Lectures on Gaussian Approximations
with Malliavin Calculus

Ivan Nourdin

Overview. In a seminal paper of 2005, Nualart and Peccati [40] discovered a
surprising central limit theorem (called the “Fourth Moment Theorem” in the
sequel) for sequences of multiple stochastic integrals of a fixed order: in this context,
convergence in distribution to the standard normal law is equivalent to convergence
of just the fourth moment. Shortly afterwards, Peccati and Tudor [46] gave a
multidimensional version of this characterization.

Since the publication of these two beautiful papers, many improvements and
developments on this theme have been considered. Among them is the work by
Nualart and Ortiz-Latorre [39], giving a new proof only based on Malliavin calculus
and the use of integration by parts on Wiener space. A second step is my joint paper
[27] (written in collaboration with Peccati) in which, by bringing together Stein’s
method with Malliavin calculus, we were able (among other things) to associate
quantitative bounds to the Fourth Moment Theorem. It turns out that Stein’s method
and Malliavin calculus fit together admirably well. Their interaction has led to
some remarkable new results involving central and non-central limit theorems for
functionals of infinite-dimensional Gaussian fields.

The current survey aims to introduce the main features of this recent theory. It
originates from a series of lectures I delivered' at the College de France between
January and March 2012, within the framework of the annual prize of the Fondation
des Sciences Mathématiques de Paris. It may be seen as a teaser for the book [32],
in which the interested reader will find much more than in this short survey.

You may watch the videos of the lectures at http://www.sciencesmaths-paris.fr/index.php?page=
175.
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4 1. Nourdin
1 Breuer-Major Theorem

The aim of this first section is to illustrate, through a guiding example, the power of
the approach we will develop in this survey.

Let { Xk }x>1 be a centered stationary Gaussian family. In this context, stationary
just means that there exists p : Z — R such that E[X; X;] = ptk — 1), k,[ = 1.
Assume further that p(0) = 1, that is, each Xj is .4#7(0, 1) distributed.

Let ¢ : R — R be a measurable function satisfying

Elp*(X1)] = @ (x)e ™ 2dx < o0. 1)

1
7 .
Let Hy, Hy, ... denote the sequence of Hermite polynomials. The first few Hermite
polynomials are Hy = 1, H; = X, H, = X?> —1and H; = X3 — 3X. More
generally, the gth Hermite polynomial H, is defined through the relation XH, =
Hy+1+qH,— . Itis a well-known fact that, when it verifies (1), the function ¢ may
be expanded in L?(R, e/ 2dx) (in a unique way) in terms of Hermite polynomials
as follows:

9(x) =Y agHy(x). )
q=0

Let d = 0 be the first integer ¢ = 0 such that a, # 0 in (2). It is called the Hermite
rank of ¢; it will play a key role in our study. Also, let us mention the following
crucial property of Hermite polynomials with respect to Gaussian elements. For any
integer p,q = 0 and any jointly Gaussian random variables U, V ~ .47(0, 1), we
have

E[H,(U)H, (V)] = {q!E[OUV]‘f iii i Z (3)

In particular (choosing p = 0) we have that E[H,(X)] = 0 forall ¢ = 1, meaning
that ap = E[@(X1)] in (2). Also, combining the decomposition (2) with (3), it is
straightforward to check that

o0
E[p’(X)] =) _qla;. )
q=0
We are now in position to state the celebrated Breuer—Major theorem.

Theorem 1 (Breuer and Major (1983); see [7]). Let { X }i>1 and ¢ : R — R be
as above. Assume further that ay = E[p(X1)] = 0 and that Y, c, |p(k)|¢ < oo,
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where p is the covariance function of {Xi}k=1 and d is the Hermite rank of ¢
(observe that d = 1). Then, as n — oo,

1 - law
V, = 7 > (X)) = A(0.07), S
k=1
with o2 given by
o2 = Z q!a; Zp(k)” € [0, 00). (6)
q=d kEeZ

(The fact that 6% € [0, 00) is part of the conclusion.)

The proof of Theorem 1 is far from being obvious. The original proof consisted
to show that all the moments of V,, converge to those of the Gaussian law .4 (0, 6%).
As anyone might guess, this required a high ability and a lot of combinatorics. In
the proof we will offer, the complexity is the same as checking that the variance and
the fourth moment of ¥}, converges to o> and 30* respectively, which is a drastic
simplification with respect to the original proof. Before doing so, let us make some
other comments.

Remark 1. 1. First, it is worthwhile noticing that Theorem 1 (strictly) contains
the classical central limit theorem (CLT), which is not an evident claim at first
glance. Indeed, let {Y }r>; be a sequence of i.i.d. centered random variables with
common variance o2 > 0, and let Fy denote the common cumulative distribution
function. Consider the pseudo-inverse Fy~ L of Fy, defined as

Fy''(u) =inf{y e R: u < Fy(y)}, ue(0,1).

When U ~ %) is uniformly distributed, it is well-known that Fy,'(U) faw Y:.
Observe also that \/;27 f_Xolo e 2dtis .1 distributed. By combining these two

facts, we get that ¢(X) aw Y, with

1 X
(p(x) = }'ﬁY_1 (ﬁ/ e_tz/zdt) s x € R.
—00

Assume now that p(0) = 1 and p(k) = 0 for k # 0, that is, assume that the
sequence { Xy }r>1 is composed of i.i.d. .#(0, 1) random variables. Theorem 1
yields that

1 " law 1 " law >
— Vv ZE — X)) = A4 |o, a2 |,
ﬁ]; A ﬁ];qo( ©) ;qaq
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thereby concluding the proof of the CLT since 6% = E[p*(X)] = Z;’id q!aé,
see (4). Of course, such a proof of the CLT is like to crack a walnut with
a sledgehammer. This approach has nevertheless its merits: it shows that the
independence assumption in the CLT is not crucial to allow a Gaussian limit.
Indeed, this is rather the summability of a series which is responsible of this fact,
see also the second point of this remark.

. Assume that d > 2 and that p(k) ~ |k|~” as |k| — oo for some D € (0, 5). In

this case, it may be shown that 74P/~ Y k=1 ¢(Xx) converges in law to a non-
Gaussian (non degenerated) random variable. This shows in particular that, in the
case where Y, <, |p(k)|¢ = oo, we can get a non-Gaussian limit. In other words,
the summability assumption in Theorem 1 is, roughly speaking, equivalent (when
d = 2) to the asymptotic normality.

. There exists a functional version of Theorem 1, in which the sum > ;_, is

replaced by 21[:”:]1 for t =2 0. It is actually not that much harder to prove
and, unsurprisingly, the limiting process is then the standard Brownian motion
multiplied by o.

Let us now prove Theorem 1. We first compute the limiting variance, which will
tify the formula (6) we claim for o2. Thanks to (2) and (3), we can write

2
V2 = LE > ag Y Hy(X) :% > apag Y E[H,(Xi)Hy(X))]
q=d k=1

n
p.q=d k=1

1 o0 n o
=D qlag > plk =1 =3 qlag Y p(r)'(1- ';—')l{m}.
q=d

k=1 q=d rez

When g = d and r € Z are fixed, we have that

Ir|
qla;p(r)?(1— 7)1{|r|<n} — qla_p(r)? asn — oo.

On the other hand, using that |p(k)| = |E[Xi1 Xk+1]| < ,/E[Xlz]E[X12+k] =1,

we have

|7 ]
qlaglp()|” (1= —) i<y < laglo()]” < qlag|p(r)|*,

with 302, 3",z qlailp(r)|? = E[@*(X1)] x X ez ()¢ < oo, see (4). By

applying the dominated convergence theorem, we deduce that E[V?] — o

2 as

n — oo, with a2 € [0, 0o) given by (6).
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Let us next concentrate on the proof of (5). We shall do it in three steps of
increasing generality (but of decreasing complexity!):

(i) When ¢ = H, has the form of a Hermite polynomial (for some g = 1).
(i) When ¢ = P € R[X] is a real polynomial.
(iii) In the general case when ¢ € L(R, e™"/2dx).

We first show that (ii) implies (iii). That is, let us assume that Theorem 1 is
shown for polynomial functions ¢, and let us show that it holds true for any function
¢ € L*(R, e/ 2dx). We proceed by approximation. Let N > 1 be a (large) integer
(to be chosen later) and write

o0

N n n
1 1
V:_E a E H,(Xy)+ — E a E H,(Xy) =:Vyon + Run.
' ﬁfi=d qk=l ! v ! ! ! '

g=N+1 k=1

Similar computations as above lead to

sup E[R Z q'a xZ|p(r)|d —0as N — oo. @)
nzl G=N+1 rez

(Recall from (4) that E[p?(X)] = Z;’;d q!ai < 00.) On the other hand, using (ii)
we have that, for fixed N and as n — oo,

Vi = 4 [0 Zq'aZZp(k)q. )

keZ

It is then a routine exercise (details are left to the reader) to deduce from (7)—(8) that
Vi=Vun+Ryn Lﬂ: N(0,0?) as n — o0, that is, that (iii) holds true.

Next, let us prove (i), that is, (5) when ¢ = H, is the gth Hermite polynomial.
We actually need to work with a specific realization of the sequence { X} }¢>1. The
space

2
HC = span{ X1, X», .. .}L @

being a real separable Hilbert space, it is isometrically isomorphic to either RY (with
N = 1)or L>(Ry). Let us assume that # ~ L?(R.), the case where ¢ ~ RV
being easier to handle. Let @ : J# — L?(IR.) be an isometry. Set e, = ®(X;) for
each k = 1. We have

plk —1) = E[X; X|] = /00 exr(x)e(x)dx, k,I =1 9)
0
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If B = (B;);>0 denotes a standard Brownian motion, we deduce that

o0
{ X}z i {/ €k(f)d3r} ,
0 k=1

these two families being indeed centered, Gaussian and having the same covariance
structure (by construction of the e;’s). On the other hand, it is a well-known result
of stochastic analysis (which follows from an induction argument through the It
formula) that, for any function e € L?(R) such that || L2®y) = 1, we have

o0 o0 n tg—1
Hq (/ e(t)dB[) = q' / dB[le(tl) / dB[ze(tz) e / dthe(lq). (10)
0 0 0 0

(For instance, by It6’s formula we can write

(/000 e(t)dBt)2 - 2/000 dBye(tr) /Orl dBe(t) + /OOO e(1)2dt

[o¢] n
= 2/ dB[le(tl)/ dB[ze(tz) + 1,
0 0

which is nothing but (10) for ¢ = 2, since H, = X2 — 1.) At this stage, let us adopt
the two following notational conventions:

(a) If ¢ (resp. ¥) is a function of r (resp. s) arguments, then the tensor product
@ ® ¥ is the function of r + s arguments given by ¢ ® ¥ (x,..., X, 45) =
(X1, .o, X)W (Xp 41, - - Xp4s). Also,if g = 11is an integer and e is a function,
the tensor product function e®¢ is the function e ® ... ® e where e appears ¢
times.

(b) If f € L*(R%) is symmetric (meaning that f(xi,...,X) = f(Xo(1)s-- - Xo(g))
for all permutation o € &, and almost all xy, ..., x; € R4) then

12(f) = /Rq ftr,....t)dB,, ...dB,
+

o0 51 tg—1
:q'/o dB[l/O\ dB[zfo dB[qf(tl,...,tq).

With these new notations at hand, observe that we can rephrase (10) in a simple
way as

H, (/Ooo e(z)dB,) = 1](e®). (11)
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It is now time to introduce a very powerful tool, the so-called Fourth Moment
Theorem of Nualart and Peccati. This wonderful result lies at the heart of the
approach we shall develop in these lecture notes. We will prove it in Sect. 5.

Theorem 2 (Nualart and Peccati (2005); see [40]). Fix an integer q = 2,
and let { fy}n=1 be a sequence of symmetric functions of Lz(Rz_). Assume that
[IB(fn)z] =q!|l fn ||L2(R,, — o2 asn — oo for some o > 0. Then, the following

three assertions are eqmvalent asn — oo!

(1) IB(f) ™ ¥ (0.0%);

(2) ELF (/)= 30%;

(3) | fn R f;,”Lz(Riz_{—Zr) — Oforeachr = 1,...,q — 1, where f, ®, [, is the
function ofLZ(R%f_zr) defined by

fl‘l ®r .fn(xlv e vx2q—2r)

:/IVR’ .fn(x17~~~vxq—rsylv~~-syl‘)fn(-xq—r+l ----- qu_zr,yl,...,yr)dyl...dyr
+

Remark 2. In other words, Theorem 2 states that the convergence in law of a
normalized sequence of multiple Wiener—Ito integrals / qB (fu) towards the Gaussian
law .#(0, 0?) is equivalent to convergence of just the fourth moment to 3¢*. This
surprising result has been the starting point of a new line of research, and has
quickly led to several applications, extensions and improvements. One of these
improvements is the following quantitative bound associated to Theorem 2 that we
shall prove in Sect. 5 by combining Stein’s method with the Malliavin calculus.

Theorem 3 (Nourdin and Peccati (2009); see [27]). If ¢ = 2 is an integer and [

is a symmetric element osz(R ) satisfying E[IB(f) ]=q! ||f||L2(Rq =1, then
2 q-—1
su 1P(f)eA e 2ax| < 2. | F—/|E[IB(f)*] - 3.
Aegsl()R) PUs 1= «/_ 3q £l ()] |

Let us go back to the proof of (i), that is, to the proof of (5) for ¢ = H,. Recall
that the sequence {e; } has be chosen for (9) to hold. Using (10) (see also (11)), we
can write V,, = IqB(fn), with

1 & e
==
ﬁk=l

We already showed that E[V?] — o2 as n — oo. So, according to Theorem 2, to
get (i) it remains to check that || f, ®, f, || —ry = Oforanyr =1,...,q —1.

We have

2R
L2RY!
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n n
B®nfi= o 3 e e = 3 (ke 1 @ P
k=1 k=1
1 n
==Y plk—1) el ®e'
n k=1

implying in turn

1o ® ol gasen

n

1 Sy ® @ ®
— 2 =) etk =1 (e @ P T 2T @ e g,
ijkil=1

n

D2 el Y plk 1 ol — R~ D

ijki=1

Observe that |[p(k — I)|"|p(i —k)|97" < |pk —1)|? + |p(i — k)|?. This, together
with other obvious manipulations, leads to the bound

2 . A 1g—
1o @ full s gzery < 5 D 1> 1@ > eI
k€Z lil<n |jl<n
2 NITE . —r
< = X IR Y2 1p@1 Y (I
k€EZ lil<n |jl<n
_q=r r _r N
=2 |p()“ xn™ 7 Y o) xn"a Y p(j)|7".
kez li]<n ljl<n
Thus, to get that || f,, ®; ﬁ,HLZ(qu o, = Oforany r = 1,...,¢q — 1, it suffices to
show that
Sp(r) == n~T Z lp(i)]" — 0 foranyr =1,...,q — 1.
lil<n
Letr =1,...,9 —1.Fix 6 € (0, 1) (to be chosen later) and let us decompose s, (1)
into

_a=r . _a=r .
i)y =n"T Y e +nT T D e =514 (8, r) + 528, 7).
li|<[nd] [n8]<lil<n
Using Holder inequality, we get that

r/q

sa@ry<n” T Y eI | (1428 T < estx 817N
li]<[nd]
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as well as

r/q r/q

2@ <7 T Y @] @en'T <estx | Y 1p6)I?

[n8]<li|<n [i|=[né]

Since 1 — r/q > 0, it is a routine exercise (details are left to the reader) to deduce
that s, (r) — 0 asn — oo. Since this is true forany r = 1, ..., ¢ —1, this concludes
the proof of (i).

It remains to show (ii), that is, convergence in law (5) whenever ¢ is a real
polynomial. We shall use the multivariate counterpart of Theorem 2, which was
obtained shortly afterwards by Peccati and Tudor. Since only a weak version (where
all the involved multiple Wiener—Itd integrals have different orders) is needed here,
we state the result of Peccati and Tudor only in this situation. We refer to Sect. 6 for
a more general version and its proof.

Theorem 4 (Peccati and Tudor (2005); see [46]). Consider [ integers q,...,q; =
1, with | = 2. Assume that all the q;’s are pairwise different. For each
i=1,....1 let{ fI},>1 be a sequence of symmetric functions osz(R(_{,i) satisfying
E[LZ (£ = qi!||]’,1i||iz(R,i) — o asn — oo for some o; > 0. Then, the

following two assertions are equivalent as n — 00:

(1) IE(f) S 4 (0,0) foralli = 1,....1;
law

(2) (IZ(fD. o IE(fD) = (0, diag(02. ..., 0D)).

In other words, Theorem 4 proves the surprising fact that, for such a sequence of
vectors of multiple Wiener—It6 integrals, componentwise convergence to Gaussian
always implies joint convergence. We shall combine Theorem 4 with (i) to prove (ii).
Let ¢ have the form of a real polynomial. In particular, it admits a decomposition
of the type ¢ = Zf{v: 4 AqH, for some finite integer N = d. Together with (i),
Theorem 4 yields that

L ‘ L - law . 5 5
(\/ﬁ;Hd(Xk)wwﬁ];HN(Xk))—>JV(0,d1ag(ad,...,oN)),

where o) = ¢! ) ez p(k)?,q =d, ..., N. We deduce that

N n N
1 1
V, = 7 Y ag Y Hy(Xi) > A 0> a2q! > pk)? .
(T — g=d keZ

which is the desired conclusion in (ii) and conclude the proof of Theorem 1. ]

To Go Further. In [33], one associates quantitative bounds to Theorem 1 by using
a similar approach.
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2 Universality of Wiener Chaos

Before developing the material which will be necessary for the proof of the Fourth
Moment Theorem 2 (as well as other related results), to motivate the reader let us
study yet another consequence of this beautiful result.

For any sequence X, X3, ... of i.i.d. random variables with mean 0 and variance

1, the central limit theorem asserts that V, = (X1 + ... + X,,)//n fay A(0,1) as
n — oo. Itis a particular instance of what is commonly referred to as a “universality
phenomenon” in probability. Indeed, we observe that the limit of the sequence V,
does not rely on the specific law of the X;’s, but only of the fact that its first two
moments are 0 and 1 respectively.

Another example that exhibits a universality phenomenon is given by Wigner’s
theorem in the random matrix theory. More precisely, let {X;;};-i>1 and
{X;i/~/2}i=1 be two independent families composed of i.i.d. random variables
with mean 0, variance 1, and all the moments. Set X;; = X;; and consider the n x n

random matrix M,, = (f,/_ijn;)lsl" j<n- The matrix M, being symmetric, its eigenvalues
Alns---sAnn (possibly repeated with multiplicity) belong to R. Wigner’s theorem

then asserts that the spectral measure of M,, that is, the random probability
measure defined as % > k=1 6x.,. converges almost surely to the semicircular law

% V4 — le[—z,z] (x)dx, whatever the exact distribution of the entries of M, are.

In this section, our aim is to prove yet another universality phenomenon, which
is in the spirit of the two afore-mentioned results. To do so, we need to introduce
the following two blocks of basic ingredients:

(i) Three sequences X = (X1, X2,...), G = (G1,Gy,...) and E = (g, &;,...) of
1.i.d. random variables, all with mean 0O, variance 1 and finite fourth moment.
We are more specific with G and E, by assuming further that G; ~ .47(0, 1)
and P(e; = 1) = P(e; = —1) = 1/2. (As we will see, E will actually play no
role in the statement of Theorem 5; we will however use it to build a interesting
counterexample, see Remark 3(1).)

