
Chapter 2
An Introduction to Fully Nonlinear Parabolic
Equations

Cyril Imbert and Luis Silvestre

Abstract These notes contain a short exposition of selected results about parabolic
equations: Schauder estimates for linear parabolic equations with Hölder coeffi-
cients, some existence, uniqueness and regularity results for viscosity solutions
of fully nonlinear parabolic equations (including degenerate ones), the Harnack
inequality for fully nonlinear uniformly parabolic equations.

2.1 Introduction

The literature about parabolic equations is immense and it is very difficult to have
a complete picture of available results. Very nice books such as [LSU67, Kryl87,
Dong91,Lieb96] are attempt to gather and order the most significant advances in this
wide field. If now one restricts himself to fully nonlinear parabolic equations, the
task is still almost impossible. Indeed, many results proved for parabolic equations
were first proved for elliptic equations and these results are numerous. We recall
that many problems come from geometry; the reader is referred to the survey paper
[Kryl97] where Krylov gives historical and bibliographical landmarks.

In these notes, we will focus on three specific topics concerning parabolic
equations: Schauder estimates for linear parabolic equations (following Safonov
[Saf84] and the textbook by Krylov [Kryl96]), viscosity solutions for fully nonlinear
parabolic equations (see e.g. [CIL92]) and the Harnack inequality for fully nonlinear
uniformly parabolic equations.
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2.1.1 Main Objects and Notation

Geometric Objects

We first consider a connected open bounded set � � R
d . We refer to such a set as a

domain. A domain is C2;˛ if, locally, the boundary of the domain can be represented
as the graph of a function with two derivatives that are ˛-Hölder continuous.

Parabolic equations are considered in cylindrical domain of the form .0; T /��.
The parabolic boundary of .0; T /�� is denoted by @p.0; T /��; we recall that it
is defined as follows

@p.0; T / �� D f0g �� [ .0; T / � @�:

The open ball of Rd centered at x of radius � is denoted by B�.x/. If x D 0, we
simply write B�. The following elementary cylindrical domains play a central role
in the theory: for all � > 0 and x 2 R

d , we define

Q�.t; x/ D .t � �2; t/ � B�.x/:

When we write Q�, we mean Q�.0; 0/. It is also convenient to write

Q�.t; x/ D .t; x/CQ�

and

Q� D �Q1:

A Linear Operator

The general parabolic equation considered in Sect. 2.2 involves the following linear
operator

Lu D
X
i;j

aij.t; x/
@2u

@xi @xj
C
X
i

bi .t; x/
@u

@xi
C c.t; x/u:

The set of d � d real symmetric matrices is denoted by Sd . The identity matrix
is denoted by I . For A;B 2 Sd , A � B means that all the eigenvalues of A�B are
non-negative.

Unknown functions u W .0; T / �� ! R depend on two (set of) variables: t 2 R

and x 2 R
d . It is convenient to use a capital letter X to refer to .t; x/ 2 R

dC1.
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The time derivative of u is either denoted by @u
@t

or @tu or ut . Du denotes the
gradient of the function u with respect to the space variable x. D2u denotes the
Hessian matrix of the function u with respect to x.

The linear operator introduced above can be written as follows

Lu D trace.AD2u/C b � Du C cu

where A D .aij/ij.

Hölder Spaces and Semi-norms

We say that u 2 C0;˛.Q/ for Q � .0; T / � � if u is ˛
2

-Hölder continuous
with respect to time t and ˛-Hölder continuous with respect to space x. The
corresponding semi-norm is denoted by Œu�˛;Q. See Sect. 2.1.4 for details.

2.1.2 Fully Nonlinear Parabolic Equations

We first emphasize the fact that we will not consider systems of parabolic equations;
in other words, we will focus on scalar parabolic equations. This means that the
unknown function u will always be real valued. We also restrict ourselves to second
order parabolic equations.

We consider parabolic equations posed in a domain � � R
d ; hence, unknown

functions u are defined in .0; T / � � with T 2 Œ0;1�. In order to construct
solutions and prove uniqueness for instance, initial and boundary conditions should
be imposed. However, we will very often not specify them.

Fully nonlinear parabolic equations appear in optimal control theory and geom-
etry. Here are several significant examples.

• The Bellman equation

@tu C sup
˛2A

8<
:�

X
i;j

a˛ij.x/
@2u

@xi @xj
C
X
i

b˛i .x/
@u

@xi

9=
;C �u D 0:

• The mean curvature equation

@tu D �u D D2uDu � Du

jDuj2 :
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• The parabolic Monge–Ampère equations proposed by Krylov in [Kryl76]

�@u

@t
det.D2u/ D HdC1

� det.D2u/C
�
@u

@t
CH

�dC1
D 0 (2.1)

� det

�
D2u � @u

@t
I

�
D Hd

where H D H.t; x;Du/ is a nonlinear first order term.
• For the study of the Kähler–Ricci flow, one would like to study:

@u

@t
D ln.det.D2u//: (2.2)

2.1.3 Aim of These Notes

Our goal is to construct solutions and study their regularity. One would like
to construct classical solutions, that is to say solutions such that the derivatives
appearing in the equation exist in the classical sense and satisfy the equation. But
this is not always possible and it is sometimes (very often?) necessary to construct
weak solutions. They are different notions of weak solutions; we will focus in these
notes on so-called viscosity solutions. The advantage is that it is easy to construct
such solutions. One can next try to prove that these solutions are regular.

Before 1988 (date of publication of [Jens88]), it was popular (necessary) to
construct solutions of fully nonlinear elliptic (or parabolic) equations by using the
continuity method. To apply it, it is necessary to get appropriate a priori estimates
(on third derivatives for instance, or on the modulus of continuity of the second
ones).

The situation changed dramatically when Jensen [Jens88] managed to apply the
viscosity solution techniques of Crandall–Lions [CL81] to second order elliptic
and parabolic equations. In particular, he understood how to adapt the so-called
doubling variable techniques to prove uniqueness. Ishii also contributed to this
major breakthrough. The reader is referred to the survey paper [CIL92] for further
details.

Before presenting the viscosity solution techniques and some selected regularity
results for these weak solutions, we will present shortly the classical Schauder
approach to linear parabolic equations.
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2.1.4 Spaces of Hölder Functions

Because we study parabolic equations, Hölder continuity of solutions refers to
uniform continuity with respect to

�.X; Y / D
p

jt � sj C jx � yj

where X D .t; x/ and Y D .s; y/. In other words, solutions are always twice more
regular with respect to the space variable than with respect to the time variable.

Remark 2.1.1 (Important). The reader should keep in mind that, following Krylov
[Kryl96], we choose to write u 2 C0;˛ for functions that are ˛-Hölder continuous
in x and ˛

2
-Hölder continuous in t . This choice is made first to emphasize the link

between regularities with respect to time and space variables, second to simplify
notation.

Let Q � .0; T / �� and ˛ 2 .0; 1�.
• u 2 C0;˛.Q/means that there exists C > 0 s.t. for all .t; x/; .s; y/ 2 Q, we have

ju.t; x/� u.s; y/j � C.jt � sj ˛2 C jx � yj˛/:

In other words, u is ˛
2

-Hölder continuous in t and ˛-Hölder continuous in x.
• u 2 C1;˛.Q/ means that u is ˛C1

2
-Hölder continuous in t and Du is ˛-Hölder

continuous in x.
• u 2 C2;˛.Q/ means that @u

@t
is ˛

2
-Hölder continuous in t and D2u is ˛-Hölder

continuous in x.

We also consider the following norms and semi-norms.

Œu�˛;Q D sup
X;Y 2Q;X¤Y

ju.X/ � u.Y /j
�.X; Y /

juj0;Q D sup
X2Q

ju.X/j

Œu�2C˛;Q D
�
@u

@t

�
˛;Q

C ŒD2u�˛;Q

juj2C˛;Q D juj0;Q C
ˇ̌
ˇ̌@u

@t

ˇ̌
ˇ̌
0;Q

C jDuj0;Q C jD2uj0;Q C Œu�2C˛;Q:

We will use repeatedly the following elementary proposition.

Proposition 2.1.2.

Œuv�˛;Q � juj0;QŒv�˛;Q C jvj0;QŒu�˛;Q



12 C. Imbert and L. Silvestre

and for k D 0; 2,

Œu C v�kC˛;Q � Œu�kC˛;Q C Œv�kC˛;Q:

The following proposition implies in particular that in order to control the norm
juj2C˛;Q, it is enough to control juj0;Q and Œu�2C˛;Q.

Proposition 2.1.3 (Interpolation inequalities). For all " > 0, there exists C."/ >
0 s.t. for all u 2 C2;˛ ,

8<
:

j @u
@t

j0;Q � "Œu�2C˛;Q C C."/juj0;Q;
ŒDu�˛;Q � "Œu�2C˛;Q C C."/juj0;Q;
Œu�˛;Q � "Œu�2C˛;Q C C."/juj0;Q:

(2.3)

The following proposition is a precise parabolic statement of the following
elliptic fact: in order to control the Hölder modulus of continuity of the gradient of
u, it is enough to make sure that, around each point, the function u can be perturbed
linearly so that the oscillation of u in a ball of radius r > 0 is of order r1C˛ .

Proposition 2.1.4 (An equivalent semi-norm). There exists C � 1 such that for
all u 2 C2;˛.Q/,

C�1Œu�02C˛;Q � Œu�2C˛;Q � C Œu�02C˛;Q

where

Œu�02C˛;Q D sup
X2Q

sup
�>0

��2�˛ inf
P2P2

ju � P j0;Q�.X/\Q

where

P2 D f˛t C p � x C 1

2
Xx � x C c W ˛; c 2 R; p 2 R

d ; X 2 Sd g:

The reader is referred to [Kryl96] for proofs of the two previous propositions.

2.2 Schauder Estimates for Linear Parabolic Equations

In this first section, we state a fundamental existence and uniqueness result for linear
parabolic equations with Hölder continuous coefficients.

The proof of this theorem is rather long and presenting it completely is out of the
scope of the present lectures notes. Instead, we would like to focus on two particular
aspects: uniqueness and interior estimates.
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The uniqueness of the solution is proved by using a maximum principle
(Sect. 2.2.3), the existence can be obtained through the continuity method. This
method relies on the proof of the “good” a priori estimate (2.4) on anyC2;˛ solution.
This estimate is global in the sense that it deals with what happens at the interior
of .0; T / � � and at its boundary. In Sect. 2.2.5, we focus on what happens in
the interior of the domain. Precisely, we present a complete proof of the interior
Schauder estimate in the general case. It relies on Schauder estimates for parabolic
equations with constant coefficients. The derivation of these estimates are presented
in Sect. 2.2.4 by studying first the heat equation. We present here an argument due
to Safonov circa 1984.

2.2.1 Linear Parabolic Equations

The standing example of linear parabolic equations with constant coefficients is the
heat equation

@u

@t
��u D f

where f is a source term. The general form of a linear parabolic equation with
variable coefficients is the following

@u

@t
�
X
i;j

aij.X/
@2u

@xi@xj
�
X
i

bi .X/
@u

@xi
� c.X/u D 0

where

c � 0

and A.X/ D .aij.X//i;j is a symmetric matrix satisfying one of the following
assumptions

• (Degenerate ellipticity) for all X , A.X/ � 0;
• (Strict ellipticity) there exists � > 0 s.t. for all X , 1 A.X/ � �I ;
• (Uniform ellipticity) there exists ƒ � � > 0 s.t. for all X , �IA.X/ � ƒI .

We recall that I denotes the identity matrix and if A;B 2 Sd , A � B means that all
the eigenvalues of A � B are non-negative.

It is convenient to consider the linear differential operator L defined as follows

Lu D
X
i;j

aij.X/
@2u

@xi@xj
C
X
i

bi .X/
@u

@xi
C c.X/u:
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2.2.2 A Fundamental Existence and Uniqueness Result

In this subsection, we state a fundamental existence and uniqueness result for linear
parabolic equation with Hölder continuous coefficients. Such a result together with
its proof can be found in various forms in several classical monographs such as
[LSU67, Kryl96]. We choose here to present the version given in [Kryl96].

In the following statement, RdC1
C denotes Œ0;C1/ � R

d .

