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Abstract Recent progress in portfolio choice has made a wide class of problems
involving transaction costs tractable. We review the basic approach to these
problems, and outline some directions for future research.

1 Introduction

Transaction costs, originally considered one of many imperfections that are best
neglected, have now become a very active and fast-growing theme in Mathematical
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Finance.1 From the outset, such a growth may seem puzzling, since over the same
period transaction costs have dramatically declined across financial markets, as
stock exchanges have been fully automated, and paper trades replaced by electronic
settlements. In fact, the interest for transaction costs reflects both the increased
attention to robustness of financial models, and the growing role of high-frequency
trading. The decline of bid-ask spreads has sparked a huge increase in trading
volume, and high-volume strategies require a careful understanding of the effects
of frictions on their returns.

At the same time, transaction costs help understand trading volume itself. In
frictionless models, investors continuously rebalance their portfolios, as to hold a
constant mix of assets over time. Since trading volume is proportional to the total
variation of a portfolio, and prices follow diffusions that have infinite variation,
such models lead to the absurd conclusion that trading volume is infinite over any
time interval. With transaction costs, even small trading costs make it optimal for
investors to trade infrequently, allowing wide oscillations in their portfolios.

This paper reviews a recent approach, which has made portfolio choice with
transaction costs more tractable, and which appears to be applicable in more
complex settings. This approach is not based on any new revolutionary concept,
but it rather tries to combine several ideas that were previously used in isolation.
Thus, we present a new toolbox that contains several used tools. In a nutshell,
we argue that a natural approach to portfolio choice problems with transaction
costs entails four steps: (a) heuristic control arguments to identify the long-run
value function, (b) construction of a candidate shadow price using marginal rates of
substitution, (c) verification and finite-horizon bounds using the myopic probability,
and (d) asymptotic results from the implicit function theorem.

The advantages of this approach are threefold. First, it combines the dimension-
reduction and higher tractability of the long-horizon problem with exact finite-
horizon bounds, which keep a firm grip on the robustness of the solution. Second,
we show that the free-boundaries arising with transaction costs can sometimes be
identified explicitly in terms of a single parameter, the equivalent safe rate, which
remains the only non-explicit part of the solution. This reduction is useful both
for theoretical and for practical purposes, as it helps to simplify proofs as well as
calculations. Third, this approach leads to the simultaneous computation of several
related quantities, such as welfare, portfolios, liquidity premia, and trading volume.

The paper proceeds as follows: in the next section, we present a brief timeline of
related research, which is far from exhaustive, and only aims at putting the paper in
context. The following section introduces the main problem, discussing the relative
advantages of the three main models with terminal wealth, consumption, and long-
horizon. This section also discusses the typical heuristic arguments of stochastic
control that lead to an educated guess for the value function, and the identification

1The Mathscinet database shows only nine publications with “transaction costs” in their title in
the eighties (1980–1989). This figure rises to 52 in the nineties (1990–1999), and to 278 in the
naughties (2000–2009).
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of the corresponding free boundaries. For the long-run problem, the following
section shows the passage from the heuristic calculations to a verification, which
relies on two central ideas. The first one is the construction of a shadow market,
an imaginary frictionless market, built to deliver the same optimal strategy as the
original market with transaction cost. This shadow market harnesses transaction
costs by hiding them inside a more complex model, without transaction costs, but
in which investment opportunities are driven by a state variable that represents
the portfolio composition of the investor. This insight—that transaction costs are
essentially equivalent to state-dependent investment opportunities—in turn allows
to exploit the approach to verification based on the change of measure to the myopic
probability.

We conclude with a deliberately speculative section on three open problems:
multiple assets, return predictability, and option spreads. We argue that with
transaction costs, multivariate models present both a substantial technical challenge,
and a potentially fertile ground for novel financial insights, which may alter the
conventional wisdom on fund separation. Likewise, transaction costs may help
reconcile statistical evidence on return predictability with the poor out-of-sample
performance of market-timing strategies. Finally, the large bid-ask spreads observed
in options on highly liquid assets still lack a theoretical basis, and transaction costs
are a natural avenue to search for an explanation.

2 Literature Review

Portfolio choice with transaction cost starts with the seminal papers of [8, 35], and
[17], in the wake of the frictionless results of [36, 37]. From heuristic arguments,
these early studies gleaned central insights that held up to subsequent formal proofs.
First, optimal portfolios entail a no-trade region, in which it is optimal to keep
existing holdings in all assets. Optimal portfolios always remain within this region,
and hence trading should merely take place at its boundaries. The no-trade region is
wide, even for small transaction costs, implying that investors should accept wide
fluctuations around the frictionless target. Second, the large no-trade region has a
small welfare impact [8], because the displacement loss is small near the frictionless
optimum, and the wide no-trade region minimizes the effect of transaction costs.

On the mathematical side, Taksar et al. [44] reduce the maximization of loga-
rithmic utility from terminal wealth at a long horizon to the solution of a nonlinear
second-order ODE with free boundaries, to be determined numerically. Davis and
Norman [15] accomplish this feat for power utility from consumption with infinite
horizon. Shreve and Soner [40] extend their analysis with viscosity techniques,
removing some parametric restrictions. Shreve and Soner [40] and Rogers [39]
study the size of the no-trade interval and the utility loss due to transaction costs.
They argue that these are of order O."1=3/ and O."2=3/, respectively, where " is the
proportional cost, in line with the numerical results of [8] alluded to above. Building
on earlier heuristic results of [24, 46] explicitly determine the coefficients of the
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leading-order corrections around the frictionless case " D 0. In a general Markovian
setting and for arbitrary utility functions, Soner and Touzi [42] characterize the
corresponding quantities in terms of an ergodic control problem. All these papers
employ stochastic control as their main tool.

A new strand of literature, which finds its roots in the seminal work of [14, 25],
seeks to bring martingale methods, now well-understood in frictionless markets, to
bear on transaction costs. This idea has already shown its promise in the context
of superreplication: Guasoni et al. [22] prove the face-lifting theorem of [43] for
general continuous processes, using an argument based on shadow prices. Kallsen
and Muhle-Karbe [26] explore this approach for optimal consumption from loga-
rithmic utility, showing how shadow prices simplify verification theorems. Gerhold
et al. [19] exploit this idea to obtain the expansions of [24] for logarithmic utility,
but with an arbitrary number of terms. The present study reviews the approach put
forward by [18], who prove a verification theorem and derive full asymptotics for
the optimal policy, welfare, and implied trading volume in the long-run model of
[17]. The duality-based verification is based on applying the frictionless long-run
machinery of [21] to a fictitious shadow price, traded without transaction costs.
Compared to [18], finding a candidate shadow price is greatly simplified by applying
a observation originally made by [34]: Given a smooth candidate value function, it
can simply be obtained via the marginal rate of substitution of risky for safe assets
for the frictional investor. (Also cf. [23, 33] for applications of this idea to related
problems.)

3 The Basic Model

3.1 Objectives

Let X�
t denote the wealth of an investor who follows the portfolio �t , and let ct his

consumption rate, both at time t . The three typical objectives for portfolio choice
with power utility U.x/ D x1�� =.1 � �/ are:

max
�
E

�
.X�

T /
1��

1 � �
�
; (terminal wealth) (1)

max
�;c

E

"Z 1

0

e�ıt c
1��
t

1� �
dt

#
; (consumption) (2)

max
�

lim inf
T!1

1

T
logE

�
.X�

T /
1�� � 1

1�� : (long run) (3)

Expected utility from terminal wealth (1) has attracted the attention of most of
the semimartingale literature (see, for example, [28] and the references therein).
This objective is the simplest for abstract questions, such as existence, uniqueness,
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well-posedness, and stability, which are by now largely understood. It is also
relevant for problems such as retirement planning, which entail a known horizon
and no intermediate consumption. Expected utility from intertemporal consumption
(2) is more appealing for applications to macroeconomics, because it yields an
endogenous consumption process ct , and therefore has testable implications for
consumption data.

The long run objective is probably the least intuitive, in view of the limit in (3).
To understand its economic interpretation, note first that, for a fixed horizon T , the

quantityE
�
.X�

T /
1�� � 1

1�� coincides with the certainty equivalent U�1.E
�
U.X�

T /
�
/

of the payoff X�
T . If we match this certainty equivalent with xe�T T , that is, the

investor’s initial capital x compounded at some constant rate �T for the same
horizon T , we recognize that:

�T D 1

T
logE

�
.X�

T /
1�� � 1

1�� :

Thus, the limit in (3) has the interpretation of an equivalent safe rate, that is, the
hypothetical safe rate that would make the investor indifferent between investing
optimally in the market, and leaving all wealth invested at this hypothetical rate.

