Chapter 2
An Introduction to Fully Nonlinear Parabolic
Equations

Cyril Imbert and Luis Silvestre

Abstract These notes contain a short exposition of selected results about parabolic
equations: Schauder estimates for linear parabolic equations with Holder coeffi-
cients, some existence, uniqueness and regularity results for viscosity solutions
of fully nonlinear parabolic equations (including degenerate ones), the Harnack
inequality for fully nonlinear uniformly parabolic equations.

2.1 Introduction

The literature about parabolic equations is immense and it is very difficult to have
a complete picture of available results. Very nice books such as [LSU67, Kryl87,
Dong91,Lieb96] are attempt to gather and order the most significant advances in this
wide field. If now one restricts himself to fully nonlinear parabolic equations, the
task is still almost impossible. Indeed, many results proved for parabolic equations
were first proved for elliptic equations and these results are numerous. We recall
that many problems come from geometry; the reader is referred to the survey paper
[Kryl97] where Krylov gives historical and bibliographical landmarks.

In these notes, we will focus on three specific topics concerning parabolic
equations: Schauder estimates for linear parabolic equations (following Safonov
[Saf84] and the textbook by Krylov [Kryl96]), viscosity solutions for fully nonlinear
parabolic equations (see e.g. [CIL92]) and the Harnack inequality for fully nonlinear
uniformly parabolic equations.
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2.1.1 Main Objects and Notation

Geometric Objects

We first consider a connected open bounded set  C RY. We refer to such a set as a
domain. A domain is C2 if, locally, the boundary of the domain can be represented
as the graph of a function with two derivatives that are a-Ho6lder continuous.

Parabolic equations are considered in cylindrical domain of the form (0, 7') x €.
The parabolic boundary of (0, T') x Q2 is denoted by 9, (0, T') x 2; we recall that it
is defined as follows

0,(0,T) x Q = {0} x QU (0,T) x 0Q.
The open ball of R? centered at x of radius p is denoted by B o(x). If x =0, we

simply write B,,. The following elementary cylindrical domains play a central role
in the theory: for all p > 0 and x € R?, we define

Qp(t,x)=(t - 0%, 1) X B,(x).
When we write Q,, we mean Q,(0, 0). It is also convenient to write
Qp(tsx) = (t,x) + 0,

and

Q, = p0.

A Linear Operator

The general parabolic equation considered in Sect. 2.2 involves the following linear
operator

u

32
8x,~ an

9
Lu= Za,j(z,x) + Zb,-(t,x)a—; +e(t, X
L] 1

The set of d x d real symmetric matrices is denoted by S;. The identity matrix
is denoted by 1. For A, B € S;, A > B means that all the eigenvalues of A — B are
non-negative.

Unknown functions u : (0, 7) x  — R depend on two (set of) variables: t € R
and x € RY. It is convenient to use a capital letter X to refer to (¢, x) € RY*1,
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The time derivative of u is either denoted by % or d;u or u;. Du denotes the

gradient of the function u with respect to the space variable x. D?u denotes the
Hessian matrix of the function u with respect to x.
The linear operator introduced above can be written as follows

Lu = trace(AD?u) + b - Du + cu

where A = (a;);;.

Holder Spaces and Semi-norms

We say that u € C%*(Q) for Q C (0,T) x Q if u is 5-Holder continuous
with respect to time ¢ and «-Holder continuous with respect to space x. The
corresponding semi-norm is denoted by [u]«,o. See Sect. 2.1.4 for details.

2.1.2 Fully Nonlinear Parabolic Equations

We first emphasize the fact that we will not consider systems of parabolic equations;
in other words, we will focus on scalar parabolic equations. This means that the
unknown function # will always be real valued. We also restrict ourselves to second
order parabolic equations.

We consider parabolic equations posed in a domain @ C R?; hence, unknown
functions u are defined in (0,7) x Q with T € [0,00]. In order to construct
solutions and prove uniqueness for instance, initial and boundary conditions should
be imposed. However, we will very often not specify them.

Fully nonlinear parabolic equations appear in optimal control theory and geom-
etry. Here are several significant examples.

e The Bellman equation

0%u du
du+supqy— ) aji(x + ) bf(x)— ¢ +Au=0.
o sup ZJ 5 Z g T
* The mean curvature equation
D*uDu - Du

ou= Au= Dul?
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* The parabolic Monge—Ampere equations proposed by Krylov in [Kryl76]

9
_a_? det(D%u) = H+!
ou d+1
—det(D%u) + [5 + H} =0 .1
—det (Dzu — %1) = H*
ot

where H = H(¢, x, Du) is a nonlinear first order term.
* For the study of the Kédhler—Ricci flow, one would like to study:

% — In(det(D%)). 22)

2.1.3 Aim of These Notes

Our goal is to construct solutions and study their regularity. One would like
to construct classical solutions, that is to say solutions such that the derivatives
appearing in the equation exist in the classical sense and satisfy the equation. But
this is not always possible and it is sometimes (very often?) necessary to construct
weak solutions. They are different notions of weak solutions; we will focus in these
notes on so-called viscosity solutions. The advantage is that it is easy to construct
such solutions. One can next try to prove that these solutions are regular.

Before 1988 (date of publication of [Jens88]), it was popular (necessary) to
construct solutions of fully nonlinear elliptic (or parabolic) equations by using the
continuity method. To apply it, it is necessary to get appropriate a priori estimates
(on third derivatives for instance, or on the modulus of continuity of the second
ones).

The situation changed dramatically when Jensen [Jens88] managed to apply the
viscosity solution techniques of Crandall-Lions [CL81] to second order elliptic
and parabolic equations. In particular, he understood how to adapt the so-called
doubling variable techniques to prove uniqueness. Ishii also contributed to this
major breakthrough. The reader is referred to the survey paper [CIL92] for further
details.

Before presenting the viscosity solution techniques and some selected regularity
results for these weak solutions, we will present shortly the classical Schauder
approach to linear parabolic equations.
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2.1.4 Spaces of Holder Functions

Because we study parabolic equations, Holder continuity of solutions refers to
uniform continuity with respect to

p(X,Y) = /|t —s|+ |x —y]

where X = (¢,x) and Y = (s, y). In other words, solutions are always twice more
regular with respect to the space variable than with respect to the time variable.

Remark 2.1.1 (Important). The reader should keep in mind that, following Krylov
[Kryl96], we choose to write u € C 0. for functions that are o-Holder continuous
in x and §-Holder continuous in 7. This choice is made first to emphasize the link
between regularities with respect to time and space variables, second to simplify
notation.

Let Q C (0,T)x Qand @ € (0, 1].

s u € C%(Q) means that there exists C > 0 s.t. forall (¢, x), (s, y) € Q, we have
Ju(t. x) = u(s, )| = C(It = 5|7 + |x = y[*).

In other words, u is %-Hﬁlder continuous in ¢ and «-Holder continuous in x.

e u € C"¥(Q) means that u is D‘T+1-H(51df:1r continuous in ¢ and Du is a-Holder
continuous in x.

s u € C>%(Q) means that g—’t‘ is 5-Holder continuous in 7 and D?u is a-Holder
continuous in x.

We also consider the following norms and semi-norms.

oo = sup |u(X) —u(Y)]
“e xreoxzy PX,Y)

lulo.0 = sup [u(X)|
Xeo

ou
e = | 5|+ 1D%ho
a,0
ou )
|u|24a,0 = lulo,0 + 5 + [Dulo,o + |D"ulo.0 + [u]24a.0-
0,0

We will use repeatedly the following elementary proposition.

Proposition 2.1.2.

[uv]e.0 < lulo.o[V]e.0 + |Vl0.0[Ula.0
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and fork = 0,2,

[+ V]ita.0 < [Uli+a.0 + [V]kta.0-

The following proposition implies in particular that in order to control the norm
|tt|244,0, it is enough to control |u|o,o and [u]r4q4,0-

Proposition 2.1.3 (Interpolation inequalities). For all ¢ > 0, there exists C(g) >
0 s.t. forallu € C>°,

LMoo < elulorao + C(@)|uloo.
[Dule.o < elu]z+a.0 + C(&)|ufo,0. (2.3)
[ulo,o = élu]z+a,0 + C(e)|ulo.o-

The following proposition is a precise parabolic statement of the following
elliptic fact: in order to control the Holder modulus of continuity of the gradient of
u, it is enough to make sure that, around each point, the function u can be perturbed
linearly so that the oscillation of u in a ball of radius r > 0 is of order '™,

Proposition 2.1.4 (An equivalent semi-norm). There exists C > 1 such that for
allu € C*%(Q),

C_l [u]/2+oz,Q = [u]2+a,Q = C[“]/2+a,Q
where

(W00 = sup sup pe

inf |lu— P
€Q p>0 Pe7>2| |0»Qp(X)ﬂQ

where
1
’Pzz{ott+p-x+EXx-x—}—c:a,ceR,pERd,XESd}.

The reader is referred to [Kryl96] for proofs of the two previous propositions.

2.2 Schauder Estimates for Linear Parabolic Equations

In this first section, we state a fundamental existence and uniqueness result for linear
parabolic equations with Holder continuous coefficients.

The proof of this theorem is rather long and presenting it completely is out of the
scope of the present lectures notes. Instead, we would like to focus on two particular
aspects: uniqueness and interior estimates.
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The uniqueness of the solution is proved by using a maximum principle
(Sect.2.2.3), the existence can be obtained through the continuity method. This
method relies on the proof of the “good” a priori estimate (2.4) on any C > solution.
This estimate is global in the sense that it deals with what happens at the interior
of (0,7) x @ and at its boundary. In Sect.2.2.5, we focus on what happens in
the interior of the domain. Precisely, we present a complete proof of the interior
Schauder estimate in the general case. It relies on Schauder estimates for parabolic
equations with constant coefficients. The derivation of these estimates are presented
in Sect. 2.2.4 by studying first the heat equation. We present here an argument due
to Safonov circa 1984.

2.2.1 Linear Parabolic Equations

The standing example of linear parabolic equations with constant coefficients is the
heat equation

2 Au=
o Au=J

where f is a source term. The general form of a linear parabolic equation with
variable coefficients is the following

Za,,( ) o —Zb(X)——c(X)u—O
where
c<0
and A(X) = (a;(X));; is a symmetric matrix satisfying one of the following
assumptions

¢ (Degenerate ellipticity) for all X, A(X) > 0;
* (Strict ellipticity) there exists A > 0 s.t. forall X, 1 A(X) > A[;
¢ (Uniform ellipticity) there exists A > A > 0 s.t. forall X, ATA(X) < Al.

We recall that I denotes the identity matrix and if A, B € S;, A > B means that all
the eigenvalues of A — B are non-negative.
It is convenient to consider the linear differential operator L defined as follows

Lu= ZaU(X) +Zb (X)— + c(X)u.
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2.2.2 A Fundamental Existence and Uniqueness Result

In this subsection, we state a fundamental existence and uniqueness result for linear
parabolic equation with Holder continuous coefficients. Such a result together with
its proof can be found in various forms in several classical monographs such as
[LSU67, Kryl96]. We choose here to present the version given in [Kryl96].

In the following statement, R‘fl denotes [0, +00) X R4,

Theorem 2.2.1. If Q is a C2% domain and the coefficients A,b,c € C¢
((0.7) x Q) and f € C*R4T), g € C*F((0,T) x Q), h € C**(RY), and
g and h are compatible (see Remark 2.2.3 below), then there exists a unique
solutionu € C>*(Q) of

B Au=f in(0,T)xQ

u=g on (0, +00) x 0
u=nh on {0} x Q.
In addition,
[Ul24a0.1)x0 < C(|f|a,R‘f‘ + |glota0.1)x@ + |Alryard) (2.4

where C = C(d, A, K, a, pp, diam(2)) and K = |Als,0.r)xe + |bls,0rxe +
le]s.0.1)xq and po is related to the C** regularity of the boundary of Q.

Remark 2.2.2. The inequality (2.4) is called the (global) Schauder a priori estimate.

Remark 2.2.3. The fact that data g and /& are compatible has to do with conditions
ensuring that a solution which is regular up to the boundary can be constructed.
Since we will not address these problems, we refer the interested reader to [LSU67,
Kryl96] for a precise definition.

2.2.3 Maximum and Comparison Principles

Maximum principles are powerful tools to study elliptic and parabolic equations.
There are numerous statements which are not equivalent. We choose the follow-
ing one.

Theorem 2.2.4 (Maximum principle). Consider a bounded continuous function
u:(0,T)x Q — R such that g—’t‘ exists at each point of (0, T) x Q and Du, D’u
exist and are continuous in (0, T) x Q.
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If

%—LufOin(O,T)xQ

u<00nd,(0,7)xQ

thenu < 0in (0,T) x Q.

Remark 2.2.5. The set 9,(0,T) x  is the parabolic boundary of the cylindrical
domain (0, T') x 2. Its definition is recalled in the section devoted to notation.

Proof. Fix y > 0 and consider the function v(¢, x) = u(t,x) — 7. Assume that
v is not non-positive. Then its maximum M on (0, T') x € is positive. It is reached,
and it cannot be attained for t = O or x € 92 sincev <u <00n d,(0,7) x Q. It
can neither be attained for t = T since v — —oo as t — T —. We conclude that the
maximum is attained for some ¢ € (0, T) and x € Q. In particular,

B_U
ot
0 = Duv(t,x) = Du(t, x)

_ Ou y
(t.x) = (6. %) — 5

0= T -1

0> D?v(t,x) = Du(t, x).
Remark that since A is (uniformly) elliptic, the linear operator satisfies
Lu(t, x) = trace(AD?*u) + b - Du + cu = trace(AD?u) + cu < trace(AD*u) < 0

since u(t,x) > v(t,x) > 0,c <0, A > 0and D?u(t, x) < 0. We now use the fact
that u satisfies % — Lu <0in (0,T) x L to get the desired contradiction:

Ju
(TVT)Z = 5-(t.3) < Lu(.x) <0.

Since y is arbitrary, the proof is complete. O

We now state two corollaries. The first one will be the starting point of the second
section (Sect. 2.3). In the framework of linear equation, it is a direct consequence of
the previous result.

Corollary 2.2.6 (Comparison principle I). Consider two bounded continuous
functions u and v which are differentiable with respect to time and such that first
and second derivatives with respect to space are continuous. If
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%—Luﬁfin(O,T)xQ (2.5)

ad
a—lt)—LvZfin(O,T)xQ

andu <vind,Q, thenu <vin (0,T) x Q.

Remark 2.2.7. Remark that this corollary implies that as soon as u satisfies (2.5),
it lies below any solution of % — Lu = f. This is the reason why it is referred to
as a subsolution of the equation % — Lu = f. In the same way, v lies above any

solution and is referred to as a supersolution.

Remark 2.2.8. In view of the previous remark, we can reformulate the result of
the previous corollary as follows: if a subsolution lies below a supersolution at the
parabolic boundary then it lies below in the whole cylindrical domain.

The next result contains a first estimate for solutions of linear parabolic equa-
tions.

Corollary 2.2.9 (A first estimate). Consider a bounded continuous solution u of
g—’t‘ — Lu = fin (0,T) x Q. Assume moreover that it is differentiable with respect
to time and continuously twice differentiable with respect to space. Then

lulo.o.ryx < T flo.r)xe + 1€lo.s,0.1)xa-
Sketch of proof. Consider vE = u & (|glo.0,0.1)xe + | f l0.0.r)x«) and check that

v is a supersolution and v~ is a subsolution. Then the previous corollary yields the
desired result. O

2.2.4 Schauder Estimate for the Heat Equation

2.24.1 Statement and Corollary

The “interior” Schauder estimate for the heat equation takes the following form.

