Chapter 1
Introduction and Statement of the Main Results

The braid groups B,, of the plane were introduced by E. Artin in 1925 and further
studied in 1947 [1, 2]. They were later generalised by Fox to braid groups of arbitrary
topological spaces via the following definition [3]. Let M be a compact, connected
surface, and let n € N. We denote the set of all ordered n-tuples of distinct points of
M, known as the nth configuration space of M, by:

Fo(M)={(p1.....pn) |pi €M and p; # p; if i#j}.

Configuration spaces play an important role in several branches of mathematics and
have been extensively studied, see [4—7] for example.

The symmetric group S, on 7 letters acts freely on F,, (M) by permuting coordi-
nates. The corresponding quotient space F,,(M)/S, will be denoted by D, (M). The
nth pure braid group P, (M) (respectively the nth braid group B,,(M)) is defined to
be the fundamental group of F,,(M) (respectively of D, (M)). We refer the reader
to [8] for a recent survey on surface braid groups and the computation of the lower
algebraic K -theory of their group rings.

Together with the real projective plane R P2, the braid groups of the 2-sphere S? are
of particular interest, notably because they have non-trivial centre [9, 10], and torsion
elements [11, 12]. Indeed, Fadell and Van Buskirk showed that among the braid
groups of compact, connected surfaces, B, (S?) and B, (RP?) are the only ones to
have torsion [12, 13]. Letus recall briefly some of the properties of B,, (S2) [9, 12, 13].

If D> C S? is a topological disc, there is a homomorphism : B, — B, (S?)
induced by the inclusion. If 8 € B, then we shall denote its image ¢(8) simply
by B. Then B, (Sz) is generated by o7, ..., 0,—1 which are subject to the following
relations:

oioj=0jo;if[i —jl| >2and 1 <i,j<n—1
0;0i4+10; = 0j410i0;41 forall 1 <i <n—2,and

01--~o,,_2o,%_10,,_2---01 =1. (1.1)
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2 1 Introduction and Statement of the Main Results

Consequently, B, (S?) is aquotient of B,,. The first three sphere braid groups are finite:
B1(S?) is trivial, Bo(S?) is cyclic of order 2, and B3(S?) is a ZS-metacyclic group
(a group whose Sylow subgroups, commutator subgroup and commutator quotient
group are all cyclic) of order 12, isomorphic to the semi-direct product Zz x Zy4 of
cyclic groups, the action being the non-trivial one. For n > 4, B, (S?) is infinite. The
following projection:

‘i:: Bn(SZ) e %2()1—1)
o1 foralll <i<n—1

is the Abelianisation homomorphism whose kernel is the commutator subgroup
I (B,, (Sz)) of B,(S?). Note that if w € B,(S?) then &(w) is the exponent sum
(relative to the o;) of w modulo 2(n — 1). Further, we have a natural short exact
sequence:

1= PySH — B,(SH S S, — 1, (1.2)

7 being the homomorphism that sends o; to the transposition (i, i + 1).

Gillette and Van Buskirk showed that if » > 3 and k € N then B, (S?) has an
element of order k if and only if k divides one of 2n, 2(n — 1) or 2(n — 2) [9]. The
torsion elements of B, (S?) and B, (RP?) were later characterised by Murasugi:

Theorem 1 (Murasugi [11]). Letn > 3. Then up to conjugacy, the torsion elements
of Bu(S?) are precisely the powers of the following three elements:

(a) ag =01+ 0p—20,—1 (of order 2n).
(b) ay = 010,202 (of order 2(n — 1)).
(c) ap =07~ ‘Gn730,12,2 (of order 2(n — 2)).