Both the consumption and long-run problems are stationary objectives, in
that they lead to time-independent solutions (as long as investment opportunities
are also stationary). Of course, the advantage of stationary problems is that the
resulting optimization problems have one less dimension than similar nonstationary
problems, such as utility maximization from terminal wealth. Both objectives model
an investor with an infinite horizon, but with some important differences. First,
the consumption objective involves the additional time-preference rate ı, which
does not appear in the long-run objective. Second, in typical models (even in a
Black–Scholes market, compare [6]), the consumption objective may not be well
posed if risk aversion � is less than the logarithmic value of one, and investment
opportunities are sufficiently attractive. By contrast, the long-run objective is
typically well-posed under more general conditions.

The irony of portfolio choice is that its most natural objectives are also the least
tractable: the terminal-wealth problem admits closed-form solutions only in rare
cases (cf., e.g., [31]). Even when such solutions exist, they are often too clumsy
to yield clear insights on the role of preference and market parameters. Unfortu-
nately, the consumption objective admits explicit solutions primarily in complete
markets, or with investment opportunities independent of asset prices, a fact that
severely limits our understanding of the effects of partial return predictability on
consumption.

The good news is that the long-run problem admits explicit solutions in many
situations in which the other two problems do not, its optimal portfolio is almost
optimal even for the other objectives, and bounds on the resulting utility loss are
available. This general insight is crucial in markets with frictions, such as transaction
costs.
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3.2 Control Heuristics

We now examine the differences in the Hamilton–Jacobi–Bellman equations aris-
ing from the three objectives (1)–(3), in the basic model with one safe asset growing
at the riskless rate r � 0, and a risky asset with ask (buying) price St following
geometric Brownian Motion:

dSt
St

D .�C r/dt C �dW t ; �; � > 0: (4)

The bid (selling) price is .1 � "/St , where " 2 .0; 1/ is the relative bid-ask spread.
Denote the number of units of the safe asset by '0t and write the number of units

of the risky asset 't D '
"
t �'#

t as the difference between cumulative purchases and
sales. The values of the safe position Xt and of the risky position Yt (quoted at the
ask price) evolve as:

dXt DrXtdt � Std'
"
t C .1 � "/Std'#

t ; (5)

dY t D.�C r/Ytdt C �YtdWt C Std'
"
t � Std'#

t : (6)

The second equation prescribes that risky wealth earns the return on the risky asset,
plus units purchased, and minus units sold. In the first equation the safe position
earns the safe rate, minus the units used for purchases (at the ask price St ), and plus
the units used for sales (at the bid price .1 � "/St).

For the maximization of utility from terminal wealth, denote the value function
as V.t; x; y/, which depends on time t , on the safe position x, and on the risky
position y. Itô’s formula yields:

dV.t; Xt ; Yt / D Vtdt C VxdXt C VydY t C 1

2
Vyyd hY; Y it (7)

D
�
Vt C rXtVx C .�C r/YtVy C �2

2
Y 2t Vyy

�
dt (8)

CSt .Vy � Vx/d'
"
t C St..1 � "/Vx � Vy/d'

#
t C �XtVydW t ; (9)

By the martingale optimality principle of stochastic control, the value function
V.t; Xt ; Yt /must be a supermartingale for any choice of purchases and sales '"

t ; '
#
t .

Since these are increasing processes, this implies Vy�Vx � 0 and .1�"/Vx�Vy � 0,
which means that

1 � Vx

Vy
� 1

1 � "
: (10)
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In the interior of this “no-trade region”, where the number 't D '
"
t � '

#
t of

risky shares remains constant, the drift of V.t; Xt ; Yt / cannot be positive, and must
become zero for the optimal policy. This leads to the HJB equation:

Vt C rXtVx C .�C r/YtVy C �2

2
Y 2t Vyy D 0 if 1 <

Vx

Vy
<

1

1 � " : (11)

Next, the value function is homogeneous in wealth, i.e. V.t; Xt ; Yt /D .Xt/
1��

v.t; Yt=Xt/, whence setting z D y=x:

�2

2
z2vzz C �zvz C r.1 � �/v C vt D 0 if 1C z <

.1 � �/v.t; z/

vz.t; z/
<

1

1 � "
C z:

(12)

Now, suppose that the no-trade region f.t; z/ W 1 C z � .1��/v.t;z/
vz.t;z/

� 1
1�" C zg

coincides with some interval l.t/ � z � u.t/ to be found. At l.t/ the left inequality
in (12) holds as equality, while at u.t/ the right inequality holds as equality, leading
to the boundary conditions:

.1C l/vz.t; l/� .1 � �/v.t; l/ D 0; (13)

.1=.1� "/C u/vz.t; u/� .1 � �/v.t; u/ D 0: (14)

These conditions are not sufficient to identify the solution to the optimization
problem, since they can be matched for any trading boundary l.t/; u.t/. The optimal
boundaries are identified as the ones that satisfy the smooth-pasting conditions.
These conditions can be seen as limits of the optimality conditions for an impulse
control problem with a infinitesimally small cost [16]. In practice, they are derived
by differentiating (13) and (14) with respect to z at the respective boundaries z D l

and z D u:

.1C l/vzz.t; l/C �vz.t; l/ D 0; (15)

.1=.1� "/C u/vzz.t; u/C �vz.t; u/ D 0: (16)

This system defines a two-dimensional, linear free-boundary problem in .t; z/ 2
Œ0; T � � R, which is not tractable in general. Liu and Loewenstein [32] obtain
a semiexplicit solution with the randomization approach used by [5] to price
American options.

With utility maximization from infinite-horizon consumption, the value function
depends only on the safe and risky positionsXt , Yt—the problem is stationary. Cal-
culations are similar, with some minor differences: first, the self-financing condition
(6) must include the term �ctdt in the cash balance, to account for consumption
expenditures. Then, the martingale optimality principle takes the following slightly
different form. Since utility is not only incurred at maturity but from consumption
along the way, not the value function itself but the sum of past consumption
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R t
0
e�ıuc1��u =.1 � �/du and the value function e�ıtV .Xt ; Yt /, representing future

consumption, should be a supermartingale for any policy and a martingale for the
optimizer. Here, ı is the time-preference parameter in (2). Then, the term Vt in (8)

and in turn (11) has to be replaced by c
1��
t

1�� � ctVx � ıV . Pointwise maximization

yields the optimal consumption rate ct D V
�1=�
x . Plugging this expression back

into the HJB equation and accounting for homogeneity in wealth, the corresponding
free-boundary problem for the reduced value function v.z/ then reads as:

�2

2
z2vzz C �zvz C ..1 � �/r � ı/v C �

1 � � ..1 � �/v � zvz/
1� 1

�

D 0 if 1C z <
.1 � �/v.z/

vz.z/
<

1

1� "
C z: (17)

This is the one-dimensional, nonlinear free-boundary problem studied by [15], who
prove a verification theorem, and find a numerical solution. Still, this problem is
nontrivial, because the free boundaries points l; u are not easy to identify in terms
of the model parameters, and the second order, nonlinear equation (17) does not
admit a known explicit solution for given initial conditions.

The long-run problem (3) gives the best of both worlds, and more. But it
requires more audacious heuristics, and nonstandard arguments to be made precise.
Puzzlingly enough, this approach was proposed very early in the transaction costs
literature by [17, 44], but its potential has not become clear until recently.

We start from (11), derived for a fixed horizon T , and note that the value
function V should grow exponentially with the horizon. This observation, combined
with homogeneity in wealth, leads to guess a solution of the form V.t; Xt ; Yt / D
.Xt/

1��v.Yt=Xt/e�.1��/.rCˇ/t . It is clear that such a guess in general does not solve
the finite-horizon problem, as it fails to satisfy its terminal condition. But it is
reasonable to expect that it governs the long-run problem, for which the horizon
never approaches. With the above guess, the HJB equation reduces to

�2

2
z2v00.z/C�zv0.z/�.1��/ˇv.z/ D 0 if 1Cz <

.1 � �/v.z/
v0.z/

<
1

1 � "Cz;

(18)

which is a one-dimensional, linear free-boundary problem—the best of both worlds.
Note that in this system ˇ is not exogenous, but an unknown parameter that deter-
mines the growth rate of the value function, and which has to be found along with
the free boundaries l; u. Indeed, rCˇ is the equivalent safe rate which makes a long-
term investor indifferent between the original market and this alternative rate alone.

The two crucial advantages of the long-run problem are that the free boundaries
l; u have explicit formulas in terms of ˇ, and that it reduces to solving a Cauchy
problem for a first-order ordinary differential equation. Depending on the problem at
hand, this equation may even have an explicit solution, a fact that is useful although
not essential for asymptotics. To derive the free boundary l , substitute first (15) and
then (13) into (18) to obtain
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��
2

2
.1 � �/�

l2

.1C l/2
v C �.1 � �/ l

1C l
v � .1 � �/ˇv D 0:

Now, observe that �� D l=.1C l/ is precisely the risky portfolio weight at the buy
boundary, evaluated at the ask price. Factoring out .1��/v, it follows that (cf. [17])

���
2

2
�2� C ��� � ˇ D 0: (19)

Likewise, a similar calculation for u shows that the other root of (19) is �C D
u.1� "/=.1C u.1� "//, which coincides with the risky portfolio weight at the sell
boundary, evaluated at the bid price.