Theorem 2.2.10. Let o € (0, 1) and consider a C*® function u : R+ — R with
compact support and define f = g—’t‘ — Au. Then there exists a constant C > 0 only
depending on dimension and o such that

[u]z_i_a’Rd-ﬁ-l S C[f]ade+l .

It is then easy to derive a similar “interior”” Schauder estimate for linear uniformly
parabolic equation with constant coefficients and no lower order term.
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Corollary 2.2.11. Let « € (0,1) and assume that A = Ay in R and b = 0,
¢ = 0. Then there exists a constant C > 0 only depending on dimension and a such
that for any C*° function u with compact support

[Ulptoritt < C[flyrati

where [ = g—’t‘ — Lu.

Sketch of proof. The proof consists in performing an appropriate change of coor-
dinates. Precisely, we choose P € S, such that 4y = P2 and consider v(z, x)
= u(t, Px). Then check that Av = trace(49D?u) = Lu and use Theorem 2.2.10.

O

2.2.4.2 Two Useful Facts

Before proving Theorem 2.2.10, we recall two facts about the heat equation. We
recall first that a solution u € C* of

— —Au=f
r Au=/

with compact support included in (0, +-00) x R¥, can be represented as

u(t,x) = /o /]Rd G(s,y) f(t —s,x — y)dsdy

where

_?
G(t,x) = —(4th)d/2e
We write in short hand
u=Gxf,

keeping in mind that G should be extended by O for # < 0 in order to make this
rigorous. This formula can be justified using Fourier analysis for instance.

Factl. Forany0 <p <R,
|G * 1g,zl0.0,z0) < CR?

where 19,z (Z) = 1if Z € Qr(Zy) and 0 if not.
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Fact 2. There exists a constant C > 0 such that any solution of% = Ahin Qr(0)
satisfies

" s 10,0 0)
D h(O)‘ < C o

where a = (@1, ...,a), |a| =), a; and D*h = gy—%l e %h.
This second fact can be proved by using Bernstein’s techniques. See [Kryl96,
Chap. 8, p. 116].

2.2.4.3 Proof of the Schauder Estimate

The following proof is due to Safonov circa 1984. It is presented in [Kryl96]. Krylov
says in [Kryl97] that “[he] believes this proof should be part of a general knowledge
for mathematicians even remotely concerned with the theory of PDEs”.

Recall that the C % regularity can be established “pointwise”. Indeed, in view of
Proposition 2.1.4, it is enough to be able to find a polynomial P which is linear in
time and quadratic in space such that the oscillation of the difference between « and
P decreases as p>*“ in a box of size p. The natural candidate for P is the “second
order” Taylor polynomial of the function itself. The idea of Safonov is to perturb
this natural candidate in order to reduce to the case where f = 0.

Proof of Theorem 2.2.10. Without loss of generality, we can assume that the com-
pact support of u is included in (0, +00) x R?.

Take Xo € R*! p > 0and K > 1 to be specified later. Let Q denote
O (k+1)p(Xo) and take ¢ € C°°(RY*!) with compact support and such that { = 1
in Q.

We consider the “second order” Taylor polynomial associated with a function w
at a point X = (¢, x)

Txw(s,y) = w(X)+w (X)(s—1)+ Dw(X)-(y —s) + %DZW(X)(y—X)'(y—X)-

‘We now consider

g = (CTX()u)t - A(CTXOM)-

In view of properties of ¢,

g = f(Xo)in Q.
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Keeping this piece of information in mind, we can write for X € Q,

u_TXou:”_CTXou:G*(f_g)
=h+r

with
h=Gx((f—-81g) and r=Gx*((f— f(X0)lp)
where Q¢ = R?*!\ Q. Remark in particular that
hi —Ah=0in Q.
Now we estimate
lu — Txyu — Txyhlo.0,x0) < |h — Txohlo.0,x0) + 17l0.0,(x0)

and we study the two terms of the right hand side.
We use Fact 1 to get first

|r|0qu(X()) = [f]oc,Q(K + l)apoch * 1Q|0,QP(X0)
< C(K + 170> [ fla0-

We now write for X € Q,(Xo),

19

(2.6)

2.7

h(X) = h(Xo)+hi(0,x)(t —10) + Dh(Xo) - (x — xo) + %Dzh@)(x—xO)-(x—xO)

for some 6 € (f,¢) and ® = (1, yo) € Q,(Xo). Hence, we have

h(X) — Tx,h(X) = (h:i (6. x) — hi(X0))(1 — 10)

+ 3 (D?(©) = Dh(Xo)(x — %) - (x — x0)

from which we deduce

[h(X) = Tx,H(X)| < p*[h (6, x) = hi(Xo)| + p*| D*h(©) — D*h(Xo)|.

2.8)
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We now use Fact 2 in order to get

2 ph

32
—h
at

ot? te

0,0,(Xo)

|h — Tx,hlo.0,xp) < o (PZ

Ova(XO))
+Cp’|D*hlo.0,(x0)

< C('(Kp)™ + p*(Kp)™> + p*(Kp))Ihlog

<C(K™* 42K ¥|hloo

< CK|hlog
by choosing K > 1. We next estimate |4y o as follows

|nlo.o < |lu—Txou—rloo < |u—Tx,ulo.o + |rlo.0
< C(K + D™ 0> ([ulz4a.0 + |[flu0)

where we used (2.8) for u instead of & and we used (2.7). Then, we have

(K + 1)2+a
K3

Combining (2.6), (2.7) and (2.9), we finally get

|h — Txyhlo.0,x) = C P> ([Ula4a0 + [flu0)-

p_(2+a)|lxt — TX()u - TX()h|0,Qp(X0) S C(K + 1)2+a[f]a’Q

(K+ 1)2+a
T

2.9

([ul240.0 + [fa.0)-

In view of Proposition 2.1.4, it is enough to choose K > 1 large enough so that

(K + 1)>*
T

=

N =

to conclude the proof of the theorem.

2.2.5 Schauder Estimate in the Case of Variable Coefficients

Theorem 2.2.12. Consider a function u € C>*((0,T) x R?) for some a € (0, 1).

Then there exists C = C(d, «) such that

[“]2+a,(0,T)><]R“’ <C ([f]a,(o,r)de + |”|0,(0,T)><Rd)

where [ = g—’t‘ — Lu.
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Remark 2.2.13 (Notation). In the remaining of this subsection, it is convenient to
write semi-norms as [+ 44 instead of [ 14 (0. 7)xre» £ = 0, 2. In the same way, |- |o
Stands for | . |0,(0,T)X]Rd'

Remark 2.2.14. Recall that by Corollary 2.2.9, one has
lulo < T'luy — Lulo + |u(0, ) [opa-

Before giving a rigorous proof, we would like first to explain the main idea.

Main idea of the proof of Theorem 2.2.12. Assume first that there are no lower
order terms (¢ = 0 and b = 0).

In a neighbourhood of X, € R?*!, the coefficients of the linear operator L are
frozen: the linear operator with constant coefficients is denoted by L. If X is close
to Xy, then L is not very far from L and this can be measured precisely thanks to
the Holder continuity of coefficients.

Use first Corollary 2.2.11:

[Uote < Clus — Lou]y < Cluy — Lu]y + C[Lu — Lou]y.
Now control [Lu — Loyu], thanks to [u],+, and conclude.
Next, lower order terms are treated by using interpolation inequalities. O

Let us now make this precise and rigorous.

Proof of Theorem 2.2.12. We first assume that » = 0 and ¢ = 0. Let f denote
du
= — Lu.
A
Let ¢ € (0,7/2) and y < ¢/2 be a positive real number to be fixed later and

consider X; and X, such that
[Ue]g (e 7—e)xre = 20(X1, X2) ™| (X1) — ur (X2)|

where we recall that p(X1, X3) = /|t — 62| + [x1 — x2| if X; = (¢, x;),i = 1,2.
If p(X1, X2) > y, then we use interpolation inequalities (2.3) in order to get

[Ue]o (e, 7—e)xrd < 27 |uelo

1
< Z[u]2+a + C(y)|ulo.

If p(X1, X2) < y, we consider ¢ € C°(R¢*!) with compact support such that
(X)) = 1if p(X,0) < 1and {(X) = 0if p(X,0) > 2. We next define £(¢, x)
= C(y72(t — 1),y ' (x — x1)). In particular, £(X) = 1if p(X,X;) < y and
§(X) =0if p(X, X1) = 2y.
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Now we use Corollary 2.2.11 in order to get

(U)o, (e 7—e)xre = 20(X1, X2) ™| (X1) — ur (X2)|
=< 2[(ué)]2+a
< 2C[(u§); — L(X1)(ub)]a
< 2C[(u€), — L(ué)]a + 2C[(L(X1) — L) (uf)]a- (2.10)

We estimate successively the two terms of the right hand side of the last line. First,
we write

() — L(ué) = &§f +u(§ — LE) —24Du- D§

since L(u§) = uL& +&Lu+2ADu- DE. Using interpolation inequalities (2.3), this
implies

[@&): — L(ué)]e < C(Y)([f]a + [ule + [Dula)
<y [ulrta + CY)([fla + lulo). (2.11)

We next write
(L(X,) — L)(u§) = trace[(A(X1) — A(X))D*(uf)]

and for X such that p(X;, X) < 2y, we thus get thanks to interpolation inequali-
ties (2.3)

[(L(X1) — L)(ué)]e < Cy*[D*(ué)]y + C|D*(u)lo
< Cy*[ulata + C(y)|ulo. (2.12)

Combining (2.10)—(2.12), we finally get in the case where p(X1, X3) <y,

il e 7—e)xre = Cy*[ula+a + C()([f ] + lulo)-

We conclude that we have in both cases

[ti]o e 7—epxra = (Cy* + 1/Dulata + C()([f o + |ulo)-

We can argue in a similar way to get

(DUl (o7 —eyaret < (Cy* + 1/ Dulota + COI([fla + lulo).
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Adding these two inequalities yield

[Uoga e 7—e)xre < (CY* +1/2)[ulo+a + C)([f o + lulo)-

Now choose y such that Cy* < 1/4 and get

3
[U]2 4 e.7—e)xmre = Z[M]2+a + C([f]a + lulo).

Taking the supremum over ¢ € (0, 7/2) allows us to conclude in the case where
b=0andc =0.
If now b # 0 and ¢ # 0, we apply the previous result and get

[ulo4+o < C([f + b -Du+ culy + |ulo).

Use now interpolation inequalities once again to conclude. O

2.3 Viscosity Solutions: A Short Overview

Viscosity solutions were first introduced by Crandall and Lions [CL81]. This notion
of weak solution enabled to characterize the value function of an optimal control
problem as the unique solution of the corresponding first order Hamilton—Jacobi
equation. An example of such an equation is the following one

du 1 )
5 ToPul’ + V() =0 (2.13)

for some continuous function V. The viscosity solution theory is also by now a
fundamental tool for the study of nonlinear elliptic and parabolic equations.

2.3.1 Definition and Stability of Viscosity Solutions

2.3.1.1 Degenerate Ellipticity

We recall that linear parabolic equations in non-divergence form have the following
general form

Ju
= Lu=
ot u=/f
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with
Lu = trace(AD*u) + b - Du + cu

with A > 0 (in the sense of symmetric matrices).
We now consider very general nonlinear parabolic equation of the form

9
B—Lt’ + F(t,x,Du, D*u) = 0 (2.14)

where we assume that the nonlinearity F : (0, T) x 2 xRY xS; — R is continuous
and satisfies the following condition

ASB:F(vavpsA)ZF(vavpsB) (215)

In other words, the nonlinearity F is non-increasing with respect to the matrix
variable. We say that F is degenerate elliptic.

Remark 2.3.1. In the case of parabolic Monge—Ampere equations such as (2.1) or
(2.2), the nonlinearity is well-defined and degenerate elliptic only on a subset of
Sa; precisely, it is only defined either on the subset S;i" of semi-definite symmetric
matrices or on the subset Sj[+ of definite symmetric matrices. Hence, solutions
should be convex or strictly convex.

2.3.1.2 Semi-continuity

Consider an open set O C R?*!. We recall that u is lower semi-continuous at (¢, x)
if, for all sequences (s, y,) — (¢, x),

u(t,x) < liminfu(s,, y,).
n—o0

In the same way, one can define upper semi-continuous functions. Very often, the
previous inequality is written

u(t,x) < (lim inf)u(s, y).

s,y)—=>(t,.x

If u is bounded from below in a neighbourhood of Q, one can define the lower semi-
continuous envelope of u in Q as the largest lower semi-continuous function lying
below u. It is denoted by u,. Similarly, the upper semi-continuous envelope u* of a
locally bounded from above function u« can be defined.
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2.3.1.3 Definition(s)

In this paragraph, we give the definition of a viscosity solution of the fully nonlinear
parabolic equation (2.14). We give a first definition in terms of test functions. We
then introduce the notion of subdifferentials and superdifferentials with which an
equivalent definition can be given (see Remark 2.3.8 below).

In order to motivate the definition of a viscosity solution, we first derive necessary
conditions for smooth solutions of (2.14).

Consider an open set @ C R?*! and a function u : @ — R which is C' with
respect to ¢ and C? with respect to x. Consider also a function ¢ with the same
regularity and assume that # < ¢ in a neighbourhood of (¢, x) € Q and u = ¢ at
(z,x). Then

¢ _ Ou
E(I’X) - g(t,x)

D¢(t,x) = Du(t, x)
D2¢(t, x) > D?u(t, x).

Using the degenerate ellipticity of the nonlinearity F', we conclude that

%—(f(t,x) + F(t,x,D¢(t,x), D>¢(t, X))

< %(r,x) + F(t,x,Du(t, x), Du(t, x)) = 0.

A similar argument can be used to prove that if # > ¢ in a neighbourhood of (z, x)
with u(t, x) = ¢ (¢, x) then the reserve inequality holds true. These facts motivate
the following definitions.

Definition 2.3.2 (Test functions). A fest function on the set Q is a function ¢ :
Q — R whichis C! with respect to ¢ and C? with respect to x.

Given a function u : Q — R, we say that the test function ¢ fouches u from
above (resp. below) at (t, x) if u < ¢ (resp. u > ¢) in a neighbourhood of (¢, x) and
u(t,x) = ¢(t, x).

Remark 2.3.3. 1f u — ¢ reaches a local maximum (resp. minimum) at (¢, xo), then
¢ + [u(to, xo) — ¢(to, x0)] touches u from above (resp. below).

Definition 2.3.4 (Viscosity solutions). Consider a function u : Q — R for some
open set Q.

e uis asubsolution of (2.14) if u is upper semi-continuous and if, for all (¢, x) € Q
and all test functions ¢ touching u from above at (¢, x),

%—(f(t,x) + F(t,x,D¢(t,x), D*¢(t,x)) < 0.
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e uis a supersolution of (2.14) if u is lower semi-continuous and if, for all (¢, x) €
Q and all test functions ¢ touching u from below at (¢, x),

%—(f(t,x) + F(t,x,D¢(t,x), D*¢(t,x)) > 0.

* uis asolution of (2.14) if it is both a sub- and a supersolution.
Remark 2.3.5. Remark that a viscosity solution of (2.14) is a continuous function.

When proving uniqueness of viscosity solutions, it is convenient to work with
the following objects.

Definition 2.3.6 (Second order sub-/super-differentials). The following set
PEw)(t,x) = {(a, p. X) e RxR? xSy :
(Ol, P, X) = (at(p(Zv X), D¢([v X), D2¢(Zv X))

s.t. ¢ touches u from above (resp. below) at (¢, x)}

is the super-(resp. sub-)differential of the function u at the point (z, x).