Theorem 2.2.1. If � is a C2;˛ domain and the coefficients A; b; c 2 C˛

..0; T / � �/ and f 2 C˛.RdC1
C /, g 2 C2C˛..0; T / � �/, h 2 C2;˛.Rd /, and

g and h are compatible (see Remark 2.2.3 below), then there exists a unique
solution u 2 C2;˛.Q/ of

8<
:

@u
@t

��u D f in .0; T / ��
u D g on .0;C1/ � @�
u D h on f0g � N�:

In addition,

juj2C˛;.0;T /�� � C.jf j
˛;R

dC1
C

C jgj2C˛;.0;T /�� C jhj2C˛;Rd / (2.4)

where C D C.d; �;K; ˛; �0; diam.�// and K D jAjı;.0;T /�� C jbjı;.0;T /�� C
jcjı;.0;T /�� and �0 is related to the C2;˛ regularity of the boundary of �.

Remark 2.2.2. The inequality (2.4) is called the (global) Schauder a priori estimate.

Remark 2.2.3. The fact that data g and h are compatible has to do with conditions
ensuring that a solution which is regular up to the boundary can be constructed.
Since we will not address these problems, we refer the interested reader to [LSU67,
Kryl96] for a precise definition.

2.2.3 Maximum and Comparison Principles

Maximum principles are powerful tools to study elliptic and parabolic equations.
There are numerous statements which are not equivalent. We choose the follow-
ing one.

Theorem 2.2.4 (Maximum principle). Consider a bounded continuous function
u W .0; T / � � ! R such that @u

@t
exists at each point of .0; T / � � and Du;D2u

exist and are continuous in .0; T / ��.
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If

@u

@t
�Lu � 0 in .0; T / ��

u � 0 on @p.0; T / ��

then u � 0 in .0; T / ��.

Remark 2.2.5. The set @p.0; T / � � is the parabolic boundary of the cylindrical
domain .0; T / ��. Its definition is recalled in the section devoted to notation.

Proof. Fix � > 0 and consider the function v.t; x/ D u.t; x/ � �

T�t . Assume that
v is not non-positive. Then its maximumM on .0; T /�� is positive. It is reached,
and it cannot be attained for t D 0 or x 2 @� since v � u � 0 on @p.0; T / ��. It
can neither be attained for t D T since v ! �1 as t ! T�. We conclude that the
maximum is attained for some t 2 .0; T / and x 2 �. In particular,

0 D @v

@t
.t; x/ D @u

@t
.t; x/ � �

.T � t/2

0 D Dv.t; x/ D Du.t; x/

0 � D2v.t; x/ D D2u.t; x/:

Remark that since A is (uniformly) elliptic, the linear operator satisfies

Lu.t; x/ D trace.AD2u/C b � Du C cu D trace.AD2u/C cu � trace.AD2u/ � 0

since u.t; x/ � v.t; x/ > 0, c � 0, A � 0 and D2u.t; x/ � 0. We now use the fact
that u satisfies @u

@t
� Lu � 0 in .0; T / �� to get the desired contradiction:

�

.T � t/2
D @u

@t
.t; x/ � Lu.t; x/ � 0:

Since � is arbitrary, the proof is complete. ut
We now state two corollaries. The first one will be the starting point of the second
section (Sect. 2.3). In the framework of linear equation, it is a direct consequence of
the previous result.

Corollary 2.2.6 (Comparison principle I). Consider two bounded continuous
functions u and v which are differentiable with respect to time and such that first
and second derivatives with respect to space are continuous. If
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@u

@t
�Lu � f in .0; T / �� (2.5)

@v

@t
�Lv � f in .0; T / ��

and u � v in @pQ, then u � v in .0; T / ��.

Remark 2.2.7. Remark that this corollary implies that as soon as u satisfies (2.5),
it lies below any solution of @u

@t
� Lu D f . This is the reason why it is referred to

as a subsolution of the equation @u
@t

� Lu D f . In the same way, v lies above any
solution and is referred to as a supersolution.

Remark 2.2.8. In view of the previous remark, we can reformulate the result of
the previous corollary as follows: if a subsolution lies below a supersolution at the
parabolic boundary then it lies below in the whole cylindrical domain.

The next result contains a first estimate for solutions of linear parabolic equa-
tions.

Corollary 2.2.9 (A first estimate). Consider a bounded continuous solution u of
@u
@t

� Lu D f in .0; T / ��. Assume moreover that it is differentiable with respect
to time and continuously twice differentiable with respect to space. Then

juj0;.0;T /�� � T jf j0;.0;T /�� C jgjO;@p.0;T /��:

Sketch of proof. Consider v˙ D u ˙ .jgj0;@p.0;T /�� C t jf j0;.0;T /��/ and check that
vC is a supersolution and v� is a subsolution. Then the previous corollary yields the
desired result. ut

2.2.4 Schauder Estimate for the Heat Equation

2.2.4.1 Statement and Corollary

The “interior” Schauder estimate for the heat equation takes the following form.

Theorem 2.2.10. Let ˛ 2 .0; 1/ and consider a C1 function u W RdC1 ! R with
compact support and define f D @u

@t
��u. Then there exists a constant C > 0 only

depending on dimension and ˛ such that

Œu�2C˛;RdC1 � C Œf �˛;RdC1 :

It is then easy to derive a similar “interior” Schauder estimate for linear uniformly
parabolic equation with constant coefficients and no lower order term.
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Corollary 2.2.11. Let ˛ 2 .0; 1/ and assume that A 	 A0 in R
dC1 and b 	 0,

c 	 0. Then there exists a constantC > 0 only depending on dimension and ˛ such
that for any C1 function u with compact support

Œu�2C˛;RdC1 � C Œf �˛;RdC1

where f D @u
@t

� Lu.

Sketch of proof. The proof consists in performing an appropriate change of coor-
dinates. Precisely, we choose P 2 Sd such that A0 D P2 and consider v.t; x/
D u.t; Px/. Then check that �v D trace.A0D2u/ D Lu and use Theorem 2.2.10.

ut

2.2.4.2 Two Useful Facts

Before proving Theorem 2.2.10, we recall two facts about the heat equation. We
recall first that a solution u 2 C1 of

@u

@t
��u D f;

with compact support included in .0;C1/ � R
d , can be represented as

u.t; x/ D
Z t

0

Z
Rd

G.s; y/f .t � s; x � y/ds dy

where

G.t; x/ D 1

.4�t/d=2
e� jxj

2

4t :

We write in short hand

u D G ? f;

keeping in mind that G should be extended by 0 for t < 0 in order to make this
rigorous. This formula can be justified using Fourier analysis for instance.

Fact 1. For any 0 � � � R,

jG ? 1QR.Z0/j0;Q�.Z0/ � CR2

where 1QR.Z0/.Z/ D 1 if Z 2 QR.Z0/ and 0 if not.
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Fact 2. There exists a constant C > 0 such that any solution of @h
@t

D �h inQR.0/

satisfies

ˇ̌
ˇ̌ @n
@tn

D˛h.0/

ˇ̌
ˇ̌ � C

jhj0;QR.0/

R2nCj˛j

where ˛ D .˛1; : : : ; ˛n/, j˛j D P
i ˛i and D˛h D @˛1

@x
˛1
1

: : : @
˛d

@x
˛d
d

h.

This second fact can be proved by using Bernstein’s techniques. See [Kryl96,
Chap. 8, p. 116].

2.2.4.3 Proof of the Schauder Estimate

The following proof is due to Safonov circa 1984. It is presented in [Kryl96]. Krylov
says in [Kryl97] that “[he] believes this proof should be part of a general knowledge
for mathematicians even remotely concerned with the theory of PDEs”.

Recall that the C2;˛ regularity can be established “pointwise”. Indeed, in view of
Proposition 2.1.4, it is enough to be able to find a polynomial P which is linear in
time and quadratic in space such that the oscillation of the difference between u and
P decreases as �2C˛ in a box of size �. The natural candidate for P is the “second
order” Taylor polynomial of the function itself. The idea of Safonov is to perturb
this natural candidate in order to reduce to the case where f 	 0.

Proof of Theorem 2.2.10. Without loss of generality, we can assume that the com-
pact support of u is included in .0;C1/ � R

d .
Take X0 2 R

dC1, � > 0 and K � 1 to be specified later. Let Q denote
Q.KC1/�.X0/ and take 	 2 C1.RdC1/ with compact support and such that 	 	 1

in Q.
We consider the “second order” Taylor polynomial associated with a function w

at a point X D .t; x/

TXw.s; y/ D w.X/Cwt .X/.s� t/CDw.X/ � .y�s/C 1

2
D2w.X/.y�x/ � .y�x/:

We now consider

g D .	TX0u/t ��.	TX0u/:

In view of properties of 	,

g 	 f .X0/ in Q:
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Keeping this piece of information in mind, we can write for X 2 Q,

u � TX0u D u � 	TX0u D G ? .f � g/

D hC r

with

h D G ? ..f � g/1Qc / and r D G ? ..f � f .X0//1Q/

whereQc D R
dC1 nQ. Remark in particular that

ht ��h D 0 in Q:

Now we estimate

ju � TX0u � TX0hj0;Q�.X0/ � jh � TX0hj0;Q�.X0/ C jr j0;Q�.X0/ (2.6)

and we study the two terms of the right hand side.
We use Fact 1 to get first

jr j0;Q�.X0/ � Œf �˛;Q.K C 1/˛�˛jG ? 1Qj0;Q�.X0/

� C.K C 1/2C˛�2C˛Œf �˛;Q: (2.7)

We now write for X 2 Q�.X0/,

h.X/ D h.X0/Cht .
; x/.t � t0/CDh.X0/ � .x�x0/C 1

2
D2h.‚/.x�x0/ � .x�x0/

for some 
 2 .t0; t/ and ‚ D .t0; y0/ 2 Q�.X0/. Hence, we have

h.X/ � TX0h.X/ D .ht .
; x/ � ht .X0//.t � t0/

C 1

2
.D2h.‚/ �D2h.X0//.x � x0/ � .x � x0/

from which we deduce

jh.X/ � TX0h.X/j � �2jht.
; x/ � ht .X0/j C �2jD2h.‚/ �D2h.X0/j: (2.8)
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We now use Fact 2 in order to get

jh� TX0hj0;Q�.X0/ � �2

 
�2
ˇ̌
ˇ̌ @2
@t2

h

ˇ̌
ˇ̌
0;Q�.X0/

C �

ˇ̌
ˇ̌ @
@t
Dh

ˇ̌
ˇ̌
0;Q�.X0/

!

C C�3jD3hj0;Q�.X0/

� C.�4.K�/�4 C �3.K�/�3 C �3.K�/�3/jhj0;Q
� C.K�4 C 2K�3/jhj0;Q
� CK�3jhj0;Q

by choosingK � 1. We next estimate jhj0;Q as follows

jhj0;Q � ju � TX0u � r j0;Q � ju � TX0uj0;Q C jr j0;Q
� C.K C 1/2C˛�2C˛.Œu�2C˛;Q C jŒf �˛;Q/

where we used (2.8) for u instead of h and we used (2.7). Then, we have

jh� TX0hj0;Q�.X0/ � C
.K C 1/2C˛

K3
�2C˛.Œu�2C˛;Q C Œf �˛;Q/: (2.9)

Combining (2.6), (2.7) and (2.9), we finally get

��.2C˛/ju � TX0u � TX0hj0;Q�.X0/ � C.K C 1/2C˛Œf �˛;Q

C C
.K C 1/2C˛

K3
.Œu�2C˛;Q C Œf �˛;Q/:

In view of Proposition 2.1.4, it is enough to choose K � 1 large enough so that

C
.K C 1/2C˛

K3
� 1

2

to conclude the proof of the theorem. ut

2.2.5 Schauder Estimate in the Case of Variable Coefficients

Theorem 2.2.12. Consider a function u 2 C2;˛..0; T / � R
d / for some ˛ 2 .0; 1/.

Then there exists C D C.d; ˛/ such that

Œu�2C˛;.0;T /�Rd � C
�
Œf �˛;.0;T /�Rd C juj0;.0;T /�Rd

�

where f D @u
@t

� Lu.
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Remark 2.2.13 (Notation). In the remaining of this subsection, it is convenient to
write semi-norms as Œ��kC˛ instead of Œ��kC˛;.0;T /�Rd , k D 0; 2. In the same way, j � j0
stands for j � j0;.0;T /�Rd .

Remark 2.2.14. Recall that by Corollary 2.2.9, one has

juj0 � T jut � Luj0 C ju.0; �/j0;Rd :

Before giving a rigorous proof, we would like first to explain the main idea.

Main idea of the proof of Theorem 2.2.12. Assume first that there are no lower
order terms (c 	 0 and b 	 0).

In a neighbourhood of X0 2 R
dC1, the coefficients of the linear operator L are

frozen: the linear operator with constant coefficients is denoted by L0. If X is close
to X0, then L is not very far from L0 and this can be measured precisely thanks to
the Hölder continuity of coefficients.