After these calculations, the boundaries l; u, or equivalently��; �C, are uniquely
identified as solutions of the above equation, once the parameter ˇ is found:

�˙ D �˙p
�2 � 2��2ˇ

��2
:

The formulas become even clearer by replacing the parameter ˇ with � Dp
�2 � 2��2ˇ. With this notation, in which � D 0 corresponds to the frictionless

setting, ˇ D .�2 � �2/=2��2 and the buy and sell boundaries have the intuitive
representation

�˙ D �˙ �

��2
; (20)

from which l D ��

1���

and u D 1
1�"

�C

1��C

are obtained directly. Thus, it remains to
find � to identify both the free-boundaries and the equivalent safe rate rCˇ. To this
end, it is convenient to apply the substitution

v.z/ D e.1��/
R log.z=l.�//
0 w.y/dy; i.e., w.y/ D l.�/eyv0.l.�/ey/

.1 � �/v.l.�/ey/ ;

which reduces the free-boundary problem to a Cauchy problem with a terminal
condition:

w0.y/C .1 � �/w.y/2 C
�
2�

�2
� 1

�
w.y/ � �

�
� � �

��2

��
�C �

��2

�
D 0;

y 2 Œ0; log u.�/=l.�/�; (21)

w.0/ D � � �

��2
; (22)

w.log.u.�/=l.�/// D �C �

��2
: (23)



178 P. Guasoni and J. Muhle-Karbe

In other words, the correct value of � is identified as the one for which the
above first-order Riccati equation satisfies both the initial and the terminal value
conditions. For a fixed ", such a value is the solution of a scalar equation obtained
from the explicit solution of the Riccati equation (cf. Lemma 3.1). For " � 0,
the asymptotic expansion of �."/ follows from the implicit function theorem—and
some patient calculations (see Lemma 3.2 below).

Now, one could argue that the advantage of the nonlinear, first-order equation
(21) over the linear, second-order equation (18) is only marginal. In fact, the variable
w has the additional advantage, albeit still hidden at this point, that it coincides with
the optimal shadow risky portfolio weight (cf. Lemma 4.4), a fact that is hinted at
by its boundary conditions. Furthermore, and as a result, for � D 1 (21) recovers
the case of logarithmic utility [19], while (18) does not.

3.3 Explicit Formulas

Let us now show that the reduced value function w and the quantity � are indeed
well-defined. To this end, first determine, for a given small � > 0, an explicit
expression for the solution w of the ODE (21), complemented by the initial
condition (22).

Lemma 3.1. Let 0 < �=��2 ¤ 1. Then for sufficiently small � > 0, the function

w.�; y/D

8̂̂
<̂
ˆ̂̂:

a.�/ tanhŒtanh�1 .b.�/=a.�//�a.�/y�C.
�

�2
�

1
2 /

��1
; if � 2 .0; 1/ and �

��2
< 1 or � > 1 and �

��2
> 1;

a.�/ tanŒtan�1.b.�/=a.�//Ca.�/y�C.
�

�2
�

1
2 /

��1
; if � > 1 and �

��2
2
�
1
2

� 1
2

q
1� 1

�
; 1
2

C 1
2

q
1� 1

�

	
;

a.�/ cothŒcoth�1 .b.�/=a.�//�a.�/y�C.
�

�2
�

1
2 /

��1
; otherwise;

with

a.�/ D
sˇ̌
ˇ.� � 1/

�2 � �2

��4
�
�1
2

� �

�2

	2 ˇ̌ˇ and b.�/ D 1

2
� �

�2
C.��1/� � �

��2
;

is a local solution of

w0.y/C.1��/w2.y/C
�
2�

�2
� 1

�
w.y/� �

2 � �2
��4

D 0; w.0/ D � � �
��2

: (24)

Moreover, y 7! w.�; y/ is increasing (resp. decreasing) for �=��2 2 .0; 1/ (resp.
�=��2 > 1).

Proof. The first part of the assertion is easily verified by taking derivatives. The
second follows by inspection of the explicit formulas. ut
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Next, establish that the crucial constant �, which determines both the no-trade
region and the equivalent safe rate, is well-defined. For small transaction costs
" � 0, its asymptotics are readily computed by means of the implicit function
theorem.

Lemma 3.2. Let 0 < �=��2 ¤ 1 and w.�; �/ be defined as in Lemma 3.1, and set

l.�/ D � � �

��2 � .� � �/ ; u.�/ D 1

.1 � "/
�C �

��2 � .�C �/
:

Then, for sufficiently small " > 0, there exists a unique solution � of

w

�
�; log

�
u.�/

l.�/

��
� �C �

��2
D 0: (25)

As " # 0, it has the asymptotics

� D ��2

 
3

4�

�
�

��2

�2 �
1 � �

��2

�2!1=3
"1=3 CO."/:

Proof. Write the boundary condition (25) as f .�; "/ D 0, where:

f .�; "/ D w.�; log.u.�/=l.�///� �C �

��2
:

Of course, f .0; 0/ D 0 corresponds to the frictionless case. The implicit function
theorem then suggests that for sufficiently small " there exists a unique zero �."/
with the asymptotics �."/ � �"f"=f�, but the difficulty is that f� D 0, because �
is not of order ". Heuristic arguments [39, 40] suggest that � is of order "1=3. Thus,
setting � D ı1=3 and Of .ı; "/ D f .ı1=3; "/, and computing the derivatives of the
explicit formula for w.�; x/ (cf. Lemma 3.1) shows that:

Of".0; 0/ D ��


� � ��2

�
�2�4

; Ofı.0; 0/ D 4

3�2�2 � 3���4
:

As a result:

ı."/ � �
Of".0; 0/
Ofı.0; 0/

" D 3�2


� � ��2

�2
4�2�2

" whence

�."/ �
 
3�2



� � ��2�2
4�2�2

!1=3
"1=3: ut
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Henceforth, consider small transaction costs " > 0, and let � denote the constant
in Lemma 3.2. Moreover, set w.y/ D w.�; y/, a D a.�/, b D b.�/, and u D
u.�/, l D l.�/. In all cases, the function w can be extended smoothly to an open
neighborhood of Œ0; log.u=l/� (resp. Œlog.u=l/; 0� if �=��2 > 1). By continuity, the
ODE (24) then also holds at 0 and log.u=l/; inserting the boundary conditions for
w yields the following counterparts for the derivative w0:

Lemma 3.3. Let 0 < �=��2 ¤ 1. Then, in all three cases,

w0.0/ D � � �

��2
�
�
� � �

��2

�2
; w0 �log

�u

l

		
D �C �

��2
�
�
�C �

��2

�2
:

3.4 Discussion

The above heuristics offer a practical approach to portfolio choice problems with
transaction costs, and can be adapted to accommodate additional model features.
More importantly, they yield results that are robust to the model specification. In
view of (20) and the asymptotics for � in Lemma 3.2, the no-trade boundaries have
the expansion:

�˙ D �

��2
˙
 
3

4�

�
�

��2

�2 �
1 � �

��2

�2!1=3
"1=3 CO."/: (26)

This expansion coincides with the one obtained by [24] in the model with con-
sumption. In other words, the long-run and the consumption models yield exactly
the same solution at the leading order for small transaction costs. The expansions
do differ at the second order, but such differences tend to have a modest effect for
typical parameter values.

A major advantage of the long-run objective is the possibility to reduce the
solution to a single algebraic equation for the parameter �, in terms of which
the free boundaries are found explicitly. In principle, one could attempt the same
reduction in the consumption problem, by substituting equations (13) and (15) into
(12). The result is a scalar equation for l in terms of v.l/, the value of the reduced
value function at the trading boundary. Alas, the equation does not have an explicit
solution. Also, the value of v.l/ is identified as the only one for which the solution to
the differential equation (which also has no explicit solution) matches the analogous
boundary condition at u. The situation is disappointingly more complicated than
(19), which immediately identifies both boundaries in terms of a single parameter.
In summary, the consumption problem yields a solution which is strikingly similar
to the long-run problem, but in a much less tractable setting. Vice versa, the long-run
solution provides a tractable first-order approximation to the consumption problem.

In the same vein, the long-run optimal portfolio is not far from optimal for
utility maximization with terminal wealth. Indeed, Gerhold [18] show that the
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wealth corresponding to the long-run optimal portfolio matches the value function
for any finite horizon T [3] at the leading order "2=3 for small transaction costs
" (compare Theorem 4.8 below). Hence, finite horizons—like consumption—only
have a second-order effect on portfolio choice with transaction costs.