(ii) A fixedintegerd > 1aswellasasequence g, : {1,...,n}¢ — R,n > 1 ofreal
functions, each g, satisfying in addition that, for all iy,...,is = 1,...,n,
(@) gu(it,...,1a) = gulisq), ..., lio(a)) for all permutation o € &,.

(b) gu(i1,...,iq) = 0 whenever i = i; for some k # [.
© d'Y =&l ia)* =1

(Of course, conditions (a) and (b) are becoming immaterial when d = 1.) If
x = (X1, X2, ...) is a given real sequence, we also set

n

Qd(gn’x): Z gn(ila---aid)xil"'xid'

i1,..., ig=1
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Using (b) and (c), it is straightforward to check that, for any n > 1, we have
E[Qa(g:,X)] = 0and E[Qa(gs, X)*] = 1.

We are now in position to state our new universality phenomenon.

Theorem 5 (Nourdin, Peccati and Reinert (2010); see [34]). Assume thatd = 2.
Then, as n — oo, the following two assertions are equivalent:

1

(@) Qu(gn.G) = A (0, 1);

(B) Qui(gn,X) =y A(0,1) for any sequence X as given in (i).
Before proving Theorem 5, let us address some comments.

Remark 3. 1. In reality, the universality phenomenon in Theorem 5 is a bit more
subtle than in the CLT or in Wigner’s theorem. To illustrate what we have
in mind, let us consider an explicit situation (in the case d = 2). Let g, :
{1,...,n}> — R be the function given by

. 1
g, j)= Nn—Tll{ttl,jBZ or j=1,i=2}-

It is easy to check that g, satisfies the three assumptions (a)-(b)-(c) and also that

n

1 n
2(&n,X) = X1 X Xk -
02(8n. %) me:z

The classical CLT then implies that Q»(g,, G) g GG, and Q;,(g,,E) =y £1G,.
Moreover, it is a classical and easy exercise to check that £,G; is A47(0,1)

distributed. Thus, what we just showed is that, although Q,(g,, E) g A0, 1)
as n — 0o, the assertion (f) in Theorem 5 fails when choosing X = G (indeed,
the product of two independent .4 (0, 1) random variables is not gaussian). This
means that, in Theorem 5, we cannot replace the sequence G in (o) by any other
sequence (at least, not by E !).

2. Theorem 5 is completely false when d = 1. For an explicit counterexample,
consider for instance g,(i) = 1g=13, 1 = 1,...,n. We then have Q1(g,.x) =
x1. Consequently, the assertion () is trivially verified (it is even an equality in
law!) but the assertion (8) is never true unless X; ~ .47(0, 1).

Proof of Theorem 5. Of course, only the implication («)—(f8) must be shown. Let
us divide its proof into three steps.

Step 1. Sete; = 1;;_1;),i = 1,andlet f, € Lz(R‘j_) be the symmetric function
defined as

n

fn= Z g,,(il,...,id)eil®...®€id.
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By the very definition of / (f (f1), we have

n tg—

[o¢] 151
IP(f)=d! ) gn(il,...,id)/o dB,fle,-l(tl)/O dBtzeiz(tz).../O

i1,0ig =1

1
dBy e, (tg).

Observe that

[od) 131 fd—1
/ dB,le,-l (ll) / dB,ze,-z (lz) C.. / dde €, (ld)
0 0 0

is not almost surely zero (if and) only if iy < iy—; < ... < ij. By combining this
fact with assumption (b), we deduce that

2y =d Y gulin....id)

I<ig<..<i1<n

9] 51 tq—1
X / dB,le,-l (Zl) / dBtzeiz(ZZ) - / dBtd i, (ld)
0 0 0

=d!' Y glir.....ia)(Bi, — Bi,-1) ... (B, — Biy—1)
I<ig<..<i1<n

n
law

= Y gliv....ia)(Bi — By—1)...(Biy — Biy-1) £ Q4(g.G).

That is, the sequence Q,(g,,G) in (x) has actually the form of a multiple
Wiener-Itd integral. On the other hand, going back to the definition of f, ®4—1 f,
and using that (e, €;) 2w ) = J;j (Kronecker symbol), we get

n n

L®aa =Y | D aulika... ka)gu(jka.. . ka) | e ®e;.

so that
||f;1 Qd—1 f;’LHiZ(Ri)
n n 2
== Z Z gn(isk27"'7kd)gn(j’k27""kd)
i,j= ka,kg=1
2
n n
> Z Z gn(i ko, ... ,k,;l)2 (by summing only over i = j)
i=1 kz,...,kd=1
: 2
. 2
> max Z gnli, ko, ... kq)
D gecey kd=l

=7 (12)
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where

n

T, = max Z gn(i,kz,...,kd)z. (13)

I<isn

Now, assume that («) holds. By Theorem 2 and because Q,(g,, G) iy f (fn), we
have in particular that || f, ®4—1 fu|| @) ~ 0 as n — oo. Using the inequality
(12), we deduce that 7, — 0 as n — oo.

Step 2. We claim that the following result (whose proof is given in Step 3) allows
to conclude the proof of (&) — (B).

Theorem 6 (Mossel, O’Donnel and Oleszkiewicz (2010); see [20]). Let X and G
be given as in (i) and let g, : {1,...,n}¥ — R be a function satisfying the three
conditions (a)-(b)-(c). Set y = max{3, E[X{]} = 1 and let v, be the quantity given
by (13). Then, for all function ¢ : R — R of class €> with ||¢"" ||ec < 00, we have

|Elp(Qa(gn. X)) — E[¢(Qa(gn. G))]| < §(3 +2p) VA AT ¢ oo v/

Indeed, assume that (@) holds. By Step 1, we have that 7, — 0 as n — oo.
Next, Theorem 6 together with («), lead to (8) and therefore conclude the proof of
Theorem 5.

Step 3: Proof of Theorem 6. During the proof, we will need the following
auxiliary lemma, which is of independent interest.

Lemma 1 (Hypercontractivity). Let n = d > 1, and consider a multilinear
polynomial P € R[xy, ..., x,]| of degree d, that is, P is of the form

P(xi,...,xy) = Z as fo'

Sc{l,..n} i€S

Let X be as in (i). Then,

E[P(X..... X)) < B+ 2EX) E[P(X1..... X)) . (14)

Proof. The proof follows ideas from [20] and is by induction on n. The case
n = 1 is trivial. Indeed, in this case we have d = 1 so that P(x;) = axy;
the conclusion therefore asserts that (recall that E[X 12] = 1, implying in turn that
E[X{] 2 EIX{P? = 1)

a*E[XY] < a* (3 4+ 2E[X})
which is evident. Assume now that n = 2. We can write

P(xy,...,x5) = R(x1, ..., Xp—1) + X, S(X1, ..., Xp—1),
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where R, S € R[xi,...,x,—1] are multilinear polynomials of n — 1 variables.
Observe that R has degree d, while S has degree d — 1. Now write P =
P(Xi,....X»), R = R(X1,....Xs—1), S = S(X1,.... X—1) and @ = E[X}].
Clearly, R and S are independent of X,,. We have, using E[X,] = Oand E[X?] = I:

E[PY] = E[(R +SX,)*] = E[R?] + E[$7]
E[P] = E[(R +SX,)*] = E[R*] + 6E[R?S?] + 4E[X}]E[RS?] + E[X1E[S].

Observe that E[R?S?] < /E[R*]{/E[S*] and
<av/E[RYVE[SY + «E[SY],

NN

E[X|E[RS’] < o (E[RY)* (E[S*))

/Xy + y (by considering x < y and

where the last inequality used both x i y% <
1= E[X?]* = 1). Hence

x> y)anda? < o (becausea = E[X?

E[PY] < E[R*] 4+ 2(3 + 20) vV E[R*] E[S*] + 52E[S]
< E[RY 4203 4 20) VE[RYVE[SY] + (3 + 20)?E[SY]

- (\/E[R“] +G+ 201)\/E[S4])2.

By induction, we have /E[R*] < (3 + 20)?E[R?] and E[SY] < (3 +
2a)?~1 E[S?]. Therefore

E[PY] < 3+ 20 (E[R?] + E[$Y)” = (3 + 20) E[P?],

and the proof of the lemma is concluded. O

We are now in position to prove Theorem 6. Following [20], we use the Lindeberg
replacement trick. Without loss of generality, we assume that X and G are stochas-
tically independent. Fori = 0,...,n,let W = (Gy,...,Gi, X;+1,...,X,). Fix
aparticulari = 1,...,n and write

U= Y gulir....ioW? .. w9,
I<iy,...ig=<n
NFElig #i

Vi= > guli...iow w0 w?

ld
I<i],..ig<n

;=i

n
=d > gli.i....i)WD WO

12,nig=1
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where Wl-(i) means that this particular term is dropped (observe that this notation

bears no ambiguity: indeed, since g, vanishes on diagonals, each string iy, ..., i4
contributing to the definition of V; contains the symbol i exactly once). For each 7,
note that U; and V; are independent of the variables X; and G;, and that

Qu(gn W) = Ui + X;iV; and  Qu(gn. W) = Ui + Gi Vi

By Taylor’s theorem, using the independence of X; from U; and V;, we have

'E[fp(U,- +XiV)] = E[p(Un] - E[¢'(UDV]ELXi] - %E[w”(U»V,-Z]E[X?]

1
< g||§0W||00E[|Xi|3]E[|Vi|3]-
Similarly,

‘E[w(U,- +GiVo)] = E[¢(Un] - E[¢'(U)VI]EIG] - %E[w”(v,-wf]E[G?]

1
< g”(PWHOOE[IG:'|3]E[|Vi|3]‘

Due to the matching moments up to second order on one hand, and using that
E[|X;)’] <y and E[|G;]*] < y on the other hand, we obtain that

|E[0(Qa(gn. W™)] = E[0(Qu(gn. W)
= |E[pU; + GiVi)]| — E[e(U; + X; V)]

14
< Llg" I ENViFL.
By Lemma 1, we have
EViP1 < EIY)F < G+20)i“ VEP7E.

Using the independence between X and G, the properties of g, (which is symmetric
and vanishes on diagonals) as well as E[X;] = E[G;] = 0 and E[X}] =
E[G?] =1, we get

n

E[VA? = (dd! >

i2,...ig=1

3/2
g i, ..., id)2>

n n
s(dd!)”J max Y g jreeeeJa? X Y guliiin. . da),
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implying in turn that

n

n
D_EDPPR < @y | max 3 gl o ja)’

i=l1 J2seja=1

n

X Z gn(ilsiZs---sid)zs

= d3?Vd! /T,
By collecting the previous bounds, we get

|Elp(Qa(gn. X)] = Elp(Qa(gn. G))

< D 1E[9(Qa(en. W™N] = E[9(Qu(gn. W) ]|

i=1
Y " Y 3 " 3
< 310" leo D ENVIPT< 3G +20)2 Vg oo Y EVPT:
i=1 i=1

<L (3420 T g o :

which is exactly what was claimed in Theorem 6.

As a final remark, let us observe that Theorem 6 contains the CLT as a special
case. Indeed, fix d = 1 andlet g, : {l,...,n} — R be the function given by
gn(i) = ﬁ We then have t, = 1/n. It is moreover clear that Q(g,,G) ~

A (0, 1). Then, for any function ¢ : R — R of class € with ||¢"”||c < 00 and any
sequence X as in (i), Theorem 6 implies that

Ele ()| g Lo

1
< max{E[X]]/3, 1}[l¢""[loo X 7

from which it is straightforward to deduce the CLT.

To Go Further. In [34], Theorem 5 is extended to the case where the target law
is the centered Gamma law. In [48], there is a version of Theorem 5 in which the
sequence G is replaced by P, a sequence of i.i.d. Poisson random variables. Finally,
let us mention that both Theorems 5 and 6 have been extended to the free probability
framework (see Sect. 11) in [13].
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3 Stein’s Method

In this section, we shall introduce some basic features of the so-called Stein method,
which is the first step toward the proof of the Fourth Moment Theorem 2. Actually,
we will not need the full force of this method, only a basic estimate.

A random variable X is .#"(0, 1) distributed if and only if E [¢"X] = e /2 for all
t € R. This simple fact leads to the idea that a random variable X has a law which
is close to 4 (0, 1) if and only if E[¢X] is approximately e="*/% for all t € R. This
last claim is nothing but the usual criterion for the convergence in law through the
use of characteristic functions.

Stein’s seminal idea is somehow similar. He noticed in [52] that X is .47(0, 1)
distributed if and only if E[f’(X) — Xf(X)] = 0 for all function f belonging to
a sufficiently rich class of functions (for instance, the functions which are ¢! and
whose derivative grows at most polynomially). He then wondered whether a suitable
quantitative version of this identity may have fruitful consequences. This is actually
the case and, even for specialists (at least for me!), the reason why it works so well
remains a bit mysterious. Surprisingly, the simple following statement (due to Stein
[52]) happens to contain all the elements of Stein’s method that are needed for our
discussion. (For more details or extensions of the method, one can consult the recent
books [9,32] and the references therein.)

Lemma 2 (Stein (1972); see [52]). Let N ~ 4(0,1) be a standard Gaussian
random variable. Let h : R — [0, 1] be any continuous function. Define f :
R—Rby

flx) =5 /_ (h(a) — E[R(N)])e™% da (15)
- —e%/ (h(a) — E[h(N)])e™ % da. (16)

Then f is of class €', satisfies | f(x)| < /7/2, | f'(x)| <2and
f'(x) = xf(x) + h(x) = E[h(N)] a7

forall x € R.

Proof. The equality between (15) and (16) comes from

+o00 5
0= E[h(N) - E[{(N)]] = J%_n [ @ Epve Faa
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Using (16) we have, for x = 0

+o00
xe'T / (h(a) — E[h(N)])e™

+o00 +o0 )
X L X —a-
2/ 2 62/ ae” 2da = 1.
X

Using (15) we have, for x < 0:

[xf(x)| =

[xf(x)| =

’Cz x
xe'Z / (h(a) — E[h(N)])e_
+o0 2 2 +o0 2
< |xleT / e Zda < 67/ ae” 2da=1.
|x| |x|

The identity (17) is readily checked. We deduce, in particular, that

|f' (] < [xf(0)] + h(x) — E[A(N)]] < 2

for all x € R. On the other hand, by (15)—(16), we have, for every x € R,

X o0 o0
/()] < mm( [ e | e‘yz/zdy)ze“‘z/z [Cerras 3
—00 x x| 2

where the last inequality is obtained by observing that the function s : Ry — R
given by s(x) = e¥/2[®e™"/2dy attains its maximum at x = O (indeed,
we have

2 [T 22 [T _
s’ (x) = xe e dy—1<e ye dy—1=0
X X

so that s is decreasing on R ) and that s(0) = /7/2.
The proof of the lemma is complete. O

To illustrate how Stein’s method is a powerful approach, we shall use it to prove
the celebrated Berry—Esseen theorem. (Our proof is based on an idea introduced by
Ho and Chen in [16], see also Bolthausen [5].)

Theorem 7 (Berry and Esseen (1956); see [15]). Let X = (X, X»,...) be a
sequence of i.i.d. random variables with E[X1] = 0, E[X?] = 1 and E[|X;]*] < oo,
and define

1 n
V, = — X, n=1,
>
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to be the associated sequence of normalized partial sums. Then, for any n = 1,
one has

X

BE[X?
sup |P (V, < x)— e—uz/Zdu < [l l|]

1
x€R V2 J—o0 h NG

Remark 4. One may actually show that (18) holds with the constant 0.4784 instead
of 33. This has been proved by Korolev and Shevtsova [18] in 2010. (They do
not use Stein’s method.) On the other hand, according to Esseen [15] himself, it
is impossible to expect a universal constant smaller than 0.4097.

(18)

Proof of (18). For eachn = 2, let C,, > 0 be the best possible constant satisfying,
for all i.i.d. random variables X,,..., X, with E[|X,}] < oo, E[Xlz] = 1 and
E[X)] = 0, that

[ C, E[1 X
sup |[P(V, € x) — — e‘”z/zdu‘ < [ X:] ]
xXER «/2]{ —00 ﬁ

As a first (rough) estimation, we first observe that, since X; is centered with
E[X?] = 1, one has E[|X;]*] = E[Xlz]% = 1, so that C, < +/n. This is of course

not enough to conclude, since we need to show that C,, < 33.
For any x € R and ¢ > 0, introduce the function

19)

1 fus<x—e¢
hye(u) = { linear ifx—s<u<x-+e¢.
0 fu=>x+e¢

It is immediately checked that, for alln > 2, ¢ > 0 and x € R, we have
E[hx—a,s(Vn)] <PV, <x) < E[hx+a,s(Vn)]-

Moreover, for N ~ 47(0,1), e > 0 and x € R, we have, using that the density of
N is bounded by J%T

Elhxsen(N)] = % < E[hy—ea(N)] < P(N < )

4e
\/27t.

S Efhyqes(N)] < Efhy—e(N)] +

Therefore, for all n = 2 and € > 0, we have

4e

1 * 2
su PV§x——/ e 2 dy
p (Vl ) m oo

x€R
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Assume for the time being that, for all € > 0,

3 312
sup |Elhyo (V)] — Elyo (V)] < SENXIT 3Gt EIXT
x€R Jn en

We deduce that, for all ¢ > 0,

(20)

6 E[|X1]%] N 3C,_1 E[|X1]*)? n 4e
N en \/27r‘

sup
x€R

1 X
P s")‘ﬁ/ e Vrd) <
—00

By choosing ¢ = %E[|X1 1], we get that

E[| X, 4
el B (1 ) v

P(Vn$x) ﬁ \/E

sup
x€R

~/_

sothat C,, < 6 + (3 + «/Lz?) +/C,—1. It follows by induction that C, < 33 (recall

that C, < /n so that C, < 33 in particular), which is the desired conclusion.

We shall now use Stein’s Lemma 2 to prove that (20) holds. Fix x € Rand ¢ > 0,
and let f denote the Stein solution associated with i = h, ., that is, f satisfies
(15). Observe that / is continuous, and therefore f is €. Recall from Lemma 2
that || flleo < /% and || f']lec < 2. Setalso f(x) = xf(x), x € R. We then have

70— 7] = |7 =)+ (F ) O)y| < (@ +2|y|) -yl @)

On the other hand, set

Observe that V' and X; are independent by construction. One can thus write

E[h(V,)] = EIR(N)] = ELf'(Va) = Va f (V)]

ko Xi
YE| 17 = S0 ﬁ]

I
N
o]

f’(Vn)%—(f(Vn) fhH) }beeauseE[f(V)X] E[f(VDIE[X]=0

SI

S |j>§)

} with 6 ~ % 1) independent of X, ..., X,.

=Y E :f’(V,l)% - f (V,f + 95_)
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We have f/(x) = f(x) + h(x) — E[h(N)], so that

n

Eh(V)] = ER(N)] =Y (ai(f) = bi(f)) + ai(h) = bi(h)).,  (22)

i=1

where
)= Elev) - sl = (& (v +05E) —e0) 2] 1.

(Here again, we have used that V! and X; are independent.) Hence, to prove that
(20) holds true, we must bound four terms.

