
Chapter 2
ISDEP

2.1 Introduction

As we said in previous chapters, Integrator of Stochastic Differential Equations for
Plasmas (ISDEP) is a code devoted to solve the dynamics of a minority population of
particles in a complex 3D fusion device. ISDEP is becoming a rather complex code,
with more than 104 lines. It is adapted to four different fusion device geometries
(two stellarators and two tokamaks). In this Chapter we discuss the basic structure of
the code and the tools used to analyze the data in Sect. 2.2 and benchmark the code
in Sect. 2.3. With benchmark we mean the comparison of the ISDEP results with
another similar code, in order to assure that ISDEP is free of programming errors.
We end this Chapter with an overview of the previously published results in Sect. 2.4.

The main improvements of the code performed during the elaboration of this
thesis are related with the measurements and analysis of the particle distribution
function (Sects. 2.2.5 and 2.2.6) and its adaptation to three new fusion devices (in
Sect. 2.3 for the benchmark and in Chaps. 3 and 4).

We start with a description of the code.

2.2 Description of the Code

ISDEP was created under the CIEMAT1-BIFI2-UCM3 collaboration in 2007 and is
in continuous development and improvement. From a physical point of view, ISDEP
solves the Neoclassical (NC) transport avoiding several common approximations of
the standard NC theory implemented in existing transport codes.
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As an example, it makes use of the Cartesian coordinates instead of the Boozer
coordinates [1], generally used in this code class. Boozer coordinates are specific
coordinates for magnetically confined plasmas, but they do not allow the represen-
tation of magnetic islands, ergodic zones in the magnetic field or points in space
outside the plasma boundary, where the field lines are open. Boozer and magnetic
coordinates are only well defined for nested magnetic surfaces but not for those
topologies. Therefore, Cartesian coordinates are better suited for our goal. Other
common approximations that we can avoid with ISDEP are related to the typical
radial width of the particle orbits in the device and the diffusive nature of the trans-
port processes. The particle orbit width is usually assumed to be small compared
with the typical distances of the problem, but in many real situations this is not actu-
ally the case. Finally, the kinetic energy of the studied particles does not need to be
conserved in ISDEP, oppositely to the neoclassical approximation. This allows us the
inclusion of strong electric fields and study their effects on ion dynamics. In addition,
this code was designed to run on grid architectures, propelling the development of
this computing platforms.

As we previously said, ISDEP considers a minority population of test particles,
for which we may choose among several options. This minority population can
be thermal particles, obtaining then specific information for the plasma bulk that
is not given by the plasma equilibrium. The test particle can also be fast particles
coming from heating systems, studying then their interaction with thermal particles.
Furthermore, although we have not considered the case yet, ISDEP has the potential
to handle impurity dynamics.

There exist many computer codes devoted to solve the Neoclassical transport. For
example, the codes DKES, NEO-MC and MOCA study similar physics, but with
some peculiarities and different approximations. Some of these neoclassical codes
have been benchmarked and compared in Ref. [2].

• Drift Kinetic Equation Solver (DKES) [3] is a well established code that solves the
linearized Drift Kinetic Equation using a functional minimization method. It takes
the effective radius and the particle energy as input parameters and then solves the
transport equations in the remaining three dimensions.
DKES solves a FP type equation and computes the whole transport matrix [2]
using Boozer coordinates, calculating also the Bootstrap current and the paral-
lel conductivity. Unfortunately it presents some drawbacks that ISDEP avoids. It
assumes diffusive nature in the transport, infinite fast parallel transport, conserva-
tion of kinetic energy and narrow radial excursions of the particle. Moreover, it
neglects the poloidal component of the ∇B drift and approximates

E × B
B2 ∼ E × B

〈B2〉 . (2.1)

The use of Boozer coordinates means that the code can be used only when one
has nested magnetic surfaces and cannot be used in the scrape-off-layer.
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Computationally, it scales unfavorably with the number of magnetic field Fourier
modes, but it is very fast in high collisionality regimes. This code gives large error-
bars for the transport coefficients in the long mean free path regime for complex
magnetic configurations. Indeed it is not adequate to study complex 3D devices in
a low collisionality regime.