Remark 2.3.7. Here is an equivalent definition: (o, p, X) € PTu(z, x) if and only if

1
u(s, y) z ut, x)+a(s—1)+p-(y=x)+ S X(x=y)-(x=y)+o (Is =11+ |y — xI?)

for (s, y) in a neighbourhood of (¢, x). A similar characterization holds for P~.

Remark 2.3.8. The definition of a viscosity solution can be given using sub- and
super-differentials of u. Indeed, as far as subsolutions are concerned, in view of
Definitions 2.3.4 and 2.3.6, u is a viscosity subsolution of (2.14) in the open set Q
if and only if for all (z, x) € Q and all («, p, X) € Ptu(t, x),

a+ F(t,x,p,X)=<0.

When proving uniqueness, the following limiting versions of the previous objects
are used.

Definition 2.3.9 (Limiting super-/sub-differentials).

P (1 x) = (@, p, X) € Rx RY x Sy : I(tn, xn) — (£, %) s.t.
(%ns pns Xn) = (&, p, X), ulty, Xn) — u(t, x),
(ans Dns Xn) S ,P:tu(tns -xn)}
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Remark 2.3.10. Since F is assumed to be continuous, the reader can remark that
u is a viscosity subsolution of (2.14) in Q if and only if for all (¢, x) € Q and all

(¢, p,X) € 5+u(t,x),
a+ F(t,x,p,X) <0.

An analogous remark can be made for supersolutions.

2.3.1.4 First Properties

In this section, we state without proofs some important properties of sub- and
supersolutions. Proofs in the elliptic case can be found in [CIL92] for instance.
These proofs can be readily adapted to the parabolic framework.

Proposition 2.3.11 (Stability properties).

e Let (uy)y be a family of subsolutions of (2.14) in Q such that the upper semi-
continuous envelope u of sup, uy is finite in Q. Then u is also a subsolution of
(2.14)in Q.

o If (un), is a sequence of subsolutions of (2.14), then the upper relaxed-limit u of
the sequence defined as follows

u(t,x) = limsup  u,(s, y) (2.16)

(s,y)—(t,x),n—>00

is everywhere finite in Q, then it is a subsolution of (2.14) in Q.

Remark 2.3.12. An analogous proposition can be stated for supersolutions.

2.3.2 The Perron Process

In this subsection, we would like to give an idea of the general process that allows
one to construct solutions for fully nonlinear parabolic equations.

2.3.2.1 General Idea

The Perron process is well known in harmonic analysis and potential analysis. It has
been adapted to the case of fully nonlinear elliptic equations in non-divergence form
by Ishii [Ish87].

The general idea is the following one: assume that one can construct a subsolu-
tion ™ and a supersolution #™ to a nonlinear parabolic equation of the form (2.14)
such that u= < ut. Using Proposition 2.3.11, we can construct a maximal
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subsolution # lying between u~ and u™. Then a general argument allows one to
prove that the lower semi-continuous envelope of the maximal subsolution u is in
fact a supersolution.

Remark 2.3.13. Before making the previous argument a little bit more precise, we
would like to point out that the function u constructed by this general method is not
a solution in the sense of Definition 2.3.4. It is a so-called discontinuous (viscosity)
solution of (2.14). We decided to stick to continuous viscosity solution in these
lecture notes and to state the result of the Perron process as in Lemma 2.3.15 below.

See also Sect. 2.3.2.3.
Example 2.3.14. ITn many important cases, u* are chosen in the following form:

uo(x) £ Ct where u is the smooth initial datum and C is a large constant, precisely:

C > sup |F(0, x, Dug(x), D*up(x))|.

x€R4

If non-smooth/unbounded initial data are to be considered, discontinuous stability
arguments can be used next.

2.3.2.2 Maximal Subsolution and Bump Construction
We now give more details about the general process to construct a “solution”.
We consider a cylindrical domain Q = (0, T) x € for some domain  C R¢.

Lemma 2.3.15. Assume that u* is a super-(resp. sub-) solution of (2.14) in Q.
Then there exists a function u : QO — R such that u= < u < um and u* is a
subsolution of (2.14) and u. is a supersolution of (2.14).

Proof. Consider
S={v:0 —>Rst.u” <v<u" and v* subsolution of (2.14)}.

By Proposition 2.3.11, we know that the upper semi-continuous envelope u* of the
function

u=supv
VES

is a subsolution of (2.14).

We next prove that the lower semi-continuous envelope u« of u is a supersolution
of (2.14) in Q. Arguing by contradiction, one can assume that there exists
(o, p, X) € P u«(t, x) such that

a+ F(t,x, p.X) =1 —6 < 0. (2.17)
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Remark that at (¢, x), we have necessarily
+
us(t,x) < u"(t,Xx).

Indeed, if this is not the case, then (c, p, X) € P~u™ (¢, x) and (2.17) cannot be
true since u™ is a supersolution of (2.14). Up to modifying the constant #, we can
also assume that

us(t,x) —ut(t,x) < —6 <0. (2.18)

Without loss of generality, we can also assume that (¢, x) = (0, 0) and u« (¢, x) = 0.
Let us consider the following “paraboloid”

1 1
P(s,y) = TS+p-y+EXy-y+8—V(§|y|2+ISI)
with § and y to be chosen later. Compute next
aP )
55 8- 9) £ F(s.y.DP(s. y). D*P(s. y))
s
= f—merF(s,y,erXy—Vy,X—VI)

(fs =0, |ST\ should be replaced with any real number o € [—1, 1]). Hence, for r
and y small enough, we have

P 0
— + F(s,y,DQ,D*Q) < —— <0
as 2

for all (s, y) € V,. Moreover, since (7, p, X) € P~ u«(t, x), we have

1
us(s,y) = Ts+P'y+§XY'J’+0(|J’|2+|S|)

%

1
Py =87 (SR +151) + ol + .

Choose now § = % and consider (s, y) € V. \ V2t

r r r
w(s.3) 2 P(5.y) = 5o+ B 0(r) = PGs.y) + - + 0(r).

Consequently, for 7 small enough,
vr .
u(s, y) = P(s.y) = = > 0in Vi \ Vo,
P(s.y) <u'(s,y)inV,

where we used (2.18) to get the second inequality.
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‘We next consider

Uis.y) — | maxtu(s. ). Ps. )} i (5.9) € Vs,
u(s, y) if not.

On one hand, we remark that the function U* is still a subsolution of (2.14) and

U>u>u_andU < ut. Consequently, U € S and in particular, U < u. On

the other hand, supy+ g {U — u} > §; indeed, consider (#,, x,,) — (0, 0) such that

u(ty, xn) = ux(0,0) = 0 and write

lim U(t,, x,) — u(t,, x,) > lim P(t,,x,) —u(ty,x,) =6 > 0.
n—>oo n—>oo

This contradicts the fact that U < u. The proof of the lemma is now complete. O

2.3.2.3 Continuous Solutions from Comparison Principle

As mentioned above, the maximal subsolution u* is not necessarily continuous;
hence, its lower semi-continuous envelope u, does not coincide necessarily with it.
In particular, we cannot say that « is a solution in the sense of Definition 2.3.4 (cf.
Remark 2.3.13 above).

We would get a (continuous viscosity) solution if u* = u,. On one hand, u™* is
upper semi-continuous by construction and on the other hand u, < u™* by definition
of the semi-continuous envelopes. Hence, u is a solution of (2.14) if and only if
u* < uy in Q. Since u™* is a subsolution of (2.14) in Q and us is a supersolution of
(2.14) in Q, it is thus enough that (2.14) satisfies a comparison principle and that
the barriers u™ satisfy some appropriate inequality on the parabolic boundary. More
precisely, we would like on one hand that

Comparison principle. Ifu is a subsolution of (2.14)in Q and v is a supersolution
of (2.14) in Q and u < v on the parabolic boundary d,Q, then u < v in Q.

and on the other hand, we would like that u* < u, on d, Q. This boundary condition
would be true if

@H* <@ )xond,Q.

We emphasize that the lower and upper semi-continuous envelopes appearing in the
previous inequality are performed with respect to time and space.

Example 2.3.16. 1If for instance Q = (0, T) x R4, then barriers should satisfy
@)*(0,x) < (")« (0, x) for x € RY.

This condition is fullfilled for such a Q if u* = uy + Cr (see Example 2.3.14).
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In the next subsection, we will present general techniques for proving comparison
principles. The reader should be aware of the fact that, in many practical cases,
general theorems from the viscosity solution theory do not apply to the equation
under study. In those cases, one has to adapt the arguments presented below in order
to take into account the specific difficulties implied by the specific equation. The
reader is referred to [CIL92] for a large review of available tools.

2.3.3 Introduction to Comparison Principles

In this subsection, we present classical techniques to prove comparison principles
in some typical cases.

2.3.3.1 First Order Equations

In this paragraph, we first study first order Hamilton—Jacobi equations of the
following form

a

a—”; + H(x,Du) = 0. (2.19)
As we will see, a comparison principle holds true if H satisfies the following

structure condition: for all x, y, p € R4,

|H(x,p)—H(y,p)| < Clx —y|. (2.20)

In order to avoid technicalities and illustrate main difficulties, we assume that x —
H(x, p)is Z“-periodic; hence, solutions should also be Z¢ -periodic for Z¢ -periodic
initial data.

Theorem 2.3.17 (Comparison principle II). Consider a continuous 7.¢ -periodic
function ug. If u is a 74 -periodic subsolution of (2.19)in (0, T) x R¢ and v is a 74 -
periodic supersolution of (2.19) in (0, T) x R such that u(0, x) < uo(x) < v(0, x)
forall x € R, thenu < v in (0,7) x R4,

Proof. The beginning of the proof is the same as in the proof of Theorem 2.2.4: we
assume that

M = sup {u(l,x) —v(t,x) — L} > 0.
t€(0,T),x€R T —t

Here, we cannot use the equation directly, since it is not clear wether u — v satisfies
a nonlinear parabolic equation or not (recall that the equation is nonlinear). Hence,
we should try to duplicate the (time and space) variables.
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Doubling Variable Technique

Consider

r—s)? —y?
M, = sup M(Z,x)—v(s,y)—( ) =yt .
1,5€(0,T),x,yeRY 2¢ 2¢ T —t

Remark that M, > M > 0. This supremum is reached since u is upper semi-
continuous and v is lower semi-continuous and both functions are Z?-periodic. Let
(te, Se, X¢, ye) denote a maximizer. Then we have

(t: — S£)2 + |xe — y£|2
¢ ¢

= M(Zm xs) - U(SSs ys) = |M+|0 + |U_|0

where we recall that [wl|o = sup(, v)e(o,7)xre [W(Z, x)|. In particular, up to extracting
subsequences, f, — ¢, s, — t and x, — X, y. — y and f, — s, = O(/¢) and

Xe = Ve — O(\/g)

Assume first that 1 = 0. Then

0 < M <limsup M, < limsupu(t,, x;) — liminfv(se, y.)
£—>0 & &

< u(0,x) —v(0,x) <0.

This is not possible. Hence ¢ > 0.
Since ¢ > 0, for ¢ small enough, , > 0 and s, > 0. Now remark that the

function ¢,

t—5:)%  |x—yl?

( ¢) + | Vel + n

t’ 9
(. x) > v(se, ye) + 2e 2e T _¢

is a test function such that u — ¢, reaches a maximum at (z,, x.). Hence (recall
Remark 2.3.3),

fe—s
(T—nt)2+ 88 © 4+ H(x,.pe) <0

with p, = =% Similarly, the function ¢,

(s—tg)Z_Iy—x5|2_ Ui
2¢e 2¢e T—t

(s,y) = u(te, xe) —

is a test function such that v — ¢, reaches a minimum at (s,, y.); hence

te — 8¢

+ H(ye, pe) <0
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with the same p.! Substracting the two viscosity inequalities yields

n
m < H(ye, pe) — H(x, pe).

In view of (2.20), we conclude that

n
T2 S Clxe — ye| = O(\/g)
Letting ¢ — 0 yields the desired contradiction. O
Remark 2.3.18. Condition (2.20) is satisfied by (2.13) if the potential V' is Lipschitz
continuous. On the contrary, if H(x,p) = c(x)|p|, then the Hamilton—Jacobi

equation is the so-called eikonal equation and it does not satisfy (2.20) even if ¢
is globally Lipschitz. Such an Hamiltonian satisfies

|H(x,p)—H(y.)| = C(A + |pDlx — yl. (2.21)

For such equations, the penalization should be studied in greater details in order to
prove that

|xe — y6|2
2e

—0ase — 0.

With this piece of information in hand, the reader can check that the same
contradiction can be obtained for Lipschitz ¢’s. See for instance [Barl94] for details.

Since we will use once again this additional fact about penalization, we state it
now in a lemma.

Lemma 2.3.19. Consider ii(t, x) = u(t, x) — n(T —t)~'. Assume that

2 2
- X — r—s
M, = sup u(t,x)—v(s,y)— | V| - | |
ryerd 2¢e 2¢e
1,5€(0,T)

is reached at (xg, Ve, te, S¢). Assume moreover that (Xg, Ve, te,Se) — (x,,t,8) as
e —> 0. Then

|xe — y£|2
&

—0ase— 0.

Remark 2.3.20. The reader can check that the previous lemma still holds true if
v(s, ) is replaced with v(z, y) and if the term e~!|z — 5| is removed.

Proof. Remark first that ¢ — M, is non-decreasing and M, > M := suppa (it — v).
Hence, as ¢ — 0, M, converges to some limit / > M. Moreover,
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2 2
~ Xe — Ve ts — S
M2s 2 “(tg, xs) - U(SSa ys) - | ) I - I |
4e 4e

|2

|xe — y£|2 + |te — 8¢

> M,
z Mo+ 4e 4e

Hence,

|2

|xs - y£|2 + |t£ — Se

SMZE_ME_)I_IZO. O
4e 4e

2.3.3.2 Second Order Equations with No x Dependance
In this subsection we consider the following equation

% + H(x,Du) — Au =0 (2.22)

still assuming that x + H(x, p) is Z¢-periodic and satisfies (2.20). The classical
parabolic theory implies that there exists smooth solutions for such an equation.
However, we illustrate viscosity solution techniques on this (too) simple example.

Theorem 2.3.21 (Comparison principle III). Consider a continuous 74 -periodic
function uy. If u is a 79 -periodic subsolution of (2.22) in (0, T) xR? and v is a 7. -
periodic supersolution of (2.19) in (0, T) x R? such that u(0, x) < up(x) < v(0, x)
forall x e R?, thenu < v in (0,T) x RY.

Remark 2.3.22. A less trivial example would be

du

o + H(x,Du) — trace(AoD*u) = 0

for some degenerate matrix Ag € Sy, Ag > 0. We prefer to keep it simple and study
(2.22).

First attempt of proof. We follow the proof of Theorem 2.3.17. If one uses the two
test functions ¢, and ¢, to get viscosity inequalities, this yields

1 n 1,
(T - [5)2

— 5 + H(xg, pe) < trace(s_ll),
£

fe — Se ~
* 4+ H(y., pe) = —trace(s™' 1),
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Substracting these two inequalities, we get

1 2d
T2 < 0(We) + e

and it is not possible to get a contradiction by letting & — 0. O

In the previous proof, we lost a very important piece of information about second
order derivatives; indeed, assume that ¥ and v are smooth. As far as first order
equations are concerned, using the first order optimality condition

Du(te, x;) — p. =0 and — Dv(ss, ye) + pe =0

is enough. But for second order equations, one has to use second order optimality

condition
Du(t,, x;) 0 - el —e7I
0 —Du(se,y.)) ~ \—=e'1 &1 )"

It turns out that for semi-continuous functions, the previous inequality still holds
true up to an arbitrarily small error in the right hand side.