So the maximal finite cyclic subgroups of B, (S?) are isomorphic to Za,,, Zyn—1)
or Zon—2)- In [14], we showed that B, (S?) is generated by o and o;. Let Aﬁ =
(01 -+ - 0p—1)" denote the so-called “full twist’ braid of B, (S?). If n > 3, A% is the
unique element of By, (S?) of order 2, and it generates the centre of By, (S?) [9]. It is
also the square of the ‘half twist’ element defined by:

Ap = (01--0op-1)(01 - 0p—2) -+ (0102)07. (1.3)
It is well known that:

Ao AV =0, foralli=1,....,n—1. (1.4)
The uniqueness of the element of order 2 in B, (S*) implies that the three elements
ap, o1 and «y are respectively nth, (n — 1)th and (n — 2)th roots of A%, and this

yields the useful relation:

AZ =" foralli € {0, 1,2}. (1.5)

n



1 Introduction and Statement of the Main Results 3

In what follows, if m > 2, Dica,, will denote the dicyclic group of order 4m. It admits
a presentation of the form

<x, y ’x’" =2, yxy = x_1>. (1.6)

If in addition m is a power of 2 then we will also refer to the dicyclic group of order
4m as the generalised quaternion group of order 4m, and denote it by Qu,,. We
remark that some authors use the terminology ‘generalised quaternion group’ to be
what we refer to as ‘dicyclic group’, but we follow the terminology of [15, pp. 68 and
82], [16,p. 1401, [17,p.351] and [18, pp. 189 and 252]. As an example, if m = 2 then
we obtain the usual quaternion group Qg of order 8. Further, T* (resp. O*, I*) will
denote the binary tetrahedral group of order 24 (resp. the binary octahedral group
of order 48, the binary icosahedral group of order 120). We will refer collectively to
T*, O* and I'* as the binary polyhedral groups. More details on these groups may
be found in [15, 19-21], as well as in Sect.2.3 and the Appendix.

In order to understand better the structure of B, (S?), one may study (up to isomor-
phism) the finite subgroups of B, (S?). From Theorem 1, it is clear that the finite cyclic
subgroups of B, (S?) are isomorphic to the subgroups of Zy(,—;), where i € {0, 1, 2}.
Motivated by a question of the realisation of Qg as a subgroup of B, (S?) of Brown
[22] in connection with the Dirac string trick [23, 24], we obtained partial results on
the classification of the isomorphism classes of the finite subgroups of B, (S?) in [25,
26]. We remark that the case n = 4 was studied by Thompson [27]. The complete
classification was given in [28]:

Theorem 2 ([28]). Let n > 3. Up to isomorphism, the maximal finite subgroups of
B, (S?) are:

(@) Zopmu—1)ifn =5.

(b) Dicyy.

(c) Dicspn—2)ifn=50rn=1.
(d) T*ifn =4mod6.

(e) O*ifn=0,2mod 6.

(f) I'"ifn=0,2,12,20 mod 30.

Remarks 3 (a) By studying the subgroups of dicyclic and binary polyhedral groups,
it is not difficult to show that any finite subgroup of B, (S?) is cyclic, dicyclic or
binary polyhedral (see Proposition 85).

(b) As we showed in [25, 28], fori € {0, 2},

Anai AT = (x;_l, where o} = aoaiao_l = aé/zoc,-(xai/z, (1.7)
and the dicyclic group of order 4(n — i) is realised in terms of the generators of
B, (S?) by:

(o A
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which we shall refer to hereafter as the standard copy of Dicy(,—;) in B, ($.

A key tool in the proof of Theorem 2 is the close relationship due to Magnus of
B, (S%) with the mapping class group MCG (S?, n) of the n-punctured sphere, n > 3,
given by the short exact sequence [29, 30]:

1 — (A2) - B,(S?) 5 MCG(S? n) — 1. (1.8)

As we shall see, it will also play an important r6le in various parts of this paper,
notably in the study of the centralisers and conjugacy classes of the finite order
elements in Chap. 2, as well as in some of the constructions in Chap. 3. There is a short
exact sequence for the mapping class group analogous to Eq. (1.2); the kernel of the
homomorphism MCG(S?, n) — S, is the pure mapping class group PMCG(S?, n),
which may also be seen as the image of P, (Sz) under ¢. In particular, since forn > 4,
P, (Sz) = P,3 (S2 \ {x1, x2, x3}) X Z; [10], where the second factor is identified
with (A,%), it follows from the restriction of Eq. (1.8) to P, (S?) that

PMCG(S?, n) = Py3(S?\ {x1, x2, x3)),

in particular PMCG (Sz, n) is torsion free for all n > 4.

