
Chapter 2
Survey of Analogue Spacetimes

Matt Visser

Abstract Analogue spacetimes (and more boldly, analogue models both of and for
gravity), have attracted significant and increasing attention over the last decade and
a half. Perhaps the most straightforward physical example, which serves as a tem-
plate for most of the others, is Bill Unruh’s model for a dumb hole,(mute black hole,
acoustic black hole), wherein sound is dragged along by a moving fluid—and can
even be trapped behind an acoustic horizon. This and related analogue models for
curved spacetimes are useful in many ways: analogue spacetimes provide general
relativists with extremely concrete physical models to help focus their thinking, and
conversely the techniques of curved spacetime can sometimes help improve our un-
derstanding of condensed matter and/or optical systems by providing an unexpected
and countervailing viewpoint. In this chapter, I shall provide a few simple examples
of analogue spacetimes as general background for the rest of the contributions.

2.1 Introduction

While the pre-history of analogue spacetimes is quite long and convoluted, with
optics-based contributions dating as far back as the Gordon metric of 1923 [1],
significant attention from within the general relativity community dates back to Bill
Unruh’s PRL concerning acoustic black holes (dumb holes) published in 1981 [2].
Even then, it is fair to say that the investigation of analogue spacetimes did not
become mainstream until the late 1990’s. (See the recently updated Living Review
article on “Analogue gravity” for a summary of the historical context [3].)

In all of the analogue spacetimes, the key idea is to take some sort of “excitation”,
travelling on some sort of “background”, and analyze its propagation in terms of the
tools and methods of differential geometry. The first crucial technical distinction
one has to make is between “rays” and “waves”.

• The rays of ray optics (geometrical optics), ray acoustics (geometrical acoustics),
or indeed any more general ray-like phenomenon, are only concerned with the
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“light cones”, “sound cones”, or more generally the purely geometrical “prop-
agation cones” defined by the ray propagation speed relative to the appropriate
background. Physically, in this approximation one should think photons/phonons/
quasi-particles following some well-localized trajectory, rather than the more dif-
fuse notion of a wave. Mathematically, we will soon see that it is appropriate to
construct some metric gab , and some tangent vector ka to the particle trajectory,
such that:

gabk
akb = 0. (2.1)

Here indices such as a, b, c, . . . , take on values in {0,1,2,3}, corresponding to
both time and space, whereas indices such as i, j , k, . . . , will take on values in
{1,2,3}, corresponding to space only. Of course we could multiply the metric by
any scalar quantity without affecting this equation; this is known as a conformal
transformation of the metric. (So distances change but angles are unaffected.)
In the language of differential geometry, ray phenomena are sensitive only to a
conformal class of Lorentzian geometries.

• In contrast, for waves one needs to write down some PDE—some sort of wave
equation. For example, for a scalar excitation Ψ one needs to construct a wave
equation in terms of a d’Alembertian [2–7]:

1√−g
∂a

(√−ggab∂bΨ
) = 0. (2.2)

This d’Alembertian, (and in fact very many of the different possible types of wave
equation), depends on all the components of the metric gab , not just the conformal
class. (And conformal wave equations, of which the Maxwell electromagnetic
wave equations are the most common, have their own somewhat different issues.)

In short, depending on exactly what one is trying to accomplish, one may sometimes
be able to get away with ignoring an overall multiplicative conformal factor—but
for other applications knowledge of the conformal factor is utterly essential.

What I shall now do is to present some elementary examples—and a few not
so elementary implications—that will hopefully serve as a pedagogical introduction
to the more specific physics problems addressed in the other contributions to this
volume.

2.2 Optics: The Gordon Metric and Its Generalizations

The original Gordon metric [1] of 1923 was limited to ray optics in a medium with a
position-independent refractive index, and with some position-independent velocity.
Let

ηab =
[−1 0

0 δij

]
, (2.3)
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denote (as usual) the special relativistic Minkowski metric, and correspondingly set
the zeroth coordinate to x0 = t = ctphysical. Denote the refractive index by n and the
4-velocity of the medium by V a = γ (1;βn). Then we have Va = γ (−1;βn). Now
define

gab = (ηab + VaVb) − VaVb

n2
= ηab +

(
1 − 1

n2

)
VaVb. (2.4)

In the rest frame of the medium V a → (1;0) and

gab →
[−1/n2 0

0 δij

]
. (2.5)

Therefore in this rest frame the null cones of the medium are exactly what we want:

0 = ds2 = −dt2

n2
+ ‖dx‖2 =⇒

∥∥∥∥
dx
dt

∥∥∥∥ = 1

n
. (2.6)

But more generally, for non-zero velocity, β �= 0, the metric gab provides a per-
fectly good special relativistic model for the light cones in a homogeneous moving
medium. Let us agree to raise and lower the indices on the 4-velocity V using the
Minkowski metric η, then the contravariant Gordon metric is

gab = (
ηab + V aV b

) − n2V aV b. (2.7)

The first and most obvious generalization is to note that one can easily make the
refractive index and 4-velocity both space and time dependent. (Physically, this will
certainly work as long as the wavelength and period of the light wavicle is short
compared to the spatial and temporal scales over which changes of the background
refractive index and 4-velocity are taking place.)

