On the Formulation of Inverse Problem
in Electrical Prospecting

V.P. Gubatenko

Abstract The following inverse problem can be formulated for the isotropic
geological medium with applications in electrical prospecting: The electromagnetic
field is measured on the surface of the ground. Find the distribution of electrical
conductivity ¢ and magnetic permeability L of the geological medium. We consider
a simplified mathematical formulation of this problem in the frequency domain,
assuming that the parameters of the geological medium o and u possess the
frequency dispersion.

1 The First Inverse Problem

Assume, x, y, and z are the Cartesian coordinates in Euclidean space. Our goal is to
find the coefficients o and u of Maxwell equations

rotH=0c E, @))]
rotE = iou H 2

in region V = {M(x,y,z) €R*|z>0} (in the ground). Here, E = E (M,i®) =
E(x,y,2,i0) = (Ey,Ey,E;) and H = H(M,iw) = H (x,y,z,i0) = (Hy,H,,H;) are
the complex amplitudes of electric and magnetic fields in the ground, respectively, i
is the imaginary unit, and ® is the angular frequency.

Let the unknown parameters 6 = 0 (x,y,z,i®) and g = U (x,y,z,iw) of the
medium satisfy the conditions
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o (M,iw) #0, u (M, iw) # 0, 3
Reo (M,iw) > 0, Imu (M,iw) <0, 4)
o (M,iw) e CEN V), u(M,iw) € CK1(V), k>3 )

Here, the restrictions (3) and (4) indicate the feasibility of the physical parameters
of the medium, and the Eq. (5) is the condition of smoothness.

Since the parameters of the medium make available measurements near the
ground, we assume that their distributions on the surface z = 40 are known:

0=0"(xy,+0,i0), u=p(xy+0,in). (6)
Suppose also that vector fields E and H are known on the surface z = +0:
E=E"(x,y,40,i0), H=H"(x,y,+0,iw), (7

where E = E (x,y,+0,i0) = (E2,E0,E?), H = H (x,y,+0,iw) = (H,H?,H?).

yr =z
Then Egs. (1) and (2) on the surface z = 40 can be written as
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Here, —= , = s ol and —2 are the partial derivatives of
9z z=+0 9z z=+0 9z z=+0 9z z=10

the electromagnetic field components along the coordinate z on the surface z = +-0.

Relations (6)—(9) can be taken as the boundary conditions of the inverse
problem. However, comparing the expression (7)—(9), we see that the functions
appearing in them are dependent. For example, if E? # 0, then as independent



On the Formulation of Inverse Problem in Electrical Prospecting 23

JE JE
ol ,and —2 .
az z=+0 az z=+0
In this case, the function HQ,HS,HZO is defined by conditions (9). Then, ¢ =
0% (x,y,40,im) is determined from the last equality of Eq.(8), and functions
OH, 9H,
9z z:+0’ 9z z=+0
same conditions.
Thus, the boundary conditions for the inverse problem can be written as

functions can be selected pt = (x,y,+0,i®),E?, E?, E?,

Xy

are determined from the first and second equations of the

u=p’(x,y,40,iw), Ec=E>(x,y+0,iw), E,=E)(x,y+0,i0),
(10)

JE,
=@ (x,,+0,i0), == =y (x,,+0,i0),
az z=+0

Eyx

E. = E? (x,y,+0,i0), >

z=+0

where the functions in the right-hand sides of equalities are known. In the case of
EZO = 0 to the boundary conditions (10) we add

o =0"(x,y,40,im).

Note, that from Egs. (1), (2) and conditions (4), (5) we obtain

E (M,iw) e CK(V), H (M,in) € C*(V), (11)
lim E(M,i0) =0, lim H(M, i) =0. (12)

We can assume that the vector fields E and H are not identically zero in the region
V, and it follows from conditions (3). The same is true for rotE and rotH.

As follows from the formulation of the inverse problem, the solution to this
problem exists, but not its uniqueness is obvious. Clearly, if we could found any
solution o = 6 (E,y,z,i®) and u = {i (E,y,z,i®) of this problem, then for these
parameters there exists a unique solution of Maxwell equations (1) and (2) with
respect to the vector fields E, H. The following question arises: can we reduce the
first inverse problem to the problem of finding the vector field E? To answer this
question, we formulate the next inverse problem.