Use first Corollary 2.2.11:

Œu�2C˛ � C Œut � L0u�˛ � C Œut � Lu�˛ C C ŒLu � L0u�˛:

Now control ŒLu �L0u�˛ thanks to Œu�2C˛ and conclude.
Next, lower order terms are treated by using interpolation inequalities. ut
Let us now make this precise and rigorous.

Proof of Theorem 2.2.12. We first assume that b 	 0 and c 	 0. Let f denote
@u
@t

� Lu.
Let " 2 .0; T=2/ and � � "=2 be a positive real number to be fixed later and

consider X1 and X2 such that

Œut �˛;.";T�"/�Rd � 2�.X1;X2/
�˛jut .X1/� ut .X2/j

where we recall that �.X1;X2/ D pjt1 � t2j C jx1 � x2j if Xi D .ti ; xi /, i D 1; 2.
If �.X1;X2/ � � , then we use interpolation inequalities (2.3) in order to get

Œut �˛;.";T�"/�Rd � 2��˛jut j0

� 1

4
Œu�2C˛ C C.�/juj0:

If �.X1;X2/ < � , we consider 	 2 C1.RdC1/ with compact support such that
	.X/ D 1 if �.X; 0/ � 1 and 	.X/ D 0 if �.X; 0/ � 2. We next define �.t; x/
D 	.��2.t � t1/; �

�1.x � x1//. In particular, �.X/ D 1 if �.X;X1/ � � and
�.X/ D 0 if �.X;X1/ � 2� .
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Now we use Corollary 2.2.11 in order to get

Œut �˛;.";T�"/�Rd � 2�.X1;X2/
�˛jut .X1/� ut .X2/j

� 2Œ.u�/�2C˛
� 2C Œ.u�/t � L.X1/.u�/�˛

� 2C Œ.u�/t � L.u�/�˛ C 2C Œ.L.X1/ �L/.u�/�˛: (2.10)

We estimate successively the two terms of the right hand side of the last line. First,
we write

.u�/t �L.u�/ D �f C u.�t �L�/ � 2ADu �D�

since L.u�/ D uL�C�Lu C2ADu �D�. Using interpolation inequalities (2.3), this
implies

Œ.u�/t �L.u�/�˛ � C.�/.Œf �˛ C Œu�˛ C ŒDu�˛/

� �˛Œu�2C˛ C C.�/.Œf �˛ C juj0/: (2.11)

We next write

.L.X1/� L/.u�/ D traceŒ.A.X1/ �A.X//D2.u�/�

and for X such that �.X1;X/ � 2� , we thus get thanks to interpolation inequali-
ties (2.3)

Œ.L.X1/� L/.u�/�˛ � C�˛ŒD2.u�/�˛ C C jD2.u�/j0
� C�˛Œu�2C˛ C C.�/juj0: (2.12)

Combining (2.10)–(2.12), we finally get in the case where �.X1;X2/ � � ,

Œut �˛;.";T�"/�Rd � C�˛Œu�2C˛ C C.�/.Œf �˛ C juj0/:

We conclude that we have in both cases

Œut �˛;.";T�"/�Rd � .C�˛ C 1=4/Œu�2C˛ C C.�/.Œf �˛ C juj0/:

We can argue in a similar way to get

ŒD2u�˛;.";T�"/�Rd � .C�˛ C 1=4/Œu�2C˛ C C.�/.Œf �˛ C juj0/:
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Adding these two inequalities yield

Œu�2C˛;.";T�"/�Rd � .C�˛ C 1=2/Œu�2C˛ C C.�/.Œf �˛ C juj0/:

Now choose � such that C�˛ � 1=4 and get

Œu�2C˛;.";T�"/�Rd � 3

4
Œu�2C˛ C C.Œf �˛ C juj0/:

Taking the supremum over " 2 .0; T=2/ allows us to conclude in the case where
b 	 0 and c 	 0.

If now b ¤ 0 and c ¤ 0, we apply the previous result and get

Œu�2C˛ � C.Œf C b � Du C cu�˛ C juj0/:

Use now interpolation inequalities once again to conclude. ut

2.3 Viscosity Solutions: A Short Overview

Viscosity solutions were first introduced by Crandall and Lions [CL81]. This notion
of weak solution enabled to characterize the value function of an optimal control
problem as the unique solution of the corresponding first order Hamilton–Jacobi
equation. An example of such an equation is the following one

@u

@t
C 1

2
jDuj2 C V.x/ D 0 (2.13)

for some continuous function V . The viscosity solution theory is also by now a
fundamental tool for the study of nonlinear elliptic and parabolic equations.

2.3.1 Definition and Stability of Viscosity Solutions

2.3.1.1 Degenerate Ellipticity

We recall that linear parabolic equations in non-divergence form have the following
general form

@u

@t
� Lu D f
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with

Lu D trace.AD2u/C b � Du C cu

with A � 0 (in the sense of symmetric matrices).
We now consider very general nonlinear parabolic equation of the form

@u

@t
C F.t; x;Du;D2u/ D 0 (2.14)

where we assume that the nonlinearity F W .0; T /���R
d �Sd ! R is continuous

and satisfies the following condition

A � B ) F.t; x; p;A/ � F.t; x; p; B/: (2.15)

In other words, the nonlinearity F is non-increasing with respect to the matrix
variable. We say that F is degenerate elliptic.

Remark 2.3.1. In the case of parabolic Monge–Ampère equations such as (2.1) or
(2.2), the nonlinearity is well-defined and degenerate elliptic only on a subset of
Sd ; precisely, it is only defined either on the subset SC

d of semi-definite symmetric
matrices or on the subset SCC

d of definite symmetric matrices. Hence, solutions
should be convex or strictly convex.

2.3.1.2 Semi-continuity

Consider an open setQ � R
dC1. We recall that u is lower semi-continuous at .t; x/

if, for all sequences .sn; yn/ ! .t; x/,

u.t; x/ � lim inf
n!1 u.sn; yn/:

In the same way, one can define upper semi-continuous functions. Very often, the
previous inequality is written

u.t; x/ � lim inf
.s;y/!.t;x/

u.s; y/:

If u is bounded from below in a neighbourhood ofQ, one can define the lower semi-
continuous envelope of u in Q as the largest lower semi-continuous function lying
below u. It is denoted by u�. Similarly, the upper semi-continuous envelope u� of a
locally bounded from above function u can be defined.



2 An Introduction to Fully Nonlinear Parabolic Equations 25

2.3.1.3 Definition(s)

In this paragraph, we give the definition of a viscosity solution of the fully nonlinear
parabolic equation (2.14). We give a first definition in terms of test functions. We
then introduce the notion of subdifferentials and superdifferentials with which an
equivalent definition can be given (see Remark 2.3.8 below).

In order to motivate the definition of a viscosity solution, we first derive necessary
conditions for smooth solutions of (2.14).

Consider an open set Q � R
dC1 and a function u W Q ! R which is C1 with

respect to t and C2 with respect to x. Consider also a function � with the same
regularity and assume that u � � in a neighbourhood of .t; x/ 2 Q and u D � at
.t; x/. Then

@�

@t
.t; x/ D @u

@t
.t; x/

D�.t; x/ D Du.t; x/

D2�.t; x/ � D2u.t; x/:

Using the degenerate ellipticity of the nonlinearity F , we conclude that

@�

@t
.t; x/C F.t; x;D�.t; x/;D2�.t; x//

� @u

@t
.t; x/C F.t; x;Du.t; x/;D2u.t; x// D 0:

A similar argument can be used to prove that if u � � in a neighbourhood of .t; x/
with u.t; x/ D �.t; x/ then the reserve inequality holds true. These facts motivate
the following definitions.

Definition 2.3.2 (Test functions). A test function on the set Q is a function � W
Q ! R which is C1 with respect to t and C2 with respect to x.

Given a function u W Q ! R, we say that the test function � touches u from
above (resp. below) at .t; x/ if u � � (resp. u � �) in a neighbourhood of .t; x/ and
u.t; x/ D �.t; x/.

Remark 2.3.3. If u � � reaches a local maximum (resp. minimum) at .t0; x0/, then
� C Œu.t0; x0/� �.t0; x0/� touches u from above (resp. below).

Definition 2.3.4 (Viscosity solutions). Consider a function u W Q ! R for some
open set Q.

• u is a subsolution of (2.14) if u is upper semi-continuous and if, for all .t; x/ 2 Q
and all test functions � touching u from above at .t; x/,

@�

@t
.t; x/C F.t; x;D�.t; x/;D2�.t; x// � 0:
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• u is a supersolution of (2.14) if u is lower semi-continuous and if, for all .t; x/ 2
Q and all test functions � touching u from below at .t; x/,

@�

@t
.t; x/C F.t; x;D�.t; x/;D2�.t; x// � 0:

• u is a solution of (2.14) if it is both a sub- and a supersolution.

Remark 2.3.5. Remark that a viscosity solution of (2.14) is a continuous function.

When proving uniqueness of viscosity solutions, it is convenient to work with
the following objects.

Definition 2.3.6 (Second order sub-/super-differentials). The following set

P˙.u/.t; x/ D f.˛; p;X/ 2 R � R
d � Sd W

.˛; p;X/ D .@t�.t; x/;D�.t; x/;D
2�.t; x//

s.t. � touches u from above (resp. below) at .t; x/g

is the super-(resp. sub-)differential of the function u at the point .t; x/.

Remark 2.3.7. Here is an equivalent definition: .˛; p;X/ 2 PCu.t; x/ if and only if

u.s; y/ � u.t; x/C˛.s�t/Cp �.y�x/C 1

2
X.x�y/�.x�y/Co �js � t j C jy � xj2�

for .s; y/ in a neighbourhood of .t; x/. A similar characterization holds for P�.

Remark 2.3.8. The definition of a viscosity solution can be given using sub- and
super-differentials of u. Indeed, as far as subsolutions are concerned, in view of
Definitions 2.3.4 and 2.3.6, u is a viscosity subsolution of (2.14) in the open set Q
if and only if for all .t; x/ 2 Q and all .˛; p;X/ 2 PCu.t; x/,

˛ C F.t; x; p;X/ � 0:

When proving uniqueness, the following limiting versions of the previous objects
are used.

Definition 2.3.9 (Limiting super-/sub-differentials).

P˙
.u/.t; x/ D f.˛; p;X/ 2 R � R

d � Sd W 9.tn; xn/ ! .t; x/ s.t.

.˛n; pn;Xn/ ! .˛; p;X/; u.tn; xn/ ! u.t; x/;

.˛n; pn;Xn/ 2 P˙u.tn; xn/g
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Remark 2.3.10. Since F is assumed to be continuous, the reader can remark that
u is a viscosity subsolution of (2.14) in Q if and only if for all .t; x/ 2 Q and all

.˛; p;X/ 2 PC
u.t; x/,

˛ C F.t; x; p;X/ � 0:

An analogous remark can be made for supersolutions.

2.3.1.4 First Properties

In this section, we state without proofs some important properties of sub- and
supersolutions. Proofs in the elliptic case can be found in [CIL92] for instance.
These proofs can be readily adapted to the parabolic framework.

Proposition 2.3.11 (Stability properties).

• Let .u˛/˛ be a family of subsolutions of (2.14) in Q such that the upper semi-
continuous envelope u of sup˛ u˛ is finite in Q. Then u is also a subsolution of
(2.14) in Q.

• If .un/n is a sequence of subsolutions of (2.14), then the upper relaxed-limit u of
the sequence defined as follows

Nu.t; x/ D lim sup
.s;y/!.t;x/;n!1

un.s; y/ (2.16)

is everywhere finite in Q, then it is a subsolution of (2.14) in Q.

Remark 2.3.12. An analogous proposition can be stated for supersolutions.

2.3.2 The Perron Process

In this subsection, we would like to give an idea of the general process that allows
one to construct solutions for fully nonlinear parabolic equations.

2.3.2.1 General Idea

The Perron process is well known in harmonic analysis and potential analysis. It has
been adapted to the case of fully nonlinear elliptic equations in non-divergence form
by Ishii [Ish87].

The general idea is the following one: assume that one can construct a subsolu-
tion u� and a supersolution uC to a nonlinear parabolic equation of the form (2.14)
such that u� � uC. Using Proposition 2.3.11, we can construct a maximal
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subsolution u lying between u� and uC. Then a general argument allows one to
prove that the lower semi-continuous envelope of the maximal subsolution u is in
fact a supersolution.