• NEO-MC [4] solves the same equations as DKES but using a Monte Carlo method
instead. NEO-MC has been designed to specifically calculate the Bootstrap current
in 3D fusion devices. The main advantage of NEO-MC is that it reduces strongly
the errorbars of the transport coefficients for any collisional regime.
In order to improve the accuracy of the code to estimate the Bootstrap current,
the effect of trapped and barely trapped particles is considered specifically. The
velocities of two particles that are moving in opposite directions are subtracted,
thus creating a quasi-particle and the number of test particles is increased in the
barely trapping regions. Most of the computing time is devoted to follow particles.
This improves the scalability, although this code is more expensive in computing
resources than DKES. Like DKES, NEO-MC is subjected to the neoclassical
ordering. Thus, NEO-MC cannot avoid such approximations that are not present
in ISDEP. On the other hand, NEO-MC calculates also for the electrons and, hence,
allows one to estimate the self-consistent radial electric field from the ambipolar
condition. NEO-MC, like DKES, also assumes nested magnetic surfaces.

• MOCA [5] is another Monte Carlo code developed at CIEMAT ten years ago.
MOCA is an evolution of the MCT code [6] and it calculates the radial diffusion
coefficients (diagonal part of the transport matrix), using Boozer coordinates for
the spatial position and Coulomb collisions for the interaction between particles.
It usually scales better than DKES, but it does not allow for the bootstrap current
calculation in its first version. Opposite to ISDEP, MOCA works in Boozer coor-
dinates and is subjected to the neoclassical ordering, but calculates for both ions
and electrons.

• MOHR [7] is another guiding center orbit code that solves the Fokker-Planck
equation for ions. MOHR is a very similar code to ISDEP indeed. The main
differences rely on the statistical error calculation.

Once we have the mathematical model of the particle dynamics from Chap. 1, we
describe the Monte Carlo method used in ISDEP, the architecture of the code and
the statistical techniques needed to obtain global results from a set of independent
trajectories. Then we present an overview of previous ISDEP results and, finally, the
ISDEP code is benchmarked with MORH in Sect. 2.3.

2.2.1 The Monte Carlo Method

The basis of the Monte Carlo method used in ISDEP relies on the equivalence between
the Fokker-Planck and Langevin equations [8]. The Fokker-Planck equation is a lin-
ear partial differential equation for a distribution function of a minority population of

http://dx.doi.org/10.1007/978-3-319-00422-8_1
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particles (called test particles) that interact with a static background. The Langevin
approach is equivalent to this description, but providing Stochastic Differential Equa-
tions (SDE) [8] for a single test particle motion (see Sect. 1.4). Integrating many test
particle trajectories and analyzing the results is mathematically equivalent to obtain
the solution to the original Fokker-Planck equation.

ISDEP integrates the trajectories taking into account collisions with ions and
electrons from the background, the electrostatic potential and the confining mag-
netic field. The statistical analysis of many test particles allows the measurements
of different plasma parameters, like average energy, confinement time or even the
marginal distribution function of the test particle population.

In order to reduce computational requirements, the Guiding Center (GC) approx-
imation, described in Sect. 1.3, is used in the code. The GC coordinates chosen are
(x, y, z, v2, λ), where (x, y, z) are the guiding center space coordinates, v2 is the
normalized particle kinetic energy and

λ = v · B/(B v) (2.2)

is the pitch. In the Fokker-Planck description, the time evolution of the distribution
function f (x, t) is given by the convective (Fi (x, t)) and the diffusive transport
(Gi

j (x, t)) in the 5D phase space:

∂ f (x, t)

∂t
= ∂

∂xi

(
−Fi (x, t) + 1

2

∂

∂x j
Gi

k(x, t)Gkj (x, t)

)
f (x, t) . (2.3)

The equivalent set of Stochastic Differential Equations (SDE) in Itô’s sense [8]
(i.e. Langevin equations) is:

dxi = Fi (x, t) dt + Gi
j (x, t) dW j . (2.4)

The explicit form of Fi and Gi j has been discussed in Eqs. (1.34), (1.35) and
(1.36). Now the coordinates in phase space xi refer to the movement of a single
particle, whose trajectory is determined by the background via Fi and Gi

j . The

Wiener process, dW j (t) (see Sect. 1.4) represents the random part of the interaction
with the plasma.