Ist term. One has, using (21) as well as E[|X;]] < E[Xz]z land E[|V]]] <
E[(VHA: <1,

1
()| < f( |X1|]\f+2E[|X1|1E[|V'|1) (\/Z”)nﬁ'

2nd term. Similarly and because E[0] = %, one has

bi(/)] < E[Q]ENX.I] +2E[9]E[|X1| AA
f

<(1 £+1) E[1X:]*]
“\2V2 nyn

3rd term. By definition of /, we have
! ’ V—u N
h)=h() = © =) | Kt s@-w)ds = ——=E [1[x_£,x+s](u 10— u))] :
0

with § ~ “.1) independent of 6 and X, ..., X, so that

1 A X
ih < E Xil\'—axs Vl 9_
i) < 5B [l (V61 |
1 y ; y
—F||Xi| P ———e<V <x———=
envi |:| il (x NG € LS X ﬁ+8)

sup P L—SSViSX—L+£

2snlﬁyeR (X‘ﬁ " NG )

y=éXi:|

/A
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We are thus left to bound P(a < Vn’ < b) forall a,b € R with a < b. For that, set
Vi = J% >4 Xj.sothat Vi = (/1 — 1 V. We then have, using in particular
(19) (with n — 1 instead of n) and the fact that the standard Gaussian density is
bounded by \/#27,

. ~ b
Pa<Vi<bhy=P| L _<Vi< 2
1—1 1-1
b
:P a \N\
1 1
1-1 1-1
1) IR
-1 1-1
b
_P a4 \N\
1 1
1-1 1-1
b—a 2Co1 E[| X0 )]

<
Var,f1-1 vn—1

We deduce that
1 Cu—1 E[1 X1]?]
V2anvn—=1 nynvn—1le

jai ()] <

4th term. Similarly, we have

1 oA X
E|X301p—erqa | Vi +00-L
2n e [ [ *“(” f)”

dnne  yer Jn " Jn
< EIXFL | G EIX PP
23/ 2rnn—1  2n/n/n—1le

Plugging these four estimates into (22) and by using the fact that n = 2 (and
thereforen — 1 = %) and E[|X; [*] = 1, we deduce the desired conclusion. O

|bi(h)| =

To Go Further. Stein’s method has developed considerably since its first appear-
ance in 1972. A comprehensive and very nice reference to go further is the book [9]
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by Chen, Goldstein and Shao, in which several applications of Stein’s method are
carefully developed.

4 Malliavin Calculus in a Nutshell

The second ingredient for the proof of the Fourth Moment Theorem 2 is the
Malliavin calculus (the first one being Stein’s method, as developed in the previous
section). So, let us introduce the reader to the basic operators of Malliavin calculus.
For the sake of simplicity and to avoid technicalities that would be useless in this
survey, we will only consider the case where the underlying Gaussian process (fixed
once for all throughout the sequel) is a classical Brownian motion B = (B;);>0
defined on some probability space (£2,.%, P); we further assume that the o-field
Z is generated by B.

For a detailed exposition of Malliavin calculus (in a more general context) and
for missing proofs, we refer the reader to the textbooks [32, 38].

Dimension One. In this first section, we would like to introduce the basic operators
of Malliavin calculus in the simplest situation (where only one Gaussian random
variable is involved). While easy, it is a sufficiently rich context to encapsulate all
the essence of this theory. We first need to recall some useful properties of Hermite
polynomials.

Proposition 1. The family (Hy)qen C R[X] of Hermite polynomials has the
following properties.

(a) Hy =qHy— and Hyy1 = XHy — qHy— forallqg € N.

(b) The family (ﬁ Hq)qu is an orthonormal basis of L*(R, ﬁe‘xz/zdx).

(c) Let (U, V) be a Gaussian vector with U,V ~ A(0,1). Then, forall p,q € N,

E[H,(U)H,(V)] = {g’E[UVF Zcﬂ!l)er:wiqse.

Proof. This is well-known. For a proof, see, e.g., [32, Proposition 1.4.2]. O

Let ¢ : R — R be an element of L2(R, J%—ne_xz/zdx). Proposition 1(b) implies
that ¢ may be expanded (in a unique way) in terms of Hermite polynomials as
follows:

o0
9=y agH,. (23)
q=0
When ¢ is such that > qq!ag < 00, let us define

o0
Dy = an,,Hq_l. (24)
q=0
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Since the Hermite polynomials satisfy H (; = gH,— (Proposition 1(a)), observe that
Dy =¢

(in the sense of distributions). Let us now define the Ornstein—Uhlenbeck semigroup
(Pr)i=0 by

o

Pp=> e a,H,. (25)
q=0

Plainly, Py = Id, P; P; = P;4+5 (s,t = 0) and
DP, = e¢7'P,D. (26)
Since (P;);>0 is a semigroup, it admits a generator L defined as
d
L=—|=P.
dtlf oLt
Of course, for any ¢ = 0 one has that

d . Py =P Py —1Id . Py—1d d
im ——— = lim P, = P; lim = P — P, =P/ L,
dt h—0 h h—0 h =0 h dh|p—g

and, similarly, %P, = LP,. Moreover, going back to the definition of (P;);>, it is
clear that the domain of L is the set of functions ¢ € L?(R, ﬁe"‘z/ 2dx) such that

> qzq!ag < oo and that, in this case,

oo
Lo = —anqu.
=0

We have the following integration by parts formula, whose proof is straightforward
(start with the case ¢ = H, and ¥ = H,, and then use bilinearity and
approximation to conclude in the general case) and left to the reader.

Proposition 2. Let ¢ be in the domain of L and  be in the domain of D. Then

L e_XZ/Zd —— | Do(x)D e_xmd 27
/R oY e = /R DY =t @)

We shall now extend all the previous operators in a situation where, instead of
dealing with a random variable of the form F' = ¢(N) (that involves only one
Gaussian random variable N), we deal more generally with a random variable F
that is measurable with respect to the Brownian motion (B;);>o.
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Wiener Integral. For any adapted” and square integrable stochastic process u =
(ur)i=0, let us denote by fooo u;dB; its Itd integral. Recall from any standard
textbook of stochastic analysis that the It6 integral is a linear functional that takes
its values on L2(£2) and has the following basic features, coming mainly from the
independence property of the increments of B:

E [/ ussti| =0 (28)
0
E [/ uzdBy x/ deBsi| =F |:/ usvsdsi|. 29)
0 0 0

In the particular case where u = f € L>(Ry) is deterministic, we say that
fooo f(s)dBy is the Wiener integral of f'; it is then easy to show that
o0 o0
/ f(5)dB ~</V(O, / fz(s)ds). (30)
0 0

Multiple Wiener-Ito Integrals and Wiener Chaoses. Let f € Lz(Ri). Let us
see how one could give a “natural” meaning to the g-fold multiple integral

IqB(f):/Rq f(s1,....84)dBy, ...dB;,.
+

To achieve this goal, we shall use an iterated Itd integral; the following heuristic
“calculations” are thus natural within this framework:

/ Sf(s1,...,54)dBy, ...dBy,
R,

> / , JG1 3 s, )55 1By, - dB,
Ry

0EG,

S So (1) So(g—1)
> / dB;, / dBs, . .. / dBy,, f(S1.....5)
0 0 0

0ES,

oo n tg—1
Z /(; dB[l /O dBt2 eee /(; dth f(to_l(l)7 ceey tg—l(q))

0ES,

[ee) n tq_l
Z/ dBn/ dBtz.../ dBy, f(to(1)s - - -+ lo(@))- (31)
0 0 0

0ES,

Now, we can use (31) as a natural candidate for being / qB (f).

2Any adapted process u that is either cadlag or caglad admits a progressively measurable version.
We will always assume that we are dealing with it.
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Definition 1. Let g = 1 be an integer.

1. When f € L*(R%), we set

o0 n tg—1
15(f) = Z/ dBn/ dBtz.../ dB,, f(to(iys- - log)-  (32)
0 0 0

0ES,

The random variable / qB (f) is called the gth multiple Wiener—Itd integral of f.
2. The set .#” of random variables of the form 1.7 (f), f € L*(R%), is called the
qth Wiener chaos of B. We also use the convention %B =R

The following properties are readily checked.
Proposition 3. Let g > 1 be an integer and let f € L*(R%).

1. If f is symmetric (meaning that f(ty,...,t;) = f(ts), ... toq) forany t €
Rz_ and any permutation o € &), then

[o¢] 1 tg—1
12(f) :q!/ dB,I/ dB,z.../ dB,, f(t1,....1y). (33)
0 0 0

2. We have
1PN = 1 (f). (34)
where f stands for the symmetrization of f given by
~ 1
ft,....1y) = 7 Z Soys - to(g))- (35)
0€EG,

3. Forany p,q=1, f € LZ(RZ) and g € Lz(Ri),

E[I7(f)] =0 (36)
EUS NI ©) = pNF &) ey P =4 (37)
EUJ(NIJ@I=0 ifp#q. (38)

The space L?(£2) can be decomposed into the infinite orthogonal sum of the
spaces %ﬂqB. (It is a statement which is analogous to the content of Proposition 1(b),
and it is precisely here that we need to assume that the o-field .# is generated by
B.) It follows that any square-integrable random variable F € L?(£2) admits the
following chaotic expansion:

F = E[F1+ ) 1] (f). (39)

q=1
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where the functions f, € Lz(]R ) are symmetric and uniquely determined by F. In
practice and when F is “smooth” enough, one may rely on Stroock’s formula (see
[53] or [38, Exercise 1.2.6]) to compute the functions f; explicitly.

The following result contains a very useful property of multiple Wiener—Ito
integrals. It is in the same spirit as Lemma 1.

Theorem 8 (Nelson (1973); see [21]). Let [ € LZ(Rq ) with ¢ = 1. Then, for all
r=2,

EQIS OIS 10 =101 Vg, < 00 (40)
Proof. See, e.g., [32, Corollary 2.8.14]. (The proof uses the hypercontractivity
property of (P;);>o defined as (48).) O

Multiple Wiener—It6 integrals are linear by construction. Let us see how they
behave with respect to multiplication. To this aim, we need to introduce the concept
of contractions.

Definition 2. Whenr € {I,...,p Ag}, f € L*(R") and g € L*(R%), we write
f ®, g to indicate the rth contraction of f and g, defined as being the element of
LA (RET™ >’y given by

f®r g)(tlv” p+q 21) (41)

= St Xt X )8 (Epmr 1y - b g2 X1 oo, Xp)dX L dXy
Rr

By convention, we set f ®o g = f ® g as being the tensor product of f and g,
that is,

(f ® &)t1, - tprq) = [t oo 1p)8Upt1s o Lptg)-

Observe that
If ®: g”LZ(Rﬁ:’"" a S fll2we )||g||L2(R+)s r=0,....pAN¢q (42)

by Cauchy—Schwarz, and that f ® , g = (f. g )LZ(]Ri y when p = g. The next result
is the fundamental product formula between two multiple Wiener—It6 integrals.

Theorem 9. Let p.q = 1 andlet f € L*(RY) and g € L*(R%) be two symmetric
functions. Then

PAq
EHIk@ =Y r!(f ) (Z) 12,0 (f&rg). (43)
r=0

where [ ®, g stands for the contraction (41).
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Proof. Theorem 9 can be established by at least two routes, namely by induction
(see, e.g., [38, page 12]) or by using the concept of diagonal measure in the context
of the Engel-Rota—Wallstrom theory (see [45]). Let us proceed with a heuristic
proof following this latter strategy. Going back to the very definition of / f f,

we see that the diagonals are avoided. That is, / 2(f) can be seen as
]f(f) = /RP f(s1,..n, Sp) s #s;.i#j3dBs, - .. dB,
+

The same holds for qB (g). Then we have (just as through Fubini)
B B
1, ()1 (8)
= Aﬁ_q f(sts... ,Sp)l{si;ésj‘i;éj}g([l, R ,tq)l{ti;é[/._i;éj}stl .. -st,,dBn .. .dth.
+

While there is no diagonals in the first and second blocks, there are all possible
mixed diagonals in the joint writing. Hence we need to take into account all these
diagonals (whence the combinatorial coefficients in the statement, which count all
possible diagonal sets of size r) and then integrate out (using the rule (dB,)* = dr).
We thus obtain

PAY
Py (4
If(f)IqB(g) = Z r!<r) (r) /RH—"_Z' (f ®r g)(X1,..., Xp+qg—2r)dBy, coldBx, i,
r=0

+
which is exactly the claim (43). O

Malliavin Derivatives. We shall extend the operator D introduced in (24). Let
F € L?(£2) and consider its chaotic expansion (39).

Definition 3. 1. When m > 1 is an integer, we say that F' belongs to the Sobolev—
Watanabe space D2 if

o0
24" e, < 00 (44)

q=1

2. When (44) holds with m = 1, the Malliavin derivative DF = (D; F);>¢ of F is
the element of L?(£2 x R4) given by

D,F = quf_l (). (45)

g=1

3. More generally, when (44) holds with an m bigger than or equal to 2 we define
the mth Malliavin derivative D" F = (D, ..., F)i.....1,,=0 of F as the element of
L*(2 x R%) given by
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Dy..0, F = Zq(q—l) g=m+DIL, (fyGt, ). (46)

The exponent 2 in the notation D2 is because it is related to the space L*(£2).
(There exists a space D7 related to L?(§2) but we will not use it in this survey.)
On the other hand, it is clear by construction that D is a linear operator. Also,
using (37)—(38) it is easy to compute the L?-norm of DF in terms of the kernels
/4 appearing in the chaotic expansion (39) of F:

Proposition 4. Let F € D"2. We have

o0
E[IDFI e, | = a0t filliages -
q=1

Proof. By (45), we can write

o0
|:||DF”L2(R+):| :/ E Zq dt

q=1

=3 pg E[I,?_l (foCO) LE (fyo) e
Ry

r.q=1

Using (38), we deduce that

[||DF||L2(R+)] = ngfm E [IqB_l (fq(.,z))Z]dt

Finally, using (37), we get that

o0 o0
E[IDFIR2,)| =Y a*q— D! /R [ £ C0 oy di= 3 aat | oo,
g=1 + g=1

|

Let H, be the gth Hermite polynomial (for some g = 1) and let ¢ € L*(Ry)
have norm 1. Recall (10) and Proposition 1(a). We deduce that, for any r = 0,

D, (Hq ( [ " e(s)d W)) = D,(IP(e®) = gI2 ,(®e(t)

=qH, (/000 e(s)st) e(t) = H(; (/000 e(s)st) D, (/000 e(s)st) .
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More generally, the Malliavin derivative D verifies the chain rule:

Theorem 10. Let ¢ : R — R be both of class €' and Lipschitz, and let F € D'2,
Then, (F) € D'2 and

D,¢(F) = ¢/ (F)D,F, t=>0. (47)

Proof. See, e.g., [38, Proposition 1.2.3]. O

Ornstein—Uhlenbeck Semigroup. We now introduce the extension of (25) in our
infinite-dimensional setting.

Definition 4. The Ornstein—Uhlenbeck semigroup is the family of linear operators
(P;):>0 defined on L?(£2) by

PF =Y e IP(f). (48)

q9=0

where the symmetric kernels f; are given by (39).

A crucial property of (P;);>o is the Mehler formula, that gives an alternative
and often useful representation formula for P;. To be able to state it, we need to
introduce a further notation. Let (B, B’) be a two-dimensional Brownian motion
defined on the product probability space (£2,#,P) = (2 x 2',.7  #', P x P').
Let F € L?(£2). Since F is measurable with respect to the Brownian motion B, we
can write F = Wy (B) with ¥ a measurable mapping determined P o B! as..
As a consequence, for any ¢ = 0 the random variable Wr(e "B + v/ 1 —e 2" B’) is
well-defined P x P’ a.s. (note indeed that e~ B + +/1 — e~2 B’ is again a Brownian

motion for any ¢ > 0). We then have the following formula.
Theorem 11 (Mehler’s formula). Forevery F = F(B) € L*(2) and everyt =0,
we have

Pi(F) = E'[Wp(e”'B+V1—e2B)], (49)

where E' denotes the expectation with respect to P’.

Proof. By using standard arguments, one may show that the linear span of random
variables F having the form F = exp{fooo h(s)dBS} with b € L*(Ry) is
dense in L?(£2). Therefore, it suffices to consider the case where F has this
particular form. On the other hand, we have the following identity, see, e.g., [32,
Proposition 1.4.2(vi)]: forall ¢, x € R,

cx—c?/2 G cl
e ’ = Z qu(X),
q=0 1"
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with H, the gth Hermite polynomial. By setting ¢ = [|h|[,2g,) = ||l and x =
15 }Im dB,, we deduce that

q=0

implying in turn, using (10), that

exp% / h(s)dB, } —e2||h||22 1‘ B (489) (50)

qu

Thus, for F = exp {fooc h(s)dB,},

o0
PF = B S

q=0

e B h®q
e,
On the other hand,

E/[llfp(e_tB + 1 - e—z’fB’)] =F' I:exp/oo h(s)(e™'dB; + V1 — e‘ZIng)i|
0

[oe] 1— —2t
= exp (e—’ / h(s)st) exp ( 2e ||h||2)
0

1— 2 2 > e_qt B
= exp( I7]| ) e Z _|1,, (h®f1) by (50)

g=0 1
= Pt F.
The desired conclusion follows. O

Generator of the Ornstein—Uhlenbeck Semigroup. Recall the definition (44) of
the Sobolev—Watanabe spaces "2, m > 1, and that the symmetric kernels Jq €
L*(RY%) are uniquely defined through (39)

Definition 5. 1. The generator of the Ornstein—Uhlenbeck semigroup is the linear
operator L defined on D> by

o0
=3 g1l (f).
q=0
2. The pseudo-inverse of L is the linear operator L~! defined on L?(£2) by

Z(fq
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It is obvious that, for any F € L?(£2), we have that L™!' F € D*? and
LL™'F = F — E[F]. (51)
Our terminology for L™ is explained by the identity (51). Another crucial property

of L is contained in the following result, which is the exact generalization of
Proposition 2.

Proposition 5. Let F € D*? and G € D'2. Then
Proof. By bilinearity and approximation, it is enough to show (52) for FF = [ ]’,3 f)
and G = 12(g) with p,q = 1 and f € L*(RY), g € L*(R%) symmetric. When
p # ¢, we have

E[LF x Gl = —pE[I}(/)1} ()] =0

and
o0
EUDF.DG) o) = pa [ BV (FCODIE (o)l =0
by (38), so the desired conclusion holds true in this case. When p = ¢, we have

E[LF x G] = —pE[1} (/)1 (&)1 = —ppU( /. 8) s

and

E[(DF.DG) 12z, )] = p° /0 E[I5 (fC.0) TP (g(.0))ldi

=P =Dt [ U080 gt = PPN )

by (37), so the desired conclusion holds true as well in this case. |

We are now in position to state and prove an integration by parts formula which
will play a crucial role in the sequel.

Theorem 12. Let ¢ : R — R be both of class €' and Lipschitz, and let F € D'?
and G € L*(2). Then

Cov(G.(F)) = E[¢'(F)(DF,—=DL™'G) 2 &,,)]. (53)
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Proof. Using the assumptions made on F and ¢, we can write:

Cov(G.¢(F)) = E[L(L7'G) x ¢(F)] (by (51))
E[(Dg(F).—DL™'G);2@,)] (by (52))

E[¢/(F){D(F),—DL™'G) 2,,] (by (47)).

which is the announced formula. O

Theorem 12 admits a useful extension to indicator functions. Before stating and
proving it, we recall the following classical result from measure theory.

Proposition 6. Let C be a Borel set in R, assume that C C [—A, A] for some A >
0, and let . be a finite measure on [—A, A]. Then, there exists a sequence (hy) of
continuous functions with support included in [— A, A] and such that h, (x) € [0, 1]
and 1¢ (x) = limy—eo 1, (X) p-a.e.