To apply the heuristic steps above to more complex problems with transaction
costs, it is worth distinguishing the aspects that are special to the specific problem
at hand from the ones that are flexible enough to be useful in other models. First, in
general one cannot expect that a single, simple equation like (19) identifies both free
boundaries. But the same argument that leads to this equation (the substitution of
the boundary and smooth pasting conditions into the HJB equation) will generally
lead in a long-run problem to some scalar equation for each boundary, in terms of
the equivalent safe rate ˇ of the problem. Such equations may be solved explicitly
(as in the case of (19)) or not, but in the latter case an asymptotic solution will still
be available, expanding the scalar equation around the frictionless values of .�; ˇ/.

Second, the reduced HJB equation may not be autonomous or have an explicit
solution, which are two special features of (21). If the equation is not autonomous,
the Cauchy problem cannot be started at some arbitrary point (zero in the previous
example) without a further change of variable. If the free boundaries admit explicit
solutions in terms of ˇ, sometimes a careful choice of notation can lead to a simple
expression for at least one boundary, which is a natural choice for the starting point
of the Cauchy problem. The correct value of ˇ is then identified as the one for which
the remaining boundary condition is satisfied. Even if the differential equation has
an explicit solution, this condition in general involves a scalar equation that cannot
be solved explicitly. Regardless of an explicit formula, asymptotic expansions can
be derived by substituting a series expansion for w in the differential equation.

4 Shadow Prices and Verification

We justify the heuristic arguments in the previous section by reducing the portfolio
choice problem with transaction costs to another portfolio choice problem, without
transaction costs. To do so, the bid and ask prices are replaced by a single “shadow
price” QSt evolving within the bid-ask spread, which yields the same optimal policy
and utility. Evidently, any frictionless market extension with values in the bid-
ask spread leads to more favorable terms of trade than the original market with
transaction costs. To achieve equality, the particularly unfavorable shadow price
must match the trading prices whenever its optimal policy transacts. The latter is
then also feasible and in turn optimal in the original market with transaction costs,
motivating the following notion.

Definition 4.1. A shadow price is a frictionless price process QSt evolving within the
bid-ask spread ..1�"/St � QSt � St a.s. for all t), such that there is an optimal strat-
egy for QSt which is of finite variation and entails buying only when the shadow price
QSt equals the ask price St , and selling only when QSt equals the bid price .1 � "/St .
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Once a candidate for such a shadow price is identified, long-run verification
results for frictionless models (cf. Guasoni and Robertson [21]) deliver the opti-
mality of the guessed policy.

4.1 Derivation of a Candidate Shadow Price

With a smooth candidate value function at hand, a candidate shadow price is
identified as follows. By definition, trading the shadow price should not allow the
investor to outperform the original market with transaction costs. In particular, if
QSt is the value of the shadow price at time t , then allowing the frictional investor

to carry out at single trade at time t at this frictionless price should not allow her
to increase her utility. A trade of 	 risky shares at the frictionless price QSt moves
the investor’s safe position Xt to Xt � 	 QSt and her risky position (valued at the ask
price St ) from Yt to Yt C 	St . Then—recalling that the second and third arguments
of the candidate value functions V from the previous section were precisely the
investor’s safe and risky positions—the requirement that such a trade does not
increase the investor’s utility is tantamount to:

V.t; Xt � 	 QSt; Yt C 	St / � V.t; Xt ; Yt /; 8	 2 R:

A Taylor expansion of the left-hand side for small 	 then implies that �	 QStVx C
	StVy � 0. Since this inequality has to hold both for positive and negative values
of 	, it implies that

QSt D Vy

Vx
St : (27)

That is, the multiplicative deviation of the shadow price from the ask price should
be the marginal rate of substitution of risky for safe assets for the optimal frictional
investor. In particular, this formula immediately yields a candidate shadow price,
once a smooth candidate value function has been identified. For the long-run
problem, we derived the following candidate value function in the previous section:

V.t; Xt ; Yt / D e�.1��/.rCˇ/t .Xt /1��e.1��/
R log.Yt = lXt /
0 w.y/dy:

Using this equality to calculate the partial derivatives in (27), the candidate shadow
price becomes:

QSt D w.‡t /

le‡t .1 � w.‡t //
St ; (28)

where ‡t D log.Xt= lX0
t / denotes the logarithm of the stock-cash ratio, centered

in its value at the lower buying boundary l . If this candidate is indeed the right one,
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then its optimal strategy and value function should coincide with their frictional
counterparts derived heuristically above. In particular, the optimal risky fraction Q�t
should correspond to the same numbers '0t and 't of safe and risky shares, but now
measured in terms of QSt instead of the ask price St . As a consequence:

Q�t D 't QSt
'0t S

0
t C 't QSt

D
'tSt

w.‡t /
le‡t .1�w.‡t //

'0t S
0
t C 'tSt

w.‡t /
le‡t .1�w.‡t //

D
w.‡t /
1�w.‡t /

1C w.‡t /
1�w.‡t /

D w.‡t /; (29)

where, for the third equality, we have used that the optimal frictional stock-cash ratio
'tSt='

0
t S

0
t equals le‡t by definition of ‡t . We now turn to the corresponding value

function QV . By the definition of shadow price, it should coincide with its frictional
counterpart V . In the frictionless case, it is more convenient to factor out the total
wealth QXt D '0t S

0
t C 't QSt (in terms of the frictionless risky price QSt ) instead of the

safe position Xt D '0t S
0
t , giving

QV .t; QXt ;‡t / D V.t; Xt ; Yt / D e�.1��/.rCˇ/t QX1��
t

�
Xt
QXt

�1��
e.1��/

R ‡t
0 w.y/dy:

SinceXt= QXt D 1�w.‡t / by definition of QSt , one can rewrite the last two factors as

�
Xt
QXt

�1��
e.1��/

R ‡t
0 w.y/dy

D exp

�
.1 � �/

�
log.1 � w.‡t //C

Z ‡t

0

w.y/dy

��

D .1 � w.0//��1 exp

�
.1 � �/

Z ‡t

0

�
w.y/ � w0.y/

1 � w.y/

�
dy

�
:

Then, setting Qw D w � w0

1�w , the candidate long-run value function for QS becomes

QV .t; QXt ;‡t / D e�.1��/.rCˇ/t QX1��
t e.1��/

R ‡t
0 Qw.y/dy.1 � w.0//��1:

Starting from the candidate value function and optimal policy for QS , we can now
proceed to verify that they are indeed optimal for QSt , by adapting the argument from
[21]. But before we do that, we have to construct the respective shadow processes.

4.2 Construction of the Shadow Price

The above heuristic arguments suggest that the optimal stock-cash ratio Yt=Xt D
'tSt='

0
t S

0
t should take values in the interval Œl; u�. Hence, ‡t D log.Yt= lXt /

should be Œ0; log.u=l/�-valued if the lower trading boundary l for the stock-cash
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ratio Xt=X0
t is positive. If the investor shorts the safe asset to leverage her risky

position, the stock-cash ratio becomes negative. In the frictionless case, and also
for small transaction costs, this happens if the Merton proportion �=��2 is bigger
than 1. Then, the trading boundaries l � u are both negative, so that the centered
log-stock-cash ratio ‡t should take values in Œlog.u=l/; 0�. In both cases, trading
should only take place when the stock-cash ratio reaches the boundaries of this
region. Hence, the numbers of safe and risky units '0t and 't should remain constant
and ‡t D log.'t= l'0t / C log.St=S0t / should follow a Brownian motion with drift
as long as ‡t moves in .0; log.u=l// (resp. in .log.u=l/; 0/ if �=��2 > 1). This
motivates to define the process ‡t as reflected Brownian motion:

d‡t D .� � �2=2/dt C �dW t C dLt � dUt ; ‡0 2 Œ0; log.u=l/�; (30)

for continuous, adapted local time processes L and U which are nondecreasing
(resp. nonincreasing if �=��2 > 1) and increase (resp. decrease if �=��2 > 1)
only on the sets f‡t D 0g and f‡t D log.u=l/g, respectively. Starting from this
process, whose existence is a classical result of [41], the process QS is defined in
accordance with (28):

Lemma 4.2. Let .
0; 
/ 2 R
2C be the investor’s initial endowment in units of the

safe and risky asset. Define

y D

8̂
<̂
ˆ̂:
0; if l
0S00 � 
S0;

log .u=l/; if u
0S00 � 
S0;

log
�

S0=.


0S00 l/
�
; otherwise;

(31)

and let ‡ be defined as in (30), starting at ‡0 D y. Then, QS D S
w.‡/

le‡ .1�w.‡//
, with

w as in Lemma 3.1, has the dynamics

d QS.‡t /= QS.‡t / D . Q�.‡t /C r/ dt C Q�.‡t /dW t ;

where Q�.�/ and Q�.�/ are defined as

Q�.y/D �2w0.y/
w.y/.1 � w.y//

�
w0.y/
1 � w.y/

� .1 � �/w.y/
�
; Q�.y/D �w0 .y/

w.y/.1 � w.y//
:

Moreover, the process QS takes values within the bid-ask spread Œ.1 � "/S; S�.