In the case of interest, the problem consists of a SDE system of five equations with
two Wiener processes. The SDEs can be transformed to the Stratonovich convention
because it is more suitable for several numerical methods. In Sect. 1.4 the reader can
find a short review of probability theory and stochastic calculus, which provide the
necessary tools for the calculations of this thesis.

Once N trajectories are integrated and stored, we can reconstruct the distribution
function accumulating the particle path in phase space:

f (x, t) ∝ 1

N

N∑
i

δ(x − x(t)). (2.5)

http://dx.doi.org/10.1007/978-3-319-00422-8_1
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http://dx.doi.org/10.1007/978-3-319-00422-8_1
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Since ISDEP calculates f according to the time that the particles spend in a given
point of the phase space, the Jacobian of the coordinates x is included in f (x, t).
In addition, due to the linear nature of ISDEP, f (x, t) is not exactly a distribution
function because all its results have implicit a normalization constant. This means
that ISDEP can calculate the intensive properties of the test particles (average energy,
average lifetime, etc), but needs some extra information to compute the extensive
properties (total energy contained, total electric current, etc).

With the proper normalization, f (x, t) can be taken as a probability density of
the test particle ensemble in phase space.

2.2.2 ISDEP Architecture

ISDEP is programmed in C to maximize its performance and portability and was
designed to scale perfectly in distributed computing platforms such as grid or volun-
teer computing architectures. It does not require external libraries other than the stan-
dard C libraries. Consequently, the scaling in massive parallel computers is almost
linear. The operation of the code is briefly summarized in the following steps:

Initialization

After compiling, a copy of the executable and the input files are sent to each comput-
ing node, or copied into a file-system common to all nodes. The input files contain
the plasma background data, the confining magnetic field and trajectory details (time
step, numerical algorithm chosen, etc). The first stages of the execution of the code
are invested in initializing the random number generator, the magnetic field array
and the trajectory itself. The magnetic field array contains all the information related
to the magnetic configuration of the device. Part of this array is read from a file (e.g.,
B) and the remaining is calculated (e.g., ∇B) in order to save CPU time in the next
steps. The interpolations in this array are linear, provided that the spatial grid is dense
enough. The typical distance between two nodes in the magnetic grid is <1 % of the
size of the device so the magnetic field is smooth enough. The size of the magnetic
array may be ∼400 MB, representing most of the memory that ISDEP uses.

The trajectories are initialized according to a given distribution. If one deals with
bulk ions, the spatial distribution is given by the plasma density. In velocity space the
distribution is locally Gaussian in v2 and uniform in λ. Alternatively, when dealing
with suprathermal ions, ISDEP can read the output of a neutral beam injection code,
like FAFNER2 [9], to calculate the initial test particle distribution (see Chap. 4).

Orbit Iintegration

After the initialization routines, every node starts to integrate trajectories indepen-
dently of each other. The statistical independence is guaranteed reading the random

http://dx.doi.org/10.1007/978-3-319-00422-8_4
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seed locally in the node. Then the orbits are integrated and the data written in a file.
A description of the numerical methods used in ISDEP can be found in Sect. 1.4.4.
This is the most CPU time consuming stage.

There are two main output files in ISDEP: trajectory files (OUT.DAT) and his-
togram files (OUT.HIS). In the former the 5D position in phase space is stored for
each trajectory at selected times. Since we are interested in the plasma evolution time
scales, the measurement times are chosen to be approximately equidistant in loga-
rithmic scale. The latter contains histograms of different particle quantities (energy,
distribution function, rotation velocity, radial flux, ...). In order to increase statistics
the following technique is applied in the histograms: assuming that the evolution of
the system is slow, one may take all the measurements at times t ∈ (0.9 t0, 1.1 t0)
belonging to t0. In this way the statistical errors are significantly reduced.