Uniqueness of viscosity solutions for second order equations where first obtained
by Lions [Lions83] by using probabilistic methods. The analytical breakthrough
was achieved by Jensen [Jens88]. Ishii’s contribution was also essential [Ish89]. In
particular, he introduced the matrix inequalities contained in the following lemma.
See [CIL92] for a detailed historical survey.

We give a first version of Jensen—Ishii’s lemma for the specific test function
2e)~'|x — y|*.

Lemma 2.3.23 (Jensen—Ishii’s lemma I). Let U and V be two open sets of RY
and I an open interval of R. Consider also a bounded subsolution u of (2.14) in

I x U and a bounded supersolution v of (2.14) in I x V. Assume that u(t, x) —
v(t,y) — % reaches a local maximum at (ty, xo, yo) € I x U x V. Letting p
denote e~ (xg — yo), there exists T € Rand X,Y € Sy such that

(x. p. X) € P ulto, x0), (. p. Y) € P v(t0, o)

2(10 X 0 3(1 -1
_Z < <z
6= 5) =20 ) 223
Remark 2.3.24. As a matter of fact, it is not necessary to assume that « and v are
sub- and supersolution of an equation of the form (2.14). We chose to present first

the result in this way to avoid technicalities. Later on, we will need the standard
version of this lemma, so we will state it. See Lemma 2.3.30 below.
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Remark 2.3.25. Such a result holds true for more general test functions ¢ (¢, x, y)
than (2¢)~!|x — y|?. However, this special test function is a very important one and
many interesting results can be proven with it. We will give a more general version
of this important result, see Lemma 2.3.30.

Remark 2.3.26. The attentive reader can check that the matrix inequality (2.23)
implies in particular X <Y.

Remark 2.3.27. This lemma can be used as a black box and one does so very often.
But we mentioned above that some times, one has to work more to get a uniqueness
result for some specific equation. In this case, it could be necessary to consider
more general test functions, or even to open the black box and go through the proof
to adapt it in a proper way.

With such a lemma in hand, we can now prove Theorem 2.3.21.

Proof of Theorem 2.3.21. We argue as in the proof of Theorem 2.3.17 but we do
not duplicate the time variable since it is embedded in Lemma 2.3.23. Instead, we
consider

2
x —
M, = sup Ju(t,x)—v(t,y)— @ T ,
x.yE]Rd 28 T _t
1€(0.T)

let (¢, x¢, y¢) denote a maximiser and apply Lemma 2.3.23 with u(z, x) = u(¢, x) —

7 and v and we get 7, X, Y such that

_+ JR—
(r+ ﬁ,p& X) € P ulte, x.), (v, pe, Y) € P vlte,ye), X <Y

(see Remark 2.3.26 above). Hence, we write the two viscosity inequalities

_r 4+t + H(x,, p) < trace X

(T —1)?
T+ H(ye, pe) > traceY > trace X

and we substract them in order to get the desired contradiction

% < 0(Ve).

The proof is now complete. O
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2.3.3.3 Second Order Equations with x Dependance

In this paragraph, we prove a comparison principle for the following degenerate
elliptic equation

ou

5 + H(x, Du) — trace(o(x)o” (x)D%u) = 0 (2.24)

under the following assumptions

o x> H(x, p)is Z9-periodic and satisfies (2.21);

+ 0 :R? — My, (R) is Lipschitz continuous and Z?-periodic, m < d.

Here, M, (R) denotes the set of real d x m-matrices. We make precise that oT
denotes the transpose matrix of the d x m-matrix o.

The following theorem is, to some respects, the nonlinear counterpart of the first
comparison principle we proved in Sect. 2.2 (see Corollary 2.2.6). Apart from the
nonlinearity of the equation, another significant difference with Corollary 2.2.6 is
that (2.24) is degenerate elliptic and not uniformly elliptic.

Theorem 2.3.28 (Comparison principle IV). Consider a continuous 7.¢ -periodic
function ug. If u is a 74 -periodic subsolution of (2.22)in (0, T) x R¢ and v is a 74 -
periodic supersolution of (2.19) in (0, T) x R such that u(0, x) < uo(x) < v(0, x)
forall x € R, thenu < v in (0,7) x R4,

Proof. We argue as in the proof of Theorem 2.3.21. The main difference lies after
writing viscosity inequalities thanks to Jensen—Ishii’s lemma. Indeed, one gets

% < —H(x¢, pe) + H(ye, pe) + trace(a(xg)ch(xg)X) — trace(o(yg)aT(yE)Y)

EC(1+M) [Xe — Vel
&
+ trace(o (x:)o” (x:) X) — trace(a (y.)o ! (y,)Y).

The first term can be handled thanks to Lemma 2.3.19. But one cannot just use
X <Y obtained from the matrix inequality (2.23) to handle the second one. Instead,
consider an orthonormal basis (e;); of R” and write

trace(o (x,)o 7 (x;)X) — trace(o(ye)o” (y.)Y)
= trace(o” (x¢) X0 (xe)) — trace(o” (ye) Yo (e))

= Z (Xo(xe)ei -o(x.)e; —Ya(yo)ei -o(ye)ei)

i=1

3w 5
< = R 2
=% E lo(xe)ei —o(ye)eil™

i=1
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we applied (2.23) to vectors of the form (o (x.)e;,0(y:)e;) € R? x R? to get the
last line. We can now use the fact that o is Lipschitz continuous and get

trace(o (x,)o” (x:)X) — (o( T |xe = yel?
¢ : ye)o! (ye)Y) < C——.

We thus finally get

n |xe — yel?

77 = Clxe—yel + c—=——=.

We can now get the contradiction n < 0 by using Lemma 2.3.19 and letting ¢ — 0.
The proof is now complete. O

2.3.4 Holder Continuity Through the Ishii—Lions Method

In this subsection, we want to present a technique introduced by Ishii and Lions
in [IL90] in order to prove Holder continuity of solutions of very general fully
nonlinear elliptic and parabolic equations. On one hand, it is much simpler than
the proof we will present in the next section; on the other hand, it cannot be used to
prove further regularity such as Holder continuity of the gradient.

The fundamental assumptions is that the equation is uniformly elliptic (see below
for a definition). For pedagogical purposes, we do not want to prove a theorem for
the most general case. Instead, we will look at (2.24) for S;-valued o’s and special
H’s

ou

5 + ¢(x)|Du| — trace(o (x)o (x)D?u) = 0 (2.25)

Assumptions (A)
* ¢ is bounded and Lipschitz continuous in Q;
e 0:(Q — S, is bounded and Lipschitz continuous in x and constant in ¢;
e There exists A > 0 such that for all X = (¢,x) € Q,
A(x) ;= 0(x)o(x) > Al

Under these assumptions, the equation is uniformly elliptic, i.e. there exist two
positive numbers 0 < A < A, called ellipticity constants, such that

VX =(t,x)eQ, M <A(x) <AL (2.26)
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Theorem 2.3.29. Under Assumptions (A) on H and o, any viscosity solution u of
(2.25) in an open set Q C R4*! is Holder continuous in time and space.

When proving Theorem 2.3.29, we will need to use Jensen—Ishii’s lemma for a
test function which is more general than (2¢)~!|x — y|2. Such a result can be found
in [CIL92].

Lemma 2.3.30 (Jensen-Ishii’s Lemma II). Let U and V be two open sets of R?
and I an open interval of R. Consider also a bounded subsolution u of (2.14) in
I x U and a bounded supersolution v of (2.14) in I x V. Assume that u(t, x)
—v(t,y) — ¢ (x — y) reaches a local maximum at (ty, xo, yo) € I X U x V. Letting
p denote Dp(xg — yo), for all B > 0 such that BZ < 1, there exists T € R and
X,Y €Sy such that

(t.p. X) € P ulto. x0). (v. p.Y) € P v(to. yo)
2(10 X 0 7B _78
- = 227
01)=(05)=(%7) em
where Z = D*¢(xo — yo) and ZP = (I — BZ)™' Z.

We can now turn to the proof of Theorem 2.3.29.

Proof of Theorem 2.3.29. We first prove that u is Holder continuous with respect to
x. Without loss of generality, we can assume that Q is bounded. We would like to
prove that for all Xy = (¢, xo) € Q and (¢, x), (t,y) € O,

u(t,x) —u(t,y) < Li|x — y|* + La|x — xo|* + La(t — to)*
for Ly = L1(Xp) and L, = L,(Xp) large enough. We thus consider

M= sup A{ult,x)—u(t,y)—¢(x—y) - x)}
(t.x).(.y)€Q

with ¢(z) = Li1|z|* and T'(t,x) = La|x — xo|®> + La(t — t9)* and we argue by
contradiction: we assume that for all « € (0,1), L; > 0, L, > 0, we have M > 0.

Since Q is bounded, M is reached at a point denoted by (7, X, y). The fact that
M > 0 implies first that x # y. It also implies

1
I)_C _)7| < (%)u =A< d(X(),aQ),

X — Xo| < /22 = R, < 4X000)

(2.28)
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if L and L, are chosen so that

2|ulo,0 - 8ulo,0

12 T o A 2Z T v ano
(d(Xo,9Q)) (d(Xo,00))?

In particular we have x,y € 2. We next apply Jensen—Ishii’s Lemma 2.3.30 to
u(t,x) = u(t,x)—I(t,x) and v(s, y). Then there exists t € Rand X,Y € S; such
that

(v 4+ 2Lo(F — 10), p + 2Lo(F — x0), X +2Lo1) € P u(@, %), (5. p.Y) e P u(f,7)

where p = D¢(x — y) and Z = D*¢(x — y) and (2.27) holds true. In particular,
X < Y. We can now write the two viscosity inequalities

2Ly(f —1t9) + T+ H(x, p + 2L2(x — x0)) < trace(A(x)(X + 2L,1))
T+ H(y, p) > trace(A(y)Y)

and combine them with (2.28) and (2.26) to get

—CLy =2Lo(f —19) < c())|P] — ¢(X)|p + 2L2(X — x0)]
4+ CL, + trace(A(x) X ) — trace(A(y)Y). (2.29)
We next estimate successively the difference of first order terms and the difference

of second order terms. As far as first order terms are concerned, we use that ¢ is
bounded and Lipschitz continuous and (2.28) to get

cNNpl = e(®)[p + 2L2(x = x0)| < C|X = J||p| + CL:|X = xo
< Clx—J||p| + CLa. (2.30)

As far as second order terms are concerned, we use (2.26) to get

trace(A(¥)X) — trace(A(y)Y) < trace(A(X)(X —Y)) + trace((A(x) — A(¥))Y)
< Atrace(X —Y)

+ ) (@(®Yo(¥)e; e — o ()Y (F)ei - e)
< Atrace(X —Y) + C||Y|||x — ¥|.

We should next estimate | p|, trace(X — Y') and || Y ||. In order to do so, we compute
D¢ and D?¢. It is convenient to introduce the following notation
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o . a
a=x-—y, a=— & =|al.

lal’
p=D¢(a) = Lia|a|* %a (2.31)

Z = D*¢(a) = Lia(|a|**1 + (¢ —2)|a|* *a ® a)
=y I -2 -a)d®a). (2.32)

with y = (L o) ~'e27®. The reader can remark that if one chooses 8 = y/2, then

Zﬂ:(l—,BZ)_IZ:;(l—zz_a&®&). (2.33)

w
|
S

Since Y is such that —é] < —Y < Z#, we conclude that

2
1Yl = —.
Y

We next remark that (2.27) and (2.33) imply that all the eigenvalues of X — ¥ are
non-positive and that one of them is less than

A A 81—
4264 =—>-—2,
y3—«
Hence
81—«

trace(X —Y) < —— .
y3—«

Finally, second order terms are estimated as follows

trace(A(%)X) — trace(A()Y) < —C + €& < —25 (2.34)
y oy y

(choosing L large enough so that ¢ < 1/2). Combining now (2.29), (2.30) and
(2.34) and recalling the definition of y and ¢, we finally get

Since L, is fixed, it is now enough to choose L; large enough to get the desired
contradiction. The proof is now complete. O
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2.4 Harnack Inequality

In this section, we consider the following special case of (2.14)

% + F(x,D%u) = f (2.35)
for some uniformly elliptic nonlinearity F' (see below for a definition) and some
continuous function f. The goal of this section is to present and prove the Harnack
inequality (Theorem 2.4.35). This result states that the supremum of a non-negative
solution of (2.35) can be controlled from above by its infimum times a universal
constant plus the L¢+!-norm of the right hand side f. The estimates that will be
obtained do not depend on the regularity of F with respect to x.

We will see that it is easy to derive the Holder continuity of solutions from the
Harnack inequality, together with an estimate of the Holder semi-norm.

The Harnack inequality is a consequence of both the L°-estimate (Theo-
rem 2.4.15) and of the local maximum principle (Proposition 2.4.34). Since this
local maximum principle is a consequence of the L°-estimate, the heart of the proof
of the Harnack inequality thus lies in proving that a (small power of) non-negative
supersolution is integrable, see Theorem 2.4.15 below.

The proof of the L? estimate relies on various measure estimates of the solution.
These estimates are obtained through the use of a maximum principle due to Krylov
in the parabolic case.

The proof of the L estimate also involves many different sets, cylinders and
cubes. The authors are aware of the fact that it is difficult to follow the corresponding
notation. Some pictures are provided and the authors hope they are helpful with this
respect.

Pucci’s Operators

Given ellipticity constants 0 < A < A, we consider

PT(M)= sup {—trace(AM)},
A <A<AI

P~ (M) = llflgiAI{—trace(AM)}.

Some model fully nonlinear parabolic equations are

% + PT(D%u) = f, (2.36)
W p=(D%u) = f (2.37)

ot
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Remark that those nonlinear operators only depend on ellipticity constants A, A and
dimension d. They are said universal. Similarly, constants are said universal if they
only dependon A, A and d.

Uniform Ellipticity

Throughout the remaining of this section, we make the following assumptions on
F:forall X,Y € S; and x € Q,

P (X-Y)<F(x,X)—F(x,Y)< Pt (X -Y).

This condition is known as the uniform ellipticity of F. Remark that this condition
implies in particular that F is degenerate elliptic in the sense of Sect.2.3.1.1 (see
Condition 2.15).

2.4.1 A Maximum Principle

In order to state and prove the maximum principle, it is necessary to define first the
parabolic equivalent of the convex envelope of a function, which we will refer to as
the monotone envelope.

2.4.1.1 Monotone Envelope of a Function

Definition 2.4.1 (Monotone envelope). If Q is a convex set of R? and (a,b) is
an open interval, then the monotone envelope of a lower semi-continuous function
u: (a,b) x Q — Ris the largest function v : (a,b) x 2 — R lying below u# which
is non-increasing with respect to ¢ and convex with respect to x. It is denoted by
T'(u).

Combining the usual definition of the convex envelope of a function with
the non-increasing envelope of a function of one real variable, we obtain a first
representation formula for I" (u).

Lemma 2.4.2 (Representation formula I).
Fw,x)=sup{é-x+h:&-x+h <u(s,x)foralls € (a,t],x € Q}.

The set where I"(u) coincides with u is called the contact set; it is denoted by C,.
The following lemma comes from convex analysis, see e.g. [HUL].
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Lemma 2.4.3. Consider a point (¢, x) in the contact set C, of u. Then & -x + h =
T'(u)(¢, x) if and only if € lies in the convex subdifferential du(t, x) of u(t,-) at x
and —h equals the convex conjugate u*(t, x) of u(t,-) at x.

Recall that a convex function is locally Lipschitz continuous and in particular a.e.
differentiable, for a.e. contact points, (¢, h) = (Du(t, x), u(t, x) —x-Du(t, x)). This
is the reason why we next consider for (¢, x) € (a, b) x Q the following function

G(u)(t,x) = (Du(t, x), u(t, x) — x - Du(t, x)).
The proof of the following elementary lemma is left to the reader.