In this book, we go a stage further by classifying (up to isomorphism) the virtually
cyclic subgroups of B, (S?). Recall that a group is said to be virtually cyclic if it
contains a cyclic subgroup of finite index (see also Sect.2.1). It is clear from the
definition that any finite subgroup is virtually cyclic, so in view of Theorem 2, it
suffices to concentrate on the infinite virtually cyclic subgroups of B, (S?), which
are in some sense its ‘simplest’ infinite subgroups. The classification of the virtually
cyclic subgroups of B,(S?) is an interesting problem in its own right. As well as
helping us to understand better the structure of these braid groups, the results of this
book give rise to some K -theoretical applications. We remark that our work was
partially motivated by a question of S. Milldn-Lépez and S. Prassidis concerning
the calculation of the algebraic K -theory of the braid groups of S? and R P2. It was
shown recently that the full and pure braid groups of these two surfaces satisfy the
Fibred Isomorphism Conjecture of Farrell and Jones [31-33]. This implies that the
algebraic K -theory groups of their group rings (over Z) may be computed by means
of the algebraic K -theory groups of their virtually cyclic subgroups via the so-called
‘assembly maps’. More information on these topics may be found in [8, 34—36]. The
main theorem of this book, Theorem 5, is currently being applied to the calculation of
the lower algebraic K -theory of Z[B,, (Sz)] [8, 37], which generalises results of the
thesis of Millan-Lopez [38, 39] who calculated the lower algebraic K -theory of the
group rings of P, (S?) and P,(RP?), making use of our classification of the virtually
cyclic subgroups of P,(RP?) in the latter case [40]. This application to K -theory
thus provides us with additional reasons to find the virtually cyclic subgroups of
B, (S?).

As we observed previously, if n < 3 then B, (S?) is a known finite group, and so
we shall suppose in this book that n > 4. Our main result is Theorem 5, which yields
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the complete classification of the infinite virtually cyclic subgroups of B, (S?), with
a small number of exceptions, that we indicate below in Remark 6. Recall that by
results of Epstein and Wall [41, 42] (see also Theorem 17 in Sect.2.1), any infinite
virtually cyclic group G is isomorphic to F X Z or G| *f G2, where F is finite and
[G;: F]=2fori e {1, 2} (we shall say that G is of Type I or Type II respectively).
Before stating Theorem 5, we define two families of virtually cyclic groups. If G is
a group, let Aut (G) (resp. Out (G)) denote the group of its automorphisms (resp.
outer automorphisms).

Definition 4 Letn > 4.
(1) LetVj(n)bethe family comprised of the following Type I virtually cyclic groups:

(a) Zg4 x Z, where q is a strict divisor of 2(n —i),7 € {0,1,2},and g #n — i
if n — i is odd.

(b) Zy X, Z, where g > 3 is a strict divisor of 2(n —i),7 € {0,2}, g #n —i
if n is odd, and p(1) € Aut (Z,) is multiplication by —1.

(c) Dicyy, x Z, where m > 3 is a strict divisor of n — i and i € {0, 2}.