Note that the first two cases in (31) arise if the initial stock-cash ratio 
S0=.
0S00 /
lies outside of the interval Œl; u�. Then, a jump from the initial position .'00� ; '0�/ D
.
0; 
/ to the nearest boundary value of Œl; u� is required. This transfer requires the
purchase resp. sale of the risky asset and hence the initial price QS0 is defined to
match the buying resp. selling price of the risky asset.
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Proof. The dynamics of QSt result from Itô’s formula, the dynamics of ‡t , and the
identity

w00.y/ D 2.� � 1/w0.y/w.y/ � .2�=�2 � 1/w0.y/; (32)

obtained by differentiating the ODE (24) for w with respect to x. Therefore it
remains to show that QSt indeed takes values in the bid-ask spread Œ.1� "/St ; St �. To
this end, notice that—in view of the ODE (24) for w—the derivative of the function
g.y/ WD w.y/=ley.1 � w.y// is given by

g0.y/ D w0.y/� w.y/C w2.y/

ley.1 � w.y//2
D
�.w2 � 2

�

��2
w/C .�2 � �2/=��4

ley.1 � w.y//2
:

Due to the boundary conditions for w, the derivative g0 vanishes at 0 and log.u=l/.
Differentiating its numerator gives 2�w0.y/.w.y/ � �

��2
/. For �

��2
2 .0; 1/ (resp.

�

��2
> 1), w is increasing from ���

��2
<

�

��2
to �C�

��2
>

�

��2
on Œ0; log.u=l/�

(resp. decreasing from �C�
��2

to ���
��2

on Œlog.u=l/; 0�); hence, w0 is nonnegative
(resp. nonpositive). Moreover, g0 starts at zero for y D 0 (resp. log.u=l/), then
decreases (resp. increases), and eventually starts increasing (resp. decreasing) again,
until it reaches level zero again for y D log.u=l/ (resp. y D 0). In particular, g0
is nonpositive (resp. nonnegative), so that g is decreasing on Œ0; log.u=l/� (resp.
increasing on Œlog.u=l/; 0� for �

��2
> 1). Taking into account that g.0/ D 1 and

g.log.u=l// D 1 � ", by the boundary conditions for w and the definition of u and
l in Lemma 3.2, the proof is now complete. ut

4.3 Verification

The long-run optimality of the candidate risky weight Q�.‡t / D w.‡t / from (29)
in the frictionless market with price process QSt can now be verified by adapting
the argument in [21]. The first step is to determine finite-horizon bounds, which
provide lower and upper estimates for the maximal expected utility on any horizon
T , by focusing on the values of the candidate long-run optimal policy and long-run
optimal martingale measure.

These bounds are based on the concept of the (long-run) myopic probability, the
hypothetical probability measure under which a logarithmic investor would adopt
the same policy as the original power investor under the physical probability. The
advantage of this probability is to decompose expected power utility (and its dual)
into a long-run component times a transient component. This decomposition is
similar in spirit to the separation of logarithmic utility into a long-run component
plus a transitory component. To see the analogy, consider the logarithmic utility of
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a portfolio �.‚t/ traded in a frictionless market with expected excess return Q�.‚t /

and volatility Q�.‚t/ driven by some state variable‚t :

log QX�
T D x C

Z T

0

�
Q�.‚t/�.‚t /� Q�2.‚t/

2
�2.‚t/

�
dt C

Z T

0

Q�.‚t /�.‚t/dW t :

Now, if ‚t follows an autonomous diffusion d‚t D b.‚t/dt C dWt , the above
stochastic integral can be replaced by applying Itô’s formula to the function….y/ DR y
0

Q�.x/�.x/dx:

….‚T /�….‚0/ D
Z T

0

�
Q�.‚t /�.‚t /b.‚t /C 1

2
. Q��/0.‚t /

�
dt C

Z T

0
Q�.‚t /�.‚t /dW t :

Indeed, solving the second equation for the stochastic integral, and plugging it into
the first equation yields:

log QX�
T D x C

Z T

0

�
. Q�.‚t/ � Q�.‚t /b.‚t //�.‚t / � Q�2.‚t /

2
�2.‚t / � . Q��/0.‚t /

2

�
dt

C .….‚T /�….‚0//:

This decomposes the logarithmic utility into an integral, which represents the long-
run component, and a residual transitory term, which depends only on the initial
and terminal values of the state variable. If the function… is integrable with respect
to the invariant measure of ‚, the contribution of the transitory component to the
equivalent safe rate 1

T
EŒlogX�

T � is negligible for long horizons.
The myopic probability is key to perform a similar decomposition with power

utility. Again, denote by Q� the risky asset’s drift under the original measure, and
by O� its counterpart under the myopic probability; the corresponding volatility Q�
of course has to be the same under both equivalent measures. With logarithmic
utility, the optimal portfolio is O�t D O�t= Q�2t even if O�t and Q�t are stochastic [37].
As the definition of the myopic probability requires that the corresponding log-
optimal portfolio O�t coincides with the optimal portfolio Q�t for power utility under
the original probability, Girsanov’s theorem dictates that the measure change from
the original to the myopic probability is governed by the stochastic exponential ofR T
0
.� Q�

Q� C Q� Q�/dW t . This measure change shifts the asset’s drift by the same amount,
times Q� , thereby yielding a myopic drift of Q�2 Q� , which yields the same optimal
policy. Given this guess for the myopic probability, the finite-horizon bounds follow
by routine calculations carried out in the proof of the following lemma:

Lemma 4.3. For a fixed time horizon T > 0, let ˇ D �2��2
2��2

and let the function w

be defined as in Lemma 3.1. Then, for the shadow payoff QXT corresponding to the
policy Q�.‡t / D w.‡t / and the shadow discount factor QMT D e�rT E.� R �

0
Q�
Q� dW t /T ,

the following bounds hold true:
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EŒ QX1��
T � D QX1��

0 e.1��/.rCˇ/T OEŒe.1��/.Qq.‡0/�Qq.‡T //�; (33)

E

�
QM1� 1

�

T

��
D e.1��/.rCˇ/T OE

h
e
. 1� �1/.Qq.‡0/�Qq.‡T //

i�
; (34)

where Qq.y/ WD R y
0
.w.z/ � w0.z/

1�w.z/ /d z and OE Œ�� denotes the expectation with respect

to the myopic probability OP , defined by

d OP
dP

D exp

�Z T

0

�
� Q�.‡t /

Q�.‡t / C Q�.‡t / Q�.‡t /
�

dW t

�1
2

Z T

0

�
� Q�.‡t /

Q�.‡t / C Q�.‡t / Q�.‡t /
�2

dt

!
:

Proof. First note that Q�; Q� , and w are functions of ‡t , but the argument is omitted
throughout to ease notation. Now, to prove (33), notice that the frictionless shadow

wealth process QXt with dynamics d QXtQXt D w d QStQSt C .1 � w/ dS0t
S0t

satisfies:

QX1��
T D QX1��

0 e.1��/
R T
0 .rC Q�w� Q�2

2 w2/dtC.1��/ R T0 Q�wdW t :

Hence:

QX1��
T D QX1��

0

d OP
dP
e
R T
0 ..1��/.rC Q�w� Q�2

2 w2/C 1
2 .� Q�

Q�
CQ�w/2/dtCR T0 ..1��/Q�w�.� Q�

Q�
CQ�w//dWt :

Inserting the definitions of Q� and Q� , the second integrand simplifies to .1 �
�/�. w0

1�w � w/. Similarly, the first integrand reduces to .1 � �/.r C �2

2
. w0

1�w /
2 �

.1 � �/�2 w0w
1�w C .1 � �/�

2

2
w2/. In summary:

QX1��
T D QX1��

0

d OP
dP
e.1��/

R T
0 .rC �2

2 .
w0

1�w /
2�.1��/�2 w0w

1�w C.1��/ �22 w2/dtC.1��/ R T0 �. w0

1�w �w/dWt :

(35)

The boundary conditions for w and w0 imply w.0/ � w0.0/

1�w.0/ D w.log.u=l// �
w0.log.u=l//
1�w.log.u=l// D 0; hence, Itô’s formula yields that the local time terms vanish in
the dynamics of Qq.‡t /:

Qq.‡T /� Qq.‡0/ D
Z T

0

�
� � �2

2

	 �
w � w0

1�w

	

C �2

2

�
w0 � w00.1�w/Cw02

.1�w/2

	
dt C

Z T

0

�
�

w � w0

1�w

	
dW t : (36)
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Substituting the second derivative w00 according to the ODE (32) and using the
resulting identity to replace the stochastic integral in (35) yields

QX1��
T D QX1��

0

d OP
dP
e.1��/

R T
0 .rC �2

2 w0C.1��/ �22 w2C.�� �2

2 /w/dte.1��/.Qq.‡0/�Qq.‡T //:

After inserting the ODE (24) for w, the first bound thus follows by talking the
expectation.