Proof. This is an immediate corollary of Lusin’s theorem, see, e.g., [50, page 56].
(]

Corollary 1. Let C be a Borel set in R, assume that C C [—A, A] for some A > 0,
and let F € D2 be such that E[F] = 0. Then

F
E [F /_ lc(x)dxi| = E[1¢(F)(DF.—DL™'F) 2 -

(o]

Proof. Let A denote the Lebesgue measure and let Pr denote the law of F. By
Proposition 6 with &t = (A + Pr)|[—4.4 (that is, u is the restriction of A + Pp
to [—A, A]), there is a sequence (%,) of continuous functions with support included
in [—A, A] and such that &,(x) € [0,1] and 1¢(x) = lim,—eo Ay(x) p-a.e. In
particular, 1¢(x) = lim,— h,(x) A-a.e. and Pp-a.e. By Theorem 12, we have
moreover that

F
E [F /_ hn(x)dxi| = E[hy(F)(DF.—DL™'F) 2 .

The dominated convergence applies and yields the desired conclusion. O

As a corollary of both Theorem 12 and Corollary 1, we shall prove that the law
of any multiple Wiener-Ito integral is always absolutely continuous with respect to
the Lebesgue measure except, of course, when its kernel is identically zero.

Corollary 2 (Shigekawa; see [S1]). Let g = 1 be an integer and let f be a non
zero element of Lz(Ri). Then the law of F = 1, qB (f) is absolutely continuous with
respect to the Lebesgue measure.
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Proof. Without loss of generality, we further assume that f is symmetric. The
proof is by induction on g. When ¢ = 1, the desired property is readily checked
because 12(f) ~ (0, ||f||L2(]R )) see (30). Now, let ¢ = 2 and assume that

the statement of Corollary 2 holds true for ¢ — 1, that is, assume that the law of
B ~,(g) is absolutely continuous for any symmetric element g of Lz(Rq_l) such that

||g||L2(R,, 1, > 0. Let f be a symmetric element of LZ(R ) with ||f||L2(Rq > 0.
Leth € LZ(R) be such that H fo fC,8)h(s)ds H L@ # 0. (Such an & necessarily
)

exists because, otherwise, we would have that f(-,s) = 0 for almost all s = 0
which, by symmetry, would imply that f = 0; this would be in contradiction with
our assumption.) Using the induction assumption, we have that the law of

0F iy = [ DFnos=arl ([T resmea)
is absolutely continuous with respect to the Lebesgue measure. In particular,
P({DF,h) 2@,y =0) =0,
implying in turn, because {||DF||.2g ) = 0} C {{DF, h) 2w, = 0}, that
P(|DF| 2g,y > 0) = 1. (54)
Now, let C be a Borel set in R. Using Corollary 1, we can write, for everyn = 1,

E [lcm[ —nm) (F)—= ||DF||L2(R+)} E [1cnpna)(F){DF,—DL™'F) 2 )|

F
=E [F/_ lcn[—n,n](J’)d)’i| .

Assume that the Lebesgue measure of C is zero. The previous equality implies that

E |:1Cﬂ[—n,n](F) ”DF|IL2(R+):| 0, n>=1.

But (54) holds as well, so P(F € C N [—-n,n]) = 0 for all n = 1. By monotone

convergence, we actually get P(F € C) = 0. This shows that the law of
F is absolutely continuous with respect to the Lebesgue measure. The proof of
Corollary 2 is concluded. O

To Go Further. In the literature, the most quoted reference on Malliavin calculus is
the excellent book [38] by Nualart. It contains many applications of this theory (such
as the study of the smoothness of probability laws or the anticipating stochastic
calculus) and constitutes, as such, an unavoidable reference to go further.
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5 Stein Meets Malliavin

We are now in a position to prove the Fourth Moment Theorem 2. As we will
see, to do so we will combine the results of Sect. 3 (Stein’s method) with those
of Sect. 4 (Malliavin calculus), thus explaining the title of the current section! It is a
different strategy with respect to the original proof, which was based on the use of
the Dambis—Dubins—Schwarz theorem.

We start by introducing the distance we shall use to measure the closeness of the
laws of random variables.

Definition 6. The total variation distance between the laws of two real-valued
random variables Y and Z is defined by

dv(Y,Z)= sup |P(Y €C)—P(Z€C)
CeZB(R)

. (55)

where Z(R) stands for the set of Borel sets in R.

When C € #A(R), we have that P(Y € C N [-n,n]) - P(Y € C) and
P(Z € CN[-n,n]) > P(Z € C) asn — oo by the monotone convergence
theorem. So, without loss we may restrict the supremum in (55) to be taken over
bounded Borel sets, that is,

dry(Y,Z)= sup |P(Y €C)—P(Z € )| (56)
CeBR)
C bounded

We are now ready to derive a bound for the Gaussian approximation of any
centered element F belonging to D'2.

Theorem 13 (Nourdin and Peccati (2009); see [27]). Consider F € D"? with
E[F] = 0. Then, with N ~ A4 (0, 1),

dry(F.N) <2E[|1 = (DF,.—DL™'F) 12z, |] - (57)

Proof. Let C be abounded Borel setin R. Let A > 0 be such that C C [—A4, A]. Let
A denote the Lebesgue measure and let Pr denote the law of F. By Proposition 6
with 4 = (A+ Pr)|[—4— 4 (therestriction of A 4 Pr to [ A, A]), there is a sequence
(h,) of continuous functions such that 4, (x) € [0, 1] and 1¢ (x) = lim,— 0 /1, (X)
pu-a.e. By the dominated convergence theorem, E[h,(F)] — P(F € C) and
E[h,(N)] > P(N € C) as n — o00. On the other hand, using Lemma 2 (and
denoting by f, the function associated with #,) as well as (53) we can write, for
each n,

|E[hy(F)] = E[ha(N)]| = |E[f, (F)] = E[Ff,(F)]|
= |E[f,(F)(1 = (DF,=DL™'F) 2]
< 2E[|[1 = (DF,—DL™'F) 2 ) |]-
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Letting n go to infinity yields
|P(F €C)—P(N €C)| <2E[|l = (DF.—DL™'F) 2 |].

which, together with (56), implies the desired conclusion. O

Wiener Chaos and the Fourth Moment Theorem. In this section, we apply
Theorem 13 to a chaotic random variable F, that is, to a random variable having the
specific form of a multiple Wiener—It6 integral. We begin with a technical lemma
which, among other, shows that the fourth moment of F is necessarily greater than
3E[F?]?. We recall from Definition 2 the meaning of f ®, f.

Lemma3. Let ¢ = 1 be an integer and consider a symmetric function f €
Lz(Rq ). Set F = IB(f) and o> = E[F?] = q!||f]? The following two
identities hold:

2 )
r
E |:(G __||DF|IL2(R+)) :| = Z?r‘z( ) (Zq Zr)'“f@]f”Lz(RZq—Zr

r=1

L2RY)

(53)
and
3 )
E[F) - 30* = 52”'2( ) g =20 & f g, (59)
_ 2
q—1 2q —
= 1 O f )+ TS g
r=1 q9—
(60)
In particular,
1 2l g-1
2 2 4 4
E |:(O' — 5”DF”L2(R+)) :| < ?(E[F ]—30' ) (61)

Proof. We follow [28] for (58)—(59) and [40] for (60). For any t+ = 0, we have
D/F = g1} (f(-,1)) so that, using (43),

o0
2
||DF||L2(R+) q/O IqB—l (f(,t)) dt

- 2
=4 Z r'<q ; 1) 1213]—2—2r (f(v t)@rf(', Z))d[
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00 4—1 2
B
:(]/ Zr'< ) 12q—2—2r(f('vt) r f(',t))dl
0

g—1 _1 0o
= QZ”(q r ) IZZ—Z—Zr (/0 JG 1) ® f(-,t)dt)
r=0
-1 2
= qu!(q . ) 1212_2_21,(]‘ ®ri1 f)
q g—1 2
- qz(r - 1)'<r _ 1) IZB;]—Zr(f Qr f)

r=1

q—1 2
—1
= 4! agug, +qZ(r—1)!(j’_1) 2(fe f). (6
r=1

Since E[F?] = '||f||L2(Rq = 02, the identity (58) follows now from (62)

and the orthogonality properties of multiple Wiener—Itd integrals. Recall the
hypercontractivity property (40) of multiple Wiener—It6 integrals, and observe the
relations —L7'F = %F and D(F3) = 3F2DF. By combining formula (53) with
an approximation argument (the derivative of ¢(x) = x* being not bounded), we
infer that

3
E[FY|=E[FxF*] = p E[F?|DF |72, (63)

Moreover, the multiplication formula (43) yields

q 2
q ~
F=17(f) = ;w() 15 (f&,f). (64)

By combining this last identity with (62) and (63), we obtain (59) and finally
(61). It remains to prove (60). Let o be a permutation of {1,...,2¢} (this fact
is written in symbols as 0 € Gy,). If r € {0,...,q} denotes the cardinality of
{o(1),...,0(g)}N{l,...,q} then it is readily checked that r is also the cardinality
of {o(g+1),....,02q)} N{g+1,...,2q} and that

/zq f(ll, . ,lq)f(la(l), ey t(]'(q))f(tq—'—l, ey tzq)
R
+
Xf(la(q_H), ey la(zq))dtl Ce dtzq
/2q ) f X, f)(xl, e ,qu_zr)zdxl .. .dxzq_zr
+

=11 & fI, o0 o (65)

L2(RY
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Moreover, for any fixed r € {0,...,q}, there are ( ) (¢")?* permutations 0 € Sy,
such that #{o(1),...,0(q)} N {1,...,q} = r. (Indeed, such a permutation is
completely determined by the choice of: (a) r distinct elements yi,...,y, of
{1,...,q}; (b) g—r distinctelements y,41,..., y, of {g+1,...,2q}; (c) abijection
between {1,...,q} and {y1...., y4}; (d) a bijection between {g + 1,...,2q} and
{1,...,2g} \ {y1,....¥4}.) Now, observe that the symmetrization of f ® f is
given by

f®f(tlv-- ZZq) (2 )‘ Z f( (T(l)v"'7tU(q))f(tU(q+l)7"'7t0(2q))'

0662
Therefore,
£ &S o,
1
= W f(ta(l)s i lo@) U+ -2 Lo 2g)
q 0,0 EG

Xf(lgf(l), Ceey ng(q))f(lgf(q+1), Ceey ng(zq))dtl - dtzq

(2q)l Z/ F@, e ty) [, tag)

UEGZ

Xf(tg(l), cees t(j(q))f(ta(q—'—l), e, la(zq))dtl - dl‘zq

q
=ﬁZ > /Rzﬁf(zl,...,rq)f(rq+1,...,t2q)

r=0 UEqu

{o(1),...o(q)}N{1,..q}=r

Xf(tg(l), cees t(j(q))f(ta(q—'—l), e, la(zq))dtl - dl‘zq.

Using (65), we deduce that

q—1
CONIOS aor, = 2001 T +(q!>2;<f) 1 F P,
(66)

Using the orthogonality and isometry properties of multiple Wiener—It6 integrals,
the identity (64) yields
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2g— 2r

q 4
Ewﬂzzwwc)@q2WW®fn

LZ(]R
r=0

=CNfefIn + (4! )2||f||L2(R'I

L2®Y)

q—1
+Z(r!)2( ) Qg =2 f®, f IILZ(qu 2
r=1

By inserting (66) in the previous identity (and because (g!)||f[* L2 =

E[F?)? = o%), we get (60). ]

As a consequence of Lemma 3, we deduce the following bound on the total
variation distance for the Gaussian approximation of a normalized multiple Wiener—
It6 integral. This is nothing but Theorem 3 but we restate it for convenience.

Theorem 14 (Nourdin and Peccati (2009); see [27]). Let ¢ = 1 be an integer
and consider a symmetric function f € Lz(Rz_). Set F = IqB (f), assume that
E[F?| = 1,andlet N ~ 4 (0,1). Then

-1
dTV(F,N)sz\/qB—’E[F4]—3|. 67)
q
Proof. Since L™'F = ——F we have (DF,—DL™'F) 2, ) = © ||DF||L2(R - So,
we only need to apply Theorem 13 and then formula (61) to conclude O

The estimate (67) allows to deduce an easy proof of the following characteriza-
tion of CLTs on Wiener chaos. (This is the Fourth Moment Theorem 2 of Nualart
and Peccati!). We note that our proof differs from the original one, which is based
on the use of the Dambis—Dubins—Schwarz theorem.

Corollary 3 (Nualart and Peccati (2005); see [40]). Let g = 1 be an integer and
consider a sequence (f,) of symmetric functions of Lz(R ). Set F,, = IB(fn) and
assume that E[F?] — 0> > 0 asn — oc. Then, as n — oo, the following three
assertions are equivalent:

(i) F 5 N ~.#(0.0%);
(i) E[FY — E[N*] = 30%
(iii) ||ﬁ,®,ﬁ,||L2(qu—zr) — Oforallr =1,...,qg—1.
+
V) |I.fa ®r full,2m2a—2r, = Oforallr =1,...,g — 1.
L2RYT)
Proof. Without loss of generality, we may and do assume that 0> = 1 and

E[F?] = 1 for all n. The implication (ii) — (i) is a direct application of
Theorem 14. The implication (i) — (ii) comes from the Continuous Mapping
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Theorem together with an approximation argument (observe that sup,>; E [Fn4] <
oo by the hypercontractivity relation (40)). The equivalence between (ii) and (iii)
is an immediate consequence of (59). The implication (iv) — (iii) is obvious (as
| /@ full <\l fu @ foll) whereas the implication (ii) — (iv) follows from (60).

O

Quadratic Variation of the Fractional Brownian Motion. In this section, we
aim to illustrate Theorem 13 in a concrete situation. More precisely, we shall use
Theorem 13 in order to derive an explicit bound for the second-order approximation
of the quadratic variation of a fractional Brownian motion on [0, 1].

Let B = (B/"),>0 be a fractional Brownian motion with Hurst index H €
(0, 1). This means that B¥ is a centered Gaussian process with covariance function
given by

1
E[BI B = E(r“” + s — 1t — s, st=0.

It is easily checked that B¥ is selfsimilar of index H and has stationary increments.

Fractional Brownian motion has been successfully used in order to model a
variety of natural phenomena coming from different fields, including hydrology,
biology, medicine, economics or traffic networks. A natural question is thus the
identification of the Hurst parameter from real data. To do so, it is popular and
classical to use the quadratic variation (on, say, [0, 1]), which is observable and
given by

n—1

H H \2
So =D (Bilsnyn— B n=1.
k=0

One may prove (see, e.g., [25, (2.12)]) that

b
nZH_lSn P 1 asn — oo. (68)

We deduce that the estimator I:In, defined as

1 logS,
a e

n =

2 2logn’

. ~  proba . . .
satisfies H, — 1 asn — oo. To study the asymptotic normality, consider

! H o2 o—opq Oaw) 1 - H H\2
Fy = pu Z [(B(k+l)/n — B, —n ] . Z [(Bk+1 — B - 1]’
" k=0 " k=0

where 0, > 0 is so that E[F?] = 1. We then have the following result.
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Theorem 15. Let N ~ 4 (0, 1) and assume that H < 3/4. Then, lim, 00 02/n =
23, en P2(r) if H € (0,3), with p : Z — R given by

1
p(r) = 5 (Ir + 127 r — 1P = 2|r ), (69)

andlim, 0 02 /(nlogn) = % ifH = %. Moreover; there exists a constant cg > 0
(depending only on H ) such that, for everyn = 1,

if H €(0.9)

dry(Fu, N) < cp X : (70)

1 oy _ 3
logn lfH 4

As an immediate consequence of Theorem 15, provided H < 3/4 we obtain that

(S, — 1) S (0.2 p(r) asn — oo, 71)
rez
implying in turn

Vnlogn(H, — H L:)NJVO—Z;) (r)) asn — oo. (72)

r€z

Indeed, we can write

X Md
10gx=x—1—/ du/ —Z forall x > 0,
1 v

so that (by considering x = 1and 0 < x < 1)

x —1)?

1
‘10gx+1—x‘$ {1—%——2} for all x > 0.
x

As a result,

N

_7 10g(n2H_1Sn) — _ \/ﬁ

Jnlogn(H, — H) = T(nZH—lsn —1)+R,

with

|Rn| <

(Jr(n2H=1s, — 1))2 {1 | }
4n (n2H-18,)?
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roba
Using (68) and (71), it is clear that R, e 0 as n — oc and then that (72) holds
true.
Now we have motivated it, let us go back to the proof of Theorem 15. To perform
our calculations, we will mainly follow ideas taken from [3]. We first need the
following ancillary result.

Lemmad. 1. For any r € Z, let p(r) be defined by (69). If H # %, one has

p(r)y ~ HRH — D|r|* 2 as |r| - oco. If H = % and |r| = 1, one has
p(r) = 0. Consequently, Y", o, p*(r) < oo ifand only if H < 3/4.

— a+1
2. Forall @ > —1, we have Zf:i re~

asn — oQ.

Proof. 1. The sequence p is symmetric, that is, one has p(n) = p(—n). When
r — oo,

p(r) = HQH — 1)r*f =2 4 o(r? 7).

Using the usual criterion for convergence of Riemann sums, we deduce that
> ,ez p?(r) < coif and only if 4H — 4 < —1if and only if H < %.
2. For @ > —1, we have:

1 « a ! 1
—Z(i) —>/ x%dx = asn — oo.
n i \n 0 oa+1

1

a+t
We deduce that Y/, ¥ ~ % as n — oo. O

We are now in position to prove Theorem 15.

Proof of Theorem 15. Without loss of generality, we will rather use the second
expression of F;:

1 n—1

F, = U_Z[(B,(HH — B2 —1].
" k=0

Consider the linear span 7 of (B ,f’ )ken, that is, S is the closed linear subspace of
L?(£2) generated by (B,f’ )ken. Itis a real separable Hilbert space and, consequently,

there exists an isometry @ : J# — L*(R;). Forany k € N, set ¢, = dﬁ(B]fi_H -
B["); we then have, forall k,/ € N,

o0
| e = EUBLL - BB~ B =pte -1 (73)
with p given by (69). Therefore,

(BE - BF : keNy & {/ ex(s)dBy : k e Ny = {IF(ex): k e N},
0
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where B is a Brownian motion and / f (), p = 1, stands for the pth multiple
Wiener-Itd integral associated to B. As a consequence we can, without loss of
generality, replace F, by

1

[(IlB(ek))z — 1] .

0

n

1
On

F, =
k

Now, using the multiplication formula (43), we deduce that
1 n—I1
Fo=1'(f), with fy = —3 e @ ex.
" k=0

By using the same arguments as in the proof of Theorem 1, we obtain the exact
value of 0;,:

n—l1
0 =23 pPk=D) =23 (n=rDp*(r).
k=0 |r|<n
Assume that H < % and write

2

o, |7
I =23 ) (1= ) Ly
p P(V)( n){||<}

re€7z

Since Y, p*(r) < oo by Lemma 4, we obtain by dominated convergence that,
when H < 3,

2
. an _ 2
Jim =t = 23 (). (74)
r€7z
Assume now that H = %. We then have p?(r) ~ %‘r‘ as |r| — oo, implying in turn
9n 1 9nlogn
2
n2 P~ 2 R
|r|<n 0<|r|<n

and
9 9n
2
~ 1~ =
E [rlp”(r) < E 3
[rl<n [rl<n

as n — oo. Hence, when H = %,

o2 9
lim L= (75)
n—oo nlogn 16
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On the other hand, recall that the convolution of two sequences {u(n)},ez and
{v(n)}nez is the sequence u x v defined as (u x v)(j) = D, u(mv(j — n),
and observe that (u x v)(I —i) = ), u(k —I)v(k — i) whenever u(n) = u(—n)
and v(n) = v(—n) forall n € Z. Set

pa(k) = |p(k) L <n—1y. k €Z,n = 1.