(d) Dicyyy %y Z, where m > 3 dividesn —i,i € {0, 2}, (n —i)/m is even, and
where v(1) € Aut (Dicy,,) is defined by:

v(D)(x) =x
[v(l)(y) = xy (49

for the presentation (1.6) of Dicy,,,.
(e) Qg g Z, for n even and 6 € Hom(Z, Aut (Qg)), for the following actions:
(1 6(1) =1d.
(i) 6 = o, where a(l1) € Aut(Qg) is given by a(1)(i) = j and
a(1)(j) = k, where Qg = {£1, £i, £/, +k}.
(iii) @ = B, where B(1) € Aut (Qg) is given by S(1)(i) = k and B(1)(j) =
1

Jj .

(f) T* x Z for n even.

(g) T* Xy Z forn = 0,2 mod 6, where w(1) € Aut (T*) is the automorphism
defined as follows. Let T* be given by the presentation [21, p. 198]:

(P,o.x |X*=1,PP=0% PP ' =07", XPX' =0, Xx0x~' = PQ),

(1.10)
and let w(1) € Aut (T*) be defined by
P— QP
0~ 07! (1.11)
X XL

More details concerning this automorphism will be given in Sect.2.3.
(h) O* x Zforn = 0,2 mod 6.
(i) I* x Z forn=0,2,12,20 mod 30.
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(2) Let V,(n) be the family comprised of the following Type II virtually cyclic
groups:

(a) Zag *Z04 Zaq, where g divides (n —i)/2 for some i € {0, 1, 2}.

(b) Zaq *Z04 Dicyy, where g > 2 divides (n — 1) /2 for some i € {0, 2}.

(¢) Dicsy *7,, Dicag, where g > 2 divides n — i strictly for some i € {0, 2}.
(d) Dicyg *Dic,, Dicag, where g > 4isevenand divides n—i forsomei € {0, 2}.
(&) O* %7+ O*, where n = 0,2 mod 6.

Finally, let V(n) be the family comprised of the elements of V(n) and V,(n).
Unless indicated to the contrary, in what follows, p, v, o, B and @ will denote the
actions defined in parts (1)(b), (d), (e)(ii), (e)(iii) and (g) respectively.

The main result of this book is the following, which classifies (up to a finite
number of exceptions) the infinite virtually cyclic subgroups of B, (S?).

Theorem S Suppose that n > 4.

(1) If G is an infinite virtually cyclic subgroup of B, (S?) then G is isomorphic to
an element of V(n).

(2) Conversely, let G be an element of V(n). Assume that the following conditions
hold:

(a) if G = Qg o 7 thenn & {6, 10, 14}.
(b) ifG=T* x Zthenn ¢ {4,6,8, 10, 14}.

(c) ifG=0*xZorG=T"x,Zthenn ¢ {6, 8, 12, 14, 18, 20, 26}.
(d) if G=I* x Zthenn ¢ {12, 20, 30, 32, 42, 50, 62}.

(e) if G = OF x+ O* thenn ¢ {6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38}.

Then there exists a subgroup of B, (S?) isomorphic to G.
(3) Let G be isomorphic to T* x Z (resp. to O* x Z) if n = 4 (resp. n = 6). Then
B, (S?) has no subgroup isomorphic to G.

Remark 6 Together with Theorem 2, Theorem 5 yields a complete classification of
the virtually cyclic subgroups of B, (S?) with the exception of a small (finite) number
of cases for which the problem of their existence is open. These cases are as follows:

(a) Type I subgroups of B, (S?) (see Propositions 62 and 66, as well as Remarks 64
and 67):

(i) the realisation of Qg X, Z as a subgroup of B, (S?), where n belongs to
{6, 10, 14} and (1) € Aut (Qg) is as in Definition 4(1)(e)(ii).

(ii) the realisation of T* x Z as a subgroup of B,(S?), where n belongs to
{6, 8, 10, 14}.

(iii) the realisation of T* %, Z as a subgroup of B, (Sz), where the action w is
given by Definition 4(1)(g), and n € {6, 8, 12, 14, 18, 20, 26}.

(iv) the realisation of O* x Z as a subgroup of B, (S?), where n belongs to
{8, 12, 14, 18, 20, 26}.
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(v) the realisation of I* x Z as a subgroup of B, (S?), where n belongs to
{12, 20, 30, 32,42, 50, 62}.