Analysis

The output of each node is stored in a particular node and is analyzed with the
ISDEP analysis tools. Many physical quantities are calculated in this stage, like
average energy, velocity profiles, steady state distribution function and escape points.
ISDEP uses the jack-knife method for all statistical error estimation [10], described
in Sect. 2.2.3. Some output analysis, related to Sects. 2.2.5 and 2.2.6 is done using
the Python programming language.

Table 2.1 summarizes the profiles measured with ISDEP, as functions of the effec-
tive radius and time. In addition, ISDEP calculates the global average of all these
magnitudes as a function of time. Finally, the distribution function of the test particles
is obtained, but averaging in the magnetic surfaces: f (t, ρ, v||, v⊥).

The particle escape distribution is presented as a list of points in phase space:
(ti , xi , yi , zi , v

2
i , λi ), being ti the escape time of the i th particle. A lot of information

can be extracted from this list with little effort. For example, accumulation of losses
in a region of the device can produce severe damage to the device, and ISDEP can
help to prevent this effect.

It is essential to mention that ISDEP requires some feedback to determine the
time discretization parameter �t . The usual procedure to determine �t requires at
least two simulations with ISDEP. First one must decide what statistical accuracy in
the output is needed, usually around 5 %. This errorbars can be diminished knowing
that they scale with N−1/2, being N the total number of trajectories integrated. Then,
starting with some reasonable value of �t , ISDEP is run for �t/2, �t/5, �t/10 . . .

until the results are the same within the statistical errorbars. This procedure must be
done for each simulation to ensure that the statistical errors are always larger than
the discretization errors.

Figure 2.1 shows the workflow of ISDEP in a distributed computing architecture
like the grid.

http://dx.doi.org/10.1007/978-3-319-00422-8_1
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Table 2.1 ρ-dependent
profiles calculated with
ISDEP. Each one is presented
as a function of time

1D profile observable meaning

ρ Average effective radius
(ρ − ρ0)

2 Deviation from the initial position
θ Poloidal angle
E Total energy [units of mc2/2]
v2 Normalized kinetic energy
κv Binder cumulant of v: κv = 〈v4〉/〈v2〉2

λ Pitch angle
vb Parallel velocity, in units of c
v2

b Parallel kinetic energy
κvb Binder cumulant of vb

vϕ Toroidal velocity
v2
ϕ Normalized toroidal kinetic energy

κvϕ Binder cumulant of vϕ

vθ Poloidal velocity
v2
θ Normalized poloidal kinetic energy

κvθ Binder cumulant of vb

vr Radial velocity
v2

r Normalized radial kinetic energy
κvr Binder cumulant of vr


 Radial particle flux
Q Radial energy flux
z Average z coordinate

2.2.3 Output Analysis: Jack-Knife Method

ISDEP incorporates the Jack-Knife method [10] for output analysis. This method is
a robust and simple algorithm for the statistical error calculation.

Let us consider a set of N independent, identically distributed vector random vari-
ables, Xi , i = 1, . . . , N , and a nonlinear function f of the expectation values 〈X〉. By
a vector random variable, we intend a set of M physical quantities that are measured
on the same experiment (or numerical simulation) Xi = (X (1)

i , X (2)
i , . . . , X (M)

i ). Of
course, the components of Xi can be statistically correlated, but they are independent
in the subscript i .

The problem that the Jack-Knife method solves is that of computing the statistical
error for our estimator of f (〈X〉). The procedure takes care at once of two problems:
(i) it treats correctly the statistical correlations among the components of Xi and
(ii) it avoids the instabilities caused by the non-linear nature of the function f .

As an example, we may think of X (m)
i as the energy of the i th particle at time tm .

Even thought there will be no correlation between particles, obviously the energy
of a given particle is correlated in time with itself. Thus, the calculation of the time
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Fig. 2.1 ISDEP workflow on the grid. First, the magnetic field file is copied to a Storage Element
(SE) and the jobs submitted to the Worker Nodes (WN). The WN retrieve copies of the magnetic
field file from the SE, integrate a certain number of trajectories specified by the user and compress
the result. When finished, all output files are copied back to the User Interface (UI) and then locally
analyzed

differences in the kinetic energy requires a method that includes correlations between
measurements.