Remark 2.3.13. Before making the previous argument a little bit more precise, we
would like to point out that the function u constructed by this general method is not
a solution in the sense of Definition 2.3.4. It is a so-called discontinuous (viscosity)
solution of (2.14). We decided to stick to continuous viscosity solution in these
lecture notes and to state the result of the Perron process as in Lemma 2.3.15 below.
See also Sect. 2.3.2.3.

Example 2.3.14. In many important cases, u˙ are chosen in the following form:
u0.x/˙Ct where u0 is the smooth initial datum and C is a large constant, precisely:

C � sup
x2Rd

jF.0; x;Du0.x/;D
2u0.x//j:

If non-smooth/unbounded initial data are to be considered, discontinuous stability
arguments can be used next.

2.3.2.2 Maximal Subsolution and Bump Construction

We now give more details about the general process to construct a “solution”.
We consider a cylindrical domain Q D .0; T / �� for some domain� � R

d .

Lemma 2.3.15. Assume that u˙ is a super-(resp. sub-) solution of (2.14) in Q.
Then there exists a function u W Q ! R such that u� � u � uC and u� is a
subsolution of (2.14) and u� is a supersolution of (2.14).

Proof. Consider

S D fv W Q ! R s.t. u� � v � uC and v� subsolution of (2.14)g:

By Proposition 2.3.11, we know that the upper semi-continuous envelope u� of the
function

u D sup
v2S

v

is a subsolution of (2.14).
We next prove that the lower semi-continuous envelope u� of u is a supersolution

of (2.14) in Q. Arguing by contradiction, one can assume that there exists
.˛; p;X/ 2 P�u�.t; x/ such that

˛ C F.t; x; p;X/ DW �
 < 0: (2.17)
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Remark that at .t; x/, we have necessarily

u�.t; x/ < uC.t; x/:

Indeed, if this is not the case, then .˛; p;X/ 2 P�uC.t; x/ and (2.17) cannot be
true since uC is a supersolution of (2.14). Up to modifying the constant 
 , we can
also assume that

u�.t; x/ � uC.t; x/ � �
 < 0: (2.18)

Without loss of generality, we can also assume that .t; x/ D .0; 0/ and u�.t; x/ D 0.
Let us consider the following “paraboloid”

P.s; y/ D 
s C p � y C 1

2
Xy � y C ı � �

�
1

2
jyj2 C jsj

�

with ı and � to be chosen later. Compute next

@P

@s
.s; y/C F.s; y;DP.s; y/;D2P.s; y//

D 
 � � sjsj C F.s; y; p CXy � �y;X � �I /

(if s D 0, s
jsj should be replaced with any real number � 2 Œ�1; 1�). Hence, for r

and � small enough, we have

@P

@s
C F.s; y;DQ;D2Q/ � �


2
< 0

for all .s; y/ 2 Vr . Moreover, since .
; p;X/ 2 P�u�.t; x/, we have

u�.s; y/ � 
s C p � y C 1

2
Xy � y C o.jyj2 C jsj/

� P.s; y/ � ı C �

�
1

2
jyj2 C jsj

�
C o.jyj2 C jsj/:

Choose now ı D �r

4
and consider .s; y/ 2 Vr n Vr=2:

u�.s; y/ � P.s; y/ � �r

4
C �r

2
C o.r/ D P.s; y/C �r

4
C o.r/:

Consequently, for r small enough,

u.s; y/ � P.s; y/ � �r

8
> 0 in Vr n Vr=2;

P.s; y/ < uC.s; y/ in Vr

where we used (2.18) to get the second inequality.



30 C. Imbert and L. Silvestre

We next consider

U.s; y/ D
�

maxfu.s; y/; P.s; y/g if .s; y/ 2 Vr ;
u.s; y/ if not.

On one hand, we remark that the function U � is still a subsolution of (2.14) and
U � u � u� and U � uC. Consequently, U 2 S and in particular, U � u. On
the other hand, sup

RC�Rd fU � ug � ı; indeed, consider .tn; xn/ ! .0; 0/ such that
u.tn; xn/ ! u�.0; 0/ D 0 and write

lim
n!1U.tn; xn/ � u.tn; xn/ � lim

n!1P.tn; xn/ � u.tn; xn/ D ı > 0:

This contradicts the fact that U � u. The proof of the lemma is now complete. ut

2.3.2.3 Continuous Solutions from Comparison Principle

As mentioned above, the maximal subsolution u� is not necessarily continuous;
hence, its lower semi-continuous envelope u� does not coincide necessarily with it.
In particular, we cannot say that u is a solution in the sense of Definition 2.3.4 (cf.
Remark 2.3.13 above).

We would get a (continuous viscosity) solution if u� D u�. On one hand, u� is
upper semi-continuous by construction and on the other hand u� � u� by definition
of the semi-continuous envelopes. Hence, u is a solution of (2.14) if and only if
u� � u� in Q. Since u� is a subsolution of (2.14) in Q and u� is a supersolution of
(2.14) in Q, it is thus enough that (2.14) satisfies a comparison principle and that
the barriers u˙ satisfy some appropriate inequality on the parabolic boundary. More
precisely, we would like on one hand that

Comparison principle. If u is a subsolution of (2.14) inQ and v is a supersolution
of (2.14) in Q and u � v on the parabolic boundary @pQ, then u � v in Q.

and on the other hand, we would like that u� � u� on @pQ. This boundary condition
would be true if

.uC/� � .u�/� on @pQ:

We emphasize that the lower and upper semi-continuous envelopes appearing in the
previous inequality are performed with respect to time and space.

Example 2.3.16. If for instance Q D .0; T / � R
d , then barriers should satisfy

.uC/�.0; x/ � .u�/�.0; x/ for x 2 R
d :

This condition is fullfilled for such a Q if u˙ D u0 ˙ Ct (see Example 2.3.14).
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In the next subsection, we will present general techniques for proving comparison
principles. The reader should be aware of the fact that, in many practical cases,
general theorems from the viscosity solution theory do not apply to the equation
under study. In those cases, one has to adapt the arguments presented below in order
to take into account the specific difficulties implied by the specific equation. The
reader is referred to [CIL92] for a large review of available tools.

2.3.3 Introduction to Comparison Principles

In this subsection, we present classical techniques to prove comparison principles
in some typical cases.

2.3.3.1 First Order Equations

In this paragraph, we first study first order Hamilton–Jacobi equations of the
following form

@u

@t
CH.x;Du/ D 0: (2.19)

As we will see, a comparison principle holds true if H satisfies the following
structure condition: for all x; y; p 2 R

d ,

jH.x; p/ �H.y; p/j � C jx � yj: (2.20)

In order to avoid technicalities and illustrate main difficulties, we assume that x 7!
H.x; p/ is Zd -periodic; hence, solutions should also be Zd -periodic forZd -periodic
initial data.

Theorem 2.3.17 (Comparison principle II). Consider a continuous Zd -periodic
function u0. If u is a Z

d -periodic subsolution of (2.19) in .0; T /�R
d and v is a Z

d -
periodic supersolution of (2.19) in .0; T /�R

d such that u.0; x/ � u0.x/ � v.0; x/

for all x 2 R
d , then u � v in .0; T / � R

d .

Proof. The beginning of the proof is the same as in the proof of Theorem 2.2.4: we
assume that

M D sup
t2.0;T /;x2Rd

n
u.t; x/ � v.t; x/ � �

T � t
o
> 0:

Here, we cannot use the equation directly, since it is not clear wether u � v satisfies
a nonlinear parabolic equation or not (recall that the equation is nonlinear). Hence,
we should try to duplicate the (time and space) variables.
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Doubling Variable Technique

Consider

M" D sup
t;s2.0;T /;x;y2Rd

�
u.t; x/� v.s; y/ � .t � s/2

2"
� jx � yj2

2"
� �

T � t
	
:

Remark that M" � M > 0. This supremum is reached since u is upper semi-
continuous and v is lower semi-continuous and both functions are Z

d -periodic. Let
.t"; s"; x"; y"/ denote a maximizer. Then we have

.t" � s"/2
2"

C jx" � y"j2
2"

� u.t"; x"/ � v.s"; y"/ � juCj0 C jv�j0

where we recall that jwj0 D sup.t;x/2.0;T /�Rd jw.t; x/j. In particular, up to extracting
subsequences, t" ! t , s" ! t and x" ! x, y" ! y and t" � s" D O.

p
"/ and

x" � y" �O.p"/.
Assume first that t D 0. Then

0 < M � lim sup
"!0

M" � lim sup
"

u.t"; x"/ � lim inf
"

v.s"; y"/

� u.0; x/� v.0; x/ � 0:

This is not possible. Hence t > 0.
Since t > 0, for " small enough, t" > 0 and s" > 0. Now remark that the

function �u

.t; x/ 7! v.s"; y"/C .t � s"/
2

2"
C jx � y"j2

2"
C �

T � t
is a test function such that u � �u reaches a maximum at .t"; x"/. Hence (recall
Remark 2.3.3),

�

.T � t"/2 C t" � s"

"
CH.x"; p"/ � 0

with p" D x"�y"
"

. Similarly, the function �v

.s; y/ 7! u.t"; x"/ � .s � t"/2
2"

� jy � x"j2
2"

� �

T � t"

is a test function such that v � �v reaches a minimum at .s"; y"/; hence

t" � s"
"

CH.y"; p"/ � 0
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with the same p"! Substracting the two viscosity inequalities yields

�

.T � t"/2
� H.y"; p"/�H.x"; p"/:

In view of (2.20), we conclude that

�

T 2
� C jx" � y"j D O.

p
"/:

Letting " ! 0 yields the desired contradiction. ut
Remark 2.3.18. Condition (2.20) is satisfied by (2.13) if the potential V is Lipschitz
continuous. On the contrary, if H.x; p/ D c.x/jpj, then the Hamilton–Jacobi
equation is the so-called eikonal equation and it does not satisfy (2.20) even if c
is globally Lipschitz. Such an Hamiltonian satisfies

jH.x; p/ �H.y; /j � C.1C jpj/jx � yj: (2.21)

For such equations, the penalization should be studied in greater details in order to
prove that

jx" � y"j2
2"

! 0 as " ! 0:

With this piece of information in hand, the reader can check that the same
contradiction can be obtained for Lipschitz c’s. See for instance [Barl94] for details.

Since we will use once again this additional fact about penalization, we state it
now in a lemma.

Lemma 2.3.19. Consider Qu.t; x/ D u.t; x/� �.T � t/�1. Assume that

M" D sup
x;y2Rd

t;s2.0;T /
Qu.t; x/ � v.s; y/ � jx � yj2

2"
� jt � sj2

2"

is reached at .x"; y"; t"; s"/. Assume moreover that .x"; y"; t"; s"/ ! .x; y; t; s/ as
" ! 0. Then

jx" � y"j2
"

! 0 as " ! 0:

Remark 2.3.20. The reader can check that the previous lemma still holds true if
v.s; y/ is replaced with v.t; y/ and if the term "�1jt � sj2 is removed.

Proof. Remark first that " 7! M" is non-decreasing andM" � M WD sup
Rd .Qu � v/.

Hence, as " ! 0, M" converges to some limit l � M . Moreover,
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M2" � Qu.t"; x"/ � v.s"; y"/� jx" � y"j2
4"

� jt" � s"j2
4"

� M" C jx" � y"j2
4"

C jt" � s"j2
4"

:

Hence,

jx" � y"j2
4"

C jt" � s"j2
4"

� M2" �M" ! l � l D 0: ut

2.3.3.2 Second Order Equations with No x Dependance

In this subsection we consider the following equation

@u

@t
CH.x;Du/ ��u D 0 (2.22)

still assuming that x 7! H.x; p/ is Z
d -periodic and satisfies (2.20). The classical

parabolic theory implies that there exists smooth solutions for such an equation.
However, we illustrate viscosity solution techniques on this (too) simple example.

Theorem 2.3.21 (Comparison principle III). Consider a continuous Zd -periodic
function u0. If u is a Z

d -periodic subsolution of (2.22) in .0; T /�R
d and v is a Z

d -
periodic supersolution of (2.19) in .0; T /�R

d such that u.0; x/ � u0.x/ � v.0; x/

for all x 2 R
d , then u � v in .0; T / � R

d .

Remark 2.3.22. A less trivial example would be

@u

@t
CH.x;Du/� trace.A0D2u/ D 0

for some degenerate matrix A0 2 Sd , A0 � 0. We prefer to keep it simple and study
(2.22).