A second generalization is to note that from the point of view of ray optics one
might as well take

gab = Ω2
[
(ηab + VaVb) − VaVb

n2

]
; gab = Ω−2[(ηab + V aV b

) − n2V aV b
]
.

(2.8)
The conformal factor Ω will simply drop out when determining the light cones.
With the quantities Ω(x), n(x), and V (x) all being space and/or time dependent,
this is the most general (but still physically natural) form of the (special relativity
based) Gordon metric one can write.

One can certainly calculate the Einstein tensor for this optical metric, but there
is a priori no really compelling reason to do so—there is a priori no good reason
to attempt to enforce the Einstein equations for this optical metric, the physics is
just completely different. (That being said, if one merely views this as an ansatz
for interesting metrics to look at, then many of the standard spacetimes of general
relativity can certainly be put into this form. For example, the Schwarzschild and
Reissner–Nordström spacetimes, and the FLRW cosmologies, can certainly be put
in this form [8].)
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Example Let us take Ω = n and write

gab = n2(ηab + VaVb) − VaVb. (2.9)

This corresponds to

ds2 = −dt2 + n2
∥∥dx2

∥∥. (2.10)

Now pick the specific refractive-index profile

n = n0

1 + r2/a2
, (2.11)

so

ds2 = −dt2 + n2
0[dr2 + r2{dθ2 + sin2 θdφ2}]

(1 + r2/a2)2
. (2.12)

A theoretical cosmologist should recognize this as the Einstein static universe in
isotropic coordinates [9–11]. A theoretician working in optics should recognize
this as the Maxwell fish-eye lens [12–14]. This is simply the first of many cross-
connections between optics and general relativity. This becomes (or should become)
a two-way street for information exchange.

The Maxwell fish-eye above is an example of a Lüneburg lens [15], and has now
become the canonical example which helped initiate much of the recently developed
field of “transformation optics” [16–19]. In particular, if one looks at this from the
perspective of a theoretical cosmologist then the prefect focussing properties are
utterly trivial—after all, the spatial slices of the Einstein static universe are just
the hyper-sphere S3 in suitable coordinates—the geodesics are obviously just great
circles, which by symmetry must meet at the antipodes of the emission event, and
so perfect focussing in the ray optics approximation is trivial.

Limitations Perhaps the greatest limitation of the Gordon metric is its inability
(in its original 1923 formulation) to deal with wave properties of light. There is a
rather non-trivial generalization to the full Maxwell equations [3], but for technical
reasons the generalization requires the very specific constraint

[magnetic permittivity] ∝ [electric permeability]. (2.13)

For ordinary physical media this constraint is somewhat unphysical [3], but there is
hope that suitably designed metamaterials [20] may be designed to at least approxi-
mately satisfy this constraint.

Foreground-Background Version So far, the Gordon metric has been based on
a optical medium in Minkowski space described by the flat metric ηab . But now
suppose we have a non-trivial background metric fab arising from standard gen-
eral relativity, and place a flowing optical medium on top of that. It now becomes
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interesting to consider the generalized Gordon metric

gab = Ω2
[
(fab + VaVb) − VaVb

n2

]
; gab = Ω−2[(f ab + V aV b

) − n2V aV b
]
.

(2.14)
We now have the possibility of a non-trivial general relativistic background fab(x),
a position-dependent refractive index n(x), a position-dependent 4-velocity V a(x),
and a position-dependent conformal factor Ω(x). Note that the 4-velocity V a(x)

now has to be a timelike unit vector with respect to the background metric fab(x),
and the indices on V are raised and lowered using f . In particular, note gabV

aV b =
−Ω2/n2 and gabVaVb = −n2/Ω2, so it makes sense to define

Ṽ a = n

Ω
V a; and Ṽa = Ω

n
Va. (2.15)

Then Ṽ is a timelike unit vector with respect to g, and its indices should be raised
and lowered using g. Then we can adapt the generalized Gordon metric to also write
the background f in terms of the foreground g as:

fab = Ω−2[(gab + ṼaṼb) − n2ṼaṼb

]; f ab = Ω2
[(

gab + Ṽ aṼ b
) − Ṽ aṼ b

n2

]
.

(2.16)
For a relativist the generalized Gordon metric provides an interesting ansatz for a
potentially intriguing class of spacetimes to consider. From a theoretical optics per-
spective, one might view this procedure as an extremely general way of “compos-
ing” and/or “inverting” the transformations of transformation optics—for example,
one might first design some metamaterial [20] to generate the background fab(x),
and then impose some flowing optical medium on top of that. Various interesting
possibilities come to mind.