The argument for the second bound is similar. Plugging in the definitions of
Q� and Q� , the shadow discount factor QMT D e�rT E.� R �

0
Q�
Q� dW/T and the myopic

probability OP satisfy:

QM1� 1
�

T D e
1��
�

R T
0

Q�
Q�

dW tC 1��
�

R T
0 .rC Q�2

2Q�2
/dt

D d OP
dP
e
1��
�

R T
0 .

Q�
Q�

� �
1�� .� Q�

Q�
CQ�w//dWtC 1��

�

R T
0 .rC Q�2

2Q�2
C �
2.1��/ .� Q�

Q�
CQ�w/2/dt

D d OP
dP
e
1��
�

R T
0 �. w0

1�w �w/dWtC 1��
�

R T
0 .rC �2

2 .
w0

1�w /
2�.1��/�2 w0w

1�w C.1��/ �22 w2/dt
:

Again replace the stochastic integral using (36) and the ODE (32), obtaining

QM1� 1
�

T D d OP
dP
e
1��
�

R T
0 .rC �2

2 w0C.1��/ �22 w2C.�� �2

2 /w/dt
e
1��
� .Qq.‡0/�Qq.‡T //:

Inserting the ODE (24) for w, taking the expectation, and raising it to power � , the
second bound follows. ut

With the finite horizon bounds at hand, it is now straightforward to establish that
the policy Q�.‡t / is indeed long-run optimal in the frictionless market with price QSt .
Lemma 4.4. Let 0 < �=��2 ¤ 1 and let w be defined as in Lemma 3.1. Then, the
risky weight Q�.‡t / D w.‡t / is long-run optimal with equivalent safe rate r C ˇ

in the frictionless market with price process QSt . The corresponding wealth process
(in terms of QSt ), and the numbers of safe and risky units are given by

QXt D .
0S00 C 
 QS0/E
�Z �

0

.r C w.‡s/ Q�.‡s//ds C
Z �

0

w.‡s/ Q�.‡s/dWs

�
t

;

'0� D 
; 't D w.‡t / QXt= QSt for t � 0;

'00� D 
0; '0t D .1 � w.‡t // QXt=S0t for t � 0:

Proof. The formulas for the wealth process and the corresponding numbers of
safe and risky units follow directly from the standard frictionless definitions. Now
let QMt be the shadow discount factor from Lemma 4.3. Then, standard duality
arguments for power utility (cf. Lemma 5 in [21]) imply that the shadow payoff
QX�
t corresponding to any admissible strategy �t satisfies the inequality
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E
h
. QX�

T /
1��
i 1
1�� � E

�
QM
��1
�

T

� �
1��

: (37)

This inequality in turn yields the following upper bound, valid for any admissible
strategy �t in the frictionless market with shadow price QSt :

lim inf
T!1

1

.1 � �/T logE
h
. QX�

T /
1��
i

� lim inf
T!1

�

.1 � �/T
logE

�
QM
��1
�

T

�
: (38)

Since the function Qq is bounded on the compact support of ‡t , the second bound in
Lemma 4.3 implies that the right-hand side equals rCˇ. Likewise, the first bound in
the same lemma implies that the shadow payoff QXt (corresponding to the policy 't )
attains this upper bound, concluding the proof. ut

The next Lemma establishes that the candidate QSt is indeed a shadow price.

Lemma 4.5. Let 0 < �=��2 ¤ 1. Then, the number of shares 't D w.‡t / QXt= QSt
in the portfolio Q�.‡t / in Lemma 4.4 has the dynamics

d't

't
D
�
1 � � � �

��2

�
dLt �

�
1 � �C �

��2

�
dUt : (39)

Thus, 't increases only when ‡t D 0, that is, when QSt equals the ask price, and
decreases only when ‡t D log.u=l/, that is, when QSt equals the bid price.

Proof. Itô’s formula and the ODE (32) yield

dW.‡t / D �.1 � �/�2w0.‡t /w.‡t /dt C �w0.‡t /dW t C w0.‡t /.dLt � dUt /:

Integrating 't D w.‡t / QXt= QSt by parts twice, inserting the dynamics of w.‡t /, QXt ,QSt , and simplifying yields:

d't

't
D w0.‡t /

w.‡t /
d.Lt � Ut/:

Since Lt and Ut only increase (resp. decrease when �=��2 > 1) on f‡t D 0g
and f‡t D log.u=l/g, respectively, the assertion now follows from the boundary
conditions for w and w0. ut

The optimal growth rate for any frictionless price within the bid-ask spread must
be greater or equal than in the original market with bid-ask process ..1 � "/St ; St /,
because the investor trades at more favorable prices. For a shadow price, there is an
optimal strategy that only entails buying (resp. selling) stocks when QSt coincides
with the ask- resp. bid price. Hence, this strategy yields the same payoff when
executed at bid-ask prices, and thus is also optimal in the original model with
transaction costs. The corresponding equivalent safe rate must also be the same,
since the difference due to the liquidation costs vanishes as the horizon grows in (3):
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Proposition 4.6. For a sufficiently small spread ", the strategy .'0t ; 't / from
Lemma 4.4 is also long-run optimal in the original market with transaction costs,
with the same equivalent safe rate.

Proof. As 't only increases (resp. decreases) when QSt D St (resp. QSt D .1� "/St ),
the strategy .'0t ; 't / is also self-financing for the bid-ask process ..1 � "/St ; St /.
Since St � QSt � .1 � "/St and the number 't of risky shares is always positive, it
follows that

'0t S
0
t C't QSt � '0t S

0
t C'C

t .1�"/St�'�
t St � .1� "

1�" Q�.Yt//.'0t S0t C't QSt/: (40)

The shadow risky fraction Q�.‡t / D w.‡t / is bounded from above by .� C
�/=��2 D �=��2 CO."1=3/. For a sufficiently small spread ", the strategy .'0t ; 't /
is therefore also admissible for ..1 � "/St ; St /. Moreover, (40) then also yields

lim inf
T!1

1

.1 � �/T
logE

�
.'0T S

0
T C 'C

T .1� "/ST � '�
T ST /

1�� �

D lim inf
T!1

1

.1 � �/T
logE

�
.'0T S

0
T C 'T QST /1��

�
; (41)

that is, .'0t ; 't / has the same growth rate, either with QSt or with Œ.1 � "/St ; St �.
For any admissible strategy . 0t ;  t / for the bid-ask spread Œ.1 � "/St ; St �, set

Q 0t D  00� � R t
0

QSs=S0s d s . Then, . Q 0t ;  t / is a self-financing trading strategy for
QSt with Q 0t �  0t . Together with QSt 2 Œ.1 � "/St ; St �, the long-run optimality of
.'0t ; 't / for QSt , and (41), it follows that:

lim inf
T!1

1

T

1

.1 � �/ logE
�
. 0T S

0
T C  C

T .1 � "/ST �  �
T ST /

1�� �

� lim inf
T!1

1

T

1

.1 � �/ logE
�
. Q 0T S0T C  T QST /1��

�

� lim inf
T!1

1

T

1

.1 � �/ logE
�
.'0T S

0
T C 'T QST /1��

�

D lim inf
T!1

1

T

1

.1 � �/ logE
�
.'0T S

0
T C 'C

T .1 � "/ST � '�
T ST /

1�� � :

Hence .'0t ; 't / is also long-run optimal for ..1 � "/St ; St /. ut
By putting together the above statements we obtain the following main result:

Theorem 4.7. For a small spread " > 0, and 0 < �=��2 ¤ 1, the process QSt in
Lemma 4.2 is a shadow price. A long-run optimal policy—both for the frictionless
market with price QSt and in the market with bid-ask prices .1� "/St ; St—is to keep
the risky weight Q�t (in terms of QSt ) in the no-trade region
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Œ��; �C� D
�
� � �
��2

;
�C �

��2

�
:

As " # 0, its boundaries have the asymptotics

�˙ D �

��2
˙
 
3

4�

�
�

��2

�2 �
1 � �

��2

�2!1=3
"1=3 CO."/:

The corresponding equivalent safe rate is:

r C ˇ D r C �2 � �2

��2
D r C �2

2��2

� ��2

2

 
3

4�

�
�

��2

�2 �
1 � �

��2

�2!2=3
"2=3 CO."4=3/:

If �=��2 D 1, then QSt D St is a shadow price, and it is optimal to invest all
wealth in the risky asset at time t D 0, never to trade afterwards. In this case, the
equivalent safe rate is the frictionless value r C ˇ D r C �2=2��2.

Proof. First let 0 < �=��2 ¤ 1. Optimality of the strategy .'0t ; 't / associated
to Q�.‡t / for QSt has been shown in Lemma 4.4. The asymptotic expansions are
an immediate consequence of their counterpart for � (cf. Lemma 3.2) and Taylor
expansion. Next, Lemma 4.5 shows that QSt is a shadow price process in the sense
of Definition 4.1. Proposition 4.6 shows that, for small transaction costs ", the same
policy is also optimal, with the same equivalent safe rate, in the original market with
bid-ask prices .1 � "/St ; St .