Lemma 2.4.4. Ifu is C"! with respect to x and Lipschitz continuous with respect
to t, then the function G : (a,b) x Q — R¢* 1 is Lipschitz continuous in (t, x) and
fora.e. (t,x) € (a,b) x ,

det D; .G (u) = u; det D*u.

We now give a second representation formula for I'(#) which will help us next
to describe viscosity subdifferentials of the monotone envelope (see Lemma 2.4.6
below).

Lemma 2.4.5 (Representation formula II).

d+1 d+1

L), x) = inf{ D diulsioxi) sy Aixi = x.s € la.1],

i=1 i=1
d—+1
 di=12el0.1]. (2.38)

i=1
In particular, if

d+1

T (u)(to, X0) = ) Aiuty, x7),

i=1
then
e foralli =1,....,d + 1, T(w)(;, x;) = u(t;, x;);

e T'(u) is constant with respect to t and linear with respect to x in the convex set
co{(t,x?), (¢!, x)),i =1,...d + 1}.

Proof. Let T'(u) denote the function defined by the right hand side of (2.38). First,
we observe that I' () lies below u and is non-increasing with respect to ¢ and convex
with respect to x. Consider now another function v lying below u which is non-
increasing with respect to ¢ and convex with respect to x. We then have

u(t,x) > T@w)(t,x) > T()(, x) > v(t, x).
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The proof is now complete. O

We next introduce the notion of harmonic sum of matrices. For A;, A, € Sy such
that A + A, > 0, we consider

(A10A4)¢- ¢ = El-ii-rilzf=§{A1§l <814 A2l - o).

The reader can check that if A} and A, are not singular, 4,04, = (Al_1 + Az_l)_l.
We can now state and prove

Lemma 2.4.6. Let (o, p, X) € P~ T (u)(ty, x0) and
d+1
D()(tg. x0) = Y Aiu(t. x7). (2.39)

i=1

Then for all ¢ > 0 such that I + ¢X > 0, there exist (a;, X;) € (—00,0] x Sy,
i=1,....,d + 1, such that

(@i, p, Xi) € P u(t?,x°)
S Vo =a (2.40)
X, < AI_IXID"'DA;_IHXCJ_H

where X, = XOe™'1 = (I +eX)7'X.

Proof. We first define for two arbitrary functions v, w : R - R,

v E] w(x) = inf v(x —y) + w(y).
y€ERA

For a given function v : [0, +00) X RY — R, we also consider the non-increasing
envelope M [v] of v:

M), x) = sér[loft] v(s, x).

We now can write

P, x) :1<i§]d+l M)t )

where

X
i\t :Arz s .
u; (t, x) u(t Ai)
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Consider also 0 € [0, 7] such that

0
mewwzm@wbzm(&%)

Lemma 2.4.6 is a consequence of the two following ones.

Lemma 2.4.7. Consider (a, p, X) € P~ V(ty, xo) where

Vie,x)= 0O  vitx)

1<i<d+1

d+1

V(to, xo) = Z vi (f0, x7).

i=1

Then for all € > 0 such that I + X > 0, there exist (B;,Y;) € R xSy such that we
have

(Bi.p. Y1) € P vi(to, x})

d+1
Y Bi=a
i=1
d+1
X, <04y,

Proof. We consider a test function ¢ touching V' from below at (#, xo) such that

(Ol, D X) = (at(ps D¢’ D2¢)(t07 X())-
We write for (¢, x;) in a neighborhood of (7o, x?),
d+1 d+1 d+1 d+1
ol(t, in) — ¢ (to, ZX?) < Z vi(t,x;) — Z vi (fo. X{).

i=1 i=1 i=1 i=1

Following [ALL97, Imb06], we conclude through Jensen—Ishii’s lemma for d + 1
functions and general test functions (see Lemma 2.5.6 in appendix) that forall ¢ > 0
such that I + deX > 0, there exist (B;,Y;) € RxSy,i =1,...,d + 1 such that

(Bi.p.Yi) € P vi(to,x?)
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and

¢ 0...0 Yypu

where, for any matrix 4, 4, = (I + eA)~'A. A small computation (presented e.g.
in [Imb06, p. 796]) yields that the previous matrix inequality is equivalent to the
following one

d+1
Xgel £ <Y Yili i

i=1

where { = Zl‘-l:ll ;. Taking the infimum over decompositions of {, we get the

desired matrix inequality. O
Lemma 2.4.8. Consider s, € [0, so| such that
M [v](s0, yo) = v(s1, yo).

Then for all (B,q,Y) € P~ M[v](so, o),

(IBsqu) E,P_‘U(SlsyO) and ,3 EO

Proof. We consider the test function ¢ associated with (8, ¢, Y) and we write for &
and § small enough

A

(0 + h, yo + 8) — (50, yo) < M[v](so + h, yo + 8) — M[v](s0, yo)
< v(sy + h, yo +8) —v(s1, o).

This implies (8,¢,Y) € P~v(s1, yo). Moreover, choosing § = 0, we get

@ (so+ h, y0) < ¢(s0, ¥0)

and 8 < 0 follows. O

The proof is now complete. O
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2.4.1.2 Statement

The following result is the first key result in the theory of regularity of fully non-
linear parabolic equations. It is the parabolic counterpart of the famous Alexandroff
estimate, also called Alexandroff-Bakelman—Pucci (ABP) estimate, see [CafCab]
for more details about this elliptic estimate. The following one was first proved
for linear equations by Krylov [Kryl76] and then extended by Tso [Tso85]. The
following result appears in [Wang92a].

Theorem 2.4.9 (Maximum principle). Consider a supersolution of (2.36) in
0, = 0,(0,0) such that u > 0 on 9,(Q,). Then

1

4 T+
supu” < Cpa+i ( / (f*)‘”‘) (2.41)
0, u=T"(u)

where C is universal and I"(u) is the monotone envelope of min(0, u) extended by 0
to sz.

Remark 2.4.10. This is a maximum principle since, if f < 0, then u cannot take
negative values.

Proof. We prove the result for p = 1 and the general one is obtained by considering
v(t, x) = u(p’t, px). Moreover, replacing u with min(0, u) and extending it by 0 in
0>\ O1, we can assume thaty = 0on d,Q;andu =0in 0, \ O;.

We are going to prove the three following lemmas. Recall that G(u) is defined
page 44.

Lemma 2.4.11. The function T'(u) is C'! with respect to x and Lipschitz con-
tinuous with respect to t in Q1. In particular, GT'(u) := G(I'(u)) is Lipschitz
continuous with respect to (t, x).

The second part of the statement of the previous lemma is a consequence
of Lemma 2.4.4 above. We will prove the previous lemma together with the
following one.

Lemma 2.4.12. The partial derivatives (3T (u), D*T'(u)) satisfy for a.e. (t,x) €
Ql N Cu;

=0, T (u) + AA(C (W) < fT(x)

where C, = {u = I'(u)}.
The key lemma is the following one.

Lemma 2.4.13. If M denotes Supg, U, then
{(.h) e R 1 |E| < M/2 < —h <M} C GT(u)(Q1NC)

where C, = {u = T'(1)}.
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Before proving these lemmas, let us derive the conclusion of the theorem.
Using successively Lemma 2.4.13, the area formula for Lipschitz maps (thanks to
Lemma 2.4.11) and Lemma 2.4.4, we get

CM™*! = |{(€,h) e R - |§] < M/2 < —h < M}
=G W (01 NGyl

5/ | detGT (u)|
01NCy

< / —3, T (u) det(D>T (u)).
[gren
Now using the geometric—arithmetic mean inequality and Lemma 2.4.12, we get

CMItt <™ / —0, T () det(A DT (1))
01NCy

<
= 2d(d + 1+

< C/ (f+)d+l
01NCy

where C’s are universal. ]

/ (=0, T () + AAT )+
01NC,

We now turn to the proofs of Lemmas 2.4.11-2.4.13.

Proof of Lemmas 2.4.11 and 2.4.12. In order to prove that I' (&) is Lipschitz contin-
uous with respect to ¢ and C!! with respect to x, it is enough to prove that there
exists C > 0 such that

- —ax<C
V(t,x) € Qs Y(a,p,X) e P T(ut,x), X <cI (2.42)

Indeed, since I'(u) is non-increasing with respect to ¢ and convex with respect to
X, (2.42) yields that I'(u) is Lipschitz continuous with respect to ¢ and C*! with
respect to x. See Lemma 2.5.8 in appendix for more details.
In order to prove (2.42), we first consider («, p, X) € P~ I'(u)(z, x) such that
X > 0. Recall (cf. Lemma 2.4.6 above) that « < 0. We then distinguish two cases.
Assume first that T'(u)(¢, x) = u(¢, x). In this case, (o, p, X) € P u(t, x) and
since u is a supersolution of (2.36), we have

o —Atrace(X) =a + PT(X) > f(x) > -C
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where C = | f|o;0,- Hence, we get (2.42) since X > 0 implies that X < trace(X)/.
We also remark that the same conclusion holds true if («, p, X) € P T'(u)(t, x)
such that X > 0.

Assume now that I'(u)(¢, x) < u(t, x). In this case, there exist A; € [0,1], i
=1,....,d +1,and x; € Q,,i = 1,...,d + 1, such that (2.39) holds true with
(to, x0) and (20, x?) replaced with (¢, x) and (#;,x;). If (t;,x;) € Q2 \ Q; for two
different i ’s, then Lemma 2.4.5 implies that M = 0 which is false. Similarly, #; >
—1 for all i. Hence, there is at most one index i such that (¢;, x;) € O, \ O and in
this case (#;,x;) € 0,0 and ¢; > —1. In particular, |x;| = 2. We thus distinguish
two subcases.

Assume first that (fg41, Xq+1) € 0,02 with t;41 > —1 and (4, x;) € Q; for
i =1,...,d.In particular |[xz4;| = 2 and since x € O, we have 144 < % This
implies that there exists A; such that A; > (3d)~!. We thus can assume without loss
of generality that A > (3d )~!. Then from Lemma 2.4.6, we know that for all ¢ > 0
such that / 4+ ¢X > 0, there exist («;, X;) € RxSy,i = 1,...,d + 1 such that
(2.40) holds true. In particular,

1
X, < - X, <3dX;.
Al

Since (a1, p, X1) € P u(ty, x1) and T(u)(t1,x1) = u(t;, x;), we know from the
discussion above that X| < CI. Hence for all ¢ small enough,

X, <3dClI.

Letting ¢ — 0 allows us to conclude that X < 3dC/ in the first subcase. As far as
« is concerned, we remark that g1 = O and —«; < C foralli =1,...,d 4+ 1 so
that

d+1

—a =) Ai(-a)=C.

i=1

Assume now that all the points (¢;, x;),i = 1,...,d + 1, arein Q. In this case, we
have for all i that —o; < C and X; < CI which implies

d+1

—a = Zki(—ai) <C,

i=1

X, <Oiacr=cr.

We thus proved (2.42) in all cases where X > 0. Consider now a general
subdifferential (¢, p, X) € P~ (u)(¢, x). We know from Lemma 2.5.9 in appendix
that there exists a sequence (&, p,, X,;) such that
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(ctn, pu, Xn) € P T (w)(ty, x,)
(s Xn, 0u, pn) = (. X, 2, p)
X < X, + 0,(1), X, > 0.

From the previous discussion, we know that
a=oay+o,(l) =(C+1)
X =Xy+o,(1) =(C+ DI

for all n. The proof is now complete. O

Proof of Lemma 2.4.13. The supersolution u < 0 is lower semi-continuous and the
minimum —M < 0in Q5 is thus reached at some (fy, xo) € Q) (since u = 0 outside
0Q1). Now pick (&, i) such that

[E| <M/2<—-h <M.

We consider P(y) = & -y + h. We remark that P(y) < 0 for y € Qy, hence
P(y) < u(0, y)in Q. Moreover, since |xo| < 1,

P(xo) —u(to,x0) =&-x0+h+M>h—|§|+ M =0
hence sup ¢, (P(y) — u(to, y)) = 0. We thus choose

t; =sup{t > 0:Vs € [0,t],sup(P(y) — u(s, y)) < 0}.
0>

We have 0 < #; < fp and

0= SSP(P(y) —u(ty,y)) = P(y1) —ult1, y1)-

In particular, §¢ = Du(t;,y;) and h = u(t;,x;) — £ - x1, that is to say, (&, h)
= G(u)(t1, y1) with (11, y1) € Cy. O

2.4.2 The Lé-Estimate

This subsection is devoted to the important “L® estimate” given in Theorem 2.4.15.
This estimate is sometimes referred to as the weak Harnack inequality.

Theorem 2.4.15 claims that the L®-“norm” in a neighbourhood K, of (0, 0) of a
non-negative (super-)solution u of the model equation (2.36) can be controlled by
its infimum over a neighbourhood K of (1,0) plus the L+ !-norm of f.
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K K

Fig. 2.1 The two neighbourhoods K, and K,

Remark 2.4.14. Since ¢ can be smaller than 1, the integral of u® is in fact not the
(e-power of) a norm.

We introduce the two neighbourhoods mentioned above (see Fig.2.1).

K, = (0, R*/2) x (=R, R)?,
K> = (1—R?* 1) x (=R, R)".

Theorem 2.4.15 (L?¢ estimate). There exist universal positive constants R, C and
&, such that for all non-negative supersolution u of

%+P+(D2u)2f in (0,1) x B1(0),

the following holds true

1

(/N MS) < C(nfu + || f | La+1(0.1)xB | 0))- (2.43)
K K> R

The proof of this theorem is difficult and lengthy; this is the reason why we
explain the main steps of the proof now.
First, one should observe that it is possible to assume without loss of generality
thatinfgz u < Land || /|l La+10.1)xB, (o)) =< €o (for some universal constant &g to be
R

determined) and to prove

/~ u®(t, x)dx < C
K
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where ¢ > 0 and C > 0 are universal. We recall that a constant is said to be universal
if it only depends on ellipticity constants A and A and dimension d. Getting such
an estimate is equivalent to prove that

fu>tyNK|<Ct™®

(see page 69 for more details). To get such a decay estimate, it is enough to prove
that

[{u> N*}N K| < CN~*¢

for some universal constant N > 1. This inequality is proved by induction thanks
to a covering lemma (see Lemma 2.4.27 below). This amounts to cut the set {u >
Nk N K, in small pieces (the dyadic cubes) and make sure that the pieces where u
is very large (1 > ¢, ¢ > 1) have small measures.

This will be a consequence of a series of measure estimates obtained from
a basic one. The proof of the basic measure estimate is a consequence of the
maximum principle proved above and the construction of an appropriate barrier we
will present soon. But we should first introduce the parabolic cubes we will use in
the decomposition. We also present the choice of parameters we will make.

2.4.2.1 Parabolic Cubes and Choice of Parameters

We consider the following subsets of Q(1,0).

Ky = (0,R?) x (R, R)*,
K> = (R?,10R?) x (=3R,3R)‘,
K3 = (R%,1) x (3R, 3R)".

The constant R will be chosen as follows

1 1
R=min| ——,3-2V2, ——— 2.44
i (3@ V10(m + 1)) (249

where m will be chosen in a universal way in the proof of the L* estimate.

2.4.2.2 A Useful Barrier

The following lemma will be used to derive the basic measure estimate. This
estimate is the cornerstone of the proof of the L¢ estimate.
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K

Ql(lvo)

T € By

Fig. 2.2 The sets K|, K; and K3

Lemma 2.4.16. For all R € (0, min((3+/d)~", (10)~"/2)), there exists a nonnega-
tive Lipschitz function ¢ : Q1(1,0) — R, C? with respect to x where it is positive,
such that

Gl
DD =g

for some continuous bounded function g : Q(1,0) — R and such that
suppg C K,
¢ >2inK;
¢=0ind,0:(1,0).