2.3 Non-relativistic Acoustics: The Unruh Metric

Bill Unruh’s 1981 PRL article [2], and much of the follow up work [3–5], was
explicitly and intrinsically based on non-relativistic acoustics. Let us explore the
basic features of this particular model.

Geometric Acoustics From the acoustic ray perspective the derivation is trivial:
Let cs be the speed of sound, and let v be the velocity of the fluid. Then sound rays
(phonon trajectories) satisfy [3–5]

‖dx − vdt‖ = csdt. (2.17)

Let us, already anticipating the possibility of an arbitrary conformal factor, define

ds2 = Ω2{−csdt2 + (dx − vdt)2} = Ω2{−(
c2
s − v2)− 2v · dxdt +‖dx‖2}. (2.18)
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(The zeroth coordinate is now most naturally chosen to simply be x0 = t = tphysical,
without any explicit factor of c. The speed of sound cs has the dimensions of a phys-
ical velocity.) Then the sound-ray condition is completely equivalent geometrically
to the null-cone condition ds2 = 0. In terms of a 4 × 4 matrix this is equivalent to
defining the metric tensor [3–5]

gab = Ω2
[−(c2

s − v2) −vj

−vi δij

]
. (2.19)

The corresponding inverse metric is

gab = Ω−2
[ −1/c2

s −vj /c2
s

−vi/c2
s δij − vivj /c2

s

]
. (2.20)

It should be emphasized that in this situation the velocity v and speed of sound
cs will be inter-related in some (often quite complicated) manner—the background
fluid flow must satisfy the Euler equation and the continuity equation [2–5].

It should again further be emphasized (forcefully) that while one can certainly
calculate the Einstein tensor for this acoustic metric, there is a priori no really com-
pelling reason to do so—there is a priori no good reason to attempt to enforce the
Einstein equations for this acoustic metric, the physics is just completely different.
That being said, if one again views this as an ansatz for interesting metrics to look
at, then many of the standard spacetimes of general relativity (but certainly not all
interesting spacetimes) can be put into this form. (For instance the Schwarzschild
and Reissner–Nordström spacetimes can be put into this form by going to Painlevé–
Gullstrand coordinates, but the Kerr and Kerr–Newman spacetimes cannot be put in
this form [3, 21].)

To further develop the discussion, let us now introduce quantities

Qab =
[

0 0
0 δij

]
; V a = (

1;vi
) = (1;v). (2.21)

Here the 4-velocity V a is normalized non-relativistically—with the time component
being unity. Then for the inverse metric

gab = Ω−2
[
Qab − V aV b

c2
s

]
. (2.22)

But what about the covariant metric gab? Let us now define

Q
�
ab =

[
0 0
0 δij

]
. (2.23)

Then Q
�
ab is the Moore–Penrose pseudo-inverse of Qab , and the object

P a
b = QacQcb =

[
0 0
0 δi

j

]
(2.24)
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is a projection operator onto spatial slices. Let us now furthermore define the quan-
tities V

�
a = Q

�
abV

b = (0;vi) = (0;v), while Ta = (1;0). The best we can do for the
covariant metric gab is to now write the somewhat clumsy expression:

gab = Ω2[Q�
ab − (

c2
s − v2)TaTb − TaV

�
b − V �

a Tb

]
. (2.25)

In view of the fact that, with these definitions, one has TaV
a = 1 and V

�
a V a = v2,

while QabTb = 0 and QabV
�
b = V a − T a , it is easy to verify that (as required)

gabgbc = δa
c. (2.26)

As we shall soon see, relativistic acoustics is in some sense actually somewhat sim-
pler than the non-relativistic case.

Wave Acoustics If one goes beyond ray acoustics, then the parameter Ω is no
longer arbitrary. One does have to make some additional (and rather stringent) tech-
nical assumptions—barotropic, irrotational, and inviscd (zero viscosity) flow [3–5].
Under those assumptions, by linearizing the Euler equation and continuity equa-
tion, after a little work one ultimately obtains a wave equation (a curved-spacetime
d’Alembertian equation) for perturbations of the velocity potential specified in terms
of the density of the fluid and the speed of sound—specifically one has Ω = √

ρ/cs

in 3 space dimensions, Ω = ρ/cs in 2 space dimensions, and technical problems
arise in 1 space dimension. Generally, in d space dimensions, Ω = (ρ/cs)

1/(d−1).
(See for example Ref. [3].)