The Jack-Knife procedure is as follows:
We first compute the average of the random variables as
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X = 1

N

N∑
i=1

Xi , (2.6)

and construct the estimator for f (〈X〉)

f = f
(
X

)
. (2.7)

A direct computation of the statistical error using the random variables fi = f (Xi )

would be impractical (unless f is nearly a linear function). On the other hand, an
error propagation computation requires to take into account the statistical correlations
of the different components of Xi . A simple alternative procedure consist in the
following. First define the (non independent) random variables

XJK
i = 1

N − 1

N∑
j=1; j 	=i

X j , (2.8)

and
f JK
i = f (XJK

i ), (2.9)

then compute the Jack-Knife estimate for the statistical error of f

� f =

√√√√√(N − 1)

⎡
⎣ N∑

i=1

( f JK
i )2

N
−

(
N∑

i=1

f JK
i

N

)2⎤
⎦ . (2.10)

Note that the error is proportional to the square root of the number of blocks,
rather than to 1√

N
. The number of blocks should be large enough, say 50, so this

technique works properly. It is straightforward to show that the Jack-Knife method
gives the same results as Eq. (2.11) for linear functions.

f = 1

N

N∑
1

fi , �
f

Linear−only =
√

f 2 − f
2

N − 1
. (2.11)

2.2.4 Computing Platforms

Since the communication between nodes is zero, ISDEP is able to run in several
computing platforms: high performance computing (HPC) and distributed platforms.
The scaling with the number of nodes is, in all cases, almost linear as we mentioned
above.

In distributed platforms there is no fast communication between the nodes. On the
contrary, a huge number of nodes are available. These nodes are very inhomogeneous
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in performance and characteristics, so ISDEP should be as stable as possible to
minimize the problems caused by this fact. Grid and volunteer computing are the
main resources used. Grid is provided by the Fusion Virtual Organization (EGEE4

[11] and EGI-InSPIRE5 projects). The volunteer computing projects Ibercivis [12]
and its precursor Zivis [13] have provided hundreds of thousands of CPU hours.
Moreover, they had an important role in the divulgation of fusion science in Spain
and Portugal. ISDEP was designed from the early steps to run on Grid architectures,
but it had to be adapted to volunteer computing.

High Performance Computing (HPC) consists of a set of nodes (cluster) located in
the same facility, characterized by fast communication between nodes. In this work,
HPC time is provided by the EULER cluster at CIEMAT. EULER is formed by 1,152
Xeon cores (13.8 Tflops), connected with Infiniband.

2.2.5 Steady State Calculations

The steady state of a system is a time-invariant state in which the particle and heat
sources and sinks are in equilibrium with each other. The sinks in ISDEP are caused
by the lost particles that escape from the plasma and hit the vacuum vessel. In
ISDEP we calculate the steady state of the test particle distribution, using the Green
function’s formalism, following Ref. [14]. Let f (x, t) be the distribution function
of our system, t the time, x the coordinates in phase space, L a differential operator
over f and S(x, t) the source term. With this notation, the problem is expressed as:

L ( f (x, t)) = S(x, t). (2.12)

In the case of interest f (x, t) is the minority particle distribution function, L is
the Fokker Planck operator for the guiding center and Boozer-Kuo-Petravic collision
operator and the source is the continuous injection of particles into the plasma,
computed with other MC codes. The Green function G(x, t; x0) is defined such that

L (G(x, t; x0)) = δ(x − x0) δ(t), (2.13)

with x0 playing the role of initial position. Then:

f (x, t) =
∫

dt0 dx0 G(x, t − t0; x0) S(x0, t0), (2.14)

because

L ( f (x, t)) =
∫

dt0 dx0 L (G(x, t − t0; x0)) S(x0, t0) = S(x, t). (2.15)

4 Project number EGEE-III INFSO-RI-222667, http://public.eu-egee.org/.
5 Project number EGI-InSPIRE RI-261323, www.egi.eu.