(b) Type II subgroups of B, (S?) (see Remark 72 and Proposition 73):

(1) forn € {6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38}, the realisation of the group
O* s+ O* as a subgroup of B, (S?).

Since the above open cases occur for even values of n, the complete classification
of the infinite virtually cyclic subgroups of B, (S?) for all n > 5 odd is an immediate
consequence of Theorem 5.

Theorem 7 Let n > 5 be odd. Then up to isomorphism, the following groups are
the infinite virtually cyclic subgroups of By(S%).

(I) (a) Zm x¢ Z, where 6(1) € {Id, —Id}, m is a strict divisor of 2(n — i), for
i €{0,2}, andm #n —i.
(b) Zy x Z, where m is a strict divisor of 2(n — 1).
(¢) Dicam X Z, where m = 3 is a strict divisor of n — i fori € {0, 2}.
(I) (a) Zag *Z04 ZLsgy, where q divides (n — 1)/2.
(b) Dicyy *Zng Dicyy, where g > 2 is a strict divisor of n — i, and i € {0, 2}.

Most of this book is devoted to proving Theorem 5, and is broadly divided into
two Chaps.2 and 3, together with a short Appendix. The aim of Chap.2 is to prove
Theorem 5(1). In conjunction with Theorem 2, Theorem 17 gives rise to a family
VC of virtually cyclic groups, defined in Sect. 2.1, with the property that any infinite
virtually cyclic subgroup of B, (S?) belongs to VC. In that section, we shall discuss a
number of properties pertaining to virtually cyclic groups. Proposition 26 describes
the correspondence in general between the virtually cyclic subgroups of a group G
possessing a unique element x of order 2 and its quotient G/(x). By the short exact
sequence (1.8), this proposition applies immediately to B, (S*) and MCG(S?, n),
and will be used at various points, notably to obtain the classification of the virtually
cyclic subgroups of MCG (S2, n) from that of B, (S?). Two other results of Sect.2.1
that will prove to be useful in Sect. 3.8 are Proposition 20 which shows that almost
all elements of V,(n) of the form G xy G may be written as a semi-direct product
7Zx G, and Proposition 27 which will be used to determine the number of isomorphism
classes of the elements of V;(n).

The principal difficulty to proving Theorem 5 is to decide which of the elements
of VC are indeed realised as subgroups of B, (S?). This is achieved in two stages,
reduction and realisation. In the first stage, we reduce the subfamily of VC of Type I
groups in several ways. To this end, in Sect.2.2, we obtain a number of results of
independent interest concerning structural aspects of B, (S?). The first of these is the
calculation of the centraliser and normaliser of its maximal finite cyclic and dicyclic
subgroups. Note that if i € {0, 1}, the centraliser of ¢;, considered as an element
of B, is equal to («;) [43, 44]. A similar equality holds in B, (Sz) and is obtained
using Eq. (1.8) and the corresponding result for MCG(S?, n) due to Hodgkin [45]:
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Proposition 8 Leri € {0, 1,2}, and let n > 3.

(a) The centraliser of («;) in B, (SZ) is equal to (o), unlessi = 2 andn = 3, in
which case it is equal to B3(S%).
(b) The normaliser of (;) in B, (S?) is equal to:

(@0, Ay) = Dicay ifi=0
<O[2, Olo_lAnOlo> = Dicyn—2) if i =2
(o1) = Zon—1) if i =1,

unless i = 2 and n = 3, in which case it is equal to B3 (Sz).

(c) If i € {0,2}, the normaliser of the standard copy of Dicyu—iy in B, (S?) is
itself, except when i = 2 and n = 4, in which case the normaliser is equal to
aalafl (g, Ag)orag, and is isomorphic to Qje.