A specific feature of physical (wave) acoustics, not probed in the geometrical
acoustics limit, is the behaviour of quasi-normal modes [22, 23]. Furthermore, if
the flow is not irrotational, so one is dealing with both background vorticity and
vorticity-bearing perturbations, then a considerably more complicated system of
wave equations can be written down [24], but this system of PDEs has nowhere
near as clean a geometrical interpretation as the irrotational case.

2.4 Horizons and Ergo-Surfaces in Non-relativistic Acoustics

One of the very nice features of non-relativistic acoustics is that it is very simple and
straightforward to define horizons and ergo-surfaces [3–5]. To define these concepts,
it is sufficient to work in the geometric acoustics limit; wave acoustics adds addi-
tional constraints not directly needed to define horizons and ergo-surfaces. Consider
for simplicity a stationary (time independent) configuration.

• Ergo-surfaces are defined by the condition ‖v‖ = cs .
• Horizons are surfaces, located for definiteness at f (x) = 0, that are defined by the

3-dimensional spatial condition ∇f · v = cs‖∇f ‖.

So the ergo-surface bounds the region where one cannot stand still without gener-
ating a sonic boom, and corresponds to Mach one, (M ≡ v/cs = 1). In contrast, on
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a horizon the normal component of the fluid velocity equals the speed of sound,
thereby either trapping or anti-trapping the acoustic excitations.

Stationary Versus Static In general relativity the words “stationary” and “static”
have precise technical meanings that may not be obvious to non-experts. So a few
words of explanation are called for:

• Stationary: For all practical purposes this means “time independent”. More pre-
cisely, mathematically there is a Killing vector (a symmetry of the system) which
is timelike at spatial infinity. Physically there is a class of natural time coordi-
nates (not quite unique) in which the metric is time-independent. In this coordi-
nate system the Killing vector is naturally associated with invariance under time
translations t → t + C.

• Static: For all practical purposes this means “time independent and non-rotating”.
More precisely, mathematically there is a Killing vector (a symmetry of the sys-
tem) which is both timelike at spatial infinity and “hypersurface orthogonal”,
meaning there exist functions ξ(x) and τ(x) such that Ka = ξ(x)gab∂bτ (x).
Physically there is then a unique natural time coordinate, (in fact τ , which is
unfortunately not necessarily “laboratory time”), in which the metric is both time-
independent and block-diagonal. That is, with vanishing time-space components
gti = 0, in these coordinates the metric block diagonalizes into (time) ⊕ (space).
The existence of a coordinate system with vanishing time-space metric compo-
nents is sufficient in general relativity to imply zero angular momentum for the
spacetime, and absence of “frame dragging”, hence the sobriquet “non-rotating”.

A word of warning: Just because one can always choose a coordinate system to
block diagonalize a static spacetime does not mean this is always a good idea. Co-
ordinates in which static spacetimes are block diagonal will break down at any hori-
zon that might be present in the spacetime. (For instance, Schwarzschild geometry
in the usual coordinates.) Permitting coordinates for static spacetimes which retain
the manifest time independence, but do not explicitly force block diagonalization
of the metric, has significant technical and physical advantages. For one thing, this
is the most natural situation when one works with “laboratory time” and a time in-
dependent fluid flow. For another thing, once one allows off-diagonal elements for
the metric one can easily construct “horizon penetrating” coordinates, which are
well defined both at and across the horizon. (For instance, Schwarzschild geome-
try in Painlevé–Gullstrand or Eddington–Finklestein coordinates.) In particular, the
acoustic metric as given above (in terms of laboratory time, speed of sound, and
fluid velocities) is automatically in horizon-penetrating form, all the components of
both the metric gab and its inverse gab remain finite as one crosses the horizon. Let
us now see how these ideas are used in practice.

Static Configurations Suppose the background flow satisfies the integrability
constraint

v
c2
s − v2

= ∇Φ, (2.27)
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and then consider the new time coordinate τ = t +Φ . (Here t is explicitly laboratory
time, while τ is constructed for mathematical convenience rather than for direct
physical purposes.) Note that this integrability condition implies (but is stronger
than) the vanishing of local helicity

h ≡ v · (∇ × v) = 0. (2.28)

In terms of this new time coordinate

ds2 = Ω2
{
−(

c2
s − v2)dτ 2 +

[
δij + vivj

c2
s − v2

]
dxidxj

}
. (2.29)

The geometry is now in this form block-diagonal so it is manifestly static, not just
stationary. (And so the ergo-surfaces and horizons will automatically coincide.) The
time translation Killing vector is

Ka = (1;0), so Ka = −Ω2(c2
s − v2;0

)
. (2.30)

To explicitly verify that this is hypersurface orthogonal in the sense defined above,
note

Ka = −Ω2(c2
s − v2)∂aτ, so Ka = −Ω2(c2

s − v2)gab∂bτ. (2.31)

The norm of this Killing vector is given by

KaKa = −Ω2(c2
s − v2) = −Ω2c2

s

(
1 − v2

c2
s

)
. (2.32)

