inter-center distance rpq ∼ λ → 0, the geometry develops a very
deep throat of size proportional to 1/λ, see Fig. 2.51. As the centers come closer and
closer, the throat becomes deeper and deeper.
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Fig. 2.51 By scaling down the distances between the centers as λ→ 0, the geometry develops a
very deep throat whose size is inversely proportional to λ. When λ is of order 1 on the other hand,
we only have a very mild throat

Fig. 2.52 The correspondence of scaling solutions of a certain size to angular momentum multiplets
in the quantized solutions space

Putting these things together, gives a situation of the states in solution space as in
Fig. 2.52. This reveals a paradox. Asλ→ 0, we get deeper and deeper microstates and
we can continue like this forever. On the other hand, the number of states associated to
the region of small λ of Fig. 2.52, gives a finite number of states. Stated in a different
way, in quantum mechanics, it is meaningless to put states in a cell smaller than
�-size. Remember that on solution space, we had non-commuting coordinates r i

pq

and r j
pq . This translates to the impossibility of localizing r i

pq and r j
pq with a resolution
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Fig. 2.53 The energy E0 of
an excitation down the throat
is redshifted to E∞ ∼ E0/L ,
with L the throat length

smaller than �. Therefore there is some cut-off, and all deeper and deeper microstates
must correspond to one quantum state.

Hence even though we can make the throats as deep as we want classically, all
these deep throats do not exists after quantization. This is related to the earlier puzzle,
that due to redshift, the energy E∞ would have a continuous spectrum for deeper
and deeper throats, see Fig. 2.53: a string stretching between two centers remains
massless at spatial infinity.

On the other hand, the CFT should have a discrete spectrum, otherwise the count-
ing of microstates would not give a finite number. So the question is whether there
is a cut-off in the throat, and what it is.

While the exact answer to this question depends on the state we consider and
is somewhat complicated, a simple order of magnitude estimate can be gleaned as
follows. We consider the geometry of the throat up to the scale where λ takes its
expectation value in the lowest angular momentum state (the state at J = Jmin ; see
Fig. 2.53 above). That is, we compute 〈λ〉 in the state | j = 0〉 and then plug this
into the harmonics to yield a solution. This gives a cutoff on the throat and we can
determine the mass gap by putting a scalar field on this background and computing
the gap in its spectrum (this is analogous to a standard computation to determine the
mass gap in global AdS and essentially measures the “size of the box” provided by
the gravitational potential).

This computation yields a mass gap that, when measured in AdS units 1/L Ad S ,
scales as 1/c. Here c is a dimensionless number given by comparing the AdS length
to the plank length c = L Ad S/�P . Thus the mass gap is

1

c L Ad S
. (2.375)

whereas the mass gap in global AdS is just

1

L Ad S
. (2.376)
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The suggestive terminology c alludes to the fact that this number is the central charge
of the dual CFT. For example in the case where the AdS3 is the near horizon of the
D1-D5 black hole c is proportional to Q1 Q5 and is the central charge of the dual
D1-D5 CFT.

This is a very significant result. Recall that in our derivation of the black hole
entropy in earlier sections a very important role was played by the so called “long
string picture” where the entropically dominant sector of the CFT came from a
string with a winding numer that is proportional to Q1 Q5 as well. Consequently
the momentum of this string was quantized in units 1

Q1 Q5 R with R the dimensionful
length of the CFT circle R = 2πL Ad S .

This computation thus suggests that the quantum corrections to the deep throat
microstates not only discretize the spectrum, hence resolving the issue of a continuous
spectrum, but also do this by giving them a mass gap corresponding to the most
entropic sector of the CFT. This suggests these states at least occupy the “typical”
sector of the CFT and hence are potentially the kind of states that account for the
black hole entropy.
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