If F is a maximal dicyclic or finite cyclic subgroup of B, (S?), parts (a) and (b)
imply immediately that B, (S?) has no Type I subgroup of the form F x Z.

The second reduction, given in Proposition 35 in Sect.2.3 will make use of the
fact thatif 6: Z — Aut (F) is an action of Z on the finite group F, the isomorphism
class of the semi-direct product F x¢g Z depends only on the class of (1) in Out (F).
Since we are interested in the realisation of isomorphism classes of virtually finite
subgroups in B, (S?), it will thus be sufficient to study the Type I groups of the form
F xg 7, where 6(1) runs over a transversal of Out (F) in Aut (F). To this end, in
Sect.2.3, we recall the structure of Out (F) for the binary polyhedral groups. One
could also carry out this analysis for the other finite subgroups of B,(S”) given by
Theorem 2, but the resulting conditions on 8 are weaker than those obtained from a
generalisation of a second result of L. Hodgkin concerning the powers of ¢; that are
conjugate in B, (S?). More precisely, in Sect. 2.4, we prove the following proposition.

Proposition 9 Letn > 3 andi € {0, 1, 2}, and suppose that there exist r,m € 7
such that &} and af are conjugate in By, (S?).

(a) Ifi = 1then o' = aj.

(b) Ifi € {0,2) then " = o

l

In particular, conjugate powers of the «; are either equal or inverse. So if F is a
finite cyclic subgroup of B, (S?) then by Theorem 1 the only possible actions of Z
on F are the trivial action and multiplication by — 1. This also has consequences for
the possible actions of Z on dicyclic subgroups of B,,(S?). As in Proposition 8, the
proof of Proposition 9 will make use of a similar result for the mapping class group
and the relation (1.8).

The final reduction, described in Sect.2.5.2, again affects the possible Type I
subgroups that may occur, and is a manifestation of the periodicity (with least period
2 or 4) of the subgroups of B, (S?) that was observed in [28] for the finite subgroups.
The following proposition will be applied to rule out Type I subgroups of B, (S?)
isomorphic to F g Z with non-trivial action 6, where F is either O* or I* (one could
also apply the result to the other possible finite groups F, but this is not necessary
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in our context in light of the consequences of Proposition 9 mentioned above). The
following proposition may be found in [46, 47], and may be compared with the
analogous result for R P2 [48, Proposition 6]. We shall give an alternative proof in
Sect.2.5.1.

Proposition 10 ([46, 47])

(a) The space F>(S?) (resp. D2(S?)) has the homotopy type of S* (resp. of RP2).
Hence the universal covering space of D»(S?) is F»(S?).

(b) Ifn > 3, the universal covering space of F,(S?) or D, (S?) has the homotopy
type of the 3—sphere S°.

Putting together these reductions will allow us to prove Theorem 5(1), first for
the groups of Type I in Sect.2.6.1, and then for those of Type II in Sect.2.6.2. The
structure of the finite subgroups of B, (S%) imposes strong constraints on the possible
Type II subgroups, and the proof in this case is more straightforward than that for
Type I subgroups.

The second part of the manuscript, Chap.3, is devoted to the analysis of the
realisation of the elements of V(n) as subgroups of B, (S?) and to proving parts (2)
and (3) of Theorem 5. With the exception of the values of n excluded by the statement
of part (2), we prove the existence of the elements of V(n) as subgroups of B, (Y,
first those of Type I in Sects. 3.1-3.4 and then those of Type Il in Sect. 3.6. The results
of these sections are gathered together in Proposition 68 (resp. Proposition 73) which
proves Theorem 5(2) for the subgroups of Type I (resp. Type II). The construction of
the elements of V(n) involving finite cyclic and dicyclic groups are largely algebraic,
and will rely heavily on Lemma 51, as well as on Lemma 29 which describes the
action by conjugation of the &; on the generators of B, (S?). In contrast, the realisation
of the elements of V(r) involving the binary polyhedral groups is geometric in nature,
and occurs on the level of mapping class groups via the relation (1.8). The constraints
involved in the constructions indicate why the realisation of such elements is an open
problem for the values of n given in Remark 6. For n € {4, 6}, in Proposition 62(d)
we are also able to rule out the existence of the virtually cyclic groups given in
Theorem 5(3).