http://public.eu-egee.org/
www.egi.eu
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Note that the only contribution to this integral comes when t = t0. In the systems
studied here the source is assumed to be constant in time. This is in agreement with
the linear description of the problem because the background plasma is kept constant.
Thus, this technique should not be used in combination with the inclusion of nonlinear
terms (see Sect. 2.2.7) neither for time varying plasmas. Then S(x, t) = S(x) and:

f (x, t) =
∫

dt0 dx0 G(x, t − t0; x0) S(x0) (2.16)

=
∫

dt0

∫
dx0 G(x, t − t0; x0) S(x0). (2.17)

Defining
H(x, t − t0) =

∫
dx0 G(x, t − t0; x0) S(x0), (2.18)

the distribution function becomes a time integral:

f (x, t) =
∫ t

0
dt0 H(x, t − t0) =

∫ t

0
dt0 H(x, t0). (2.19)

Except for a multiplicative constant, the function H(x, t) is calculated by ISDEP after
integrating 105 −106 test particle trajectories and analyzing the results. Furthermore,
H(x, t) is the solution to Eq. 2.15 using S(x, t) = S(x) δ(t) as a source term. Finally,
with a 1D numerical integration, f (x, t) can be easily found. In fact, for sufficient
large times, it is expected that f (x, t) is constant in time, becoming f (x), because
of the balance between continuous injection and particle losses (the number of the
test particles always goes to zero if the source is a delta in time). Using the Jack-
Knife method [10], one can estimate the average and statistical error of any plasma
magnitude.

Due to its linear nature, ISDEP cannot provide absolute values of f , so the results
are usually presented normalized. Nevertheless, real values can be calculated multi-
plying f times the incoming flux of particles.

2.2.6 NBI-Blip Calculations

NBI-Blip experiments are plasma discharges in which the NBI heating system is
switched on for a small period of time in the discharge duration [15]. This injector
pulse, with length tB > 0, is represented mathematically with the Heaviside function
in the source term:

S(x, t) = S(x) (�(t) − �(t − tB)). (2.20)

Then, using the formalism introduced in the previous section:

f (x, t) =
∫

dt0

∫
dx0 G(x, t−t0, x0)S(x) (�(t) − �(t−tB)) = f1(x, t) + f2(x, t).

(2.21)
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The first term in Eq. 2.21 is:

f1(x, t) =
∫ t

−∞
dt0

∫
dx0 G(x, t − t0, x0) S(x)�(t) (2.22)

=
∫ t

0
dt0

∫
dx0 G(x, t − t0, x0) S(x) (2.23)

=
∫ t

0
dt0 H(x, t − t0). (2.24)

This is the usual procedure to calculate the steady state of f1(x, t). When t is
large, f1 becomes independent of t . The second term is then:

f2(x, t) = −
∫ t

−∞
dt0

∫
dx0 G(x, t − t0, x0) S(x)�(t0 − tB) (2.25)

= −
∫ t

tB

dt0

∫
dx0 S(x, t − t0, x0) S(x) (2.26)

= −
∫ t

tB

dt0 H(x, t − t0). (2.27)

Adding both expressions together:

f (x, t) = f1(x, t) + f2(x, t) (2.28)

=
∫ t

0
dt0 H(x, t − t0) −

∫ t

tB

dt0 H(x, t − t0) (2.29)

=
∫ tB

0
dt0 H(x, t − t0). (2.30)

Notice that it is implicit in the equations that t0 < t . Keeping this in mind, two
extreme cases are:

• tB = 0 ⇒ f (x, t) = 0.
• tB = t ⇒ f (x, t) → f1(x, t), the very same one from previous section. When

tB is very large, then f (x, t) = f (x).

2.2.7 Introduction of Non Linear Terms

The physical description of the plasma implemented in ISDEP is a linear theory
so, in principle, the background plasma is not modified. But here we propose a
method to modify the background profiles, i.e. including some non-linearities. As
of yet, only modifications in the background temperature are considered through
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an iterative process. The developed procedure can be applied to the density or any
quantity estimated as a moment of the distribution function.