We then have (using (58) for the first equality, and noticing that f, ®; f, =
fn®lfn)’

2
E [(1 ~ i (m]||iz<R+>) }

n—1

8 . . . .
=8l /n & f””iZ(RZ ) T o4 Z plk =DpG — j)ptk —i)p(l = J)
+ a" i,jk,=0
8 n—1
<= Y0 putk = Dpuli = j)pak = )pu(l = j)
On i,l=0jkeZ
8

n—1

. 8n 8n

= 2 (oa ko) = < =3 (o o) () = —llow * pullpagy
nil=0 n kel n

Recall Young’s inequality: if s, p,g = 1 are such that % + % =1+ %, then

s ves@ < luller@llvilesz). (76)

Let us apply (76) withu = v = p,, s =2 and p = %. We get || p, * pn||%2(z) <
loall*s , so that
(3 (2

1 2l s y
E[(1—§||D[If(fn>]||iz(R+))}sa—’j el . an

o\ |k|<n

Recall the asymptotic behavior of p(k) as |k| — oo from Lemma 4(1). Hence

) o(1) if H €(0,2)
> " lp)5 = { O(logn) if H=3 (78)
k| <n OmBH=93) if H € (3,1).

Assume first that H < % and recall (74). This, together with (77) and (78), imply
that
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2
] < |E [(1 - -||D[13(fn)1||Lz(R+)) }

7 fHE€(0.3)

Hl _ -||D[12 B,

<cy X

(logn)? . _5
T i H =
4H-3 53

n if H € 27

Therefore, the desired conclusion holds for H € (0, %) by applying Theorem 13.
Assume now that H = % and recall (75). This, together with (77) and (78), imply

that
2
B[l 310U e, || < | [( = SIDU e, ) ]
= O(1/logn),
and leads to the desired conclusion for H = Z as well. O

To Go Further. In[27], one may find a version of Theorem 13 where N is replaced
by a centered Gamma law (see also [56]). In [1], one associate to Corollary 3 an
almost sure central limit theorem. In [6], the case where H is bigger than 3/4 in
Theorem 15 is analyzed.

6 The Smart Path Method

The aim of this section is to prove Theorem 4 (that is, the multidimensional
counterpart of the Fourth Moment Theorem), and even a more general version of it.
Following the approach developed in the previous section for the one-dimensional
case, a possible way for achieving this goal would have consisted in extending
Stein’s method to the multivariate setting, so to combine them with the tools of
Malliavin calculus. This is indeed the approach developed in [35] and it works well.
In this survey, we will actually proceed differently (we follow [28]), by using the
so-called “smart path method” (which is a popular method in spin glasses theory,
see, e.g., Talagrand [54]).

Let us first illustrate this approach in dimension one. Let F € D'? with E[F] =
0,let N ~ A4(0,1)and let 4 : R — R be a ¢ function satisfying [|¢” |leo < 0.
Imagine we want to estimate E[h(F)] — E[h(N)]. Without loss of generality, we
may assume that N and F are stochastically independent. We further have:
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1
E[h(F)]—E[h(N)]:/O %E[h(ﬁFJM/l—tN)]dz

:/O (ZJ_E[h(fF+J IN)Fl— ———E[WN(ViF +V1—1 N)N)

V’___

Forany x € Randt € [0, 1], Theorem 12 implies that
E[W (VIF + V1 —1tx)F] = V1 E[l"(VF + V1 —tx){DF, =DL™'F) 12, .
whereas a classical integration by parts yields

E[N (Vix + Y1 —=(N)N] = V1 —1 E[h"(Vix + VT —IN)].

We deduce, since N and F are independent, that

1

E[h(F)]—E[h(N)] = %/ E[W'(Vix+~T—(N)((DF,~DL™'F) 2, )~ )]t
0

(79)

implying in turn

|E[h(F)] — E[h(N)]| < %nh”llooE [|[1 —(DF,—DL™'F) 1. ®0

compare with (57).

It happens that this approach extends easily to the multivariate setting. To see
why, we will adopt the following short-hand notation: for every 4 : R? — R of
class €2, we set

|h" o = max sup
i,j=1,.., YERd

3x, ax j (x )'
Theorem 16 below is a first step towards Theorem 4, and is nothing but the
multivariate counterpart of (79)—(80).

Theorem 16. Fix d = 2 andlet F = (F\,..., Fy) be such that F; € D'? with
E[F;] =O0foranyi. Let C € #;(R) be a symmetric and positive matrix, and let
N be a centered Gaussian vector with covariance C. Then, for any h : R — R
belonging to €* and such that |h" ||eo < 00, we have

d
[EI(E) — BBV < 5100 Y E[|CG )~ DF;, ~DL™ B o ]

ij=1

81)

Proof. Without loss of generality, we assume that N is independent of the under-
lying Brownian motion B. Let & be as in the statement of the theorem. For any
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1 €[0,1], set ¥(t) = E[h(v/1—tF + ViN)], so that

1
E[R(N)] - E[h(F)]=w¥()—-¥(0) = / ' (1)dt.
0
We easily see that ¥ is differentiable on (0, 1) with

lI/(t)_ZE[ x/lTF—ir\/_N)( lﬁ =3 ll_tFi)}.

By integrating by parts, we can write

oh
E[B—Xi(«/l—tF+«/;N)N,} = T

E [%(x/l_—tx + «/;N)N,} }
|x=F

d
=Vi) Ci.j)E
j=1

e s i ]|

—kaonE[

j=1

(x/lTF+«/—N)}

By using Theorem 12 in order to perform the integration by parts, we can also write

E[%(«/I—ZF—F«/ZN)F,}: E[%(«/I—ZF—F«/ZX)E} }
0x; dx; lx=N
d 2
j=1 1 X=
d
= “/1_tZE[ax 7, (V1—tF + VIN)(D ],—DL_IE)Lz(R+):|.
j=1 '

Hence
/ 32/1 . 1
W(z)_ Z E «/1— {F + VIN) (C(t,j)—(DFj,—DL F,»)LZ(R+)) ,
1] 1
and the desired conclusion follows. O

We are now in position to prove Theorem 2 (using a different approach compared
to the original proof; here, we rather follow [39]). We will actually even show the
following more general version.
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Theorem 17 (Peccati and Tudor (2005); see [46]). Letd =2 and qy,...,q1 = 1
be some fixed integers. Consider vectors

Fy=(Fin ... Fan) = S (frn)s - IS (fan)), n=1,

with fi, € LZ(R?@) symmetric. Let C € M1 (R) be a symmetric and positive matrix,
and let N be a centered Gaussian vector with covariance C. Assume that

lim E[F,Fi,)=C(@.j), 1<i,j<d. (82)
n—>00

Then, as n — oo, the following two conditions are equivalent:

(a) F, convergesinlaw to N;
(b) foreveryl <i <d, F;, convergesin law to A (0,C(i,i)).

Proof. By symmetry, we assume without loss of generality that g; < ... < g4. The
implication (a) = (b) being trivial, we only concentrate on (b) = (a). So, assume
(b) and let us show that (a) holds true. Thanks to (81), we are left to show that, for
eachi,j =1,...,d,

B 1 L@ .
(DF;,,—DL ‘Fi,,,)Lz(RH:E(DFj,n,DFi,n)Lz(R+) — " C(i,j) asn — oo.

(83)
Observe first that, using the product formula (43),
1 * B B
ADF 0 DF )y = 45 [ 1 GO o)
qgingj—1 00
gi —1\(q; -1

T P ([ s

r=0

qingj—1
gi =1\ (q; =1
=4q; Z I‘!( lr )( ]r )Iq?+qj—2—2r (fl” Qr+1 fJ”)
r=0

qi NG j
=1\ (4, -1
r=1

Now, let us consider all the possible cases for ¢; and g; with j = i.

First case: g = q; = 1. We have (DFj,, DF; ) 2w,y = (fins fin)2@®y) =
E[F; , F;,]. Butitis our assumption that E[F; , F;,] — C(i, j) so (83) holds true
in this case.

Second case: q; = 1 and q; = 2. We have (DF;,,DFin)2r,) =

(fi,n,DFj,n)Lz(RJr) = Ilﬁ_l(fiﬁ ®1 fjn). We deduce that
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E[(DF . DFin)iag,)) = @7 = DULfin®1 fral o
+

< (gj = D! fin & ff'””iz@j(l)

= (@ = DN fin ® fin: fin ®qj1 fin) 2@,
< (@) = DSl Fog ) 1 fin ®=1 il 2o,
= (q; = D'EIF ) fjn ®gy=1 finll 22,

At this stage, observe the following two facts. First, because g; # ¢q;, we

have C(i, j) = O necessarily. Second, since E[F]zn] — C(j,j) and Fj, -y
A(0,C(j, j)), we have by Theorem 3 that || f;, ®g, -1 f/’-n”U(Ri) — 0. Hence,
(83) holds true in this case as well.

Third case: g; = q; = 2. By (84), we can write

_ 2

1 “ gi—1

Z(DFj.nvDFi,n)LZ(R+) = E[E.nFj.n] +qi E (I’ - l)!<rl_ 1 Izljgi—zr(fi,n Qr fj.n)-
1

r=1

We deduce that

2
E |:(ql (DFju,DFin) 12w, — CU, J)) :|

= (E[FinFj] - CG. )’
qi—1

qi —
+q; Z(r 1)|2( ) (i = 2r)Y|| fin ®,f,nIIL2(R%_2r)

The first term of the right-hand side tends to zero by assumption. For the second
term, we can write, whenever r € {1,...,q; — 1},

—2r

I fin®r frnll? ~r) < | fin ®r finll? )
= (fln ®qi—r fi,m fj,n ®q;—r fj,n)LZ(]Ra[)

< ”ftn ®qi—r i,n”LZ(R%ﬁ)”fj,n ®q,-—r fj,n”LZ(]Ra;)-

L2 R L2 R

Since F;, Y A(0,C(i,i)) and F;, ay A(0,C(j, j)), by Theorem 3 we have
that || fi» ®q,—r ﬁ,n”LZ(REp”f/}n ®qi—r fin ”LZ(R%;) — 0, thereby showing that (83)
holds true in our third case.
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Fourth case: q; > q; = 2. By (84), we have

1 & gi—1\[q; -1
Z(DF_/‘,nvDFi,n>L2(R+) =q; » (r— l)!<r _ l)(rj— 1 )Iqlf-l-qj—Zr(fi-” & fin)-
! r=1
We deduce that
1 2
E E(DFj,nvDFi,n>L2(R+)
qi 1 2 1 2
— g2 _el4— 9; — . VIS 12
a; ;(r D! (r _ 1) (r _ 1) @+ 45 =200 fea®r fial, v
Foranyr € {1,...,q;}, we have
5 2 2
”ﬁ,n®r}rj,n”Lz(R¢i+q/‘72r) < ”fi,n ®r fj'””Lz(R‘Z:_J”’f*z’)

= (fln ®q,‘—r fi,ns fj,n ®q,~—r fj,n)LZ(]Raf)
< ”ftn ®q;—r i,n”LZ(Ri[)”fj,n ®qj—r ]’j,nlle(Rg;)

2
< ”fln “LZ(RIQ"_) ”fjn ®q,~—r fj,n ”LZ(Ri)-

Since Fj ey A(0,C(j,j))andg; —r €{1,...,q; — 1}, by Theorem 3 we have
that || £, ®q;— fiall L@y = 0. We deduce that (83) holds true in our fourth case.

Summarizing, we have that (83) is true for any i and j, and the proof of the
theorem is done. O

When the integers ¢y, ..., q; are pairwise disjoint in Theorem 17, notice that
(82) is automatically verified with C(i, j) = 0 for all i # j, see indeed (38). As
such, we recover the version of Theorem 17 (that is, Theorem 4) which was stated
and used in Lecture 1 to prove Breuer—-Major theorem.

To Go Further. In [35], Stein’s method is combined with Malliavin calculus in a
multivariate setting to provide bounds for the Wasserstein distance between the laws
of N ~ A#;(0,C)and F = (Fi, ..., Fy) where each F; € D'? verifies E[F;] = 0.
Compare with Theorem 16.

7 Cumulants on the Wiener Space

In this section, following [29] our aim is to analyze the cumulants of a given element
F of D'? and to show how the formula we shall obtain allows one to give yet another
proof of the Fourth Moment Theorem 2.
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Let F be a random variable with, say, all the moments (to simplify the
exposition). Let ¢ denote its characteristic function, that is, ¢r(t) = E[e"f],
t € R. Then, it is well-known that we may recover the moments of F from ¢r
through the identity

E[F/] = (i) %Ir=o¢F<I)~

The cumulants of F, denoted by {«;(F)};>1, are defined in a similar way, just by
replacing ¢ by log ¢ in the previous expression:

o dJ
ki (F)=(=i)) —|i=0 lo t).
J(F) = (=) 50 Tog g (1)
The first few cumulants are

k1(F) = E[F],
K2(F) = E[F?] = E[F]* = Var(F),
k3(F) = E[F’| —3E[F?|E[F] + 2E[F]*.

It is immediate that
ki(F+G)=«;(F)+«;(G) and /cj(/\F):/V/cj(F) (85)

forall j = 1, when A € R and F and G are independent random variables (with
all the moments). Also, it is easy to express moments in terms of cumulants and
vice-versa. Finally, let us observe that the cumulants of F ~ _47(0, 02) are all zero,
except for the second one which is 0. This fact, together with the two properties
(85), gives a quick proof of the classical CLT and illustrates that cumulants are often
relevant when wanting to decide whether a given random variable is approximately
normally distributed.
The following simple lemma is a useful link between moments and cumulants.

Lemma 5. Let F be a random variable (in a given probability space (2, %, P))
having all the moments. Then, for allm € N,

m

E[F™' =" (T)le(F)E[Fm—S].

s=0
Proof. We can write

E[Fm+l]

m+ m

1 d
im0 b () = (=)

i d
= (—i) + d—tm|r=0

T

d
(er05 1020r0))
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= (—i)"t! Z( ) (d — =0 10g¢F(¢)) (j}: = |i= 0¢F(t)) by Leibniz rule
= Z (T)MH(F)E[F'"_S]- =

§=

From now on, we will deal with a random variable F with all moments that
is further measurable with respect to the Brownian motion (B;),>o. We let the
notation of Sect. 4 prevail and we consider the chaotic expansion (39) of F. We
further assume (only to avoid technical issues) that F' belongs to D°°, meaning
that F € D™ for all m > 1 and that E[||D’”F||Z,,(R,jr)] < oo forall m = 1 and

all p = 2. This assumption allows us to introduce recursively the following (well-
defined) sequence of random variables related to F. Namely, set I(F) = F and

Ij+1(F) = (DF,—=DL™'T;(F)) 12, )-

The following result contains a neat expression of the cumulants of F' in terms of
the family {I(F)}sen.

Theorem 18 (Nourdin and Peccati (2010); see [29]). Let F € D*°. Then, for any
s eN,

Kks+1(F) = sIE[I(F)].

Proof. The proof is by induction. It consists in computing «;4(F) using the
induction hypothesis, together with Lemma 5 and (53). First, the result holds true
for s = 0, as it only says that k| (F) = E[Io(F)] = E[F]. Assume now thatm = 1
is given and that k;4 (F) = s!E[[(F)] for all s < m — 1. We can then write

m—1

kni1(F) = E[F"™H] =) (m)/cx_H(F)E[F’"_S] by Lemma 5
s
s=0
m—1 m
= E[F"t!] - Z s!( ) E[I,(F)]E[F™ ] by the induction hypothesis.
— s
On the other hand, by applying (53) repeatedly, we get

E[F"'] = E[F"|E[[}(F)] + Cov(F", Iy(F)) = E[F"]E[Iy(F)] +mE[F"~'T\(F)]

E[F™|E[[y(F)] + mE[F"'|E[['(F)] + mCov(F™ ™', I'(F))
E[F"ME[L(F)] + mE[F"E[IN(F)] + m(m — ) E[F" 2 I3(F)]

Z v'(A ) [F"VE(F)).
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Thus
k1 (F) = E[F™*1] — Zs'<) [F(PIELF"™] = mlE[L(F)],

and the desired conclusion follows. O

Let us now focus on the computation of cumulants associated to random variables
having the form of a multiple Wiener—It6 integral. The following statement provides
a compact representation for the cumulants of such random variables.

Theorem 19. Let g = 2 and assume that F = IB(f) where [ € LZ(R ). We

have k1(F) =0, ix(F) = q!|| f||? and, for every s = 3,

L2(RY)

& (F) = qls=D! Y ¢g (1o i) (F 80 @1 f) - @1y N1 fo f o

(36)
where the sum Y runs over all collections of integers ry, ..., rs—y such that:
(l) 1 Srla"'ars—2 Sq;
(ii) M4+ ...+ rs— = (S_%
(iii) r1<q,r1+r2<37q,...,r1+ ey < 0224
(iv) 19 <2 =21, ..., Ty S (s —2)g —2r — ... —2r,_3;
and where the combinatorial constants c,4(r1, ..., 7s—) are recursively defined by

the relations

2
q—1
= - 1! ,
¢)(r) = q(r )<r_1)
and, fora = 2,

aq —2ri—...—2r,—1 — 1 -1
cq(rl,...,ru)zq(ra—l)!< q ! ! )(q )c,,(rl,...,ra_l).

r,—1 r,— 1

Remark 5. 1. If sq is odd, then «,(F) = 0, see indeed condition (ii). This fact is
easy to see in any case: use that k;(—F) = (—1)°k;(F) and observe that, when
q is odd, then F () —F (since B () —B).

2.If g = 2and F = I7(f) with f € L*(R%), then the only possible integers
i, ..., rs—p verifying (i)—(iv) in the previous statementare r| = ... =r;_p = 1.
On the other hand, we immediately compute that c;(1) = 2, cz(l, 1) = 4,
cz(1,1,1) = 8, and so on. Therefore,

N =2 = DUC (S @) B S f gy 8D

and we recover the classical expression of the cumulants of a double integral.
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3.Ifg=2and F = IqB(f), fe LZ(Ri), then (86) for s = 4 reads

q—1
ka7 () =641y cq(rig = (S & By f: ) 2us,
r=1

4

35 3
ggrr!z(z (Zq - 2r)'((f®lf) ®q—r f’ f>L2(R1)

4

—1
34 2[4q ~
. ; rr! (r @ =21 f & . f ®r fpage,

4

3 4 ~
ngr!z(‘j g =200 S &0 [ 112, 20 (88)
r=1

LRYT)

and we recover the expression for k4 (F') given in (59) by a different route.