Using very standard techniques, the surface gravity is then calculable in terms of the
gradient of this norm [3]. It is a standard result that for a Killing horizon the overall
conformal factor drops out of the calculation [25]. Generalizing Unruh’s original
calculation [2], which corresponds to cs being constant, one finds [3–5]

gH = 1

2

∥∥n · ∇(
c2
s − v2)∥∥

H
= cH

∥∥n · ∇(cs − v)
∥∥

H
= cH

∣∣∣∣
∂(cs − v)

∂n

∣∣∣∣
H

, (2.33)

which can also be compactly written in terms of the Mach number M ≡ v/cs as

gH = c2
H

∥
∥n · ∇(v/cs)

∥
∥

H
= c2

H ‖n · ∇M‖H = c2
H

∣∣
∣∣
∂M

∂n

∣∣
∣∣
H

. (2.34)

We emphasise that this already works in the geometric acoustics framework, and
that there is no need to make the more restrictive assumptions corresponding to wave
acoustics that were made in references [3] and [5]. If the integrability condition is
not satisfied one must be a little more devious.
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Stationary but Non-static Configurations If the acoustic horizon is stationary
but not static there may or may not be additional symmetries, (in addition to the as-
sumed time independence), so in particular the horizon may or may not be a Killing
horizon. (A horizon is said to be a Killing horizon if and only if there exists some
Killing vector such that the location of the horizon coincides with the vanishing of
the norm of that Killing vector. So Killing horizons automatically satisfy nice sym-
metry properties.) For a Killing horizon the calculation of surface gravity is still
relatively straightforward, for non-Killing horizons the situation is far more com-
plex.

Note that in full generality, on the horizon we have (∇f · v)2 = c2
s ‖∇f ‖2, which

we can rewrite in 3-dimensional form as gij ∂if ∂jf = 0. Since the configuration,
and location of the horizon, is time independent this statement can be bootstrapped
to 3 + 1 dimensions to see that on the horizon

gab∇af ∇bf = 0. (2.35)

That is, the 4-vector ∇f is null on the horizon. In fact, on the horizon, where in
terms of the 3-normal n we can decompose vH = csn + v‖, we can furthermore
write

(∇f )aH = (
gab∇bf

)
H

= ‖∇f ‖
Ω2

H cH

(1;v‖)H . (2.36)

That is, not only is the 4-vector ∇f null on the horizon, it is also a 4-tangent to the
horizon—so (as in general relativity) the horizon is ruled by a set of null curves.
Furthermore, extending the 3-normal n to a region surrounding the horizon (for
instance by taking n = ∇f/‖∇f ‖) we can quite generally write v = v⊥n + v‖.
Then away from the horizon

gab∇af ∇bf = (c2
s − v2⊥)‖∇f ‖2

Ω2c2
s

. (2.37)

That is, the 4-vector ∇f is spacelike outside the horizon, null on the horizon, and
timelike inside the horizon.

Stationary but Non-static Killing Horizons If the stationary horizon is Killing,
then even if we do not explicitly know what the relevant Killing vector K̃a is, we
know that its norm has to vanish on the horizon, and so the norm of this horizon-
generating Killing vector is of the form

K̃aK̃a = Q
(
c2
s − v2⊥

) = −Qc2
s

(
1 − v2⊥

c2
s

)
, (2.38)

for some unknown (but for current purposes irrelevant) function Q. Following
closely the argument for the static case, mutatis mutandis, we have [3–5]

gH = 1

2

∥∥n · ∇(
c2
s − v2⊥

)∥∥
H

= cH

∥∥n · ∇(cs − v⊥)
∥∥

H
= cH

∣∣∣∣
∂(cs − v⊥)

∂n

∣∣∣∣
H

, (2.39)
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which can also be compactly written in terms of the horizon-crossing Mach number,
M⊥ ≡ v⊥/cs , as

gH = c2
H

∥∥n · ∇(v⊥/cs)
∥∥

H
= c2

H ‖n · ∇M⊥‖H = c2
H

∣∣∣∣
∂M⊥
∂n

∣∣∣∣
H

. (2.40)

We again emphasise that this already works in the geometric acoustics framework,
and that there is no need to make the more restrictive assumptions corresponding to
wave acoustics that were made in Refs. [3, 5]. If the horizon is non-Killing then one
must be even more devious.

Stationary but Non-static Non-Killing Horizons Such situations are, from a
technical perspective, much more difficult to deal with. Such behaviour cannot oc-
cur in standard general relativity, where the Einstein equations stringently constrain
the allowable spacetimes, but there seems no good reason to exclude it for acoustic
horizons. Unfortunately, when it comes to explicit computations of the surface grav-
ity there are still some unresolved technical issues. There is still a lot of opportunity
for significant new physics hiding in these non-Killing horizons.