Remark 2.4.17. Recall the definitions of K;, K> and K3 (see Fig.2.2).
K; = (0, R*) x (=R, R)?,
K> = (R?,10R?) x (=3R,3R)‘,
K3 = (R, 1) x (3R, 3R)".

The proof of the lemma above consists in constructing the function ¢ more
or less explicitly. It is an elementary computation. However, it is an important
feature of non divergence type equations that this type of computations can be
made. Consider in contrast the situation of parabolic equations with measurable
coefficients in divergence form. For that type of equations, a result like the one of
Lemma 2.4.16 would be significantly harder to obtain.
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Proof. We will construct a function ¢ which solves the equation
o+ PH(D%p) <0 (2.45)

in the whole cylinder Q(1, 0), such that ¢ is positive and unbounded near (0, 0) but
¢ =0in d,0(1,0) away from (0, 0), and moreover ¢ > 0 in K,. Note that if the
equation were linear, ¢ could be its heat kernel in the cylinder. Once we have this
function ¢, we obtain ¢ simply by taking

t.x) =228 for 12y €\,
ming, ¢

K>

and making ¢ equal any other smooth function in K; which is zero on {t = 0}.

We now construct this function ¢. We will provide two different formulas for
@(t, x). The first one will hold for ¢ € (0, T) for some T € (0, 1). Then the second
formula provides a continuation of the definition of ¢ on [T, 1].

For some constant p > 0 and a function & : R? — R, we will construct the
function ¢ in (0, 7') with the special form

ot,x)=t"7® (%) .

Let us start from understanding what conditions ® must satisfy in order for ¢ to
be a subsolution to (2.45).

0> ¢, + PH(D%*) = t‘l‘l’(— p® (%)

1 x x X
—-—-Vo|—=|+PHD® (—))
7 () e (S
Therefore, we need to find a function ® : R — R and some exponent p such that
1
— pd(x) — 3% Vo(x) + PT(D?*®)(x) < 0. (2.46)
For some large exponent g, we choose ® like this

something smooth and bounded between 1 and 2 if |x| < 3/4d,
D(x) = 4 (6v/d)1 (29 — 1) (|x|—q _ (6\/3)“1) if3vd < |x| < 6+/d,
0 if|x| > 64d.

For 3+/d < x| < 6+/d, we compute explicitly the second and third terms
in (2.46),
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—éx VO(x) = (65d)!(2 — 1)_1%|x|_q
PH(D?®)(x) = (6v/d)1(27 — 1)"'q(A(d — 1) = A(g + 1))|x| 7772

By choosing ¢ large enough so that A(¢g + 1) > A(d — 1) 4 18d, we get that
1 +
—Ex -VO(x) + PTO(x) <0.

In order for (2.46) to hold in B, /7, we just have to choose the exponent p large
enough, since at those points ® > 1. Furthermore, since & > 0 everywhere and
® = 0 outside B¢ /7, then the inequality (2.46) holds in the full space R? in the
VISCOSIty sense.

Since @ is supported in By /7, then ¢ = 0 on (0,7) x 3By, for T = (36d)~".
Thus, ¢ = 0 on the lateral boundary (0, 7") x dB;. Moreover,

lim ¢(t,x) =0,
t——1

uniformly in B; \ B, for any ¢ > 0.

We have provided a value of ¢ up to time T € (0, 1). In order to continue
@ in [T, 1] we can do the following. Observe that by the construction of ®, we
have P (D%p(T,x)) < 0 forx € By \ Byj; and ¢(x,T) > T~? for x € By.
Therefore, let

PT(D2o(T,
C — Sup M < +oo’
X€EB (p(Tsx)

then we define ¢(z, x) = e~ CU~Dg(T, x) for all t > T, which is clearly a positive
subsolution of (2.45) in (T, 1] x By with ¢ = 0 on [T, 1] x dB.

The constructed function ¢ vanishes only on the set {(t,x) : ¢t < T and |x| >
6+/dr}. Since the set K3 = (R?,1) x (=3R, 3R)? has no intersection with this set,
then

inf 0.
11r<13q0>

This is all that was needed to conclude the proof. O

2.4.2.3 The Basic Measure Estimate

As in the elliptic case, the basic measure estimate is obtained by combining
the maximum principle of Theorem 2.4.9 and the barrier function constructed
in Lemma 2.4.16. For the following proposition, we use the notation from
Remark 2.4.17.
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K3

Kl Q1(170)

r € B

Fig. 2.3 Basic measure estimate in Q(1,0)

Proposition 2.4.18 (Basic measure estimate). There exist universal constants
g0 € (0,1), M > 1and u € (0, 1) such that for any non-negative supersolution of

?Tb; + PH(D’u) > fin Q1(1,0),

the following holds true: if
il’lfK3 u<l
£ 1l La+1 0, 1,0)) = €0

then

{u < M} K| > plK.

Remark 2.4.19. Since K, C K3 (see Fig.2.3), the result also holds true if infg, u
is replaced with infg, u. This will be used in order to state and prove the stacked
measure estimate.

Remark 2.4.20. If u is a non-negative supersolution of

0
3—;‘ + PH(D*) > fin (0,T) x By,
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.........................................................................

Ko

Kq Ql(lvo)

T € By

Fig. 2.4 A supersolution in a smaller cylinder

for some T € (R?, 1) (see Fig.2.4), we still get

infge yx(—3ram) 4 = 1 = {u =< M}nN K| > pulKil.
I f 1l La+10.r)x By = €0

The reason is that such a solution could be extended to Q (1, 0) (for example giving
any boundary condition on (7, 1) x dB; and making f quickly become zero for
t > T), and then Proposition 2.4.18 can be applied to this extended function. This
remark will be useful when getting the “stacked” measure estimate in the case where
the stack of cubes reaches the final time.

Proof. Consider the function w = u — ¢ where ¢ is the barrier function from
Lemma 2.4.16. Then w satisfies (in the viscosity sense)

%V + PH(D*w) > g—? + PH(D%u) - aa—‘f - PH(D’¢) > f—g.

Remark also that

* w>u>00nd,Q:(1,0);
. inf1<3w§ian3u—2§—lsothatsupK3 w- >1;
e {Tw)=w} C{w =<0} C{u<dgp}

We recall that I'(w) denotes the monotone envelope of min(w, 0) extended by 0 to
0>(1,0). We now apply the maximum principle (Theorem 2.4.9) and we get

1

d+1

1 <supw™ <supw ™ < Coax|| f || La+1(0,1,0)) T Crmax (/ |g|d+1) .
K; 01 {u<¢}
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Remember now that supp g C K and get
I < Cinaxgo + Crnax[{u < M} N K|

with M > max(sup K 9 1). Choose now &g so that Cpaxe0 < 1/2 and get the result
with u = m The proof is now complete. O

Corollary 2.4.21 (Basic measure estimate scaled). For the same constants gy, M
and (@ of Proposition 2.4.18 and any xo € R¢, ty € R and h > 0, consider any
nonnegative supersolution of

g_': + PT(D*u) > f in (ty, x0) + pQi1(1,0).
If
h
I a1 (o.xo) 4001 01)) = SO M pdl @+
then

h
[{u > h}N{(to, x0) + pK1}| > (1 —p)|(to, x0) + pK1| = u > i in (to, x0) + pK3.

Here, we recall that by pK we mean {(p’t, px) : (t,x) € K}.

Remark 2.4.22. As in Remark 2.4.20, (ty, x9) + p(0, 1) x B%(O) can be replaced
with (¢, xo) + p(0, T) x B% (0) forany T € (0, 1).

Proof. We consider the scaled function
v(t,x) = Mh™ u(ty + p°t, xo + px).
This function solves the equation

f’;—f + PH(D*) > fin 0,(1,0)

where f(1,x) = Mh~'p>f(to + pt, xo + px). Note that

; _ —1 d/(d+1
||f||Ld+1(Q1(l,0)) =Mh Y / )”f||L‘1+1((t0,x0)+pQ1(1,0)) = &o.

We conclude the proof applying Proposition 2.4.18 to v. O
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2.4.2.4 Stacks of Cubes
Given p € (0,1), we consider forall k e N, k > 1,

K = (e R?, a1 R?) x (=3FR, 3 R)?

— : k_
where o = Zf;é 9 =21
The first stack of cubes that we can consider is the following one

k
Ukleé )

This stack is obviously not contained in @ (1, 0) since time goes to infinity. It can
spill out of Q(1, 0) either on the lateral boundary or at the final time ¢t = 1. We are
going to see that at the final time, the “x-section” is contained in (=3, 3)¢.

We consider a scaled version of K included in K; and we stack the correspond-

ing K;k) ’s. The scaled versions of K, K> and Kék) are

pK1 = (0,p*R?) x B,r(0),
pK> = (PR, 100> R?) x B,(0).
pKY) = (p* R, o 11p?R?) x (=3°pR. 3 pR)".
We now consider
Ly = (to. x0) + pK1 C K
and

k k
LY = (10, x0) + pK3".

Lemma 2.4.23 (Stacks of cubes). Choose R < min(3 — 2+/2, \/g) =3-22
Forall Ly = (ty, x0) + pK1 C K, we have

K> C (ukzlL;’”) N(0,1) x (=3,3)4 = (ukzlL;’”) N <z <1l
In particular, if moreover R < (3+/d)™",
(ukzngk’) C (0.1) x B1(0).
Moreover, the first k* = k such that L(ZkH) N{t = 1} = 0 satisfies

p2R2 < L
(072%
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Fig. 2.5 Stacks of cubes

Proof. We first remark that the stack of cubes lies between two “square” paraboloids
(see Fig. 2.5)

(t0. x0) + S— C Ugs1 LY C (10, x0) + Sy
where
St = Uiz {p2(9)} x (=5.9)
and p4(s+) = p>R? and p+(2) = a+z> + b+ p?>R? are such that

p+(3*pR) = i p’ R
p—(G*pR) = ay 410’ R%.

This is equivalent to

9 1
a+:§ and a_=§ and b+:b_:—§ and s = ng.

Remark now that

Nl=

_ _1
[(t0, x0) + S+ N Q1(1,0) C [0, 1] x (=R —a}* R +a;*)".
_1
We thus choose R such that (R + a_ *) < 3. This condition is satisfied if

R <3-22.
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Remark next that
(o, X0) + S— D Nyer.py [(R?. x) + S_].
Hence
[(t0. X0) + S-]1 N 01(1,0) D K,
as soon as
ar(2R)* <1—-2R>

It is enough to have
S 52 2
ER = (4ay +2)R" < 1.

Finally, the integer k™ satisfies

to + o= R*p* <1 < tg + o=y R?p%. O

2.4.2.5 The Stacked Measure Estimate

In this paragraph, we apply repeatedly the basic measure estimate obtained above
and get an estimate in the finite stacks of cubes we constructed in the previous
paragraph.

Proposition 2.4.24 (Stacked measure estimate). For the same universal con-
stants g9 € (0,1), M > 1 and u € (0, 1) from Proposition 2.4.18, the following
holds true: consider a non-negative supersolution u of

W PP = [ in (0.1) % B (0)

and a cube Ly = (to, xo) + pKy C K. Assume that for some k > 1 and h > 0

h
||f||Ld+1((0,1)xB71€(0)) = SOW‘

Then

h
> NL >0 -l =  inf  u>——
L nfo<r<1} M
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K®

Kz(’:s)

KP

I(U)

-
FAy|

Fig. 2.6 Stacks of neighbourhoods K;k)

Remark 2.4.25. Remember that L;k) = (to, x0) + ,oKék) and see Fig. 2.6. Thanks to
Lemma 2.4.23, we know that LY N {0 < ¢ < 1} € (0, 1) x B4 (0).

Proof. We prove the result by induction on k. Corollary 2.4.21 corresponds to the
case k = 1 if we can verify that

h
IS W L+t (oxo)+001(1.0)) = €0 Mpd/@+D

It is a consequence of the fact that Q(1,0) C (0, 1) x B%(O).
For k > 1, the inductive hypothesis reads

inf u > Tl
LV nfo<e<1} M

If L(zk_l) is not contained in (0, 1) x B 1 (0), there is nothing to prove at rank k since

L;k) N{0 <t < 1} = @. We thus assume that L;k_l) C (0,1) x B (0).
In particular

[{u >

et LED = |LE ). (2.47)
Note that L ™" = (11,0)4-p1 Ky and LY = (11, 0)+p1 K, with 1) = tg+a;—; R2p?
and p; = 3! p. In particular (2.47) implies

F 4, 0) + o Kb > (1= w71, 0) + p1 Ky

h
= g
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So we apply Corollary 2.4.21 again to obtain

. . h
inf u= inf u> —.
L(zk)ﬂ{0<t<l} {(11,0)4+p1 K2}N{0<r <1} M

We can do so since p; > p and Lemma 2.4.23 implies that L(Zk) C (0,1)x(=3,3)%.
In particular, the corresponding domain in which the supersolution is considered is
contained in (0,1) x B 1 (0). We used here Remark 2.4.20 when (¢;,0) + p; K3 is

not contained in {0 < ¢ < 1}. Thus, we finish the proof by induction. O

Before turning to the proof of Theorem 2.4.15, we observe that the previous
stacked measure estimate implies in particular the following result.

Corollary 2.4.26 (Straight stacked measure estimate). Assume that R <

m. Under the assumptions of Proposition 2.4.24 with k = m, for any

cube L, C K,

h o —m
> mn Ll > (1= wLi] = u> o in ;" c 0.(1,0).

Proof. Apply Proposition 2.4.24 with k = m and remark that L_l(m) C Lgm).

The fact that L_l(m) C Q1(1,0) (see Fig.2.7) comes from the fact that 10(m + 1)
R < 1. |

2.4.2.6 A Stacked Covering Lemma

When proving the fundamental L*-estimate (sometimes called the weak Harnack
inequality) for fully nonlinear elliptic equations, the Calderén—-Zygmund decom-
position lemma plays an important role (see [CafCab] for instance). It has to be
adapted to the parabolic framework.

We need first some definitions. A cube Q is a set of the form (zy, xo) + (0, s2) x
(=s.5)¢. A dyadic cube K of Q is obtained by repeating a finite number of times
the following iterative process: Q is divided into 2?2 cubes by considering all the
translations of (0, s%/4) x (0, s)¢ by vectors of the form (I(s?>/4), sk) with k € Z¢
and / € Z included in Q. When a cube K] is split in different cubes including K>,
K is called a predecessor of K.

Given m € N, and a dyadic cube K of Q, the set K™ is obtained by “stacking”
m copies of its predecessor K. More rigorously, if the predecessor K has the form
(a,b) x L, then we define K™ = (b, b + m(b — a)) x L. Figure 2.8 corresponds
to the case m = 3.

Lemma 2.4.27 (Stacked covering lemma). Let m € N. Consider two subsets A
and B of a cube Q. Assume that |A| < §| Q| for some § € (0,1). Assume also the
following: for any dyadic cube K C Q,
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L—1(3)

Fig. 2.7 L, and the predecessors T, and L_IG)

|K N A| > 8|4 = K™ C B.

Then |A| < §"+1|B|.

Remark 2.4.28. This lemma is implicitly used in [Wang92a] (see e.g. Lemma 3.23
of this paper) but details of the proof are not given.

The proof uses a Lebesgue’s differentiation theorem with assumptions that are
not completely classical, even if we believe that such a generalization is well-known.
For the sake of completeness, we state and prove it in appendix (see Theorem 2.5.1
and Corollary 2.5.2).