Proof of Theorem 19. Let us first show the following formula: for any s > 2, we
claim that

FS‘—I(F)
q [(s—Dg—2r1—...—2rs—2]Aq
= Z Z Cq(”lv---srs—l)l{r1<f1}"'1{r1+~~~+"s*2<w}
ri=1 rs—1=1
X1 e (o (S BnBS) e B f). (89)

We shall prove (89) by induction. When s = 2, identity (89) simply reads I'1 (F) =
o1 cg(NIf_,, (f®, f) and is nothing but (62). Assume now that (89) holds
for I's—|(F), and let us prove that it continues to hold for I'y(F). We have, using

the product formula (43) and following the same line of reasoning as in the proof
of (62),

I(F) = (DF,=DL™' [\ F) 12

[(s—1)g—2r1—...~2r,2]Aq

q

= co(ry, ..., rs—1)1 1 —

Z Z q q( 1 s—1) {r1<q} (rtodryp< & 2l)q}
r1=l r.\v_1=l

X1{1'1+...+rsfl<%}
X(IqB—l(f)’ IS?{—Zrl—...—ZrA_l—l (( . (f®l'1 f)®rzf) cee f)®rsfl 'f))LZ(RJr)

[(s—1)g=2r1—..=2r,2]AG  [sq—2r1—..~2r,—1]Aq

q
= Z Z Z cq(ri, ... rg—1) xq(rs = 1)!
ri=1

rg—1=1 ry=1
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y sq—=2r1—...=2rs—1—1\[qg—1 . ;
rs—1 rs — 1 <} Nt <850

Xl{n+...+r.\,_1<%}I(€+1)q—2r1—...—2r5 (C- (S & B f) .- ))& f).

which is the desired formula for I';(F). The proof of (89) for all s > 1 is thus
finished. Now, let us take the expectation on both sides of (89). We get

ks (F) = (s = WE[[—1(F)]
=(s—1)!

q [(s—Dg—2r1—..—2rs—]Aq

Cq (rl, ey rs_l)l{,l<q} ven 1{r1+'-'+rx—2<(5721)(’}
ri=1 re—1=1

Xl{r1+,_,+”_1=%} X (... (f®r1 f)®r2f) ) f-

Observe that, if 2ry +...4+2r;_; = sqand ry—; < (s—1)g—2r;—...—2r;_ then
2ri—1=q+ (s—1)q—2r; —...—2ry_p = q + ry—1, so that r,_; = g. Therefore,

ks(F) = (s —1)!
q [(s—2)qg—2r1—...—2rs—3]Aq

X Z Z cq(rl,...,rs_z,q)lgrlq} "'l{f‘1+m+rs—3<(s_2)q}

2
ri=l1 re—=1

Xl{r1+...+r5—2_(f_2)q }(( o (f®’1 f)®’2 f) te f)®r~‘*2f’ f)Lz(lR:—)’

==
which is the announced result, since ¢, (71, ..., 7s—2,9) = qlcg(r1, ..., r5—2). O

We conclude this section by providing yet another proof (based on our new
formula (86)) of the Fourth Moment Theorem 2. More precisely, let us show by
another route that, if ¢ = 2 is fixed and if (F,),>; is a sequence of the form

F, = IqB(f,,) with f, € LZ(Ri) such that E[F?] = q!”ﬁl”iz(Ri) = 1 for all

n=1and E[F!] > 3asn — oo, then F, — A4(0, 1) in law as n — oo.

To this end, observe that k1 (F,,) = 0 and «,(F,,) = 1. To estimate «,(F,), s = 3,
we consider the expression (86). Let ry, . .., rs—; be some integers such that (i)—(iv)
in Theorem 19 are satisfied. Using Cauchy—Schwarz and then successively

”gé)rh“Lz(Riﬂ_zr) < llg ®r h”LZ(R’_;_"""_z’) S ||g||L2(Rﬁ’_)||h||L2(R’ji_)
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whenever g € Lz(R ), h e Lz(]R Jandr =1,..., p A g, we get that
(G o @i ) - i) ®ra fos fi) 12e, |
S NG a®n )& fo) - S full 2ty I ol 2 e,
< 1 il g Ll

= @) 1A full e, (90)

2q—2r, —> 0

Since E[F}]—3 = k4(F,) — 0, we deduce from (88) that || /, ®, f, Il 2 g2e—2ry

forallr = 1,...,q — 1. Consequently, by combining (86) with (90), we get that
ks(F,) — 0asn — oo forall s = 3, implying in turn that F,, — .47(0, 1) in law.
0

To Go Further. The multivariate version of Theorem 18 may be found in [23].

8 A New Density Formula

In this section, following [37] we shall explain how the quantity (DF,
—DL™'F) 2z, is related to the density of F € D'? (provided it exists). More

specifically, when F € D'? is such that E[F] = 0, let us introduce the function
gr : R — R, defined by means of the following identity:

gr(F) = E[{DF.—=DL™'F) 12, | F]. On
A key property of the random variable g (F) is as follows.
Proposition 7. If F € D'? satisfies E[F] = 0, then P(gr(F) = 0) = 1.
Proof. Let C be a Borel set of R and set ¢, (x) = fox leann(@)dt, n = 1 (with

the usual convention fdx = — f 3 for x < 0). Since ¢, is increasing and vanishing at
zero, we have x¢, (x) = 0 for all x € R. In particular,

F F
E[F¢,(F)] =E [F/O lcm[_n,n](t)dt:| =F |:F/_ lcn[_n,n](t)dt:| .

Therefore, we deduce from Corollary 1 that E [gp(F Mennn(F )] = 0. By
dominated convergence, this yields E [gr(F)1c(F)] = 0, implying in turn that
P(gr(F)=0)=1. O

The following theorem gives a new density formula for F in terms of the function
gr. We will then study some of its consequences.
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Theorem 20 (Nourdin and Viens (2009); see [37]). Let F € D'? with E[F] = 0.
Then, the law of F admits a density with respect to Lebesgue measure (say, p :
R — R) if and only if P(gr(F) > 0) = 1. In this case, the support of p, denoted
by supp p, is a closed interval of R containing zero and we have, for (almost) all

X € supp p:
E[F] (_ . ydy)
PO = ey &P /0 o) ©2)

Proof. Assume that P(gr(F) > 0) = 1 and let C be a Borel set. Let n > 1.
Corollary 1 yields

F
E [F/_ 1Cﬂ[—n,n](t)dti| = E[lenpnn(F)gr(F)). 93)

Suppose that the Lebesgue measure of C is zero. Then f_Foo lennn(@)dt = 0,
so that E[1cnjna(F)gr(F)] = 0 by (93). But, since P(gr(F) > 0) = 1, we
get that P(F € C N [—n,n]) = 0 and, by letting n — oo, that P(F € C) = 0.
Therefore, the Radon—Nikodym criterion is verified, hence implying that the law of
F has a density.

Conversely, assume that the law of F has a density, say p. Let¢ : R — Rbea
continuous function with compact support, and let @ denote any antiderivative of ¢.
Note that @ is necessarily bounded. We can write:

E[¢(F)gr(F)] = E[®(F)F] by (53)

B . °° . [7 yp(y)dy
- /R P(3) x plx)ds = /R 6 () ( / yp(y)dy)d —E[¢<F>—p(F) .

Equation (x) was obtained by integrating by parts, after observing that

o0
/ yo(y)dy — 0 as |x| = oo

(for x — 400, this is because F € L'(£2); for x — —oo, this is because F has
mean zero). Therefore, we have shown that, P-a.s.,

[7 yp(y)dy
p(F)

(Notice that P(p(F) > 0) = [p1sqp(x)dx = [pp(x)dx = 1, so that
identity (94) always makes sense.) Since F € D'2, one has (see, e.g., [38,
Proposition 2.1.7]) that suppp = [a, ] with —co < o < B < 4o00. Since F

gr(F) = (94)
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has zero mean, note that « < 0 and § > 0 necessarily. For every x € (o, f8),
define

¢ (x) = / o () dy. 95)

The function ¢ is differentiable almost everywhere on («, 8), and its derivative is
—xp (x). In particular, since ¢() = ¢(8) = 0 and ¢ is strictly increasing before
0 and strictly decreasing afterwards, we have ¢(x) > 0 for all x € («, B). Hence,
(94) implies that P(gr(F) > 0) = 1.

Finally, let us prove (92). Let ¢ still be defined by (95). On the one hand, we have
¢'(x) = —xp(x) for almost all x € supp p. On the other hand, by (94), we have, for
almost all x € supp p,

p(x) = p(x)gF (x). (96)
By putting these two facts together, we get the following ordinary differential
equation satisfied by ¢:
Y _ x
p(x) gr(x)

for almost all x € supp p.

Integrating this relation over the interval [0, x] yields

ydy
gr(y)

log p(x) = log ¢(0) — /0

Taking the exponential and using 0 = E(F) = E(Fy) — E(F-) so that E|F| =
E(F;) + E(F-) =2E(F+) =2¢(0), we get

_1 [T ody
¢(x>—2E[|F|1exp( /0 gF(y)).

Finally, the desired conclusion comes from (96). O

As a consequence of Theorem 20, we have the following statement, yielding
sufficient conditions in order for the law of F' to have a support equal to the real
line.

Corollary 4. Let F € D'? with E[F] = 0. Assume that there exists omi, > 0 such
that

gr(F) =02, P-as. 97)

Then the law of F, which has a density p by Theorem 20, has R for support and
(92) holds almost everywhere in R.

Proof. 1t is an immediate consequence of Theorem 20, except for the fact that
suppp = R. For the moment, we just know that suppp = [e, f] with —oo <
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a <0 < B < +o0. Identity (94) yields

o0
/ yp (y)dy = 0% p(x) foralmostall x € (a, B). (98)

Let ¢ be defined by (95), and recall that ¢(x) > O for all x € (o, ). When
multiplied by x € [0, B), the inequality (98) gives £ (‘)) > —-3. Integrating this

min

relation over the interval [0, x] yields logg (x) — logg (0) = — oy z , 1.e., since
¢(0) = JE|F|,

x2

o0 1 )
@ (x) =/ yp(y)dy = S E|Fle i 99)

Similarly, when multiplied by x € (e, 0], inequality (98) gives "((;)) < %.

Integrating this relation over the interval [x, 0] yields log ¢ (0) — log ¢ (x) < ==,

i.e. (99) still holds for x € («, 0]. Now, let us prove that § = +oo. If thlS were
not the case, by definition, we would have ¢ (8) = 0; on the other hand, by
letting x tend to B in the above inequality, because ¢ is continuous, we would have

£
(B = %E|F|e 2in > 0, which contradicts B < 4o00. The proof of &« = —o0 is
similar. In conclusion, we have shown that supp p = R. O

Using Corollary 4, we deduce a neat criterion for normality.

Corollary 5. Let F € D"? with E[F] = 0 and assume that F is not identically
zero. Then F is Gaussian if and only if Var(gr (F)) = 0.

Proof. By (53) (choose ¢(x) = x, G = F and recall that E[F] = 0), we have
E[(DF,—DL™'F)g] = E[F* = VarF. (100)

Therefore, the condition Var(gr (F)) = 0 is equivalent to P(gr(F) = VarF) = 1.
Let F ~ .#(0,0%) with o >0. Using (94), we immediately check that
gr(F) =02, P-as. Conversely, if gr(F) = 0> > 0 P-as., then Corollary 4

x2
implies that the law of F has a density p, given by p(x) = £ |F £l 67352 for almost all

x € R, from which we immediately deduce that F' ~ .47(0, 02) O

Observe that if F ~ 4(0,02) with ¢ > 0, then E|F| = /2/m 0, so that the
formula (92) for p agrees, of course, with the usual one in this case.

As a “concrete” application of (92), let us consider the following situation. Let
K :[0,1]> — R be a square-integrable kernel such that K(z,s) = 0 for s > ¢, and
consider the centered Gaussian process X = (X;);c[,1] defined as

1 t
X,:/ K(z,s)dBS:/ K(t,s)dBs, 1 €[0,1]. (101)
0 0
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Fractional Brownian motion is an instance of such a process, see, e.g., [25,
Sect. 2.3]. Consider the maximum

Z = sup X;. (102)
t€[0,1]

Assume further that the kernel K satisfies

1
Je,a >0, Vs,tel0, 1’ s#t, 0< / (K(t,u) — K(s,u))du < c|t — s|*.
0
(103)
This latter assumption ensures (see, e.g., [11]) that: (i) Z € D"?; (ii) the law of

Z has a density with respect to Lebesgue measure; (iifi) there exists a (a.s.) unique
random point 7 € [0, 1] where the supremum is attained, that is, such that Z =

X, = fol K(z,s)dBs; and (iv) D;Z = K(z,t),t € [0, 1]. We claim the following
formula.

Proposition 8. Let Z be given by (102), X be defined as (101) and K € L*([0, 1]?)
be satisfying (103). Then, the law of Z has a density p whose supportis R, given by

BB, ([ DB

PO = =) e ()

Here,
hz(x) :/ e "E[R(t, t,)|Z = x]du,
0

where R(s,t) = E[X;X;], 5.t € [0, 1], and 7, is the (almost surely) unique random
point where

1
X,(”) = / K(t,5)(e™"dBs + ~'1 — e~ 2dB.)
0

attains its maximum on [0, 1], with (B, B’) a two-dimensional Brownian motion
defined on the product probability space (2, F ,P) = (2 x 2,7  F', P x P').

Proof. Set F = Z—E|Z]. Wehave =D, L™ F = Z?J:l IqB—l(fq('at)) and D, F =
o2 qLE (fy(.0)). Thus

/0 e “Pu(D, F)du_ZI anene t))/ e Mge 1™ ”"du—ZI (1)),

q=1



Lectures on Gaussian Approximations with Malliavin Calculus 63

Consequently,
o0
—D,L_lF:/ e “P(D,F)du, te€]l0,1].
0

By Mehler’s formula (49), and since DF = DZ = K(z,-) with t =
argmax, (o 1] [} K(t,5)dBy, we deduce that

o0
—D,L—1F=/ e “E'[K(t,.1)]du,
0
implying in turn

1 9]
gr(F) = E[(DF, =DL™'F) 2.1} | F] ZA dffo due™ K (v, 1) E[E'[K (ty, 1)| F]]

(o] 1
= / e "E [E/ [[ K(ro,t)K(ru,t)dt|Fi|:|du
0 0

= /OO e "E [E’ [R(70, ru)|F]] du
0

= /OO e “E[R(z, )| F]du.
0

The desired conclusion follows now from Theorem 20 and the fact that ' = Z —
E[Z]. O

To Go Further. Reference [37] contains concentration inequalities for centered
random variables F € D2 satisfying g (F) < oF + B. The paper [41] shows how
Theorem 20 can lead to optimal Gaussian density estimates for a class of stochastic
equations with additive noise.

9 Exact Rates of Convergence

In this section, we follow [30]. Let {F,,},>1 be a sequence of random variables in
D'2 such that E[F,] = 0, Var(F,) = 1 and F, BN~ N(0,1) as n — oo.
Our aim is to develop tools for computing the exact asymptotic expression of the
(suitably normalized) sequence

P(F, <x)— P(N <x), n=1,

when x € R is fixed. This will complement the content of Theorem 13.
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A Technical Computation. For every fixed x, we denote by f, : R — R the

function
felw) = " / (1-oo.xi(@) — D(x))e ™/ 2da

o0

sy (Dl —B(x) ifu<x

= 2me"/? : 104
e { P01 — Pw) ifuzx (104)

where @ (x) = «/#27 [* e~“*/*da. We have the following result.

Proposition 9. Let N ~ A7(0, 1). We have, for every x € R,
B = Loy (105)
=-(x*— .
* 3 2w

Proof. Integrating by parts (the bracket term is easily shown to vanish), we first
obtain that

ElFONN +o00 , e—uz/2d +o00 5 . e—uz/Zd
RN = [ e = [ pwe -0 —a

= J% /_ +oo(u2 —1) ( /_ ' [1(—o0.xj(@) — @(x)]e_“z/zda) du.

. . . . . . 2 l 3
Integrating by parts once again, this time using the relation u* — 1 = 3 (u’ — 3u)’,
we deduce that

+o0 u
/ W —1) (/ [1(_00,)(](61) — @(x)]e_“z/zda) du

o0 —0o0

__! / +°°(u3 301 o) (1) — B(0)]e ™l

3 )0
1 x N +o0 )
= —— (/ (u® — 3u)e™ Pdu— @D(x)/ (u® — 3u)e™ /zdu)
3\ oo
1
=3 (x2—1e™72, since [ — 1)e /2 = —(u® — 3u)e"/2. O

A General Result. Assume that {F,},>; is a sequence of (sufficiently regular)
centered random variables with unitary variance such that the sequence

9(n) 1= \JE[(1 = (DF,.=DL™' F,) o )3, n = 1. (106)
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converges to zero as n — 00. According to Theorem 13 one has that, for any x € R
and asn — oo,

P(F, <x)— P(N <x) <dm(F,,N) <2¢{n) -0, (107)

where N ~ .47(0, 1). The forthcoming result provides a useful criterion in order to
compute an exact asymptotic expression (as n — oo) for the quantity

P(F, <x)— P(N <x)
p(n)

; =z 1.

Theorem 21 (Nourdin and Peccati (2010); see [30]). Let {F,},>1 be a sequence
of random variables belonging to D2, and such that E[F,] = 0, Var[F,] = 1.
Suppose moreover that the following three conditions hold:

(i) we have 0 < @(n) < oo for everyn and p(n) — 0asn — oo.

(ii) the law of F, has a density with respect to Lebesgue measure for every n.
(DF,,—DL™! Fn)Lz(R+)—l

@(n)
verges in distribution to a centered two-dimensional Gaussian vector (N1, N»),
such that E[le] = E[sz] = land E[N|N;] = p.

(iii) as n — oo, the two-dimensional vector | F,, con-

Then, as n — 00, one has for every x € R,

P(F,<x)—P(N<x) p , e 2
Pa- . 108
o) 53U s

Proof. For any integer n and any %'-function f with a bounded derivative, we
know by Theorem 12 that

E[an(Fn)] = E[f/(Fn)<Dan _DL_IFn)LZ(R+)]-
Fix x € R and observe that the function f, defined by (104) is not €' due to the
singularity in x. However, by using a regularization argument given assumption (ii),
one can show that the identity

E[F, fx(Fy)] = E[fx/(Fn)(DFns _DL_IFn>L2(]R+)]

is true for any n. Therefore, since P(F, < x) — P(N < x) = E[f/(F)] —
E[F, fx(Fy)], we get

P(F, <x)— P(N <x)
@(n)

1—(DF,,—DL7'F,
-t [f;(Fn)x : )LZ(R+)]'

@(n)
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Reasoning as in Lemma 2, one may show that f, is Lipschitz with constant 2. Since
@(n)~'(1—(DF,,—DL™'F, )12®,)) has variance 1 by definition of ¢(n), we deduce
that the sequence

1 - (DFn, _DL_lFﬂ>L2(R+)

"(F,) x
SR o

) =1,

is uniformly integrable. Definition (104) shows that u — f/(u) is continuous at
every u # x. This yields that, as n — oo and due to assumption (iii),

—(DF,.—DL™'F\) 12r )
p(n)

1
E [fx/(Fn) X ] — —E[f/(N))N2] = —p E[f{(N1)N1].

Consequently, relation (108) now follows from formula (105). ]

The Double Integrals Case and a Concrete Application. When applying The-
orem 21 in concrete situations, the main issue is often to check that condition
(i) therein holds true. In the particular case of sequences belonging to the second
Wiener chaos, we can go further in the analysis, leading to the following result.

Proposition 10. Let N ~ .4 (0, 1) and let F, = L} (f,) be such that f, € L*(R?)
is symmetric for all n = 1. Write k,(F,), p = 1, to indicate the sequence of the
cumulants of F,. Assume that ky(F,) = E[F?] = 1 foralln = 1 and that k4(F,) =
E[F}—3 — 0asn — oo. If we have in addition that

k3(Fy) kg (Fy)

————>a and ———5 —>0, (109)
\/K4(Fn) (K4(Fn))
then, for all x € R,
<x)-— < ”
P(Fn < _x) P(N < -x) — o (1 _xz) e_% asn — oQ0. (110)

Via(F,) 6321

Remark 6. Due to (109), we see that (110) is equivalent to

(S}

P(FnSx)—P(NSx)_) 1
KB(Fn) 6\/%

Since each F, is centered, one also has that k3(F,;,) = E [Fn3]

(1—x?) e~ T asn — oo.