2.5 Relativistic Acoustics

Full relativistic acoustics (either special relativistic or general relativistic) adds a
few other quirks which I briefly describe below. (See early astrophysical work by
Moncrief [26], a more recent cosmological framework developed in [27], and a
pedagogical exposition in reference [7] for details.) Note that the interest in, and
need for, relativistic acoustics is driven by astrophysical and cosmological consid-
erations, not by direct laboratory applications. There are at least three situations in
which relativistic acoustics is important:

• Speed of sound comparable to that of light.
In any ideal gas once kT � m0c

2 then p ≈ 1
3ρ and so cs ≈ 1√

3
c.

This is physically relevant, for instance, in various stages of big bang cosmol-
ogy.

• Speed of fluid flow comparable to that of light.
This is physically relevant, for instance, in some black hole accretion disks

and/or the jets emerging from active galactic nuclei (AGNs).
• Tight binding: p � ρ or |μ| � m0c

2.
Once the pressure is an appreciable fraction of the energy density, or the ab-

solute value of the chemical potential is much smaller than the rest mass, then
the usual derivation of the conformal factor appearing in the wave version of the
acoustic metric must be significantly modified.

This is physically relevant, for instance, in cores of neutron stars.

It is somewhat unclear at present as to whether relativistic acoustics can be made
directly relevant for laboratory physics. Some first steps in this regard may be found
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in reference [28], where the possibility of experimentally constructing relativistic
BECs is considered.

Geometric Acoustics If one works with special relativistic acoustics, rather than
non-relativistic acoustics, then at the level of ray acoustics one will simply obtain
an acoustic variant of the Gordon optical metric

gab = Ω2
[
(ηab + VaVb) − c2

s

c2
VaVb

]
. (2.41)

The only difference is that the refractive index has now been replaced by the ratio
of the speed of sound to the speed of light: n−1(x) → cs(x)/c. (The 4-velocity of
the medium is still V a(x), and the conformal factor Ω(x) is still undetermined.) In
general relativistic acoustics this would become

gab = Ω2
[
(fab + VaVb) − c2

s

c2
VaVb

]
, (2.42)

where fab(x) is now the general relativistic physical background metric obtained by
solving the Einstein equations, and gab is the acoustic metric for the acoustic per-
turbations in the fluid flow. Note that the 4-velocity V a(x) now has to be a timelike
unit vector with respect to the background metric fab(x). For ray acoustics this is
all one can say.

Wave Acoustics One can again go to wave acoustics, deriving a wave equation
by linearizing the general-relativistic version of the Euler equations. The same sort
of technical assumptions must be made, (irrotational, barotropic, and inviscid), and
one now obtains a slightly more complicated formula for the conformal factor [7]

Ω =
(

n2

cs(ρ + p)

)1/(d−1)

. (2.43)

Here n is the number density of particles, and ρ is the energy density (rather than
the mass density ρ), while cs is the speed of sound. The quantity p is the pressure,
and d is the number of space dimensions.

Non-relativistic Limit In the non-relativistic limit among other things we cer-
tainly have p � ρ. Also in terms of the average particle mass �m one has

ρ = ρc2 ≈ n�mc2, (2.44)

and so

n2

cs(ρ + p)
≈ n2

csρ
≈ n

cs(�mc2)
= ρ

cs(�m2c2)
∝ ρ

cs

, (2.45)

thereby (as required for internal consistency) reproducing the correct limit for the
conformal factor.
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The correct limit for the tensor structure is more subtle. (A suitable discussion
can be found in reference [7].) Formally taking the limit c → ∞, but holding cs and
v fixed, a brief calculation yields:

g00 = Ω2
[
−1 + γ 2 − c2

s

c2
γ 2

]
→ −Ω2 c2

s − v2

c2
+ · · · , (2.46)

g0i = −Ω2
[

1 − c2
s

c2

]
γ 2βi → −Ω2 v

c
+ · · · , (2.47)

g0i = Ω2
{
δij −

[
1 − c2

s

c2

]
γ 2βiβj

}
→ Ω2δij + · · · . (2.48)

Then, switching from (ct,x) coordinates to (t,x) coordinates, the relativistic gab of
this section correctly limits to the non-relativistic gab of the previous section.

2.6 Bose–Einstein Condensates

Bose–Einstein condensates (BECs) provide a particularly interesting analogue
model because they are relatively easy to construct and manipulate in the labora-
tory, and specifically because the speed of sound is as low as a few centimetres per
second. Most work along these lines has focussed on non-relativistic BECs. Suitable
background references are [29–35]. See also the companion chapter by Balbinot et
al. in the current volume [36]. In view of the coverage of this topic already provided
in that chapter, I shall not have more to say about it here.