Consider now the degenerate case �=��2 D 1. Then the optimal strategy in the
frictionless model QSt D St transfers all wealth to the risky asset at time t D 0, never
to trade afterwards ('0t D 0 and 't D 
 C 
0S00 =S0 for all t � 0). Hence it is of
finite variation and the number of shares never decreases from the unlevered initial
position, and increases only at time t D 0, where the shadow price coincides with
the ask price. Thus, QSt D St is a shadow price. The remaining assertions then follow
as in Proposition 4.6 above. ut

The trading boundaries in this paper are optimal for a long investment horizon,
but are also approximately optimal for finite horizons. The following theorem,
which complements the main result, makes this point precise:

Theorem 4.8. Fix a time horizon T > 0. Then, the finite-horizon equivalent safe
rate of the liquidation value „�

T D �0T S
0
T C �C

T .1 � �/ST � ��
T ST associated to

any strategy .�0; �/ satisfies the upper bound

1

T
logE

h
.„

�
T /
1��i 1

1�� � r C �2 � �2
2��2

C 1

T
log.�00� C �0�S0/C �

��2
�

T
CO."4=3/;

(42)
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and the finite-horizon equivalent safe rate of our long-run optimal strategy .'0; '/
satisfies the lower bound

1

T
logE

�
.„

'
T /
1�� � 1

1�� � r C �2 � �2

2��2
C 1

T
log.'00� C '0�S0/

�
�
2�

��2
C '0�S0

'00� C '0�S0

�
"

T
CO."4=3/: (43)

In particular, for the same unlevered initial position (�0� D '0� � 0; �00� D
'00� � 0), the equivalent safe rates of .�0; �/ and of the optimal policy .'0; '/
for horizon T differ by at most

1

T

�
logE

h
.„

�
T /
1��i 1

1�� � logE
�
.„

'
T /
1�� � 1

1��

�
�
�
3�

��2
C 1

�
"

T
CO."4=3/:

(44)

This result implies that the horizon, like consumption, only has a second
order effect on portfolio choice with transaction costs, because the finite-horizon
equivalent safe rate matches, at the leading order �2=3, the equivalent safe rate of the
stationary long-run optimal policy, and recovers, in particular, the first-order asymp-
totics for the finite-horizon value function obtained by Bichuch [3, Theorem 4.1].

Proof (Proof of Theorem 4.8). Let .�0; �/ be any admissible strategy starting from
the initial position .'00�; '0�/. Then as in the proof of Proposition 4.6, we have
„
�
T � QX�

T for the corresponding shadow payoff, that is, the terminal value of
the wealth process QX�

t D �00 C �0 QS0 C R t
0 �sd

QSs corresponding to trading � in
the frictionless market with price process QSt . Hence, Lemma 5 in [21] and the second
bound in Lemma 4.3 imply that

1

.1 � �/T logE
h
.„

�
T /
1��
i

� r C ˇ C 1

T
log.'00� C '0�S0/

C �

.1 � �/T log OE
h
e
. 1� �1/.Qq.‡0/�Qq.‡T //

i
: (45)

For the strategy .'0; '/ from Lemma 4.5, we have „'
T � .1 � "

1�"
�C�
��2

/ QX'
T by the

proof of Proposition 4.6. Hence the first bound in Lemma 4.3 yields

1

.1 � �/T logE
�
.„

'
T /
1�� � � r C ˇ C 1

T
log.'00� C '0� QS0/

C 1

.1 � �/T log OE
h
e.1��/.Qq.‡0/�Qq.‡T //

i

C 1

T
log

�
1 � "

1 � "

�C �

��2

�
: (46)
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To determine explicit estimates for these bounds, we first analyze the sign of Qw.y/ D
w � w0

1�w and hence the monotonicity of Qq.y/ D R y
0

Qw.z/d z. Whenever Qw D 0, i.e.,
w0 D w.1 � w/, the derivative of Qw is

Qw0 D w0 � w00.1 � w/C w02
.1 � w/2

D .1 � 2�/w0w C 2�

�2
w0

1 � w
�
�

w0
1 � w

�2
D 2�w

�
�

��2
� w

�
;

where we have used the ODE (32) for the second equality. Since Qw vanishes at
0 and log.u=l/ by the boundary conditions for w and w0, this shows that the
behaviour of Qw depends on whether the investor’s position is leveraged or not. In
the absence of leverage, �=��2 2 .0; 1/, Qw is defined on Œ0; log.u=l/�. It vanishes
at the left boundary 0 and then increases since its derivative is initially positive
by the initial condition for w. Once the function w has increased to level �=��2,
the derivative of Qw starts to become negative; as a result, Qw begins to decrease
until it reaches level zero again at log.u=l/. In particular, Qw is nonnegative for
�=��2 2 .0; 1/.

In the leverage case �=��2 > 1, the situation is reversed. Then, Qw is defined on
Œlog.u=l/; 0� and, by the boundary condition for w at log.u=l/, therefore starts to
decrease after starting from zero at log.u=l/. Once w has decreased to level �=��2,
Qw starts increasing until it reaches level zero again at 0. Hence, Qw is nonpositive for
�=��2 > 1.

Now, consider Case 2 of Lemma 3.1; the calculations for the other cases follow
along the same lines with minor modifications. Then �=��2 2 .0; 1/ and Qq is
positive and increasing. Hence,

�

.1 � �/T log OE
h
e
. 1� �1/.Qq.‡0/�Qq.‡T //

i
� 1

T

Z log.u=l/

0

Qw.y/dy (47)

and likewise

1

.1 � �/T log OE
h
e.1��/.Qq.‡0/�Qq.‡T //

i
� � 1

T

Z log.u=l/

0

Qw.y/dy: (48)

Since Qw.y/ D w.y/ � w0=.1 � w/, the boundary conditions for w imply

Z log.u=l/

0

Qw.y/dy D
Z log.u=l/

0

w.y/dy � log

�
�� � � ��2

�C � � ��2
�
: (49)

By elementary integration of the explicit formula in Lemma 3.1 and using the
boundary conditions from Lemma 3.3 for the evaluation of the result at 0 resp.
log.u=l/, the integral of w can also be computed in closed form:

Z log.u=l/

0

w.y/dy D
�

�2
� 1
2

��1 log
�

1
1�"

.�C�/.������2/

.���/.�C����2/
	

C 1
2.��1/ log

�
.�C�/.�C����2/
.���/.������2/

	
:

(50)
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As � # 0, a Taylor expansion and the power series for � then yield

Z log.u=l/

0

Qw.y/dy D �

��2
"CO."4=3/:

Likewise,

log

�
1 � "

1 � "

� � �

��2

�
D � �

��2
"CO."4=3/;

as well as

log.'00� C '0� QS0/ � log.'00� C '0�S0/ � '0�S0
'00� C '0�S0

"CO."2/;

and the claimed bounds follow from (45) and (47) resp. (46) and (48). ut

5 Open Problems

In this section we mention three problems for which, in our view, the above approach
holds promise, and the effect of transaction costs is likely to be substantial. Of
course, only future research can shed light on this point.

5.1 Multiple Assets

In sharp contrast to frictionless models, passing from one to several risky assets is
far from trivial with transaction costs. The reason is that, since in the free boundary
problem the unknown boundary has one dimension less than the number of risky
assets, with one asset it reduces to two points only, but with two assets it already
becomes an unknown curve. More importantly, multiple assets introduce novel
effects, which defy the one-dimensional intuition, as we now argue. For example,
consider a market with two risky assets with prices S1t and S2t :

dS1t
S1t

D�1dt C �1dW1
t (51)

dS2t
S2t

D�2dt C %�2dW1
t C �2

p
1 � %2dW2

t (52)

where �1; �1; �2; �2 > 0, % 2 Œ�1; 1�, and W 1;W 2 are two independent Brownian
motions. Even for this simple model with power utility, the solution to the portfolio
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choice problem is unknown. Some recent papers, e.g., [1, 2, 4, 29, 38], offer some
insights—and raise a number of questions.

Recall that the frictionless portfolio in the above model is � D 1
�
†�1�, where

� D .�1; �2/ is the vector of excess returns, and† is the covariance matrix defined
as †11 D �21 , †12 D †21 D %�1�2, and †22 D �22 . In other words:

�1 D �1 � ˇ1�2

�.1 � %2/�21
�2 D �2 � ˇ2�1

�.1� %2/�22

where ˇi D .%�1�2/=�
2
i are the betas of each asset with respect to the other. In

particular, for two uncorrelated assets the portfolio separates, in that the optimal
weight for each risky asset in the market with all assets equals the optimal weight
for the risky asset in a market with that risky asset only. This separation property
is intuitive and appealing, and reduces the analysis of frictionless portfolio choice
problems with multiple uncorrelated assets to the single asset case. Liu [30]
and Guasoni and Muhle-Karbe [20] show that such a separation carries over to
transaction cost models with exponential utility.