First attempt of proof. We follow the proof of Theorem 2.3.17. If one uses the two
test functions �u and �v to get viscosity inequalities, this yields

1

.T � t"/2
C t" � s"

"
CH.x"; p"/ � trace."�1I /;

t" � s"
"

CH.y"; p"/ � � trace."�1I /:
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Substracting these two inequalities, we get

1

T 2
� O.

p
"/C 2d

"

and it is not possible to get a contradiction by letting " ! 0. ut
In the previous proof, we lost a very important piece of information about second
order derivatives; indeed, assume that u and v are smooth. As far as first order
equations are concerned, using the first order optimality condition

Du.t"; x"/� p" D 0 and �Dv.s"; y"/C p" D 0

is enough. But for second order equations, one has to use second order optimality
condition

�
Du.t"; x"/ 0

0 �Dv.s"; y"/
�

�
�
"�1I �"�1I

�"�1I "�1I

�
:

It turns out that for semi-continuous functions, the previous inequality still holds
true up to an arbitrarily small error in the right hand side.

Uniqueness of viscosity solutions for second order equations where first obtained
by Lions [Lions83] by using probabilistic methods. The analytical breakthrough
was achieved by Jensen [Jens88]. Ishii’s contribution was also essential [Ish89]. In
particular, he introduced the matrix inequalities contained in the following lemma.
See [CIL92] for a detailed historical survey.

We give a first version of Jensen–Ishii’s lemma for the specific test function
.2"/�1jx � yj2.
Lemma 2.3.23 (Jensen–Ishii’s lemma I). Let U and V be two open sets of Rd

and I an open interval of R. Consider also a bounded subsolution u of (2.14) in
I � U and a bounded supersolution v of (2.14) in I � V . Assume that u.t; x/ �
v.t; y/ � jx�yj2

2"
reaches a local maximum at .t0; x0; y0/ 2 I � U � V . Letting p

denote "�1.x0 � y0/, there exists 
 2 R and X; Y 2 Sd such that

.
; p;X/ 2 PC
u.t0; x0/; .
; p; Y / 2 P�

v.t0; y0/

� 2

"

�
I 0

0 I

�
�
�
X 0

0 �Y
�

� 3

"

�
I �I

�I I

�
: (2.23)

Remark 2.3.24. As a matter of fact, it is not necessary to assume that u and v are
sub- and supersolution of an equation of the form (2.14). We chose to present first
the result in this way to avoid technicalities. Later on, we will need the standard
version of this lemma, so we will state it. See Lemma 2.3.30 below.
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Remark 2.3.25. Such a result holds true for more general test functions �.t; x; y/
than .2"/�1jx � yj2. However, this special test function is a very important one and
many interesting results can be proven with it. We will give a more general version
of this important result, see Lemma 2.3.30.

Remark 2.3.26. The attentive reader can check that the matrix inequality (2.23)
implies in particular X � Y .

Remark 2.3.27. This lemma can be used as a black box and one does so very often.
But we mentioned above that some times, one has to work more to get a uniqueness
result for some specific equation. In this case, it could be necessary to consider
more general test functions, or even to open the black box and go through the proof
to adapt it in a proper way.

With such a lemma in hand, we can now prove Theorem 2.3.21.

Proof of Theorem 2.3.21. We argue as in the proof of Theorem 2.3.17 but we do
not duplicate the time variable since it is embedded in Lemma 2.3.23. Instead, we
consider

M" D sup
x;y2Rd

t2.0;T /

�
u.t; x/ � v.t; y/ � jx � yj2

2"
� �

T � t
	
;

let .t"; x"; y"/ denote a maximiser and apply Lemma 2.3.23 with Qu.t; x/ D u.t; x/�
�

T�t and v and we get 
;X; Y such that

.
 C �

.T � t/2
; p"; X/ 2 PC

u.t"; x"/; .
; p"; Y / 2 P�
v.t"; y"/; X � Y

(see Remark 2.3.26 above). Hence, we write the two viscosity inequalities

�

.T � t/2 C 
 CH.x"; p"/ � traceX


 CH.y"; p"/ � traceY � traceX

and we substract them in order to get the desired contradiction

�

T 2
� O.

p
"/:

The proof is now complete. ut
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2.3.3.3 Second Order Equations with x Dependance

In this paragraph, we prove a comparison principle for the following degenerate
elliptic equation

@u

@t
CH.x;Du/� trace.�.x/�T .x/D2u/ D 0 (2.24)

under the following assumptions

• x 7! H.x; p/ is Zd -periodic and satisfies (2.21);
• � W Rd ! Md;m.R/ is Lipschitz continuous and Z

d -periodic,m � d .

Here, Md;m.R/ denotes the set of real d � m-matrices. We make precise that �T

denotes the transpose matrix of the d �m-matrix � .
The following theorem is, to some respects, the nonlinear counterpart of the first

comparison principle we proved in Sect. 2.2 (see Corollary 2.2.6). Apart from the
nonlinearity of the equation, another significant difference with Corollary 2.2.6 is
that (2.24) is degenerate elliptic and not uniformly elliptic.

Theorem 2.3.28 (Comparison principle IV). Consider a continuous Zd -periodic
function u0. If u is a Z

d -periodic subsolution of (2.22) in .0; T /�R
d and v is a Z

d -
periodic supersolution of (2.19) in .0; T /�R

d such that u.0; x/ � u0.x/ � v.0; x/

for all x 2 R
d , then u � v in .0; T / � R

d .

Proof. We argue as in the proof of Theorem 2.3.21. The main difference lies after
writing viscosity inequalities thanks to Jensen–Ishii’s lemma. Indeed, one gets

�

T 2
� �H.x"; p"/CH.y"; p"/C trace.�.x"/�T .x"/X/ � trace.�.y"/�T .y"/Y /

� C

�
1C jx" � y"j

"

�
jx" � y"j

C trace.�.x"/�
T .x"/X/ � trace.�.y"/�

T .y"/Y /:

The first term can be handled thanks to Lemma 2.3.19. But one cannot just use
X � Y obtained from the matrix inequality (2.23) to handle the second one. Instead,
consider an orthonormal basis .ei /i of Rm and write

trace.�.x"/�T .x"/X/ � trace.�.y"/�T .y"/Y /

D trace.�T .x"/X�.x"// � trace.�T .y"/Y�.y"//

D
mX
iD1

.X�.x"/ei � �.x"/ei � Y�.y"/ei � �.y"/ei /

� 3

"

mX
iD1

j�.x"/ei � �.y"/ei j2I
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we applied (2.23) to vectors of the form .�.x"/ei ; �.y"/ei / 2 R
d � R

d to get the
last line. We can now use the fact that � is Lipschitz continuous and get

trace.�.x"/�T .x"/X/� .�.y"/�T .y"/Y / � C
jx" � y"j2

"
:

We thus finally get

�

T 2
� C jx" � y"j C C

jx" � y"j2
"

:

We can now get the contradiction � < 0 by using Lemma 2.3.19 and letting " ! 0.
The proof is now complete. ut

2.3.4 Hölder Continuity Through the Ishii–Lions Method

In this subsection, we want to present a technique introduced by Ishii and Lions
in [IL90] in order to prove Hölder continuity of solutions of very general fully
nonlinear elliptic and parabolic equations. On one hand, it is much simpler than
the proof we will present in the next section; on the other hand, it cannot be used to
prove further regularity such as Hölder continuity of the gradient.

The fundamental assumptions is that the equation is uniformly elliptic (see below
for a definition). For pedagogical purposes, we do not want to prove a theorem for
the most general case. Instead, we will look at (2.24) for Sd -valued �’s and special
H ’s

@u

@t
C c.x/jDuj � trace.�.x/�.x/D2u/ D 0 (2.25)

Assumptions (A)

• c is bounded and Lipschitz continuous in Q;
• � W Q ! Sd is bounded and Lipschitz continuous in x and constant in t ;
• There exists � > 0 such that for all X D .t; x/ 2 Q,

A.x/ WD �.x/�.x/ � �I:

Under these assumptions, the equation is uniformly elliptic, i.e. there exist two
positive numbers 0 < � � ƒ, called ellipticity constants, such that

8X D .t; x/ 2 Q; �I � A.x/ � ƒI: (2.26)
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Theorem 2.3.29. Under Assumptions (A) on H and � , any viscosity solution u of
(2.25) in an open set Q � R

dC1 is Hölder continuous in time and space.

When proving Theorem 2.3.29, we will need to use Jensen–Ishii’s lemma for a
test function which is more general than .2"/�1jx � yj2. Such a result can be found
in [CIL92].

Lemma 2.3.30 (Jensen–Ishii’s Lemma II). Let U and V be two open sets of Rd

and I an open interval of R. Consider also a bounded subsolution u of (2.14) in
I � U and a bounded supersolution v of (2.14) in I � V . Assume that u.t; x/
� v.t; y/� �.x � y/ reaches a local maximum at .t0; x0; y0/ 2 I �U � V . Letting
p denote D�.x0 � y0/, for all ˇ > 0 such that ˇZ < I , there exists 
 2 R and
X; Y 2 Sd such that

.
; p;X/ 2 PC
u.t0; x0/; .
; p; Y / 2 P�

v.t0; y0/

� 2

ˇ

�
I 0

0 I

�
�
�
X 0

0 �Y
�

�
�
Zˇ �Zˇ

�Zˇ Zˇ

�
(2.27)

where Z D D2�.x0 � y0/ and Zˇ D .I � ˇZ/�1Z.

We can now turn to the proof of Theorem 2.3.29.

Proof of Theorem 2.3.29. We first prove that u is Hölder continuous with respect to
x. Without loss of generality, we can assume that Q is bounded. We would like to
prove that for all X0 D .t0; x0/ 2 Q and .t; x/; .t; y/ 2 Q,

u.t; x/� u.t; y/ � L1jx � yj˛ C L2jx � x0j2 C L2.t � t0/
2

for L1 D L1.X0/ and L2 D L2.X0/ large enough. We thus consider

M D sup
.t;x/;.t;y/2Q

fu.t; x/ � u.t; y/� �.x � y/ � �.t; x/g

with �.z/ D L1jzj˛ and �.t; x/ D L2jx � x0j2 C L2.t � t0/
2 and we argue by

contradiction: we assume that for all ˛ 2 .0; 1/, L1 > 0, L2 > 0, we have M > 0.
Since Q is bounded, M is reached at a point denoted by .Nt ; Nx; Ny/. The fact that

M > 0 implies first that Nx ¤ Ny. It also implies

8̂
<
:̂

j Nx � Nyj �


2juj0;Q
L1

� 1
˛ DW A < d.X0; @Q/;

j NX � X0j <
q

2juj0;Q
L2

DW R2 � d.X0;@Q/

2

(2.28)
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if L1 and L2 are chosen so that

L1 >
2juj0;Q

.d.X0; @Q//˛
; L2 � 8juj0;Q

.d.X0; @Q//2
:

In particular we have Nx; Ny 2 �. We next apply Jensen–Ishii’s Lemma 2.3.30 to
Qu.t; x/ D u.t; x/��.t; x/ and v.s; y/. Then there exists 
 2 R andX; Y 2 Sd such
that

.
 C 2L2.Nt � t0/; Np C 2L2. Nx � x0/;X C 2L2I / 2 PC
u.Nt ; Nx/; .
; Np; Y / 2 P�

u.Nt ; Ny/

where Np D D�. Nx � Ny/ and Z D D2�. Nx � Ny/ and (2.27) holds true. In particular,
X � Y . We can now write the two viscosity inequalities

2L2.Nt � t0/C 
 CH. Nx; Np C 2L2. Nx � x0// � trace.A. Nx/.X C 2L2I //


 CH. Ny; Np/ � trace.A. Ny/Y /

and combine them with (2.28) and (2.26) to get

�CL2 � 2L2.Nt � t0/ � c. Ny/j Npj � c. Nx/j Np C 2L2. Nx � x0/j
C CL2 C trace.A. Nx/X/� trace.A. Ny/Y /: (2.29)

We next estimate successively the difference of first order terms and the difference
of second order terms. As far as first order terms are concerned, we use that c is
bounded and Lipschitz continuous and (2.28) to get

c. Ny/j Npj � c. Nx/j Np C 2L2. Nx � x0/j � C j Nx � Nyjj Npj C CL2j Nx � x0j
� C j Nx � Nyjj Npj C CL2: (2.30)

As far as second order terms are concerned, we use (2.26) to get

trace.A. Nx/X/ � trace.A. Ny/Y / � trace.A. Nx/.X � Y //C trace..A. Nx/� A. Ny//Y /
� � trace.X � Y /

C
X
i

.�. Nx/Y�. Nx/ei � ei � �. Ny/Y�. Ny/ei � ei /

� � trace.X � Y /C CkY kj Nx � Nyj:

We should next estimate j Npj, trace.X � Y / and kY k. In order to do so, we compute
D� andD2�. It is convenient to introduce the following notation
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a D Nx � Ny; Oa D a

jaj ; " D jaj:

Np D D�.a/ D L1˛jaj˛�2a (2.31)

Z D D2�.a/ D L1˛.jaj˛�2I C .˛ � 2/jaj˛�4a˝ a/

D ��1.I � .2 � ˛/ Oa ˝ Oa/: (2.32)

with � D .L1˛/
�1"2�˛ . The reader can remark that if one chooses ˇ D �=2, then

Zˇ D .I � ˇZ/�1Z D 2

�

�
I � 22 � ˛

3 � ˛ Oa˝ Oa
�
: (2.33)

Since Y is such that � 1
ˇ
I � �Y � Zˇ, we conclude that

kY k � 2

�
:

We next remark that (2.27) and (2.33) imply that all the eigenvalues of X � Y are
non-positive and that one of them is less than

4Zˇ Oa � Oa D � 8
�

1� ˛

3� ˛
:

Hence

trace.X � Y / � � 8
�

1 � ˛
3 � ˛ :

Finally, second order terms are estimated as follows

trace.A. Nx/X/� trace.A. Ny/Y / � �C
�

C C
"

�
� � C

2�
(2.34)

(choosing L1 large enough so that " � 1=2). Combining now (2.29), (2.30) and
(2.34) and recalling the definition of � and ", we finally get

�CL2 � C"˛ � CL1

"2�˛
� C

L1
� CL2

˛

1 :

Since L2 is fixed, it is now enough to choose L1 large enough to get the desired
contradiction. The proof is now complete. ut
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2.4 Harnack Inequality

In this section, we consider the following special case of (2.14)

@u

@t
C F.x;D2u/ D f (2.35)

for some uniformly elliptic nonlinearity F (see below for a definition) and some
continuous function f . The goal of this section is to present and prove the Harnack
inequality (Theorem 2.4.35). This result states that the supremum of a non-negative
solution of (2.35) can be controlled from above by its infimum times a universal
constant plus the LdC1-norm of the right hand side f . The estimates that will be
obtained do not depend on the regularity of F with respect to x.

We will see that it is easy to derive the Hölder continuity of solutions from the
Harnack inequality, together with an estimate of the Hölder semi-norm.

The Harnack inequality is a consequence of both the L"-estimate (Theo-
rem 2.4.15) and of the local maximum principle (Proposition 2.4.34). Since this
local maximum principle is a consequence of the L"-estimate, the heart of the proof
of the Harnack inequality thus lies in proving that a (small power of) non-negative
supersolution is integrable, see Theorem 2.4.15 below.

The proof of the L" estimate relies on various measure estimates of the solution.
These estimates are obtained through the use of a maximum principle due to Krylov
in the parabolic case.

The proof of the L" estimate also involves many different sets, cylinders and
cubes. The authors are aware of the fact that it is difficult to follow the corresponding
notation. Some pictures are provided and the authors hope they are helpful with this
respect.

Pucci’s Operators

Given ellipticity constants 0 < � � ƒ, we consider

PC.M/ D sup
�I�A�ƒI

f� trace.AM/g;

P�.M/ D inf
�I�A�ƒIf� trace.AM/g:

Some model fully nonlinear parabolic equations are

@u

@t
C PC.D2u/ D f; (2.36)

@u

@t
C P�.D2u/ D f: (2.37)
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Remark that those nonlinear operators only depend on ellipticity constants �;ƒ and
dimension d . They are said universal. Similarly, constants are said universal if they
only depend on �;ƒ and d .

Uniform Ellipticity

Throughout the remaining of this section, we make the following assumptions on
F : for all X; Y 2 Sd and x 2 �,

P�.X � Y / � F.x;X/ � F.x; Y / � PC.X � Y /:

This condition is known as the uniform ellipticity of F . Remark that this condition
implies in particular that F is degenerate elliptic in the sense of Sect. 2.3.1.1 (see
Condition 2.15).

2.4.1 A Maximum Principle

In order to state and prove the maximum principle, it is necessary to define first the
parabolic equivalent of the convex envelope of a function, which we will refer to as
the monotone envelope.

2.4.1.1 Monotone Envelope of a Function

Definition 2.4.1 (Monotone envelope). If � is a convex set of Rd and .a; b/ is
an open interval, then the monotone envelope of a lower semi-continuous function
u W .a; b/�� ! R is the largest function v W .a; b/�� ! R lying below u which
is non-increasing with respect to t and convex with respect to x. It is denoted by
�.u/.

Combining the usual definition of the convex envelope of a function with
the non-increasing envelope of a function of one real variable, we obtain a first
representation formula for �.u/.

Lemma 2.4.2 (Representation formula I).

�.u/.t; x/ D supf� � x C h W � � x C h � u.s; x/ for all s 2 .a; t �; x 2 �g:

The set where �.u/ coincides with u is called the contact set; it is denoted by Cu.
The following lemma comes from convex analysis, see e.g. [HUL].
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Lemma 2.4.3. Consider a point .t; x/ in the contact set Cu of u. Then � � x C h D
�.u/.t; x/ if and only if � lies in the convex subdifferential @u.t; x/ of u.t; �/ at x
and �h equals the convex conjugate u�.t; x/ of u.t; �/ at x.

Recall that a convex function is locally Lipschitz continuous and in particular a.e.
differentiable, for a.e. contact points, .�; h/ D .Du.t; x/; u.t; x/�x �Du.t; x//. This
is the reason why we next consider for .t; x/ 2 .a; b/ �� the following function

G.u/.t; x/ D .Du.t; x/; u.t; x/ � x � Du.t; x//:

The proof of the following elementary lemma is left to the reader.

Lemma 2.4.4. If u is C1;1 with respect to x and Lipschitz continuous with respect
to t , then the function G W .a; b/ �� ! R

dC1 is Lipschitz continuous in .t; x/ and
for a.e. .t; x/ 2 .a; b/ ��,

detDt;xG.u/ D ut detD2u:

We now give a second representation formula for �.u/ which will help us next
to describe viscosity subdifferentials of the monotone envelope (see Lemma 2.4.6
below).

Lemma 2.4.5 (Representation formula II).

�.u/.t; x/ D inf

� dC1X
iD1

�iu.si ; xi / W
dC1X
iD1

�ixi D x; si 2 Œa; t �;

dC1X
iD1

�i D 1; �i 2 Œ0; 1�
	
: (2.38)

In particular, if

�.u/.t0; x0/ D
dC1X
iD1

�iu.t
0
i ; x

0
i /;

then

• for all i D 1; : : : ; d C 1, �.u/.ti ; xi / D u.ti ; xi /;
• �.u/ is constant with respect to t and linear with respect to x in the convex set

cof.t; x0i /; .t0i ; x0i /; i D 1; : : : d C 1g.

Proof. Let Q�.u/ denote the function defined by the right hand side of (2.38). First,
we observe that Q�.u/ lies below u and is non-increasing with respect to t and convex
with respect to x. Consider now another function v lying below u which is non-
increasing with respect to t and convex with respect to x. We then have

u.t; x/ � Q�.u/.t; x/ � Q�.v/.t; x/ � v.t; x/:
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The proof is now complete. ut
We next introduce the notion of harmonic sum of matrices. For A1;A2 2 Sd such
that A1 C A2 � 0, we consider

.A1�A2/	 � 	 D inf
	1C	2D	

fA1	1 � 	1 C A2	2 � 	2g:

The reader can check that if A1 and A2 are not singular, A1�A2 D .A�1
1 CA�1

2 /
�1.

We can now state and prove

Lemma 2.4.6. Let .˛; p;X/ 2 P��.u/.t0; x0/ and

�.u/.t0; x0/ D
dC1X
iD1

�iu.t
0
i ; x

0
i /: (2.39)

Then for all " > 0 such that I C "X > 0, there exist .˛i ; Xi / 2 .�1; 0� � Sd ,
i D 1; : : : ; d C 1, such that

8<
:
.˛i ; p;Xi/ 2 P�

u.t0i ; x
0
i /PdC1

iD1 �i˛i D ˛

X" � ��1
1 X1� � � � ���1

dC1XdC1
(2.40)

where X" D X�"�1I D .I C "X/�1X .

Proof. We first define for two arbitrary functions v;w W Rd ! R,

v
x

� w.x/ D inf
y2Rd

v.x � y/C w.y/:

For a given function v W Œ0;C1/ � R
d ! R, we also consider the non-increasing

envelopeMŒv� of v:

MŒv�.t; x/ D inf
s2Œ0;t � v.s; x/:

We now can write

�.u/.t; x/ D x

�
1�i�dC1

M Œui �.t; x/

where

ui .t; x/ D �iu

�
t;
x

�i

�
:
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Consider also t0i 2 Œ0; t0� such that

MŒui �.t0; x
0
i / D ui .t

0
i ; x

0
i / D �iu

�
t0i ;
x0i
�i

�
:

Lemma 2.4.6 is a consequence of the two following ones.

Lemma 2.4.7. Consider .˛; p;X/ 2 P�V.t0; x0/ where

V.t; x/ D x

�
1�i�dC1

vi .t; x/

V .t0; x0/ D
dC1X
iD1

vi .t0; x
0
i /:

Then for all " > 0 such that I C "X > 0, there exist .ˇi ; Yi / 2 R� Sd such that we
have

.ˇi ; p; Yi / 2 P�
vi .t0; x

0
i /

dC1X
iD1

ˇi D ˛

X" � �dC1
iD1 Yi :

Proof. We consider a test function � touching V from below at .t0; x0/ such that

.˛; p;X/ D .@t�;D�;D
2�/.t0; x0/:

We write for .t; xi / in a neighborhood of .t0; x0i /,

�.t;

dC1X
iD1

xi / � �.t0;
dC1X
iD1

x0i / �
dC1X
iD1

vi .t; xi / �
dC1X
iD1

vi .t0; x
0
i /:

Following [ALL97, Imb06], we conclude through Jensen–Ishii’s lemma for d C 1

functions and general test functions (see Lemma 2.5.6 in appendix) that for all " > 0
such that I C d"X > 0, there exist .ˇi ; Yi / 2 R � Sd , i D 1; : : : ; d C 1 such that

.ˇi ; p; Yi / 2 P�
vi .t0; x

0
i /

dC1X
iD1

ˇi D ˛
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and

0
B@
X : : : X
:::
: : :

:::

X : : : X

1
CA
"

�

0
BBBB@

Y1 0 : : : 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 : : : 0 YdC1

1
CCCCA

where, for any matrix A, A" D .I C "A/�1A. A small computation (presented e.g.
in [Imb06, p. 796]) yields that the previous matrix inequality is equivalent to the
following one

Xd"	 � 	 �
dC1X
iD1

Yi	i � 	i

where 	 D PdC1
iD1 	i . Taking the infimum over decompositions of 	, we get the

desired matrix inequality. ut
Lemma 2.4.8. Consider s1 2 Œ0; s0� such that

MŒv�.s0; y0/ D v.s1; y0/:

Then for all .ˇ; q; Y / 2 P�MŒv�.s0; y0/,

.ˇ; q; Y / 2 P�v.s1; y0/ and ˇ � 0:

Proof. We consider the test function � associated with .ˇ; q; Y / and we write for h
and ı small enough

�.s0 C h; y0 C ı/� �.s0; y0/ � MŒv�.s0 C h; y0 C ı/ �MŒv�.s0; y0/

� v.s1 C h; y0 C ı/ � v.s1; y0/:

This implies .ˇ; q; Y / 2 P�v.s1; y0/. Moreover, choosing ı D 0, we get

�.s0 C h; y0/ � �.s0; y0/

and ˇ � 0 follows. ut
The proof is now complete. ut
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2.4.1.2 Statement

The following result is the first key result in the theory of regularity of fully non-
linear parabolic equations. It is the parabolic counterpart of the famous Alexandroff
estimate, also called Alexandroff–Bakelman–Pucci (ABP) estimate, see [CafCab]
for more details about this elliptic estimate. The following one was first proved
for linear equations by Krylov [Kryl76] and then extended by Tso [Tso85]. The
following result appears in [Wang92a].

Theorem 2.4.9 (Maximum principle). Consider a supersolution of (2.36) in
Q� D Q�.0; 0/ such that u � 0 on @p.Q�/. Then

sup
Q�

u� � C�
d

dC1

�Z
uD�.u/

.f C/dC1
� 1

dC1

(2.41)

where C is universal and �.u/ is the monotone envelope of min.0; u/ extended by 0
to Q2�.

Remark 2.4.10. This is a maximum principle since, if f � 0, then u cannot take
negative values.