2 The Second Inverse Problem

Let the scalar functions o, ¢t and vector fields E, H still satisfy the conditions (3),
(5) and (11), (12), and at the same time the vector fields are not identically equal to
zero in the region V. Let us formulate the following inverse problem:

Suppose, in region 'V is given a vector field E. Find in the region 'V the field scalar
functions o, U and vector H, turning the relationships (1) and (2) to identity.
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A similar problem can be considered for the given vector H and the unknown
functions o, u, E. However, we will not discuss this problem separately, taking into
account the symmetry of the Egs. (1) and (2) with respect to the formal replacement
E~H, iou+ o, called the principle of duality commutes [6].

Lemma 1. For the existence of the second inverse problem is necessary and
sufficient that the unknown scalar function | is a solution of the differential equation

1
E X rot (—rotE> =0 (13)
u
except for solutions L of the equation

rot <lr0tE) =0. (14)
u

Remark to Lemma 1. If the function u is a solution of Eq. (14), the unknown vector
H is identically zero.

Lemma 2. If for a given vector E there exists a solution of the second inverse
problem, then at any point M € V or

(E(M),rotE(M)) =0, (rotE(M),rotrotE(M))=0,

(E(M),rotE(M))#0, (rotE(M),rotrotE(M)) # 0.

Remark to Lemma 2. If (E,rotE) # 0, (rotE,rotrotE) # 0 at some point M € V
then since the scalar functions are continuous, there exists a neighborhood of this
point at which these inequalities are true. Therefore, when setting the vector E in the
second inverse problem, we consider two cases: or (E,rotE) =0, (rotE,rot rotE) =
0 in the area, or (E,rotE), (rotE,rot rotE) are not identically zero in any subregion
V. The first case corresponds to the orthogonal vectors E and H, but the second
case is not orthogonal. The first case includes, for example, three-component flat
and axisymmetric electromagnetic fields, and the second- five-component transverse
electric and transverse magnetic fields [8].

Theorem 1. If the vector field E is a solution of the nonlinear equations
(E,rotE) =0, (rotE,rotrotE) =0, (15)

then for a given vector E, the solution of the second inverse problem exists and is
not unique.

The proof of this theorem is based on the theory of the linear partial differential
equations of the first order and common solutions to these equations by means of
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characteristic systems [5]. After finding the solutions of Eq. (13) and after removing
solutions of Eq. (14) from solutions of Eq. (13), we can determine functions ¢ and
H as follows:

O = - ! E,rot l1r0tE , H:;rotE. (16)
ioE? u iou

We note here that the first equality of Eq. (16) is determined from
1 .
rot ﬁrotE =iwoE. a7

Theorem 2. Let the vector E is given in the region V and (E,rotE) # 0,
(rotE,rot rotE) # 0 in this region. For the existence solution of the inverse problem,
it is necessary and sufficient that the vector E is the solution of the nonlinear
equation

rotF* =0, (18)
where
1 . [ (rotE,rot rotE) 1
F* = ! E|rotE+ ——— (E x rot rotE).
(rotE,rot rotE) 1v [ (E,rotE) ] roth + (E,rotE) (E x rotrotE)

The general solution u of the second inverse problem has the form
M
U= Uo (iw)exp(/ Fxde—i—Ffdy—i—EEdz) (19)
IMy '

where F¥ = (FF,FF FE); M(x,y,z) € V, Mo(x0,0,20) € V; the function o (i)
is arbitrary and does not depend on the coordinates. Electrical conductivity and
magnetic field are determined by formulas (16). Let us consider the following

inverse problem.