Proof. We shall apply Theorem 21. Thanks to (60), we get that

ko(Fy)  E[F)]-3
6 6

=81/1 @1 filltager

By combining this identity with (58) (here, it is worth observing that f, ®; f,
is symmetric, so that the symmetrization f,®; f, is immaterial), we see that the
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quantity ¢(n) appearing in (106) is given by +/x4(F,)/6. In particular, condition
(i) in Theorem 21 is met (here, let us stress that one may show that x4(F},,) > 0 for
all n by means of (60)). On the other hand, since F}, is a non-zero double integral,
its law has a density with respect to Lebesgue measure, according to Theorem 2.
This means that condition (ii) in Theorem 21 is also in order. Hence, it remains to
check condition (iii). Assume that (109) holds. Using (87) in the cases p = 3 and
p = 8, we deduce that

K3(Fn) . 8 (ﬁls ﬁl X1 fVI)LZ(Ra_)
\% K4(Fn) \/EQO(I’I)

and

ao(Fy) 179200 @1 fu) @1 (fa @1 fu)l e
(K4(Fn))2 (p(l’l)4

On the other hand, set

2 ||DF ||L2(]R ) 1
p(n)

n =

By (62), we have & 51 DY, ||L2(]R y—1= 2 18(fy ®1 fu). Therefore, by (58), we get
that

2
[( 1D, s, 1)}— 1( I ©1 ) ®1 &1 il

KS(Fn)
=—— > 0 asn — oo.
140 (k4 (Fy))

Hence, by Theorem 3, we deduce that ¥, L—d“: A7(0,1). We also have

. _ Yos(Fn) | a6
E[Y,F,] = m(f,, ®1 fos Ju) 23y = 2/xa(Ey) )

=:p asn — oo.

Therefore, to conclude that condition (iif) in Theorem 21 holds true, it suffices to
apply Theorem 17. O

To give a concrete application of Proposition 10, let us go back to the quadratic
variation of fractional Brownian motion. Let B = (BtH )r=0 be a fractional
Brownian motion with Hurst index H € (0, %) and let

lnl

FZ_Z (Bk+1 Bifiz_l]
I k=0
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where 0, > 0 is so that E[F?] = 1. Recall from Theorem 15 that lim,—,cc 0.2 /n =
2% e p*(r) < oo, with p : Z — R, given by (69); moreover, there exists a
constant ¢y > 0 (depending only on H) such that, with N ~ .47(0, 1),

CH
drv(F,,N) < —, n=1 (111)
NG

The next two results aim to show that one can associate a lower bound to (111).
We start by the following auxiliary result.

Proposition 11. Fix an integer s = 2, let F, be as above and let p be given by
(69). Recall that H < %, so that p € L'(Z). Then, the sth cumulant of F,, behaves
asymptotically as

*(s—1)
() ~ =2t e

” ”[2(2)

Proof. As in the proof of Theorem 15, we have that F, o E(fy) with f, =
1 Z = o e® h 2. Now, let us proceed with the proof. It is divided into several steps.

First step. Using the formula (87) giving the cumulants of F,, = IZB (fn) as well as
the very definition of the contraction ®;, we immediately check that

s—l(o _ n—l
Ks(Fu) = y Y plks —ke-1) . pllka — kn)pll — k).

s
n ki,...ks=0

Second step. Since H < 1, we have that p € £'(Z). Therefore, by applying Young
inequality repeatedly, we have

Hol™ ™ Pllecozy < Nollzyll 1o llecoqzy < - < lplljigy, < oo

In particular, we have that (|p|**™Y, |p]) 2z, < el sy <

Third step. Thanks to the result shown in the previous step, observe first that
Y plka)plia — k3)plks — ka) ... plles—1 — k) p(k)| = (p[** ™, o) 2z

< 0.

Hence, one can apply dominated convergence to get, as n — oo, that
o
2715 —=1D)!n

1 n—1—ky

= Z Z p(ka)p(ky — k3)p(ks — k4) . .. plks—1 — ky)p(ky)
ki=0 kyudey=—ki

K5 (Fy)
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= D plka)plks = ks)plks —ka) ... plks—1 — ky)plks)

ka,....ks€EZ
maxi{ky, ..., k; min{ks, ..., ks
X [1 A (1 — {+}) -0V (%)} Ly <, ks l<n}
— Y pla)plhs —ks)plks = ka) ... plks—1 — k) plks) = (p**7Y, p) oz,
ka,....ksEZ
(113)
Since 0, ~ v/2n [|pll¢2(z) as n — oo, the desired conclusion follows. O

Corollary 6. Let F, be as above (with H < %), let N ~ A(0,1), and let p be
given by (69). Then, for all x € R, we have

*2
(o ,P)zZ(Z) (11—

2y —%
x)e 27 asn— oQ.
3lplI

Pllea)

ﬁ(P(Fn <x)—P(N < x)) —

In particular, we deduce that there exists dy > 0 such that
du

< |P(F, <0)— P(N <0)| <dp(F,.N), n=1. (114)
Jn

Proof. The desired conclusion follows immediately by combining Propositions 10
and 11. O

By paying closer attention to the used estimates, one may actually show that
(114) holds true for any H < % (notonly H < %). See [32, Theorem 9.5.1] for the
details.

To Go Further. The paper [30] contains several other examples of application of
Theorem 21 and Proposition 10. In [4], one shows that the deterministic sequence

max{E[F’], E[F] -3}, n=>1,

completely characterizes the rate of convergence (with respect to smooth distances)
in CLTs involving chaotic random variables.

10 An Extension to the Poisson Space (Following the Invited
Talk by Giovanni Peccati)

Let B = (B;);=0 be a Brownian motion, let F be any centered element of D!2 and
let N ~ A47(0,1). We know from Theorem 13 that

dry(F,N) < 2E[|l = (DF,—=DL™'F) 2= ) ]. (115)
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The aim of this section, which follows [43, 44], is to explain how to deduce
inequalities of the type (115), when F is a regular functional of a Poisson measure
n and when the target law N is either Gaussian or Poisson.

We first need to introduce the basic concepts in this framework.

Poisson Measure. In what follows, we shall use the symbol Po(A) to indicate
the Poisson distribution of parameter A > 0 (that is, &%, ~ Po(A) if and only if
PP =k) = e‘*% for all £ € N), with the convention that Po(0) = &y (Dirac
mass at 0). Set A = R? with d > 1, let &7 be the Borel o-field on A4, and let
be a positive, o-finite and atomless measure over (4, 27). We set &7, = {B € < :
w(B) < o0o}.

Definition 7. A Poisson measure 1 with control p is an object of the form
{n(B)} pe, with the following features:

(1) forall B € «7,, we have n(B) ~ Po(u(B)).
(2) forall B,C € 4, with BN C # @, the random variables n(B) and n(C) are
independent.

Also, we note 7(B) = n(B) — u(B).

Remark 7. 1. As a simple example, note that for d = 1 and u = A x Leb (with
‘Leb’ the Lebesgue measure) the process {7([0, t])};>¢ is nothing but a Poisson
process with intensity A.

2. Let u be a o-finite atomless measure over (A, 27), and observe that this implies
that there exists a sequence of disjoint sets {4; : j = 1} C &/, such that
U;jA; = A.Forevery j = 1,2,... belonging to the set Jy of those indices
such that ;(4;) > 0 consider the following objects: X = {X\/) : k = 1}
is a sequence of i.i.d. random variables with values in A; and with common

distributi Ma; .
istribution way
Assume moreover that: (i) X/ is independent of X %) for every k # j, (ii) P;
is independent of Py for every k # j, and (iii) the classes {X )} and {P;} are
independent. Then, it is a straightforward computation to verify that the random
point measure

P; is a Poisson random variable with parameter p(4;).

Pj
10 =D D 8,00,

j€Jo k=1

where §, indicates the Dirac mass at x and 22=1 = 0 by convention, is a Poisson
random measure with control p. See e.g. [49, Sect. 1.7].

Multiple Integrals and Chaotic Expansion. As a preliminary remark, let us
observe that E[(B)] = 0 and E[fj(B)*] = n(B) forall B € «/,. Forany ¢ > 1,
set L2(u9) = L*(A4, @74, u). We want to appropriately define
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1f) = /Aq F(x1, . x)i(dx) . fi(dxy)

when f € L2?(u9). To reach our goal, we proceed in a classical way. We first
consider the subset & () of simple functions, which is defined as

&(u)
=span{ly ®...® 1, with By,..., B, € o, suchthat B; N B; =@ foralli # j}.

When f =15 ® ... ® 15, with By,..., B, € &/, such that B; N B; = ¢ for all
i # j, we naturally set

L = 3B = [ fa i) i)

(For such a simple function f, note that the right-hand side in the previous formula
makes perfectly sense by considering 7} as a signed measure.) We can extend by

linearity the definition of 7;/(f) to any f € &(u). It is then a simple computation
to check that

EUNOING] = plpg (f.8)12ur)

for all f € &(u”) and g € &(u?), with f (resp. £) the symmetrization of f
(resp. g) and §,, the Kronecker symbol. Since &(17) is dense in Lz(,uq) (it is
precisely here that the fact that p has no atom is cru01al') we can define I (f) by
1sometry to any f € L*>(u%). Relevant properties of 1,/ ( f) include E[l, 7’( =0,
IJ(f) = 1) /) and (importantly!) the fact that / "( f) is a true multiple integral
Whenf € éo(,uq).

Definition 8. Fix ¢ > 1. The set of random variables of the form 7, ( f) is called
the gth Poisson—Wiener chaos.

In this framework, we have an analogue of the chaotic decomposition (39)—see
e.g. [45, Corollary 10.0.5] for a proof.

Theorem 22. For all F € L?*(c{n}) (that is, for all random variable F which is
square integrable and measurable with respect to 1), we have

F = E[F]+)_I](f). (116)

q=1

where the kernels f; are (j19-a.e.) symmetric elements of L*(9) and are uniquely
determined by F.

Multiplication Formula and Contractions. When f € &(u?) and g € &(u?)
are symmetric, we define, forallr =0,...,pAgandl =0,...,r
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b g(xi, o Xpgmr—t) = /[ PO e s VX1 e Xyl Xpmf s e+ s Xpei)
A
XEV1s e s YIs X1y ooy Xy X b 15 o o s X pbg—r—1)
xp(dyy) ... pu(dyy).
We then have the following product formula, compare with (43).

Theorem 23 (Product formula). Let p,q = 1 andlet f € &(u?) and g € &(u?)
be symmetric. Then

PAG r R —_
1@ = Z(”) (") > (,)I (7).

=0

Proof. Recall that, when dealing with functions in &(u?), 1 ;7 (f) is a true multiple
integral (by seeing 7 as a signed measure). We deduce

1(NH1ig) = /A o OO ) )iy i),

By definition of f (the same applies for g), we have that f(x;,...,x,) = 0 when
x; = x; for some i # j. Consider r = 0,..., p A g, as well as pairwise disjoint
indices i, ...,i, € {1,..., p} and pairwise disjoint indices ji, ..., j- € {1,...,q}.

Set {ki,....kp—} = {L,....p} \{ir,.... i, and {0y, ... -} = {1,....q} \
{j1,.-., jr}. We have, since p is atomless and using 7(dx) = n(dx) — u(dx),

S, .. xp)e0n, .., Yo L =y, iy =v3,}
APta
xn(dxy) ... ((dxp)(dy,) . .. 7(dy,)
= / S Ckys e v Xapeys Xigs oo s Xi, )& (Wty s+ v v s Vigys Xis + -+ 5 Xi,)
Aptq—2r
x7)(dxiy) - .. (dxe,_, )0 (dyy,) - .. 7(dy;,_ In(dx;,) ... n(dx;,)
=/ S xp—rian, . a) g1 Ygra At ..., Ar)
Aptq—2r

x(dx1) ... A(dxp—r)Adyy) - .. A(dy,_)n(dar) . .. n(day).

By decomposing over the hyperdiagonals {x; = y;}, we deduce that

PG
1)) = ;H(f) (‘r’) /Am_zr S Xpersai, .. ar)

Xg(ylv--- 7yq—r,a],... ,a,)
xi(dx1) ... A(dxp—r)(dy) - Ady,—,)n(dar) ... 7(day),
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and we get the desired conclusion by using the relationship

n(dai) ...n(da,) = (ﬁ(dal) + M(dal)) oo (ﬁ(dal) + /“L(dal)) o

Malliavin Operators. Each time we deal with a random element F of L2({c(n)}),
in what follows we always consider its chaotic expansion (116).

Definition 9. 1. Set DomD = {F € L%(c{n})) : qu!”fqﬂiz(m) < ool If
F € DomD, we set

o0
D,F = qI] \(fy(~1), €A
q=1

The operator D is called the Malliavin derivative.

2. SetDomL = {F € L*(c{n}) : Zqzq!||fq||iz(uq) < oo}. If F € DomL, we set

LF ==} q1](f).
g=1

The operator L is called the generator of the Ornstein—Uhlenbeck semigroup.
3. If F € L*(o{n}), we set

The operator L™ is called the pseudo-inverse of L.

It is readily checked that LL™'F = F — E[F] for F € L?*(o{n}). Moreover,
proceeding mutatis mutandis as in the proof of Theorem 12, we get the following
result.

Proposition 12. Let F € L*(0{n}) and let G € DomD. Then
Cov(F,G) = E[{DG,—DL™"F) 12(]. (117)

The operator D does not satisfy the chain rule. Instead, it admits an “add-one cost”
representation which plays an identical role.

Theorem 24 (Nualart and Vives (1990); see [42]). Let F € DomD. Since F is
measurable with respect to 1, we can view it as F = F(n) with a slight abuse of
notation. Then

DiF =Fmm+48)—F(@), teA, (118)

where §; stands for the Dirac mass at t.
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Proof. By linearity and approximation, it suffices to prove the claim for F =
1](f), withg = 1 and f € &(u?) symmetric. In this case, we have

F(n+4) = /Aq Fxr. .o xg) (idxy) + 8i(dxy)) . ... (A(dxy) + 8 (dxy)).

Let us expand the integrator. Each member of such an expansion such that there is
strictly more than one Dirac mass in the resulting expression gives a contribution
equal to zero, since f vanishes on diagonals. We therefore deduce that

F(n+8) = F(n)
q
+Z f(xls"'9xl—lvtsxl+ls---s-xq)
=174

x f)(dx1) . .. fi(dxi—)f(dxi41) . . . (dxy)

=F(n) + qu_l(f(t, -)) by symmetry of f
= F(n) + DtF. O

As an immediate corollary of the previous theorem, we get the formula
D(F?)=(F+ D,F))—F*=2FD,F + (D,F)?, teA,
which shows how D is far from satisfying the chain rule (47).

Gaussian Approximation. It happens that it is the following distance which is
appropriate in our framework.

Definition 10. The Wasserstein distance between the laws of two real-valued
random variables Y and Z is defined by

dw(Y.Z) = sup |E[(Y)]~ E[(Z)]], (119)

heLip(1)

where Lip(1) stands for the set of Lipschitz functions # : R — R with constant 1.

Since we are here dealing with Lipschitz functions /2, we need a suitable version
of Stein’s lemma. Compare with Lemma 2.

Lemma 6 (Stein (1972); see [52]). Suppose h : R — R is a Lipschitz constant
with constant 1. Let N ~ A (0, 1). Then, there exists a solution to the equation

/() =xf(x) = h(x) — E[A(N)]. x€R,

that satisfies || f'||co < \/gand [/ oo < 2.

Proof. Let us recall that, according to Rademacher’s theorem, a function which is
Lipschitz continuous on R is almost everywhere differentiable. Let f : R — R be
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the (well-defined!) function given by

f(x) = E[h(e™'x + ~1 —e 2 N)N]dt. (120)

N

By dominated convergence we have that f;, € ¢! with

fl(x) = / \/7E[h (e 'x + V1 —e 2 N)N]dr.
We deduce, for any x € R,
0o =2 3
|f'(0)] < EINI/0 ﬁdtz \/; (121)

Now, let F' : R — R be the function given by
o0
F(x) = / E[R(N) —h(e7'x + V1 —e 2N)|dt, xe€R.
0

Observe that F is well-defined since 2(N) — h(e™'x + +/1 — ¢~ 2 N) is integrable
due to

[B(N) = h(e™x + V1= N) < x| + (1= VI e)IN|
<e”'|x| 4+ e H|N|,
where the last inequality follows from 1 — /1 —u = u/(v/1T—u + 1) < u if

u € [0, 1]. By dominated convergence, we immediately see that F is differentiable
with

F'(x) = — /Ooo e TE[W(e7'x + V1 —e2N)dt.

By integrating by parts, we see that F’(x) = f(x). Moreover, by using the notation
introduced in Sect. 4, we can write

() = xf(x)
= LF(x), by decomposing in Hermite polynomials, since LH, = —qH, = H; — XH,

=— / ooLPth(x)dt, since F(x) = [ (E[h(N)] — P,h(x))dt
0

% g
- —/0 P
= Poh(x) — Pooh(x) = h(x) — E[h(N)].
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This proves the claim for || f”||co. The claim for || f”||oo is a bit more difficult to
achieve; we refer to Stein [52, pp. 25-28] to keep the length of this survey within
bounds. O

We can now derive a bound for the Gaussian approximation of any centered
element F belonging to DomD, compare with (115).

Theorem 25 (Peccati, Solé, Tagqu and Utzet (2010); see [44]). Consider F €
DomD with E[F] = 0. Then, with N ~ 4/(0, 1),

dw(F,N) < @E [|[1 = (DF.—=DL™'F) 2| + E U (D,F)2|D,L_1F|;L(dt)] .
A

Proof. Let h € Lip(1) and let f be the function of Lemma 6. Using (118) and a
Taylor formula, we can write

D f(F)= f(F + D,F) - f(F) = f'(F)D,F + R().
with |[R(?)]| < %||f”||oo(D,F)2 < (D, F)*. We deduce, using (117) as well,

E[h(F)] - E[h(N)] = E[f'(F)] - E[Ff(F)]
= E[f'(F)] = E(Df(F),~DL™'F) 2]
= E[f'(F)(1 = (DF,=DL™'F) ;2]

+/(—DzL_1F)R(t),u(dt).
A

: / 2
Consequently, since || f]loo < \/;,

dw(F,N) = o |E[h(F)] = E[A(N)]|
€Lip

< ,/%E [|[1 = (DF.—DL™'F)2(|] + E U (D,F)2|D,L—1F|M(dz)].
A
O

Poisson Approximation. To conclude this section, we will prove a very interesting
result, which may be seen as a Poisson counterpart of Theorem 25.

Theorem 26 (Peccati (2012); see [43]). Let F € DomD with E[F] = A > 0 and
F taking its values in N. Let &7, ~ Po()). Then,

l—e*

sup |P(F € C) — P(2, € C)| < E|A—(DF,—DL™"F) (| (122)
CCN

1—e*
+—5— E/ |D,F(D,F —1)D, L™ F|u(dr).
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Just as a mere illustration, consider the case where F = n(B) = I (1g) with
B € 4/,. We then have DF = —DL™'F = 1, so that (DF, —DL_IF)LZ(M) =
J1gdp = (B) and DF(DF —1) = 0 a.e. The right-hand side of (122) is therefore
zero, as it was expected since F' ~ Po(R).

During the proof of Theorem 26, we shall use an analogue of Lemma 2 in the
Poisson context, which reads as follows.