For the test particles ensemble, the temperature profile is taken to be the average
kinetic energy in an interval of �ρ = 0.1 centered in ρ at a time t : v2(ρ, t). Let qi

be the quotient of the average kinetic energy in the i th iteration (v2
i ) and the original

energy profile (v2
0):

qi (ρ, t) = v2
i (ρ, t)

v2
0(ρ)

. (2.31)

Then, in the iteration i +1 we take as temperature the initial profile, multiplied by qi :

Ti+1(ρ, t) = T0(ρ, t) qi (ρ, t). (2.32)

Since the coordinates (ρ, t) are discretized, a linear interpolation is done to obtain
T (ρ, t) at arbitrary position and time. We stop iterating when Ti+1(ρ, t) = Ti (ρ, t)
within error bars, which is the final self-consistent profile. This method has been
used in [16] and will be shown in Sect. 2.4. An example of this procedure can be
found in Fig. 2.2, where the test particle energy profile is plotted for a simple tokamak
with ICRH heating assuming a Gaussian power deposition profile. In the figure, the
energy profile increases due to the external energy input and converges to a stable
value after 6 iterations.
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Fig. 2.2 Example of the iterative procedure. We modify the background temperature of a test
tokamak with ICRH. The profile converges after 6 iterations
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2.3 Benchmark of the Code

The benchmark of ISDEP is performed in different tests to check the validity of the
results presented in this thesis and related works. First, the guiding center motion
without collisions is compared with another orbit code [17] with a nice coincidence
of the results. Then the collision operator is tested by estimating the energy slowing
down time and comparing it with the standard theory. Finally, the particle diffusion
in a circular tokamak geometry is compared with the one estimated by the code
MORH (Monte-Carlo code based on Orbit following in the Real coordinates for
Helical devices) [7].

In the first step a proton trajectory in the Stellarator TJ-II (see Chap. 4 for more
details on the device) is compared with the calculated by means of the code used
in [17]. Both trajectories start at the same initial point and for the first times the
agreement is good, as can be seen in Fig. 2.3. After some toroidal turns around TJ-II
the numerical errors in the interpolation of B accumulate and the trajectories start to
differ. These results show that this module of ISDEP is validated.

The collision operator is validated in a small circular tokamak with characteristics
R0 = 1 m, a = 0.2 m, B ∼ 1 T. We consider flat profiles to avoid the influence
of the transport, and only one background species (Ti = 100 eV, ni = 1020 cm−3).
A population of test particles with T (t = 0) 	= Ti is evolved with ISDEP in velocity
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Fig. 2.3 Same trajectory in TJ-II calculated with ISDEP (green line) and the code in [17] (red line).
The initial point is (x, y, z, v2, λ) = (1.7, 0.1, 0.1, 10−6c2, 0.44). The energy is conserved in all
the trajectory
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Fig. 2.4 Comparison of
the energy slowing down
frequency νS calculated with
ISDEP and the NC prediction.
The vertical line corresponds
to the ion thermal velocity
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space but not in position. In this way the effect of the collision operator is isolated.
These test particles tend to thermalize with certain frequency depending on the initial
temperature. Fitting the test particle temperature with T (t) = Ti + Ae−t/νS we
can calculate the slowing down frequency and compare with the theory [18]. The
theoretical expression of νS is:

νS = 8πe4n ln ��(x)

m2v3 , (2.33)

with the notation of Sect. 1.3.2. A good agreement between our calculations and the
theory is found, as can be seen in Fig. 2.4, so we also consider the collision operator
validated.

As a final test, both ISDEP and the Monte Carlo code MORH [7] are adapted to
the small tokamak used here, but with more realistic profiles and including a radial
electric field (see Fig. 2.5). In order to include 3D features a small ripple (1 %) is
considered, following [19] (this will also be used in Chap. 3). In addition, test particles
collide with ions and electrons of the background plasma, taking Ti = Te, ni = ne.