3 The Third Inverse Problem

As follows from Theorems 1 and 2, the vector field E is accompanied by a family
of functions {E,H, i, o}, which becomes an identity equation (1) and (2) then and
only then, when the vector field E satisfies to the Egs. (15) or (18). Of course, not
every vector field E under these conditions uniquely determines the scalar functions
o, U, which obey the conditions of physics Eq. (4). For a single determination of
the parameters of the medium in accordance with Theorems 1 and 2, we require a
priori information on the distribution of the permeability function u in the region V.
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Suppose, for example, here and below, it = tip=4m - 10~7 H/m, which corresponds
to the sedimentary rocks studied in the structural electrical prospecting. In this case,
as for the orthogonal fields E, H, and also for the non-orthogonal fields, vector E
must be a solution of the equation

E xrotrotE =0. (20)

Then the first inverse problem is reduced to the following inverse problem:

The Inverse Problem 3.1. Find the solution of Eq. (20) satisfying to the boundary
conditions

E;=E{(x,y,40,i0),  Ey=E)(x,y+0,i0), (21)

E,
0z

) JE
= (P(xa)% +Oalw)7 a_Zy

=y (x,y,40,i0)
z=+0

E.=E? (x,y,+0,iw) #0,

z=+0

and in the case when E, =0

0=0"(xy,+0,i0), E;=E?(x,y40,iw), E,=E)(x,y,+0,i0), (22)

J0E,
0z

JOE.
:(p(x7y7+ouiw)7 8_zy ZW(x7y7+07iw)'

z=+0

z=+0

If the first inverse problem with boundary conditions (10) has a unique solution,
then the electric field intensity E for the inverse problem 3.1 is also unique. Having
determined the field E of the inverse problem 3.1, we easily find from (16) functions
oand H.

Let us show on a simple example of the classical model of the magnetotelluric
sounding that the solution as of the first inverse problem such that for the inverse
problem 3.1 is not unique in the case of the frequency dispersion of the electrical
conductivity.

Suppose that in the half-space z > 0 is situated nonmagnetic medium with
electrical conductivity o = o (z,i®), and let us initialize an electromagnetic field
E = (E,(z,i®),0,0), H= (0,H, (z,i®) ,0) with orthogonal vectors E and H. Then
in the half-space z > 0, Eq. (20) [or Eq. (17)] has the form

2
4 Ex +iolyoE, =0. (23)
dz?
Assume that the surface boundary conditions (22) have the form

dE,
dz

o’ (0,iw) =0y, Ex= E° (io), =¢(in)=— —iwuocoEO (i), (24)

z=+0
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where oy = const > 0; Re\/—impg > 0; E° (i) is an arbitrary complex function of
angular frequency . It is easy to see that there are at least two solutions of the first
inverse problem and the inverse problem 3.1. These solutions are

c=0y, E.=E°(iw)exp(—koz) (25)

and

2
1 K4k (ki — ko) (2ko — ky) z + “itkiko)” 2

o= —- _ : (26)
1ol 1+ (ki —ko)z+ @Zz
ki —ko)?
Er = E° i) |1+ —ko) 24+ 2R 2 o i,

2

where kg = \/—i0U0p; k| = /—IOUOY, O] = const, Gy < 0] < 40y.

Solution (25) corresponds to a quasi-stationary field in the homogeneous half-
space z > 0 with conductivity o = 0y and the solution (26)—the gradient frequency-
dispersive medium. It is easy to show that Rec > 0, Imo < O for this medium, and
all @ > 0, such that this model is the frequency-dispersed medium and this medium
is physically realizable. This result, however, does not contradict to the uniqueness
theorem [9], since this theorem is proved under the assumption of the absence of the
frequency dispersion of electrical conductivity o.

This example shows that in order to find the unique solution of the inverse
problem it is necessary to know the additional information about the nature of the
frequency dispersion of conductivity. If, for example, we know that the unknown
scalar function does not depend on the angular frequency @, we use the method
developed by Klibanov and Beilina for hyperbolic coefficient inverse problems
[1-4,7].

Indeed, since the conductivity is determined by the formula (16) and does not
depend on the angular frequency, then

1
% W(E,rotrotE) =0, 27)

and we can formulate the next inverse problem:

The Inverse Problem 3.2. Find the solution E of Egs. (20) and (27) satisfying to
(21) under the condition E? (x,y,40,iw) # 0, or (22) in the case of E, = 0.

The solution to this inverse problem exists and is unique, at least for the one-
dimensional inverse problem of magnetotelluric sounding. After finding a solution
to this problem, it is easy to find the electrical conductivity o of relationship (27).
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