In contrast, I will briefly discuss the relativistic BEC model of Fagnocchi et al.
that is presented in reference [28]. While relativistic BECs do not seem currently
to be a realistic experimental possibility, the theoretical treatment introduces some
new issues and effects. The relativistic BECs naturally lead to two quasiparticle ex-
citations, one massless and one massive, with rather complicated excitation spectra.
(In this sense the relativistic BECs are reminiscent of the “massive phonon” models
obtained from multiple mutually interacting non-relativistic BECs [37–39].) In the
relativistic BEC one obtains a 4th-order differential wave equation for the excita-
tions, which is ultimately why one has two branches of quasiparticle excitations. In
the limit where the relativistic generalization of the so-called quantum potential can
be neglected, the wave equation simplifies to the d’Alembertian equation—for a rel-
ativistic acoustic metric of the generalized Gordon form discussed in the previous
section. In the limit where both relativistic effects and the quantum potential can
be neglected, one recovers the (wave acoustic version of) Unruh’s non-relativistic
acoustic metric.

Madelung Representation There is an important and non-obvious technical
point to be made regarding the linearization of the Madelung representation in a
BEC context, (or in fact in any situation where one is dealing with a non-linear
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Schrödinger-like equation). For any complex field ψ the Madelung representation
is

ψ = √
ρeiφ. (2.49)

When linearizing, (which is the basis of separating the system into background plus
excitation, or condensate plus quasiparticle), there are at least three things one might
envisage doing:

1. Take ψ = ψ0 + εψ1 + O(ε2).
2. Take ρ = ρ0 + ερ1 + O(ε2), and φ = φ0 + εφ1 + O(ε2).
3. Take ψ = ψ0{1 + εχ + O(ε2)}.
Note that routes 2 and 3 are related by:

ρ1

ρ0
= χ + χ†

2
; φ1 = χ − χ†

2i
. (2.50)

Mathematically, all three routes must carry the same intrinsic physical information,
but the clarity with which the information can be extracted varies widely depending
on the manner in which the perturbative analysis is presented. When actually car-
rying out the linearization, it turns out that route 1 is never particularly useful, and
that routes 2 and 3 are essentially equivalent for a non-relativistic BEC, ultimately
leading to formally identical wave equations. In contrast, for relativistic BECs it is
route 3 that leads to the cleanest representation [28], while route 2 leads to a bit of a
mess [3]. (A mess involving integro-differential equations.) This is not supposed to
be obvious, and will not be obvious unless one tries to carefully work through the
relevant technical literature. With hindsight, route 3 appears to be the superior way
of organizing the perturbative calculation.

2.7 Surface Waves and Blocking Horizons

Surface waves (water-air, or more generally waves on any fluid-fluid interface) are
described by an incredibly complex and subtle theoretical framework—one of the
major technical complications comes from the fact that surface waves are highly dis-
persive, with a propagation speed that is very strongly frequency dependent. Thus,
insofar as one can put surface wave propagation into a Lorentzian metric framework,
one will have to adopt a “rainbow metric” formalism with a frequency dependent
metric. The trade-off is that this system is relatively easily amenable to laboratory
investigation through “wave tank” technology [40–42].

Surface Waves in the Geometric Limit As long as the wavelength and period
of the surface wave are small compared to the distances and timescales on which
the depth of water is changing one can usefully work in the geometric (ray) limit.
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Under those conditions one can write a 2 + 1 dimensional metric to describe ray
propagation:

ds2 = Ω2{−c2
swdt2 + (dx − vdt)2} = Ω2{−(

c2
sw − v2) − 2v · dxdt + ‖dx‖2}.

(2.51)
Here csw is the speed of the surface waves in the comoving frame (that is, comoving
with the surface of the fluid), and v is the (horizontal) velocity of the surface. Unfor-
tunately the speed csw is a relatively complicated function of (comoving) frequency,
depth of the water, density of the fluid, the acceleration due to gravity, the surface
tension, etcetera. (See for instance references [43–46].)

Now in terms of a 3 × 3 matrix, this is equivalent to defining the metric tensor

gab = Ω2
[−(c2

sw − v2) −vj

−vi δij

]
. (2.52)

The indices a, b, c, . . . , take on values in {0,1,2}, corresponding to both time and
(horizontal) space, whereas indices such as i, j , k, . . . , take on values in {1,2},
corresponding to (horizontal) space only. The corresponding inverse metric is

gab = Ω−2
[ −1/c2

sw −vj /c2
sw

−vi/c2
sw δij − vivj /c2

sw

]
. (2.53)

In the fluid dynamics community, one most often restricts attention to 1 spatial di-
mension, then surface waves are said to be “blocked” whenever one has ‖v‖ > csw,
and one will encounter considerable attention paid to this concept of “wave block-
ing” in that community. This is what a general relativist would instead call “trap-
ping”, and consequently the mixed terminology phrase “blocking horizon” has now
come into use within the analogue spacetime community. Note that instead of speak-
ing of Mach number (appropriate for acoustic propagation through the bulk of a
medium), in a surface wave context it is the Froude number that governs the forma-
tion of ergo-regions and horizons.