Proof. We prove the result for � D 1 and the general one is obtained by considering
v.t; x/ D u.�2t; �x/. Moreover, replacing u with min.0; u/ and extending it by 0 in
Q2 nQ1, we can assume that u D 0 on @pQ1 and u 	 0 in Q2 nQ1.

We are going to prove the three following lemmas. Recall that G.u/ is defined
page 44.

Lemma 2.4.11. The function �.u/ is C1;1 with respect to x and Lipschitz con-
tinuous with respect to t in Q1. In particular, G�.u/ WD G.�.u// is Lipschitz
continuous with respect to .t; x/.

The second part of the statement of the previous lemma is a consequence
of Lemma 2.4.4 above. We will prove the previous lemma together with the
following one.

Lemma 2.4.12. The partial derivatives .@t�.u/;D2�.u// satisfy for a.e. .t; x/ 2
Q1 \ Cu,

�@t�.u/C ��.�.u// � f C.x/

where Cu D fu D �.u/g.

The key lemma is the following one.

Lemma 2.4.13. If M denotes supQ1
u�, then

f.�; h/ 2 R
dC1 W j�j � M=2 � �h � M g � G�.u/.Q1 \ Cu/

where Cu D fu D �.u/g.
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Before proving these lemmas, let us derive the conclusion of the theorem.
Using successively Lemma 2.4.13, the area formula for Lipschitz maps (thanks to
Lemma 2.4.11) and Lemma 2.4.4, we get

CMdC1 D jf.�; h/ 2 R
dC1 W j�j � M=2 � �h � M gj

� jG�.u/.Q1 \ Cu/j

�
Z
Q1\Cu

j detG�.u/j

�
Z
Q1\Cu

�@t�.u/ det.D2�.u//:

Now using the geometric–arithmetic mean inequality and Lemma 2.4.12, we get

CMdC1 � ��d
Z
Q1\Cu

�@t�.u/ det.�D2�.u//

� 1

�d .d C 1/dC1

Z
Q1\Cu

.�@t�.u/C ��.�.u//dC1

� C

Z
Q1\Cu

.f C/dC1

where C ’s are universal. ut
We now turn to the proofs of Lemmas 2.4.11–2.4.13.

Proof of Lemmas 2.4.11 and 2.4.12. In order to prove that �.u/ is Lipschitz contin-
uous with respect to t and C1;1 with respect to x, it is enough to prove that there
exists C > 0 such that

8.t; x/ 2 Q2; 8.˛; p;X/ 2 P��.u/.t; x/;
� �˛ � C

X � CI:
(2.42)

Indeed, since �.u/ is non-increasing with respect to t and convex with respect to
x, (2.42) yields that �.u/ is Lipschitz continuous with respect to t and C1;1 with
respect to x. See Lemma 2.5.8 in appendix for more details.

In order to prove (2.42), we first consider .˛; p;X/ 2 P��.u/.t; x/ such that
X � 0. Recall (cf. Lemma 2.4.6 above) that ˛ � 0. We then distinguish two cases.

Assume first that �.u/.t; x/ D u.t; x/. In this case, .˛; p;X/ 2 P�u.t; x/ and
since u is a supersolution of (2.36), we have

˛ � � trace.X/ D ˛ C PC.X/ � f .x/ � �C
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whereC D jf j0IQ1 . Hence, we get (2.42) sinceX � 0 implies thatX � trace.X/I .
We also remark that the same conclusion holds true if .˛; p;X/ 2 P�

�.u/.t; x/
such that X � 0.

Assume now that �.u/.t; x/ < u.t; x/. In this case, there exist �i 2 Œ0; 1�, i
D 1; : : : ; d C 1, and xi 2 Q2, i D 1; : : : ; d C 1, such that (2.39) holds true with
.t0; x0/ and .t0i ; x

0
i / replaced with .t; x/ and .ti ; xi /. If .ti ; xi / 2 Q2 n Q1 for two

different i ’s, then Lemma 2.4.5 implies that M D 0 which is false. Similarly, ti >
�1 for all i . Hence, there is at most one index i such that .ti ; xi / 2 Q2 nQ1 and in
this case .ti ; xi / 2 @pQ2 and ti > �1. In particular, jxi j D 2. We thus distinguish
two subcases.

Assume first that .tdC1; xdC1/ 2 @pQ2 with tdC1 > �1 and .ti ; xi / 2 Q1 for
i D 1; : : : ; d . In particular jxdC1j D 2 and since x 2 Q1, we have �dC1 � 2

3
. This

implies that there exists �i such that �i � .3d/�1. We thus can assume without loss
of generality that �1 � .3d/�1. Then from Lemma 2.4.6, we know that for all " > 0
such that I C "X > 0, there exist .˛i ; Xi / 2 R � Sd , i D 1; : : : ; d C 1 such that
(2.40) holds true. In particular,

X" � 1

�1
X1 � 3dX1:

Since .˛1; p;X1/ 2 P�
u.t1; x1/ and �.u/.t1; x1/ D u.t1; x1/, we know from the

discussion above that X1 � CI. Hence for all " small enough,

X" � 3dCI:

Letting " ! 0 allows us to conclude that X � 3dCI in the first subcase. As far as
˛ is concerned, we remark that ˛dC1 D 0 and �˛i � C for all i D 1; : : : ; d C 1 so
that

�˛ D
dC1X
iD1

�i .�˛i / � C:

Assume now that all the points .ti ; xi /, i D 1; : : : ; d C 1, are inQ1. In this case, we
have for all i that �˛i � C and Xi � CI which implies

�˛ D
dC1X
iD1

�i .�˛i / � C;

X" � �dC1
iD1 �

�1
i CI D CI:

We thus proved (2.42) in all cases where X � 0. Consider now a general
subdifferential .˛; p;X/ 2 P��.u/.t; x/. We know from Lemma 2.5.9 in appendix
that there exists a sequence .˛n; pn;Xn/ such that
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.˛n; pn;Xn/ 2 P��.u/.tn; xn/

.tn; xn; ˛n; pn/ ! .t; x; ˛; p/

X � Xn C on.1/; Xn � 0:

From the previous discussion, we know that

˛ D ˛n C on.1/ � .C C 1/

X � Xn C on.1/ � .C C 1/I

for all n. The proof is now complete. ut
Proof of Lemma 2.4.13. The supersolution u � 0 is lower semi-continuous and the
minimum �M < 0 inQ2 is thus reached at some .t0; x0/ 2 Q1 (since u 	 0 outside
Q1). Now pick .�; h/ such that

j�j � M=2 � �h � M:

We consider P.y/ D � � y C h. We remark that P.y/ < 0 for y 2 Q1, hence
P.y/ < u.0; y/ in Q1. Moreover, since jx0j < 1,

P.x0/ � u.t0; x0/ D � � x0 C hCM > h � j�j CM � 0

hence supy2Q2
.P.y/ � u.t0; y// � 0. We thus choose

t1 D supft � 0 W 8s 2 Œ0; t �; sup
Q2

.P.y/ � u.s; y// < 0g:

We have 0 � t1 � t0 and

0 D sup
Q2

.P.y/ � u.t1; y// D P.y1/� u.t1; y1/:

In particular, � D Du.t1; y1/ and h D u.t1; x1/ � � � x1, that is to say, .�; h/
D G.u/.t1; y1/ with .t1; y1/ 2 Cu. ut

2.4.2 The L"-Estimate

This subsection is devoted to the important “L" estimate” given in Theorem 2.4.15.
This estimate is sometimes referred to as the weak Harnack inequality.

Theorem 2.4.15 claims that the L"-“norm” in a neighbourhood QK1 of .0; 0/ of a
non-negative (super-)solution u of the model equation (2.36) can be controlled by
its infimum over a neighbourhood QK2 of .1; 0/ plus the LdC1-norm of f .
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˜ K1K1

K̃2

Fig. 2.1 The two neighbourhoods QK1 and QK2

Remark 2.4.14. Since " can be smaller than 1, the integral of u" is in fact not the
("-power of) a norm.

We introduce the two neighbourhoods mentioned above (see Fig. 2.1).

QK1 D .0;R2=2/ � .�R;R/d ;
QK2 D .1 �R2; 1/ � .�R;R/d :

Theorem 2.4.15 (L" estimate). There exist universal positive constants R, C and
", such that for all non-negative supersolution u of

@u

@t
C PC.D2u/ � f in .0; 1/ �B 1

R
.0/;

the following holds true

�Z
QK1

u"
� 1

"

� C.inf
QK2

u C kf kLdC1..0;1/�B 1
R
.0///: (2.43)

The proof of this theorem is difficult and lengthy; this is the reason why we
explain the main steps of the proof now.

First, one should observe that it is possible to assume without loss of generality
that inf QK2 u � 1 and kf kLdC1..0;1/�B 1

R
.0// � "0 (for some universal constant "0 to be

determined) and to prove

Z
eK1 u".t; x/dx � C
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where " > 0 andC > 0 are universal. We recall that a constant is said to be universal
if it only depends on ellipticity constants � and ƒ and dimension d . Getting such
an estimate is equivalent to prove that

jfu > tg \ QK1j � C t�"

(see page 69 for more details). To get such a decay estimate, it is enough to prove
that

jfu > Nkg \ QK1j � CN�k"

for some universal constant N > 1. This inequality is proved by induction thanks
to a covering lemma (see Lemma 2.4.27 below). This amounts to cut the set fu >
Nkg \ QK1 in small pieces (the dyadic cubes) and make sure that the pieces where u
is very large (u � t , t 
 1) have small measures.

This will be a consequence of a series of measure estimates obtained from
a basic one. The proof of the basic measure estimate is a consequence of the
maximum principle proved above and the construction of an appropriate barrier we
will present soon. But we should first introduce the parabolic cubes we will use in
the decomposition. We also present the choice of parameters we will make.

2.4.2.1 Parabolic Cubes and Choice of Parameters

We consider the following subsets ofQ1.1; 0/.

K1 D .0;R2/ � .�R;R/d ;
K2 D .R2; 10R2/ � .�3R; 3R/d ;
K3 D .R2; 1/ � .�3R; 3R/d :

The constant R will be chosen as follows

R D min

 
1

3
p
d
; 3 � 2

p
2;

1p
10.mC 1/

!
(2.44)

wherem will be chosen in a universal way in the proof of the L" estimate.

2.4.2.2 A Useful Barrier

The following lemma will be used to derive the basic measure estimate. This
estimate is the cornerstone of the proof of the L" estimate.
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t

x ∈ B1

Q1(1, 0)K1

K2

K3

Fig. 2.2 The sets K1, K2 and K3

Lemma 2.4.16. For all R 2 .0;min..3
p
d/�1; .10/�1=2//, there exists a nonnega-

tive Lipschitz function � W Q1.1; 0/ ! R, C2 with respect to x where it is positive,
such that

@�

@t
C PC.D2�/ � g

for some continuous bounded function g W Q1.1; 0/ ! R and such that

suppg � K1

� � 2 in K3

� D 0 in @pQ1.1; 0/:

Remark 2.4.17. Recall the definitions of K1, K2 and K3 (see Fig. 2.2).

K1 D .0;R2/ � .�R;R/d ;
K2 D .R2; 10R2/ � .�3R; 3R/d ;
K3 D .R2; 1/ � .�3R; 3R/d :

The proof of the lemma above consists in constructing the function � more
or less explicitly. It is an elementary computation. However, it is an important
feature of non divergence type equations that this type of computations can be
made. Consider in contrast the situation of parabolic equations with measurable
coefficients in divergence form. For that type of equations, a result like the one of
Lemma 2.4.16 would be significantly harder to obtain.
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Proof. We will construct a function ' which solves the equation

't C PC.D2'/ � 0 (2.45)

in the whole cylinderQ1.1; 0/, such that ' is positive and unbounded near .0; 0/ but
' D 0 in @pQ1.1; 0/ away from .0; 0/, and moreover ' > 0 in K2. Note that if the
equation were linear, ' could be its heat kernel in the cylinder. Once we have this
function ', we obtain � simply by taking

�.t; x/ D 2
'.t; x/

minK2 '
for .t; x/ 2 nK1;

and making � equal any other smooth function in K1 which is zero on ft D 0g.
We now construct this function '. We will provide two different formulas for

'.t; x/. The first one will hold for t 2 .0; T / for some T 2 .0; 1/. Then the second
formula provides a continuation of the definition of ' on ŒT; 1�.

For some constant p > 0 and a function ˆ W R
d ! R, we will construct the

function ' in .0; T / with the special form

'.t; x/ D t�pˆ
�
xp
t

�
:

Let us start from understanding what conditionsˆ must satisfy in order for ' to
be a subsolution to (2.45).