Surprisingly enough, separation seems to fail with constant relative risk aversion,
in that the width of the no-trade region for each asset is affected by the presence
of the other, even with zero correlation and logarithmic utility. For example, the
heuristics in [29] yield the following width for the no-trade region of the first asset,
compare their equation (50):

H1 D
�
3"

2�21

��
1

2
�0†�1�C �21

�
�21 � �1�21

��1=3
: (53)

This quantity clearly depends also on �2 and �2 through the total squared Sharpe
ratio �0†�1�, even with zero correlation, and hence differs from the width of the
no-trade region with a single risky asset:

h1 D
�
3"

4
�21 .1 � �1/

2

�1=3
: (54)

Further, a simple calculation shows that, if % D 0, then:

H3
1 � h31 D 1

2�41

�
�1�2

�1�2

�2
: (55)

In other words, the no-trade region in the larger market is always wider than the
no-trade region with one asset, and they coincide only if either asset is useless (�1 D
0 or �2 D 0). In all other cases, the presence of an independent asset increases
the no-trade region of the others, presumably because the variation of the position
in each asset becomes less important for the overall welfare of the investor than
with a single asset. This observation clearly runs against the common wisdom of
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fund-separation results for frictionless markets, and has potential implications for
intermediation and welfare.

Note that in a frictionless market an investor with power utility is indifferent
between trading two uncorrelated assets with Sharpe ratios �1=�1, �2=�2, and
a single asset with Sharpe ratio

p
.�1=�1/2 C .�2=�2/2, that is, squared Sharpe

ratios and in turn equivalent safe rates add across independent shocks. The above
observation suggests that this property no longer holds with transaction costs, and
an important open question is to understand the welfare difference between the two
markets. If the two-asset market is more attractive, then investors benefit from access
to individual securities rather than only to a limited number of funds, in contrast
to classic fund-separation results. Of course, the question is whether this effect is
indeed present and large enough to be relevant.

5.2 Predictability

Can future stock returns be predicted with public information? And what increase in
welfare can one expect from this information? Predictably enough, these questions
have generated a voluminous literature, which evaluates the statistical significance
as well as the in-sample and out-of-sample performance of several predictors that
focus either on stock characteristics, such as the dividend-yield and earnings-price
ratio, or interest rates, such as the term-spread and the corporate-spread.

Perhaps less predictably, this voluminous literature remains divided between the
weak statistical significance of several models, and the strong economic significance
of parameter estimates. On the one hand, the standard errors of the predictability
parameters are of the same order of magnitude as the parameter estimates them-
selves; on the other hand, these estimates—if valid—imply a substantial welfare
increase. These opposing viewpoints are discussed in [45], who offer a critical
view of the empirical literature, and find that most models have poor out-of-sample
performance, and [7], who argues that the absence of predictability in dividend
growth implies the presence of return predictability.

Kim and Omberg [27] introduce a basic model with predictable returns, based on
one asset with price St , and one state variable 
t :

dSt =St D.�C ˛
t /dt C �dW t ; (56)

d
t D � �
tdt C dBt : (57)

Here 
t represents a state variable, like the dividend yield, that helps predict future
returns, in that the conditional distribution of ST =St at time t depends on 
t . The
two Brownian motionsW and B typically have a substantial negative correlation %.
The parameter ˛ controls the predictability of returns, with ˛ D 0 corresponding to
the classical case of IID returns.
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In such a market, expected returns change over time, mean-reverting to the
average �. Such variation is detrimental for an investor who adopts the constant
policy � D �

��2
, which is optimal for ˛ D 0, because time-varying returns increase

the dispersion of the final payoff. However, the investor can benefit from market
timing, that is the ability to adopt an investment policy that depends on the current
value of the state variable 
t . This point is easily seen for logarithmic utility, for
which the optimal portfolio is �t D .�C˛
t/=�2, and the corresponding equivalent
safe rate has the simple formula:

lim
T!1

1

T
E
�
logX�

T

� D �2

2�2
C ˛2

4��2
: (58)

This expression shows that the investor benefits from stronger signals (larger ˛) and
from slower mean reversion of the return rate (smaller �), and the same conclusion
broadly applies to power utility, even though the formulas become clumsier, as the
optimal portfolio includes an intertemporal hedging component that is absent in the
logarithmic case.

The above calculation underlies most estimates of the economic significance
of predictability, but obviously ignores transaction costs. This omission may be
especially important, as market timing requires active trading, which in turn entails
higher costs. In short, while the potential benefit of predicability is clear from the
frictionless theory, its potential costs are blissfully ignored, but may be substantial,
and a priori may or may not offset benefits.

Remarkably enough, the above model with transaction costs has never been
solved, even for logarithmic utility. Intuitively, the solution of this model should
lead to a buy curve ��.
/ and to a sell curve �C.
/, which describe the no-trade
region for each value of the state variable 
t . Still at an intuitive level, the width
of the no-trade region should be wider for values of 
 that are farther from zero,
since the portfolio is increasingly likely to return towards the frictionless optimum
without trading.

At the technical level, the model includes two state variables: the predictor

t , and the current risky weight �t . The presence of two state variables in turn
implies that the value function satisfies an elliptic linear partial differential equation
within the no-trade region, along with the boundary and smooth-pasting conditions
at the boundary. The difficulty is to characterize the shape of the no-trade interval
Œ��.
/; �C.
/�, as a function of the state 
t , along with its implied equivalent
safe rate.

Solving such a model can contribute to the predictability debate by clarifying the
extent to which the ability to forecast future returns can translate into the ability to
deliver higher returns by trading. When transaction costs are included, it may turn
out that potential benefits of market timing are minimal, even if return predictability
is statistically significant.
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5.3 Options Spreads

Options listed on stock exchanges display much wider bid-ask spreads than their
underlying assets. While the spread on a large capitalization stock is typically less
than ten basis points, even the most liquid at-the-money options have spreads of
several percentage points. To the best of our knowledge, there seems to be no
theoretical work that links the bid-ask spread of an asset to the spread of its options.
The closest research appears to be that on stochastic dominance bounds [9–11],
which should be satisfied in equilibrium among utility maximizers. Interestingly,
Constantinides et al. [12,13] report frequent violations of these bounds, even among
commonly traded options.

Of course, in a frictionless, complete market, both spreads are zero, and the
option is replicated by a trading strategy in the underlying asset. The problem is
that introducing a bid-ask spread for the underlying asset immediately makes the
notion of option price ambiguous. Even if the asset follows a geometric Brownian
motion, with transaction costs the superreplication price of any call option equals the
stock price itself [43]. Similarly, the subreplication price is zero. Thus, one cannot
interpret the bid and ask prices of the option as replication bounds, if the intention
is to obtain a realistic spread.

In contrast to the previous two problems, in which the model is clear and the
challenges are mathematical, this question poses some conceptual issues at the
outset. One possibility is to interpret the bid and ask prices of the options as marginal
prices in a partial equilibrium setting. For example, suppose that the bid and ask
prices of the asset are exogenous, and follow geometric Brownian motion, with a
constant relative bid-ask spread. Suppose also that a representative investor freely
trades this asset, and a European option with maturity T , as to maximize utility from
terminal wealth, either at the same maturity, or at some long horizon.

Since options, unlike stocks, exist in zero net supply, assume that the represen-
tative investor’s optimal policy is to keep a zero position in the option at all times.
In a complete frictionless market, this condition uniquely identifies the option price
as the unique arbitrage-free price. With transaction costs, it leaves more flexibility
in option price dynamics. Indeed, consider the shadow price corresponding to the
utility maximization problem. Since the shadow market is complete, the shadow
asset price uniquely identifies a shadow price for the option as the conditional
expectation under the risk-neutral probability. For an option of European type with
payoffG.ST /, the latter will then be a function g.t; St ; Yt / of time, the current stock
price, and the current value of the state variable measuring the ratio of risky and safe
positions.

Now, suppose that to the original (not shadow) market one adds the option,
with a price dynamics equal to the shadow option price, and zero spread. This
market is equivalent to the one with the asset only: by contradiction, if some trading
strategy delivered a higher utility than the optimum in the asset-only market, the
same strategy would also deliver the same or higher utility in the shadow market
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(by domination), thereby contradicting the definition of a shadow market. Now, the
shadow option price depends on the state variable, which is unobservable since
market makers cannot see the private positions of market participants. However,
taking the pointwise maxima g.t; St / D maxy2Œ0;log.u=l/� g.t; St ; y/ and minima
g.t; St / D miny2Œ0;log.u=l/� g.t; St ; y/ over all values of Yt 2 Œ0; log.u=l/�, one can
obtain observable upper and lower bounds on the option price, which depend on the
asset price alone. Such bounds are natural candidates for bid and ask prices of the
option, because they are the minimal observable bounds that an option price needs
to satisfy if its net demand has to be zero.

The question is whether this construction can predict bid-ask spreads that are
consistent with the ones observed in reality, hence much wider than those of the
underlying asset.
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