Lemma 7 (Chen (1975); see [8]). Let C C N, let A > 0 and let &5 ~ Po(R).
The equation with unknown f : N — R

Afk+1)—kfk)=1c(k)— P(P, €C), keN, (123)

admits a unique solution such that f(0) = 0, denoted by fc. Moreover, by setting
oA

Af(k) = fk + 1) = f(k), we have ||Afcllo < =5 and |A* felloo <

2l Afclloo-

Proof. We only provide a proof for the bound on Af¢; the estimate on A? f¢ is

proved e.g. by Daly in [10]. Multiplying both sides of (123) by A*/ k! and summing
up yields that, for every k = 1,

fetr = SV ) pi, e 0 (124
r=0
= ng{j}(k) (125)
e (126)
DS - e 0l (127)
r=k

where C¢ denotes the complement of C in N. (Identity (125) comes from the
additivity property of C +— f¢, identity (126) is because fy = 0 and identity
(126) is due to

[e.] r

Z%[IC(F’) — P(P, €C)] = E[1c(P)) — E[lc(P)]] = O.)

r=0

Since fc(k) — fe(k +1) = fee(k + 1) — fee(k) (due to (126)), it is sufficient to
prove that, forevery k > 1 andevery C C N, fc(k + 1) — fe(k) < (1 —e™*)/A.
One has the following fact: for every j > 1 the mapping k — f{;;(k) is negative
and decreasing fork = 1,..., j and positive and decreasing for k = j + 1. Indeed,
we use (124) to deduce that, if 1 <k < j,

M & ey .
Jiyk) = —e il Z A =) (which is negative and decreasing in k),

Cr=1
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whereas (127) implies that, if k = j + 1,

X A °°/v,(k—1)! L . e in k
fijpk)y =e 7 Z Y (which is positive and decreasing in k).
r=0

Using (125), one therefore infers that fc (k + 1) — fe (k) < fuy(k + 1) — fuqy(k),
for every k = 0. Since

k—1

A’r 00 A’r—l
Sug & +1) = Sy (k) :e%[ WJFZ rl ]

r=0

=k+1

e[ & A

S|t 2w
r=1 r=k+1

l—e?

s ki
A
the proof is concluded. O

We are now in a position to prove Theorem 26.

Proof of Theorem 26. The main ingredient is the following simple inequality, which
is a kind of Taylor formula: for all k,a € N,

| f(k) = f(a) = Af(@)(k —a)| < %IIAZfllool(k —a)(k—a—-1[.  (128)

Assume for the time being that (128) holds true and fix C C N. We have, using
Lemma 7 and then (117)

|P(F € C)— P(% € C)| = |E[Afc(F + 1)] — E[Ffc(F)]|
= [AE[Afc(F)] — E[(F = A) fe (F)]
= |AE[Afc(F)] — E[(Dfc(F),—DL™'F) 12()]|.

Now, combining (118) with (128), we can write

D, fc(F) = Afc(F)DF + S(t),

with S(1) < 21A% fc ool Di F(D: F — 1)| < 1—;’[HD[F(D,F — 1)|, see indeed

Lemma 7 for the last inequality. Putting all these bounds together and since

lAfelloo < l_iil by Lemma 7, we get the desired conclusion.
So, to conclude the proof, it remains to show that (128) holds true. Let us first
assume that k > a + 2. We then have
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k—1 k—1
f) = f@) + ) Af(j) = fla)+ Af(@)(k —a) + Y (Af(j) — Af(a))
j=a j=a
k—1 j—1
= fl@) + Af@)(k—a)+ Y > A*f()
j=al=a
k—2
= fl@) + Af(@)(k —a) + Y _ A f(D)(k —1—1),
l=a
so that
k—2
|f(k) = fa) = Af(@)(k —a)| < A% fllo Y (k—1—1)
l=a

1
= 3142 f ootk —a)k —a = 1),

that is, (128) holds true in this case. When k = a or k = a + 1, (128) is obviously
true. Finally, consider the case k < a — 1. We have

a—1 a—1
flk)y = f@) =Y Af(j) = fl@) + Af(@)(k —a) + Y _(Af(a) = Af()))

j=k j=k
— f(@ + Af@k —a) + ijfﬁf(l)
j=kli=j
— @+ @k =)+ A=k + 1),
=
so that
106 = f@) = Af @K — )] < 4% oo g(z k1)
= 214 loola —K)a—k + 1),

that is, (128) holds true in this case as well. The proof of Theorem 26 is done. O

To Go Further. A multivariate extension of Theorem 25 can be found in [47].
Reference [19] contains several explicit applications of the tools developed in this
section.
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11 Fourth Moment Theorem and Free Probability

To conclude this survey, we shall explain how the Fourth Moment Theorem 2
extends in the theory of free probability, which provides a convenient framework
for investigating limits of random matrices. We start with a short introduction to
free probability. We refer to [22] for a systematic presentation and to [2] for specific
results on Wigner multiple integrals.

Free Tracial Probability Space. A non-commutative probability space is a von
Neumann algebra .o/ (that is, an algebra of operators on a complex separable
Hilbert space, closed under adjoint and convergence in the weak operator topology)
equipped with a trace ¢, that is, a unital linear functional (meaning preserving the
identity) which is weakly continuous, positive (meaning ¢(X) > 0 whenever X
is a non-negative element of <7; i.e. whenever X = YY* for some ¥ € &),
faithful (meaning that if (Y Y*) = 0 then ¥ = 0), and tracial (meaning that
©(XY) =¢(YX) forall X,Y € &7, even though in general XY # YX).

Random Variables. In a non-commutative probability space, we refer to the self-
adjoint elements of the algebra as random variables. Any random variable X has a
law: this is the unique probability measure p on R with the same moments as X ; in
other words, u is such that

/xkdu(x) =o(XH, k=1 (129)
R

(The existence and uniqueness of u follow from the positivity of ¢, see [22,
Proposition 3.13].)

Convergence in Law. We say that a sequence (X ,, ..., Xx,), n = 1, of random
vectors converges in law to a random vector (X co, - - - » Xk.00), and we write

law

(Xl,ns cees Xk,n) - (Xl,007 ceey Xk,oo)s

to indicate the convergence in the sense of (joint) moments, that is,
Tim @ QX1 X)) = ¢ (Q(Xi0, -+, Xhoo)) (130)

for any polynomial Q in k non-commuting variables.

We say that a sequence (F,) of non-commutative stochastic processes (that
is, each F, is a one-parameter family of self-adjoint operators F,(¢) in (<, ¢))
converges in the sense of finite-dimensional distributions to a non-commutative
stochastic process Fio, and we write

f.d.d.
F, - Fq,
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to indicate that, forany k = 1 and any #1, ..., = 0,

(Fo(t1)s -+, Fy (1)) 5 (Foo (1), - . ., Foo (1))

Free Independence. In the free probability setting, the notion of independence
(introduced by Voiculescu in [55]) goes as follows. Let <7,..., .7, be unital
subalgebras of 7. Let X1, ..., X,, be elements chosen from among the <7 ’s such
that, for 1 < j < m, two consecutive elements X ; and X ;1 do not come from the
same .«7; and are such that ¢(X;) = 0 for each j. The subalgebras ., . .., 7, are
said to be free or freely independent if, in this circumstance,

(X1 Xz X)) = 0. (131)

Random variables are called freely independent if the unital algebras they generate
are freely independent. Freeness is in general much more complicated than classical
independence. For example, if X, Y are free and m,n = 1, then by (131),

P((X" — (X" D" —p(Y")1)) = 0.
By expanding (and using the linear property of ¢), we get
P(X"Y") = p(X")p(Y"), (132)

which is what we would expect under classical independence. But, by setting X| =
Xs=X—-9¢(X)land X, = X4 =Y —¢(Y) in (131), we also have

P((X =) DY — () DX — (X)) DY —o(Y)1)) = 0.

By expanding, using (132) and the tracial property of ¢ (for instance p(XYX) =
o(X?Y)) we get

P(XYXY) = (Y 20(X?) + o(X)*0(Y?) — o(X)?p(Y ),

which is different from ¢(X?)@(Y?), which is what one would have obtained if X
and Y were classical independent random variables. Nevertheless, if X, Y are freely
independent, then their joint moments are determined by the moments of X and Y
separately, exactly as in the classical case.

Semicircular Distribution. The semicircular distribution . (m, az) with mean
m € R and variance 0> > 0 is the probability distribution

S (m,0%)(dx) = 402 — (x — m)2 L{jy—m| <20} AX. (133)

2ro?
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If m = 0, this distribution is symmetric around 0, and therefore its odd moments
are all 0. A simple calculation shows that the even centered moments are given by
(scaled) Catalan numbers: for non-negative integers k,

m—+20
/ (x —m)*.#(m, 0?)(dx) = Cro**,

m—20

where C, = k+_1(2]f) (see, e.g., [22, Lecture 2]). In particular, the variance is o
while the centered fourth moment is 20*. The semicircular distribution plays here

the role of the Gaussian distribution. It has the following similar properties:
1.IfS ~.%(m,0c%) anda,b € R, thenaS + b ~ ¥ (am + b, a*c?).

2. If §) ~ L (my, 012) and S, ~ .S (m,, 022) are freely independent, then S} 4+ S, ~
S (my + ma, 0} + 03).

2

Free Brownian Motion. A free Brownian motion S = {S(t)};>0 is a non-
commutative stochastic process with the following defining characteristics:
(1) S(0)=0.

(2) Forty > t; = 0, the law of S(z;) — S(#) is the semicircular distribution of mean
0 and variance t, — f;.

(3) Foralln andt, > --- > t, > t; > 0, the increments S(t1), S(2) — S(t1), ...,
S(t,) — S(t,—1) are freely independent.

We may think of free Brownian motion as “infinite-dimensional matrix-valued
Brownian motion”.

Wigner Integral. Let S = {S(¢)};>0 be a free Brownian motion. Let us quickly
sketch out the construction of the Wigner integral of f with respect to S. For an
indicator function f = 1}, ), the Wigner integral of f is defined by

/0 1 (¥)dS(x) = S(v) — S(w).

We then extend this definition by linearity to simple functions of the form f =
Zf:l o;ly, v, where [u;, v;] are disjoint intervals of Ry . Simple computations
show that

© (/0 f(x)dS(x)) =0 (134)
0 ( [ rwase < [ g(x)dS(x)) = feow,  (39)
0 0

By isometry, the definition of fooo f(x)dS(x) is extended to all f € L?>(Ry), and
(134)—(135) continue to hold in this more general setting.
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Multiple Wigner Integral. Let S = {S(¢)},>0 be a free Brownian motion, and let
g = 1 be an integer. When f € Lz(]R ) is real-valued, we write f™* to indicate the
function of LZ(R ) givenby f*(t1,....t) = f(tg.....1).

Following [2], let us quickly sketch out the construction of the multiple Wigner
integral of f with respectto S. Let DY C Rﬁ_ be the collection of all diagonals, i.e.

DY ={(t,....t;) €RL : t; =1; forsome i # j}. (136)

For an indicator function f = 14, where A C R'i has the form A = [u;, v1] x...x
[ug, vq] With A N D4 = @, the gth multiple Wigner integral of f is defined by

I2(f) = (S(1) = S)) ... (S(vg) = S (uy))-

We then extend this definition by linearity to simple functions of the form f =
fo:lailfli, where A; = [uj,vi] x ... x [uy, vy] are disjoint g-dimensional
rectangles as above which do not meet the diagonals. Simple computations show
that

() (f) =0 (137)
90(1 (f)l ) =(fg" )LZ(R‘f : (138)

By isometry, the definition of I (f) is extended to all f € LZ(R ), and (137)-

(138) continue to hold in this more general setting. If one wants IqS (f) to be a
random variable, it is necessary for f to be mirror symmetric, thatis, f = f* (see
[17]). Observe that 115 (f)= fooo f(x)dS(x) when ¢ = 1. We have moreover

oI ()17(g)) =0 when p #q, f € L*(R}) and g € L*(RY).  (139)

When r € {1,....p Ag}, f € L*(R}) and g € L*R%), let us write
f ~ g to indicate the rth contraction of f and g, defined as being the element
of L2 (R~ >’y given by

[ gt tprgar) (140)

= f(tl,...,tp_,,xl,...,x,)g(x,,...,xl,tp_,_H,...,tp+q_2,)dx1...dxr.
Rr
+

. 0 .
By convention, set f ~ g = f ® g as being the tensor product of f and g.
Since f and g are not necessarily symmetric functions, the position of the identified
variables xi, ..., x, in (140) is important, in contrast to what happens in classical

probability. Observe moreover that

If ~ 8ll ogrta—ry S W l2r) 812, (141)

by Cauchy—Schwarz, and also that /' -~ g = (f, g*) 2R, when p = q.
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We have the following product formula (see [2, Proposition 5.3.3]), valid for any
f e L*(RY)and g € L*(R%):

PAq

SOOI =Y I3y, o0 (f ~9) (142)
r=0
We deduce (by a straightforward induction) that, forany e € L>(R;)andanyq > 1,

U, ( / - e(x)de) =17 (e®), (143)
0

where Uy = 1, U} = X, U, = X*>—1,U; = X3 —2X, ..., is the sequence
of Tchebycheff polynomials of second kind (determined by the recursion X Uy =
Uks1 + Uk—1), fooo e(x)dS(x) is understood as a Wigner integral, and e®4 is the
gth tensor product of e. This is the exact analogue of (10) in our context.

We are now in a position to offer a free analogue of the Fourth Moment
Theorem 3, which reads as follows.

Theorem 27 (Kemp, Nourdin, Peccati and Speicher (2011); see [17]). Fix an
integer q = 2 and let {S;};>0 be a free Brownian motion. Whenever f € Lz(Rz_),
set IqS (f) to denote the qth multiple Wigner integrals of f with respect to S. Let
{Fu}n=1 be a sequence of Wigner multiple integrals of the form

Fn = ];(ﬁ)a

where each f, € L*(Ry) is mirror-symmetric, that is, is such that f, = f}*.
Suppose moreover that p(F?) — 1 asn — 0o. Then, as n — oo, the following two
assertions are equivalent:

(i) Fy = S~ .7(0.1);
(ii) 9(F}) —> 2= (S}
Proof (following [24]). Without loss of generality and for sake of simplicity, we
suppose that ¢(F?) = 1 for all n (instead of ¢(F?) — 1 as n — oo). The proof of

the implication (i) = (ii) being trivial by the very definition of the convergence
in law in a free tracial probability space, we only concentrate on the proof of

(i) = ().

Fix k = 3. By iterating the product formula (142), we can write

FE=150U0 = Y e o (G (A 1) A S ) ™S L),

(r1sek—1)E€ Ak g
where

Apg = {(rl,...,rk_l) G{O,l,...,q}k_1 1 <29 —2r, r3<3q—2r1—2r,,...,
re—1 < (k—1)qg —2n —...—2rk_2}.
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By taking the ¢-trace in the previous expression and taking into account that (137)
holds, we deduce that

o(FH) = ()= DY (KA A LD fi (144

(r1seeesk—1)€Br g
with
Big ={(r1,....1k—1) € Akg : 2r1 + ... + 21y = kqj}.

Let us decompose By 4 into Cy ; U Ey 4, with Cx 4 = By 4 N {0, g¥!and Erg =
By 4 \ Ci 4. We then have

e(FH = > (C (A AL )LL)

1y Tk—1)€Ck 4

S S (N (§ AN R A T R A §

(r1,..., Vk—l)EEk.q

Using the two relationships f, A fon=/fa ® fyand

q , _ 2 _
fn r\fn = R‘f‘_ fn(l‘l,...,lq)fn(l‘q,...,tl)dtl...dtq = ”f"”LZ(]RIf‘_) =1,

it is evident that (... ((f, A ) 2 0) ... =1 for all (ri,...,rp—1) €
Ci.q. We deduce that

PED =#Ceg+ Y (B A2 £ )" g,

(1T k—1)€ER 4

On the other hand, by applying (144) with g = 1, we get that

o(SY) = oI (1p1)") = D Aoy A ) A ) Ty

(F1sesTk—1) € By 1

= > 1=#B.

(r1,..., rk—l)eBk,l

But it is clear that Cy 4 is in bijection with By ; (by dividing all the r;’s in Cy 4 by
q). Consequently,

e(FH) =0SH+ Y. (C.((hA )AL L) (145)

(r1,..., rk—l)EEk,q
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Now, assume that ¢(F,}) — ¢(S}) = 2 and let us show that p(FF¥) — ¢(Sf) for
all k = 3. Using that f, = f,*, observe that

Jo ™ faltr, o tagoay)

= . fn(tlv---vtq—rsslv---ssr)fn(srs---sslvtq—r+ls---s[2q—2r)dsl ...ds,
R
+

= fn(Sr,.. s S1, lg—rs e - tl)fn(lzq zr,...,lq_,~+1,S1,...,Sr)dS1...dS
Rr

= fn ;\ fn(th—er--- stl) = (fn -~ fn)*(tls cee 7t2q—2r)s

thatis, f, ~ f, = (fy ~ fu)*. On the other hand, the product formula (142) leads
to F? = Zf=0 Izs,,_zr (f, ~ f.). Since two multiple integrals of different orders
are orthogonal (see (139)), we deduce that

q—1
ED = 1 ® filltsgon, + (s )’ + DU 5 s U 5 1)) e,

L2®Y)
r=1

ZWWWM+ZM1HMWn

r=1

q—1
=2+ Z I ~ ful? 2r, (146)
r=1

L2RY

Using that ¢(F*) — 2, we deduce that

1o 2~ ol e o) =0 forallr =1.....q~1. (147)

L2RY

Fix (r1,...,rx—1) € Exgandlet j € {1,...,k — 1} be the smallest integer such
thatr; € {1,...,q — 1}. Then:

(G A ) A S ) ™S 1

[ R AR T BN A RS A W R

A ® @ f) A ) £ )R A Ginee £, & fy=1)
e e A ™ ) )
Mﬁ®~®M®miﬁmmM+*@mmmwﬂ

= lfu A full (since || £u]2 = 1)
— 0 asn — oo by (147).

/A
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Therefore, we deduce from (145) that ¢(FF¥) — qo(S{‘), which is the desired
conclusion and concludes the proof of the theorem. O

During the proof of Theorem 27, we actually showed (see indeed (146)) that the
two assertions (i )—(ii) are both equivalent to a third one, namely

(UDE I £ —~ f"”iz(Rfﬁ_zr) — O forallr =1,...,g —1.

Combining (iii) with Corollary 3, we immediately deduce an interesting transfer
principle for translating results between the classical and free chaoses.

Corollary 7. Fix an integer q = 2, let { B;},>0 be a standard Brownian motion and
let {S;}i=0 be a free Brownian motion. Whenever f € LZ(R(_{F), we write IqB (f)
(resp. IqS(f)) to indicate the qth multiple Wiener integrals of [ with respect to B
(resp. S). Let { fu}nz=1 C Lz(RI_ﬂ_) be a sequence of symmetric functions and let
o > 0 be a finite constant. Then, as n — oo, the following two assertions hold
true.

(i) E[1]}(fi)] = q'o” if and only if (1.} (fu)?) — 0.
(ii) If the asymptotic relations in (i) are verified, then IqB (fn) =y N(0,q10?) if
and only if IS (f) = 7(0,02).

To Go Further. A multivariate version of Theorem 27 (free counterpart of
Theorem 17) can be found in [36]. In [31] (resp. [14]), one exhibits a version of
Theorem 27 in which the semicircular law in the limit is replaced by the free Poisson
law (resp. the so-called tetilla law). An extension of Theorem 27 in the context of
the g-Brownian motion (which is an interpolation between the standard Brownian
motion corresponding to ¢ = 1 and the free Brownian motion corresponding to
g = 0)is given in [12].
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