Fig. 2.5 Plasma profiles
of the tokamak used in the
benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ρ

T [keV]
n [1019 m-3 ]

V [kV]

http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_3


44 2 ISDEP

 0

 5

 10

 15

 0  0.2  0.4  0.6  0.8  1

f(
ρ ,

t)

ρ

t  = 10 -4 s
MOHR
ISDEP

 0

 5

 10

 0  0.2  0.4  0.6  0.8  1

f (
ρ,

t)

ρ

t  = 10 -3 s

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1

f(
ρ ,

t)

ρ

t  = 0.01 s

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1

f(
ρ,

t)

ρ

t  = 0.1 s

Fig. 2.6 Diffusion of particles in a circular tokamak geometry calculated with ISDEP (green) and
MORH (red). The initial state in both cases is f (ρ, t = 0 s) = δ(ρ − 0.5)

In both simulations a population of test particles is launched from ρ = 0.5 in position
and with a Maxwellian distribution in velocity space. The 1D test particle distribution
function f (ρ, t) is plotted in Fig. 2.6 for several times, comparing the results of both
codes. Also the average radial velocity 〈vρ〉 and the persistence P(t) are plotted
in Fig. 2.7. The persistence is defined as the fraction of surviving particles. The two
codes present a general good agreement. In Fig. 2.6 ISDEP and MORH reproduce the
same dynamics of f (ρ, t), both in the width and in the asymmetry. The differences
in vρ are due to the different integrators used in the two codes, but they are not
statistically significant. The accumulation of numerical errors cause a discrepancy
in the persistence for t > 0.01 s (see Fig. 2.7). The particle loss conditions are much
more sensitive to numerical errors than other quantities of the plasma. The average
radial velocity calculated with ISDEP is compatible with MOHR, although it is a
very noisy quantity (Fig. 2.7).

As a conclusion, we consider that the ISDEP code is benchmarked.

2.4 Overview of Previous Physical Results

Previously to the elaboration of this thesis, ISDEP has been already used in fusion
science for the following purposes.
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Fig. 2.7 Average radial velocity and test particle persistence calculated with ISDEP (green) and
MORH (red)

2.4.1 Thermal Ion Transport in TJ-II

ISDEP has been mainly applied to the TJ-II stellarator [20]. A first work calculating
the transport of thermal ions in ECRH plasmas was published in [21]. The thermal ion
transport in absence of ion-electron collisions was calculated in that paper, where
the violation of the Neoclassical local ansatz was explicitly shown. Additionally,
this work estimated the poloidal accumulation of particles and deviation of the test-
particle distribution function from de Maxwellian. From these data, a first estimate
of the ion contribution to the bootstrap current was provided.

2.4.2 CERC and Ion Confinement

A particular effect, known as the Core Electron Root Confinement (CERC) was
simulated in [16], exploring its influence on ion confinement. CERC means the
enhancement of the electron heat confinement with the onset of a strong positive
radial electric field. Collisions with electrons and the self consistent scheme for
plasma temperature modification was implemented here with a complex workflow
on the Fusion Virtual Organization of the EGEE Grid. The conditions of the plasma
before and after the transition to CERC were simulated. The variation of the radial
electric field and the rising of the electron temperature were the ingredients required
to reproduce the experimentally observed rise of the ion temperature.

2.4.3 Violation of Neoclassical Ordering in TJ-II

Non-diffusive features of the radial transport in TJ-II can be found in [22], showing
that even this linear collisional model is enough to find non-diffusive transport in plas-
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mas. The radial transport was estimated for ions at different radial locations and differ-
ent plasma regimes. A rough estimate of the Hurst exponent (which quantifies the dif-
fusivity of transport) was extracted from the simulations. The local ansatz was shown
to be approximately fulfilled for plasmas heated by Neutral Beam Injection (NBI).

2.4.4 Flux Expansion Divertor Studies

The last previous paper on TJ-II included a detailed study of escape particles and
divertor effects [23]. The 3D fluxes on the plasma wall were calculated in several
configurations in order to exploit their potential as flux expansion divertor. The
toroidal and poloidal resolution available in ISDEP was a key factor in the proposal
of a new divertor at TJ-II.
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