Surface Waves in the Physical Limit Moving beyond the geometric/ray approx-
imation for surface waves is mathematically rather tricky. Within the fluid dynamics
community relevant work is based on the Boussinesq approximation [47, 48], and
its modern variants [49]. Within the analogue spacetime community, see particu-
larly the basic theoretical work in Ref. [50], and in the related chapter [51] in this
volume. (See also [52, 53] for a more applied perspective.) Physically, in addition
to the presence of dispersion, a second complicating issue is this: The fluid at the
surface is moving both vertically (the wave) and horizontally (the background flow),
while at the base of the fluid (which may be at variable depth), the no-slip boundary
condition enforces zero velocity.

Based on the three-dimensional Euler and continuity equations one then has to
construct an interpolating model for the fluid flow that connects the surface motion
to the zero-velocity motion at the (variable depth) base. Once this is achieved, one
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throws away the interpolating model and concentrates only on the physical observ-
able: the motion of the surface. The analysis is mathematically and physically sub-
tle, and (in the physical or wave limit) the theoretical framework for surface waves
is nowhere near as clean and straightforward as for barotropic inviscid irrotational
acoustic perturbations travelling through the bulk.

Experiments The key benefit of surface waves is that the propagation speed csw

is easily controllable by adjusting the depth of fluid, that background flows are easily
set up by simple mechanical pumps, and that “wave tank” and related technologies
are well understood and well developed. (See for example, the early 1983 experi-
ments by Badulin et al. [40].) This particular analogue spacetime has recently led
to several very interesting experimental efforts [41, 42, 54]. For instance, Wein-
furtner et al. have performed an experiment looking at the classical (stimulated)
analogue of Hawking radiation from a blocking horizon, and have detected an ap-
proximately Boltzmann spectrum of Hawking-like modes [41], while Rousseaux et
al. have experimentally investigated the related “negative-norm modes” [42]. The
relation between the “hydraulic jump” and blocking horizons has been experimen-
tally investigated by Jannes et al. [54]. Some related theoretical developments are
reported in [45, 55]. Work on this topic is ongoing.

2.8 Optical Fibres/Optical Glass

In an optical context, related “optical blocking” phenomena occur when a “refractive
index pulse” (RIP) is initiated in an optical fibre [56], or in optical glass [57–59].
The basic idea is that things are arranged so that while the RIP moves at some speed
vRIP, the velocity of light outside the RIP is greater than the velocity of the RIP
coutside > vRIP, while inside the RIP we have the contrary situation cinside < vRIP.
This, (certainly within the geometric optics framework), sets up a “black” horizon at
the leading edge of the RIP, and a “white” horizon at the trailing edge. (For technical
details see references [56–59].) Some subtleties of the theoretical analysis lie in
the distinction between group and phase velocities—are we dealing with “phase
velocity horizons” or “group velocity horizons”? Other technical subtleties have to
do with the transition from geometric optics to wave optics—there are a number of
complex and messy technical details involved in this step.

An intriguing experiment based on these ideas has been carried out by Bel-
giorno et al., with results reported in reference [60]. While it is clear that some
form of quantum radiation has been detected, there is still some disagreement as
to whether this is (analogue) Hawking radiation, or possibly some other form of
quantum vacuum radiation [61–63]. Work on this topic is ongoing.
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2.9 Other Models

A complete and exhaustive catalogue of other analogue models would be imprac-
tical. See the Living Review article on “Analogue gravity” for more details [3].
Selected models, (a necessarily incomplete list), include:

• Electromagnetic wave guides [64].
• Graphene [65, 66].
• Slow light [67–71].
• Liquid helium [72, 73].
• Fermi gasses [74, 75].
• Ion rings [76].

Beyond the issue of simply developing analogue models, there is the whole subject
of using analogue models to probe, (either theoretically or more boldly experimen-
tally), a whole raft of physics questions such as directly verifying the existence of
Hawking radiation, the possibility of Lorentz symmetry violations [77], the nature
of the quantum vacuum [78–80], etcetera. For more details, see Ref. [3], and other
chapters in this volume.

2.10 Discussion

The general theme to be extracted from these considerations is this: The propagation
of excitations (either particles or waves) over a background can often (not always) be
given a geometric interpretation in therms of some “analogue spacetime”. As such
a geometric interpretation exists, there is a strong likelihood of significant cross-
fertilization of ideas and techniques between general relativity and other branches of
physics. Such possibilities have increasingly attracted attention over the last decade,
for many reasons. The other chapters in these proceedings will explore these ideas
in more specific detail.
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