Proof of Lemma 2.4.27. By iterating the process described to define dyadic cubes,
we know that there exists a countable collection of dyadic cubes K; such that

|KiNAl = 8|K;| and |K;NA| <K

where K; is a predecessor of K;. We claim that thanks to Lebesgue’s differentiation
theorem (Corollary 2.5.2), there exists a set N of null measure such that

A C (U2,K;)UN.
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K®)

Fig. 2.8 A dyadic cube K and stacked predecessors K

Indeed, consider (¢, x) € A\ U2, K;. On one hand, since (¢, x) € Q, it belongs to
a sequence of closed dyadic cubes of the form L; = (¢;,x;) + [0, r}] X [=rj, rj]d
with r; — 0 as j — +o0 such that

|AﬂLj| §8|LJ|

that is to say
f 14 < 5 < 1.
Lj

On the other hand, for (t,x) € A\ U2, K;,

0<1—8§1—][ 14 2][ |1A—1A(t,x)|.
Lj Lj

We claim that the right hand side of the previous equality goes to 0 as j — oo as
soonas (t,x) ¢ N where N is a set of null measure. Indeed, Corollary 2.5.2 implies
that for (¢, x) outside of such a set N,
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][ |1A —IA(Z,X)I Sf |1A —lA(t,x)| -0
L ;

Lj

where ij = (t,x) + [0, 4r12»] x [=2r;,2r;]%. We conclude that 4 \ U; K; C N.
We can relabel predecessors K; so that they are pairewise disjoint. We thus have
A C U2 K; UN with K" C B thanks to the assumption; in particular,

ACUX K;UN CUX K, UK"UN

with U K" C B. Classically, we write

=17

Al <)Y IANK| <8 |Ki| <8]U2, Kil. (2.48)

i>1 i>1

In order to conclude the proof of the lemma, it is thus enough to prove that for a
countable collection (K;); of disjoint cubes, we have

| U2, K UK < ’iﬂu;ﬁl K. (2.49)
m

Indeed, combining (2.48) and (2.49) yields the desired estimate (keeping in mind
that U; K™ C B).

Estimate (2.49) is not obvious since, even if the K;’s are pairwise disjoint, the
stacked cubes K ! can overlap. In order to justify (2.49), we first write

U2, Ki UK = U5 J; x L
where L ; are disjoint cubes of R¢ and J ; are open sets of R of the form
J = U2 (ak. ar + (m + 1)hy).
Remark that
U K" = U, J; x L
where J; has the general form
J = U (g + hie,ax + (m + Dhy).

Hence, the proof is complete once Lemma 2.4.29 below is proved. O



68 C. Imbert and L. Silvestre
Lemma 2.4.29. Let (ak)]](\':l and (hk);{vzl be two (possibly infinite) sequences of
real numbers for N € N U {oo} with hy > 0fork =1,...,N. Then

m
m+1

|Upz (@, ax + (m + Dhg)| < \UR_, (ak + hic.ak + (m + Dh)| .

Proof. We first assume that N is finite. We write U{C\;l(ak + h,ar + (m + 1)hy)
as U1L=1 I; where I; are disjoint open intervals. We can write them as

il = sup (bk + (m + D)) — inf (br + k)
k=1,..., N; k=1,..., N;

Then

m
|UI]<V=1(ak + hi,ar + (m + 1)hk)| >m Xl:lkl = poar Xl:(m + Dy, .

It is now enough to remark that (m 4 1)/, coincide with the length of one of the
intervals {(ax,ar + (m + 1)hy)}, and they are distinct since so are the ;’s. The
proof is now complete in the case where N is finite.

If now N = oo, we get from the previous case that for any N € N,

m

m+1
m

m+1

A

(UN_ (ks ai + (m + Dhy)| < U, (ax + he.ax + (m + D)

=

|UR (ak + hi,ar + (m + 1)hy)|.

It is now enough to let N — oo to conclude. O

2.4.2.7 Proof of the L¢-Estimate

The proof of the L® estimate consists in obtaining a decay in the measure of the
sets {u > M*} N K, (see Fig.2.9). As in the elliptic case, the strategy is to apply
the covering Lemma 2.4.27 iteratively making use of Corollary 2.4.26. The main
difficulty of the proof (which is not present in the elliptic case) comes from the fact
that if K is a cube contained in K, then nothing prevents K " spilling out of K.
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Ky K4

Fig. 2.9 The two neighbourhoods K, and K,

Proof of Theorem 2.4.15. First, we can assume that

iIIZIfM <1 and | flla+1¢01)xB, (0) = €0
2 R

(where gy comes from Proposition 2.4.24) by considering

u
infg u+ ey! L/ Nz nx y o + 5

Vi, x) =

We thus want to prove that there exits a universal constant C > 0 such that

/~ u(t,x) drdx < C. (2.50)
K,

In order to get (2.43), it is enough to find universal constants m, ko € Nand B > 1
such that for all k£ > kg,

{u> M1 (0,R?*/24 CiB™*) x (=R, R)?| < C(1 — pu/2)* (2.51)

where C is universal and M and p comes from Proposition 2.4.24. Indeed, first for
t € [Mkm M E+Dm) we have

{u>1yN(0,R*/2+ C;B™ ) x (=R, R)¥|<C(1—-u/2)f <Cr™
with ¢ = — U=/ -  We deduce that for all # > 0, we have

mln M

Hu>1}n K| <Cr.
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Now we use the formula

o0
/~ u®(t,x) dtdx = 5/ T u>tyN K ldt
0

K

1 o)
§€|I€1|/ tg_ldt—i—s/ T Hu>ty N K |de
0 1

and we get (2.50) from (2.51).
We prove (2.51) by induction on k. For k = k¢, we simply choose

C > (1—pu/2)7%|0,R?/2+ C;B~") x (=R, R)‘|.

Now we assume that k > ko, that the result holds true for k and we prove it for
k + 1. In order to do so, we want to apply the covering Lemma 2.4.27 with

A={u>M*D"n©0,R*/2+CB* ) x (=R, R)?
B={u>M""n(0,R*2+ CiB™") x (=R, R)¢
0 =K, =(0,R*) x (=R, R)?

for some universal constants B and C; to be chosen later. We can choose kg
(universal) so that 5 C K. For instance

2C,B7% < R*.
The induction assumption reads

1Bl < C(1 — p/2)k.

Lemma 2.4.30. We have |A| < (1 — )| Q|.

Proof. Since, inf U= 1, we have in particular infg, u < 1. The basic measure
estimate (Proposition 2.4.18) then implies that

|A] = {u> M0 K} < (1 - pw|Ki| = (1 -0 o
Lemma 2.4.31. Consider any dyadic cube K = (t,x) + pK, of Q. If

|KN{u > METD™N 0, R?/2+CB* )< (=R, R)"Y| > (1-p)|K|, (2.52)
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then
K™ C {u> M*""yn(0,R*/2+ C;B~™) x (=R, R)?

where K™ is defined at the beginning of Sect. 2.4.2.6.

Proof. We remark that the straight stacked measure estimate, Corollary 2.4.26,
applied with 1 = M *FDm > pm implies

K™ C {u> M.
We thus have to prove that
K™ C [0,R*/2+ C,B™¥] x (=R, R)“. (2.53)
Because of (2.52), we have
KN (0,R*/2+ CiB™* ) x (=R, R) # 0.
Hence
c [0, R?/2 4+ C,B7*! 4 height(K) + height(K")] x (=R, R)?

where height(L) = sup{¢ : Ix, (¢, x) € L} —inf{z : Ax, (¢, x) € L}. Moreover,

height(K) = R*p?
height(K) = 4 height(K)
height(K™) = m height(K).

Hence, (2.53) holds true if
R*/2 4+ C;B™* ! 4 4(m 4+ D)R?p* < R*/2+ C,B™*

i.e.

GEB-1,

R22
P = dmtn °

(2.54)
In order to estimate R?p> we are going to use the stacked measure estimate given
by Proposition 2.4.24 together with the fact that K is a cube for which (2.52) holds.

On one hand, Proposition 2.4.24 and (2.52) imply that as long as / < (k + 1)m,
we have

u>MEFTin 0o <1 <1y
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in particular,

inf u>1.

s LD g0<e<1y

On the other hand, using notation from Lemma 2.4.23,

inf u<infu <1
. 0
U H L o< <1} K>

Hence (k + 1)m < k* + 1. Moreover, Lemma 2.4.23 implies

R2P2 <(- fo)((xk*)_1 =< ok m

36(m+1)
on—] -

Hence, we choose B = 9" and C; =
We can now apply the covering lemma and conclude that

m+1
m

|A] <6

|B].

We choose m large enough (universal) such that

m+1

(1—p) <1—p/2.

Recalling that we chose p such that ﬁ = | 4+ 2Cpux R9T2 (where Cpyy is the
universal constant appearing in the maximum principle), the previous condition is
equivalent to

m > 4Ca RO

Since R < 1, it is enough to choose m > 4C .
Thanks to the induction assumption, we thus finally get

[{u> MED™y 1 0, R*/2+ CB™* 1) x (=R, R)?| < C(1 — pu/2)* .

The proof is now complete. O

2.4.3 Harnack Inequality

The main result of this subsection is the following theorem.
Theorem 2.4.32 (Harnack inequality). For any non-negative function u such that

Lt pH(DW) > —f

%4 P=(Du) < f

(2.55)
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in Q1, we have

supu < C(inf u + || f || pa+1(0,))
& G

where Ky = (—R* + 3R* —R? + 1 R*) x BL}(O).
242

Remark 2.4.33. The case where u solves (2.55) in Q, instead of Q; follows by
scaling. Indeed, consider v(z, x) = u(p’t, px) and change constants accordingly.

We will derive Theorem 2.4.32 combining Theorem 2.4.15 with the following
proposition (which in turn also follows from Theorem 2.4.15).

Proposition 2.4.34 (Local maximum principle). Consider a function u such that

% + P~ (D%*u) < f in Q). (2.56)

Then for all p > 0, we have

1

v
supu < C ((/ (u+)”) + ”f“L“"H(Ql))‘
012 01

Proof. First we can assume that u > 0 by remarking that u™ satisfies (2.56) with f
replaced with | f].
Let W be defined by

W(t,x) = hmax((1 — |x|)™2, (1 +1)77)
where y will be chosen later. We choose # minimal such that
U >uyin Q.

In other words

h = min u(t, x)
~ eweor max((1 — |[x)~2, (1 4+1)77)’

We want to estimate / from above. Indeed, we have

supu < Ch
%4

for some constant C depending on y and Q 1
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In order to do estimate /2, we consider a point (¢, xo) realizing the minimum in
the definition of 4. We consider

8% = min((1 — |xo])%, (1 + o).
In particular
u(ty, x9) = h8~%

and Qs(tg, x0) C Q).
We consider next the function v(z, x) = C — u(¢t, x) where

C= sup V¥
0p5(t0.x0)

for some parameter 8 € (0, 1) to be chosen later. Remark first that
W6 < C < h((1—B)8)~ 7.
Remark next that v is a supersolution of

i—’;+P+(D2v)+|f| >0 inQ,

and v > 0 in (f — (RBS)* 19) x Bps(xo) C Qps(to, Xo). From the L¢ estimate
(Theorem 2.4.15 properly scaled and translated), we conclude that

/va < C(ﬁa)d“( inf v+ (ﬁS)fHIIfIILw(Ql))

(to—PB8.x0)+BIK>
where L = (to — 86, x0) + ,381%1. Moreover,
inf v < (o, xo)
(to—p8.x0)+BS K>
= C — u(l, xo)

< h((l - B — 1)5—2%

Hence, we have

/ ) < C(m)d“[h((l—ﬂ)—”—1)8—2y+(/38)f’+1||f||d+1}6. @.57)
L
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We now consider the set
1 1.,
A=1{(t,x)eL:u(t x)< Eu(to,xo) = EhS v

We have

& _2y &€
/ v® > |A| (hé’_z” - lhé)’_zy) = |A| (h(S ) )
A 2 2

We thus get from (2.57) the following estimate
¢ de
A= i (a=pr =1} + @ e |

Finally, we estimate f o1 u® from below as follows

/ u > / W > (L] — | A2 (h8 7).
. L\A

Hence, choosing y = % and combining the two previous inequalities, we get

ﬂ2+dC1]’l£ — |L|2—£(h5—2y)£ < / ut

1
+ :32+d Czhs ((1 _ IB)—Z}/ _ 1)
_de_ &
+ ,32+d+"+‘ Gl f 51

We used § < 1. Choose now 8 small enough so that

Cz((1 -B) - 1)8 < ()2

and conclude in the case p = ¢. The general case follows by interpolation. O

Theorem 2.4.32 is a direct consequence of the following one.

Theorem 2.4.35. For any non-negative function u satisfying (2.55) in (—1,0) x
B 1 (0), we have

supu < C@infu + || £l La+1((—1.0x8, (0)))
& Or R

where K3 = (=1 + %RZ,—I + R?/2) x BL\[(O) (see Fig.2.10).
242
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Qr

Fig. 2.10 The set 1?3

Proof of Theorem 2.4.35. On the one hand, from Theorem 2.4.15 (the L? estimate)
applied to u(¢ + 1, x) we know that

1/e
/ u(x)*dx < C(infu+ || flla+1(0,))- (2.58)
(—1.—14+R2/2)xBy, /5 Or

On the other hand, we apply Proposition 2.4.34 to the scaled function v(¢,x) =
u((t +1— R%/2)/(R%/2),v/2x/R) > 0 and p = ¢ to obtain

1
supr = ([ 0) + 1 ussnioy )
Q% 01

Scaling back to the original variables, we get

1

SupM E C (/ ME + ||f||Ld+l(Ql) . (259)
123 (—l,—l-‘rRz/Z)XBR/ﬁ

Combining (2.58) with (2.59) we get

supu < C (infu + ||f||Ld+1(Q1)) :
s Or

which finishes the proof. O
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2.4.4 Holder Continuity

An important consequence of Harnack inequality (Theorem 2.4.32) is the Holder
continuity of functions satisfying (2.55).

Theorem 2.4.36. If u satisfies (2.55) in Q, then u is a-Holder continuous in Q,
and

— _d_
[leg,r2 = Cp~ (lulo.g, + pTH [ flli1(g,)) -

Proof. We only deal with p = 1. We prove that if u satisfies (2.55) in O then u is
a-Holder continuous at the origin, i.e.

lu(t, x) = u(0,0)] < C (lulo.o, + Il flla+1(0,)) (IX] + VD). (2.60)

To get such an estimate, it is enough to prove that the oscillation of the function u in
0, decays as p“; more precisely, we consider

M, = supu,
Qp

m, = infu,
r=0,

oscg, u =M, —m,.
Then (2.60) holds true as soon as

osco, u = C (Julo.o, + ”f”L‘H‘l(Ql)) . (2.61)

Indeed, consider (¢, x) € Q, \ Q,/» and estimate |u(f, x) — u(0, 0)| from above by
oscg, u and p/2 from above by x| + NI

In order to prove (2.61), we consider the two functions u — m, > 0 and
M, —u > 0in Q,. They both satisfy (2.55) in Q. From the Harnack inequality, we
thus get

. _d
sup(u —m,) < C(inf (u—mp) + pTF | flla+1)
oks Or2,
. _d
sup(Mp —u) < C(anf (Mp —u) + p77 || flla+1)
I &2

pKs

where pI€'4 C Q, follows from K, C (—=1,0) x B;. We next add these two
inequalities which yields
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_d
oscg, u = C(oscg, u—osco,, u+ pTT flla+1)

with C > 1 and where y denotes R?. Rearranging terms, we get

_d_
OSCQVPM = OSCqu+pd+l ”f”d-‘rl

where C is universal. Then an elementary iteration lemma allows us to achieve the
proof of the theorem; see Lemma 2.5.13 in appendix with i(p) = oscg, u and
§=(C—-1)/CandB =d/(d+1). O

Appendix: Technical Lemmas

A.1 Lebesgue’s Differentiation Theorem

The purpose of this appendix is to prove a version of Lebesgue’s differentiation
theorem with parabolic cylinders. Recall that the usual version of the result says
thatif f € L'(2, dt ® dx) where  is a Borel set of R?*!, then for a.e. (¢, x) € Q,

j—>o0

lim £ [f— f(,x)|=0
Gj

as long as the sequence of sets G satisfies the regularity condition:

Gj CBj
|G;l = c|Bj|

where B; is a sequence of balls B, (7, x) with r; — 0.