In Sect. 3.8, we discuss the isomorphism problem for the amalgamated products
that occur as elements of V, (n). It turns out that with one exception, abstractly there
is only one way (up to isomorphism) to embed the amalgamating subgroup in each
of the two factors. With the help of Proposition 27, we are able to prove the following
result.

Proposition 11 For each of the amalgamated products given in Definition 4(2),
abstractly there is exactly one isomorphism class, with the exception of Q16 * 0, Q16
for which there are exactly two isomorphism classes.

Note that Proposition 11 refers to abstract isomorphism classes, and does not
depend on the fact that the amalgamated products occurring as elements of V;(n)
are realised as subgroups of B, (S?). In the exceptional case, that of Q16 *0, D16,
abstractly there are two isomorphism classes defined by Eq. (3.30) and (3.32). In
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Corollary 76, we show that abstractly, all but one of the isomorphism classes of the
elements of V;(n) of the form G xy G may be written as a semi-direct product of Z
by G. In Propositions 77 and 78, if n > 4 is even we show that one of these isomor-
phism classes is always realised as a subgroup of B, (S?), while the other isomorphism
class is realised as a subgroup of B, (SZ) for all n ¢ {6, 14, 18, 26, 30, 38}. It is an
open question as to whether this second isomorphism class is realised as a subgroup
of B, (S?) forn € {6, 14, 18, 26, 30, 38}.

In Sect.3.9, we deduce the classification of the virtually cyclic subgroups of
MCG(S?, n) (with a finite number of exceptions). As we shall see, it will follow
from Proposition 26 that the homomorphism ¢ of the short exact sequence (1.8)
induces a correspondence that is one-to-one, with the exception of subgroups of
B, (S?) that are isomorphic to Z,, g Z or Za,, Xg Z for m odd, which are sent to the
same subgroup Z,, x¢' Z of MCG(S?, n), the action 6’ being given as in Proposition
12(b) below.

Proposition 12 Let n > 4, and let : B,(S*) — MCG(S?, n) be the epimorphism
given by Eq. (1.8).

(a) Let H' be an infinite virtually cyclic subgroup of MCG(S?, n) of Type I (resp.
Type II). Then ¢~ " (H') is a virtually cyclic subgroup of B, (S?) of Type I (resp.
Type 11).

(b) Let H be a Type I virtually cyclic subgroup of B, (S?), isomorphic to F g Z,
where F is a finite subgroup of B, (S*) and 6 € Hom(Z, Aut (F)). Then ¢(H) =
@(F) %y Z, where ' € Hom(Z, Aut (F/)) satisfies ' (1) (f') = @) (f)) for
all f' € F' and f € F for which o(f) = f.

(c) Let H be a Type Il virtually cyclic subgroup of B, (S*) isomorphic to G| r G2,
where G, G and F are finite subgroups of B, (S*), and F is an index 2 subgroup
of both G1 and G». Then ¢(H) = ¢(G1) *o(r) ¢(G2).

Equation (1.8) and Definition 4 together imply that the following virtually cyclic
groups are those that will appear in the classification of the virtually cyclic subgroups
of MCG(S?, n). If m > 2, let Dihy,, denote the dihedral group of order 2m.