A sequence of parabolic cylinders Q,,(¢,x) cannot satisfy the regularity
condition because of the different scaling between space and time. Indeed
Oy (t,x)| = r;.H'Z which is an order of magnitude smaller than r;H'l.

Fortunately, the classical proof of Lebesgue’s differentiation theorem can be

repeated and works for parabolic cylinders as well, as it is shown below.

Theorem 2.5.1 (Lebesgue’s differentiation theorem). Consider an integrable
function f € LY(Q,dt ® dx) where Q is an open set of Rt Then for a.e.
(t,x) € Q,

lim |f = f@x)=0
=0+ (r—r2.1)x B, (x)

where fo g = |17| fo g for any Borel set O C RY*! and integrable function g.
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In the proof, we will in fact use the following corollary.

Corollary 2.5.2 (Generalized Lebesgue’s differentiation theorem). Let G; be a
family of sets which is regular in the following sense: there exists a constant ¢ > 0
and r; — 0 such that

2

Gj C(t—rj,1) X By (x),
d+2
|G]| zcrj+ .

Then, except for a set of measure zero which is independent of the choice of {G},
we have

lim |f = f@.x)|=0.
j—>+o0 Gj

Remark 2.5.3. It is interesting to point out that if the parabolic cylinders were
replaced by other families of sets not satisfying the regularity condition, the result
of Lemma 2.5.5 may fail. For example if we take

Mf(.x)=  sup ][ /]
(a,b)XBy(y)>(t.x)/ (a.b)X B, (y)NQ

then Lemma 2.5.5 would fail for M f .

Proof of Corollary 2.5.2. We obtain Corollary 2.5.2 as an immediate consequence
of Theorem 2.5.1 by noting that since G; C (¢ — rj?, 1) X By, (x).

| B, |
|G]| (t—r2.t)x B, (x)

1=l < = fe0l

Thus, the result holds at all points where this right hand side goes to zero, which is

a set of full measure by Theorem 2.5.1 and that "lzcl—]?ﬂ >c>0. O
J

In order to prove Theorem 2.5.1, we first need a version of Vitali’s covering lemma.

Lemma 2.5.4 (Vitali’s covering lemma). Consider a bounded collection of cubes
(Qo)a of the form Qy = (ty — 12, 1y) X By, (xy) and a set A such that A C Uy Q.
Then there is a finite number of cubes Q1, ..., Qy such that A C UﬁyZISQj where

50, = (ta = 25r2,12) X By, (xa)-

Consider next the maximal function Mf associated with a function f €
LY(Q,dt ® dx)

Mf(t.x) = sup ][ If]
03(.x)J ong

where the supremum is taken over cubes Q of the form (s, y) + (—r2,0) x B,.
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Lemma 2.5.5 (The maximal inequality). Consider f € LY(Q,dt ® dx), f
positive, and A > 0, we have

C
{Mf > A3 = [ f e

for some constant C depending only on dimension d.

Proof. For all x € {Mf > A}, there exists Q > x such that
A
inf f > —|Q].
inf f = £10|

Hence, the set {Mf > A} can be covered by cubes Q. From Vitali’s covering lemma,
there exists a finite cover of {Mf > A} with some 50°s:

{Mf > 2} cUl_ 50

with O that are disjoint and such that

A
[ rzjieinal
2;ng

Hence
RN D >
/Q U;0;NQ zjj 0;NQ
A A 1 A
Z§|Uj QjﬂmZEXW|U1‘5Q1‘HQ|ZE|{MJC>/\}|
with C = 2 x 57+2, i

We can now prove Lebesgue’s differentiation theorem (Theorem 2.5.1).

Proof of Theorem 2.5.1. We can assume without loss of generality that the set €2
is bounded. We first remark that the result is true if f is continuous. If f is not
continuous, we consider a sequence ( f,), of continuous functions such that

C
1f = fullr < 5

Moreover, up to a subsequence, we can also assume that for a.e. (¢, x) € €,

fut,x) — f(t,x) asn — oo.
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Thanks to the maximal inequality (Lemma 2.5.5), we have in particular

UM~ ) > Ml = 2o

By Borel-Cantelli’s Lemma, we conclude that for all A > 0, there exists n, € N
such that for alln > n,,

M(f—f,) <A ae.inQ.

We conclude that for a.e. (¢, x) € Q and all k € N, there exists a strictly increasing
sequence 7y such that for all » > 0 such that Q, (¢, x) C Q,

f = Ful < MO~ fu) < 7.
O,(t.x)

Moreover, since f, is continuous and 2 is bounded, there exists ry > 0 such that
for r € (0, ry), we have

FI

f o = furt.2)] <
0r(t,x)

Moreover, for a.e. (f, x) € ,
| fo, (2, x) — f(t,.x)] >0 ask — oo.

These three facts imply that for a.e. (t,x) € €, for all ¢ > 0, there exists 7. > 0
such that r € (0, r,),

][ f = ft.0) <e.
0, (t.x)

This achieves the proof of the lemma. O

A.2 Jensen-Ishii’s Lemma for N Functions

When proving Theorem 2.4.9 (more precisely, Lemma 2.4.6), we used the following
generalization of Lemmas 2.3.23 and 2.3.30 whose proof can be found in [CIL92].

Lemma 2.5.6 (Jensen—Ishii’s Lemma IIl). Let U;,i = 1,..., N be open sets of
R? and I an open interval of R. Consider also lower semi-continuous functions
u; : I xU; = Rsuchthat forallv = u;, i =1,..., N, (t,x) € I xUj, there exists
r > 0 such that for all M > 0 there exists C > 0,
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(s.y) € Q(t.x)
(B.q.Y)ePu(s,y) p = —B=C.
(s, M|+ lgl + Y| =M

Letx = (x1,...,xy) and xo = (x,...,x%). Assume that vazl ui(t, x;) —¢(t, x)
reaches a local minimum at (ty,x0) € I x I1;U;. If o denotes 0,¢(ty, xo) and
pi denotes Dy, ¢(xo) and A denotes D*¢(to, xo), then for any B > 0 such that
I + BA > O, there exist (a;, X;) € Rx Sy, i = 1,..., N, such that for all
i=1,...,N,

(Oli, Dis X,) € f_u(to,x?)

N
E o = o

i=1

and
I0...0 X, 0...0
l 0. . > 0 > Ap
p 0 L 0
0 07 0...0 Xy

where Ag = (I + BA)™'A.

Remark 2.5.7. The condition on the functions u; is satisfied as soon as the u;’s
are supersolutions of a parabolic equation. This condition ensures that some
compactness holds true when using the doubling variable technique in the time
variable. See [CIL92, Theorem 8.2, p. 50] for more details.

A.3 Technical Lemmas for Monotone Envelopes

When proving the maximum principle (Theorem 2.4.9), we used the two following
technical lemmas.

Lemma 2.5.8. Consider a convex set Q@ of R? and a lower semi-continuous
function v : [a,b] x @ — R which is non-increasing with respect to t € (a,b)
and convex with respect to x € 2. Assume that v is bounded from above and that
forall (o, p, X) € P7v(t, x), we have

—a<C and X <CI.
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Then v is Lipschitz continuous with respect t € (a,b) and C"! with respect to
x € Q.

Proof of Lemma 2.5.8. We assume without loss of generality that €2 is bounded. In
this case, v is bounded from above and from below, hence is bounded. Next, we
also get that v is Lipschitz continuous with respect to x in [a, b] x F for all closed
convex set F' C 2 such that d(F, d2) > 0.

Step 1.

We first prove that v is Lipschitz continuous with respect to ¢: for all (¢, xo) €
(a,b) x Q,

L
M = sup {v(t,x)—v(s,y)—th—s|——|x—y|2—L8
s,t€(a,b),x,yEQ 4e

— Lo|x — xo|* = Lo(t — 10)2} <0

for L large enough only depending on C and the Lipschitz constant of v with respect
to x around (29, xo) and for L, large enough. We argue by contradiction by assuming
that M > 0. Consider (5,7, X, y) where the maximum M is reached. Remark first
that

_ _ - L _ . _
L0|y—x0|2+L0(s—to)2+L|t—s|+5|x—y|2+L£§v(t,x)—v(s,y)

=< 2|y upixs-

In particular, we can choose L and L large enough so that (3, ), (, X) € (a,b)xQ.
Remark next that 7 # §. Indeed, if f = 5, then

_ - L
0<M <v(,%)—v(,7) — 4—|)?—)7|2—L£
€
and choosing L larger than the Lipschitz constant of v with respect to x yields
a contradiction. Hence the function v is touched from below at (5, y) by the test
function
L _
(5,9) > Co— —|X =y’ = LI s
4e
where Cy is a constant depending on (7, X). In particular,
(Lsign(f —5), L(4e) "' (X — ), L(4e)"'1) € P70, j).

We thus should have L < C. Choosing L > C yields also the desired contradiction.
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Step 2.

In order to prove that for all ¢ € (a, b), u(t,-) is C! with respect to x, it is enough
to prove that for all (p, X) € Dz*_u(t, x) (see below), X < CI.1Indeed, this implies
that u(t,-) + %I - |? is concave [ALL97]. Since u(t, -) is convex, this implies that it
is C"! [CanSin04].

(p, X) € D> u(t, x) means that there exists ¥ € C2(R?) such that p = Dy (x)
and X = D?y/(x) and

Y(y) =¥ (x) <ult,y) —ult,x)

for y € B,(x). We can further assume that the minimum of u(¢, -) — ¥ is strict. We
then consider the minimum of u(s, x)— (x)+&~! (s—¢)?in (t—r, t +r)x B, (x). For
¢ small enough, this minimum is reached in an interior point (., x.) and (z,, x;) —
(t,x) ase — 0. Then

(S_l(ss —1), Dl/f(xs)7 DZW(XE)) € P u(te, xa)‘

Hence, D%y (x,) < CI. Letting ¢ — 0 yields X < CI. This achieves Step 2.
The proof of the lemma is now complete. O

Lemma 2.5.9. Consider a convex set Q2 of R? and v : (a,b) x Q — R which is
non-increasing with respect to t € (a,b) and convex with respect to x € Q. Then
forall («, p, X) € P™v(t, x), that there exists (&, p,, X,) such that

(ctn, pu> Xn) € P o(ty, xn)
(tn, Xn, 0y, pn) — (¢, x,, p)
X <X, +o0,(1),X,>0.

The proof of this lemma relies on Alexandroff theorem in its classical form.
A statement and a proof of this classical theorem can be found for instance in
[EG92]. We will only use the following consequence of this theorem.

Theorem 2.5.10. Consider a convex set Q of R? and a functionv : (a,b)xQ — R
which is convex with respect to (¢, x) € (a,b) x Q. Then for almost (t, x) € (a, b) X
Q, there exists (a, p, X) € P~ N PYu(t, x), that is to say such that,

v(s,y) = v, x)+a(s—1)+p-(y—x)+ %X(y—X)(y—X)JrO(IS—tI+|y—XI2)-
(2.62)

Jensen’s lemma is also needed (stated here in a “parabolic” version for the sake
of clarity).

Lemma 2.5.11 (Jensen). Consider a convex set 2 of R? and a function v : (a,b)x
Q — R such that there exists (t, C) € R? such that u(t, x) + t1* + C|x|? is convex
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with respect to (t,x) € (a,b) x Q. If u reaches a strict local maximum at (to, Xo),
then forr > 0 and § > 0 small enough, the set

K ={(t,x) € (to—r,to +r) x B (xo) : Iz, p) € (—6,6) x Bs,

(s,y) = u(s,y) — ts — p - y reaches a local maximum at (¢, x)}

has a positive measure.

See [CIL92] for a proof. We can now turn to the proof of Lemma 2.5.8. The proof
of Lemma 2.5.9 below mimics the proof of [ALL97, Lemma 3] in which there is no
time dependence.

Proof of Lemma 2.5.9. Consider a test function ¢ such that u — ¢ reaches a local
maximum at (¢, x) and

(Ol, ps X) = (afd)v Dd)v D2¢)(ts-x)-

Without loss of generality, we can assume that this maximum is strict; indeed,
replace ¢ with ¢ (s, y) — |y — x|> — (s — t)? for instance. Then consider the function

. 1 1
ve(f,x) = inf . v(s,y)+g|y—x|2+g(s—t)2 .

yERI 5>

One can check that v, is still convex with respect to x and non-increasing with
respect to ¢ and that

1 1
(t,x) > ve(t, x) + —|x|* + -2
€ €

is concave with respect to (¢, x). Moreover, v, < v and
lim v, (¢, x) = v(¢, x).
e—>0

This implies that there exists (¢, x;) — 0 as & — 0 such that v, — ¢ reaches a local
maximum at (z,, x.). Remarking that v, — ¢ satisfies the assumptions of Jensen’s
lemma, Lemma 2.5.11 above, we combine it with Theorem 2.5.10 and we conclude
that we can find slopes (t,, p,) — (0, 0) and points (z,, x,) — (¢;, X¢) asn — 0o
where v, — ¢ satisfies (2.62) and v, — ¢ — 7,8 — p, ) reaches a local maximum at
(t1, x,). In other words,

(Tw + 0P (t, Xn), Pn + D (tn, Xn), D*0e(tn, X1)) € P~ 0e(ty, Xn)
with

Dzvg(t,,,x,,) >0
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and
D2p(ty. x,) < D*vu(ty, xp).

In order to conclude, we use the classical following result from viscosity solution
theory (see [CIL92] for a proof):

Lemma 2.5.12. Consider (s,, y,) such that
Vet Xn) = Vsn, yn) + &7 Iy — xl® + 67 (1 = 50)°.
Then
[yn = Xn|* + (ta — 52)* < elvTo.@p)xa
and
P ug(ty, xn) C P u(Sy, yn)-

We used in the previous lemma that v is bounded from above since €2 is bounded.
Putting all the previous pieces of information together yields the desired result. O

A.4 An Elementary Iteration Lemma

The following lemma is classical, see for instance [GT01, Lemma 8.23].

Lemma 2.5.13. Consider a non-decreasing function h : (0, 1) — R such that for
all p € (0,1),

h(yp) < 8h(p) + Cop”
for some §,y, B € (0,1). Then for all p € (0, 1),
h(p) < Cop®
forall a = $ min({2%, B) € (0, 1).

Iny

Proof. Consider k € N, k > 1, and get by induction that for all py, p; € (0, 1) with
P1 = Po,

k—1
h(y*p1) < 8 h(pr) + Copf Y v,
=0
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Then write

B
B o) = 8h(po) + Cor P
-Y
B

5 o
< Y h(eo) + Cop g

20

< 0 () + Co 2

where 8 = 128 Now pick p € [y¥*!p;, ¥*p1) and choose p; = /pop and get from
Iny p g

the previous inequality the desired result for p € (0, pg). Choose next py = % and
conclude for p € (0, 1). O
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