Definition 13 Letn > 4.
(1) Letivh (n) be the family comprised of the following Type I virtually cyclic groups:
(a) Zg4 x Z, where g is a strict divisor of n — i, i € {0, 1, 2}.
(b) Zyq x5 Z, where g > 3 is a strict divisor of n — i, i € {0,2}, and p(1) €
Aut (Z4) is multiplication by —1.
(¢) Dihy,, x Z, where m > 3 is a strict divisor of n — i and i € {0, 2}.
(d) Dihy,, x5 Z, where m > 3 dividesn — i, i € {0, 2}, (n —i)/m is even, and
where V(1) € Aut (Dihy,,) is defined by:

Y(DH(x) =x
v()(y) =xy
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for the presentation of Dihy,, given by:
<x, y ‘x’" =y =1 yry = x_l>~

(e) (Zo @ Zy) x5 Z, for n even and 6 € Hom(Z, Zy & 7Z,), for the following
actions:
i) 6(1) =1d.
(i) 6 = @&, where &(1) € Aut (Zs @ Z») is given by @(1)((1,0)) = (0, 1)
and @(1)((0, 1) = (1, 1).
(iii) & = B, where B(1) € Aut (Z, @ Zy) is given by B(1)((T,0)) = (1, 1)
and B(1)((0, 1)) = (0, 1).
() Ay x Z for n even.
(g) A4 x5 Z forn = 0,2 mod 6, where w(1) € Aut (A4) is the automorphism
defined as follows. Let Ay = (Zo @ Zj) x Z3 where the action of Z3 on
7 & 7, permutes cyclically the three elements (1, 0), (0, 1) and (1, 1), and
let X be a generator of the Z3-factor. Then we define w(1) € Aut (A4) by:

(1,0) — (1,1)
O, D+~ 0,1)
X XN

(h) S4 x Z forn = 0,2 mod 6.
(i) As x Zforn =0,2, 12,20 mod 30.

(2) Let Va(n) be the family comprised of the following Type II virtually cyclic
groups:

(a) Zoy *7,, Zog, where g divides (n —i)/2 for some i € {0, 1, 2}.

(b) Zng *7,, Dihy,, where g > 2 divides (n — i) /2 for some i € {0, 2}.

(c) Dihy, *7, Dihy,, where g > 2 divides n — i strictly for some i € {0, 2}.
(d) Dihy, *Dih, Dihy,, where ¢ > 41is even and divides n —i for some i € {0, 2}.
(e) S4 %4, S4, where n = 0,2 mod 6.

Finally, let @(n) be the family comprised of the elements of ivf] (n) and ivfz (n).

We thus obtain the classification of the virtually cyclic subgroups of MCG(S?, n)
(with a finite number of exceptions).

Theorem 14 Let n > 4. Every infinite virtually cyclic subgroup of MCG (S%,n) is
the image under ¢ of an element of V(n), and so is an element of V(n). Conversely,
if G is an element of V (n) that satisfies the conditions of Theorem 5(2) then ¢(G) is
an infinite virtually cyclic subgroup of MCG(S?, n).

In Proposition 81, we prove a result similar to that of Proposition 11 for the
Type II subgroups of MCG(S?, n) that appear in Definition 13(2), namely that there
is a single isomorphism class for such groups, with the exception of the amalgamated
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product Dihg *pjn, Dihg, for which there are exactly two isomorphism classes. In an
analogous manner to that of By, (S?), if n is even then Proposition 83 shows that
each of these two classes is realised as a subgroup of MCQ(SZ, n), with the possible
exception of the second isomorphism class when n belongs to {6, 14, 18, 26, 30, 38}.

As we mentioned previously, the real projective plane RP? is the only other
surface whose braid groups have torsion. In light of the results of this paper, it
is thus natural to consider the problem of the classification of the virtually cyclic
subgroups of B, (RP?) up to isomorphism. This is the subject of work in progress
[49]. The first step, the classification of the finite subgroups of B, (R P?), was carried
out in [50, Theorem 5]. As in this paper, the classification of the infinite virtually
cyclic subgroups of B, (R P?) is rather more difficult than in the finite case, but the
combination of [50, Corollary 2], which shows that B, (RP?) embeds in By, (S?),
with Theorem 5 should be helpful in this respect.
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