0 � 't C PC.D2'/ D t�1�p
�

� pˆ

�
xp
t

�

� 1

2

xp
t

� rˆ
�
xp
t

�
C PC.D2ˆ/

�
xp
t

��
:

Therefore, we need to find a functionˆ W Rd ! R and some exponent p such that

� pˆ.x/ � 1

2
x � rˆ.x/C PC.D2ˆ/.x/ � 0: (2.46)

For some large exponent q, we chooseˆ like this

ˆ.x/ D

8̂
<̂
ˆ̂:

something smooth and bounded between 1 and 2 if jxj � 3
p
d;

.6
p
d/q.2q � 1/�1



jxj�q � .6pd/�q

�
if 3

p
d � jxj � 6

p
d;

0 if jxj � 6
p
d:

For 3
p
d < jxj < 6

p
d , we compute explicitly the second and third terms

in (2.46),
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�1
2
x � rˆ.x/ D .6

p
d/q.2q � 1/�1 q

2
jxj�q

PC.D2ˆ/.x/ D .6
p
d/q.2q � 1/�1q.ƒ.d � 1/� �.q C 1//jxj�q�2:

By choosing q large enough so that �.q C 1/ > ƒ.d � 1/C 18d , we get that

�1
2
x � rˆ.x/C PCˆ.x/ � 0:

In order for (2.46) to hold in B
3
p
d

, we just have to choose the exponent p large
enough, since at those points ˆ � 1. Furthermore, since ˆ � 0 everywhere and
ˆ D 0 outside B

6
p
d

, then the inequality (2.46) holds in the full space R
d in the

viscosity sense.
Since ˆ is supported in B

6
p
d

, then ' D 0 on .0; T / � @B1, for T D .36d/�1.
Thus, ' D 0 on the lateral boundary .0; T / � @B1. Moreover,

lim
t!�1 '.t; x/ D 0;

uniformly in B1 n B" for any " > 0.
We have provided a value of ' up to time T 2 .0; 1/. In order to continue

' in ŒT; 1� we can do the following. Observe that by the construction of ˆ, we
have PC.D2'.T; x// � 0 for x 2 B1 n B1=2 and '.x; T / � T �p for x 2 B1=2.
Therefore, let

C D sup
x2B1

PC.D2'.T; x//

'.T; x/
< C1;

then we define '.t; x/ D e�C.t�T /'.T; x/ for all t > T , which is clearly a positive
subsolution of (2.45) in .T; 1� � B1 with ' D 0 on ŒT; 1� � @B1.

The constructed function ' vanishes only on the set f.t; x/ W t < T and jxj �
6
p

dtg. Since the set K3 D .R2; 1/ � .�3R; 3R/d has no intersection with this set,
then

inf
K3
' > 0:

This is all that was needed to conclude the proof. ut

2.4.2.3 The Basic Measure Estimate

As in the elliptic case, the basic measure estimate is obtained by combining
the maximum principle of Theorem 2.4.9 and the barrier function constructed
in Lemma 2.4.16. For the following proposition, we use the notation from
Remark 2.4.17.
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t

x ∈ B1

Q1(1, 0)K1

K2

K3

Fig. 2.3 Basic measure estimate in Q1.1; 0/

Proposition 2.4.18 (Basic measure estimate). There exist universal constants
"0 2 .0; 1/,M > 1 and � 2 .0; 1/ such that for any non-negative supersolution of

@u

@t
C PC.D2u/ � f in Q1.1; 0/;

the following holds true: if

�
infK3 u � 1

kf kLdC1.Q1.1;0//
� "0

then

jfu � M g \K1j � �jK1j:

Remark 2.4.19. Since K2 � K3 (see Fig. 2.3), the result also holds true if infK3 u
is replaced with infK2 u. This will be used in order to state and prove the stacked
measure estimate.

Remark 2.4.20. If u is a non-negative supersolution of

@u

@t
C PC.D2u/ � f in .0; T / �B1;
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x ∈ B1

t

K1

K2

Q1(1, 0)

Fig. 2.4 A supersolution in a smaller cylinder

for some T 2 .R2; 1/ (see Fig. 2.4), we still get

inf.R2;T /�.�3R;3R/d u � 1

kf kLdC1..0;T /�B1/ � "0

)
) jfu � M g \K1j � �jK1j:

The reason is that such a solution could be extended toQ1.1; 0/ (for example giving
any boundary condition on .T; 1/ � @B1 and making f quickly become zero for
t > T ), and then Proposition 2.4.18 can be applied to this extended function. This
remark will be useful when getting the “stacked” measure estimate in the case where
the stack of cubes reaches the final time.

Proof. Consider the function w D u � � where � is the barrier function from
Lemma 2.4.16. Then w satisfies (in the viscosity sense)

@w

@t
C PC.D2w/ � @u

@t
C PC.D2u/� @�

@t
� PC.D2�/ � f � g:

Remark also that

• w � u � 0 on @pQ1.1; 0/;
• infK3 w � infK3 u � 2 � �1 so that supK3 w� � 1;
• f�.w/ D wg � fw � 0g � fu � �g.

We recall that �.w/ denotes the monotone envelope of min.w; 0/ extended by 0 to
Q2.1; 0/. We now apply the maximum principle (Theorem 2.4.9) and we get

1 � sup
K3

w� � sup
Q1

w� � Cmaxkf kLdC1.Q1.1;0//
C Cmax

�Z
fu��g

jgjdC1
� 1

dC1

:
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Remember now that suppg � K1 and get

1 � Cmax"0 C Cmaxjfu � M g \K1j

withM > max.supK1 �; 1/. Choose now "0 so that Cmax"0 � 1=2 and get the result
with � D 1

1C2CmaxjK1j . The proof is now complete. ut
Corollary 2.4.21 (Basic measure estimate scaled). For the same constants "0,M
and � of Proposition 2.4.18 and any x0 2 R

d , t0 2 R and h > 0, consider any
nonnegative supersolution of

@u

@t
C PC.D2u/ � f in .t0; x0/C �Q1.1; 0/:

If

kf kLdC1..t0;x0/C�Q1.0;1//
� "0

h

M�d=.dC1/

then

jfu > hg\f.t0; x0/C�K1gj > .1��/j.t0; x0/C�K1j ) u >
h

M
in .t0; x0/C�K3:

Here, we recall that by �K we mean f.�2t; �x/ W .t; x/ 2 Kg.

Remark 2.4.22. As in Remark 2.4.20, .t0; x0/ C �.0; 1/ � B 1
R
.0/ can be replaced

with .t0; x0/C �.0; T / � B 1
R
.0/ for any T 2 .0; 1/.

Proof. We consider the scaled function

v.t; x/ D Mh�1u.t0 C �2t; x0 C �x/:

This function solves the equation

@v

@t
C PC.D2v/ � Qf in Q1.1; 0/

where Qf .t; x/ D Mh�1�2f .t0 C �2t; x0 C �x/. Note that

k Qf kLdC1.Q1.1;0//
D Mh�1�d=.dC1/kf kLdC1..t0;x0/C�Q1.1;0//

� "0:

We conclude the proof applying Proposition 2.4.18 to v. ut
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2.4.2.4 Stacks of Cubes

Given � 2 .0; 1/, we consider for all k 2 N, k � 1,

K
.k/
2 D .˛kR

2; ˛kC1R2/ � .�3kR; 3kR/d

where ˛k D Pk�1
iD0 9i D 9k�1

8
.

The first stack of cubes that we can consider is the following one

[k�1K.k/
2 :

This stack is obviously not contained in Q1.1; 0/ since time goes to infinity. It can
spill out ofQ1.1; 0/ either on the lateral boundary or at the final time t D 1. We are
going to see that at the final time, the “x-section” is contained in .�3; 3/d .

We consider a scaled version ofK1 included in K1 and we stack the correspond-
ing K.k/

2 ’s. The scaled versions of K1, K2 and K.k/
2 are

�K1 D .0; �2R2/ � B�R.0/;
�K2 D .�2R2; 10�2R2/ � B�R.0/;
�K

.k/
2 D .˛k�

2R2; ˛kC1�2R2/ � .�3k�R; 3k�R/d :

We now consider

L1 D .t0; x0/C �K1 � K1

and

L
.k/
2 D .t0; x0/C �K

.k/
2 :

Lemma 2.4.23 (Stacks of cubes). Choose R � min.3 � 2
p
2;

q
2
5
/ D 3 � 2

p
2.

For all L1 D .t0; x0/C �K1 � K1, we have

QK2 �


[k�1L.k/2

�
\ .0; 1/ � .�3; 3/d D



[k�1L.k/2

�
\ f0 < t < 1g:

In particular, if moreover R � .3
p
d/�1,



[k�1L.k/2

�
� .0; 1/ � B 1

R
.0/:

Moreover, the first k� D k such that L.kC1/
2 \ ft D 1g D ; satisfies

�2R2 � 1

˛k�
:
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(t0 0)

(t0

, x

, x0) + S−

Fig. 2.5 Stacks of cubes

Proof. We first remark that the stack of cubes lies between two “square” paraboloids
(see Fig. 2.5)

.t0; x0/C S� � [k�1L.k/2 � .t0; x0/C SC

where

S˙ D [s�s
˙

fp˙.s/g � .�s; s/d

and p˙.s˙/ D �2R2 and p˙.z/ D a˙z2 C b˙�2R2 are such that

pC.3k�R/ D ˛k�
2R2

p�.3k�R/ D ˛kC1�2R2:

This is equivalent to

aC D 1

8
and a� D 9

8
and bC D b� D �1

8
and s˙ D

r
9

8
�R:

Remark now that

Œ.t0; x0/C SC� \Q1.1; 0/ � Œ0; 1� � .�R � a� 1
2C ; RC a

� 1
2C /d :

We thus choose R such that .RC a
� 1
2C / � 3. This condition is satisfied if

R � 3 � 2p2:
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Remark next that

.t0; x0/C S� � \x2.�R;R/d Œ.R2; x/C S��:

Hence

Œ.t0; x0/C S�� \Q1.1; 0/ � QK2

as soon as

aC.2R/2 � 1 � 2R2:

It is enough to have

5

2
R2 D .4aC C 2/R2 � 1:

Finally, the integer k� satisfies

t0 C ˛k�R2�2 � 1 < t0 C ˛k�C1R2�2: ut

2.4.2.5 The Stacked Measure Estimate

In this paragraph, we apply repeatedly the basic measure estimate obtained above
and get an estimate in the finite stacks of cubes we constructed in the previous
paragraph.

Proposition 2.4.24 (Stacked measure estimate). For the same universal con-
stants "0 2 .0; 1/, M > 1 and � 2 .0; 1/ from Proposition 2.4.18, the following
holds true: consider a non-negative supersolution u of

@u

@t
C PC.D2u/ � f in .0; 1/ � B 1

R
.0/

and a cube L1 D .t0; x0/C �K1 � K1. Assume that for some k � 1 and h > 0

kf kLdC1..0;1/�B 1
R
.0// � "0

h

Mk�d=.dC1/ :

Then

jfu > hg \ L1j > .1 � �/jL1j ) inf
L
.k/
2 \f0<t<1g

u >
h

Mk
:
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K1

K
(1)
2

K
(2)
2

K
(3)
2

K
(4)
2

Fig. 2.6 Stacks of neighbourhoods K.k/
2

Remark 2.4.25. Remember that L.k/2 D .t0; x0/C�K
.k/
2 and see Fig. 2.6. Thanks to

Lemma 2.4.23, we know that L.k/2 \ f0 < t < 1g � .0; 1/� B 1
R
.0/.

Proof. We prove the result by induction on k. Corollary 2.4.21 corresponds to the
case k D 1 if we can verify that

kf kLdC1..t0;x0/C�Q1.1;0//
� "0

h

M�d=.dC1/ :

It is a consequence of the fact that Q1.1; 0/ � .0; 1/ � B 1
R
.0/.

For k > 1, the inductive hypothesis reads

inf
L
.k�1/
2 \f0<t<1g

u >
h

Mk�1 :

If L.k�1/
2 is not contained in .0; 1/�B 1

R
.0/, there is nothing to prove at rank k since

L
.k/
2 \ f0 < t < 1g D ;. We thus assume that L.k�1/

2 � .0; 1/� B 1
R
.0/.

In particular

jfu >
h

Mk�1 g \ L
.k�1/
2 j D jL.k�1/

2 j: (2.47)

Note thatL.k�1/
2 D .t1; 0/C�1K1 andL.k/2 D .t1; 0/C�1K2 with t1 D t0C˛k�1R2�2

and �1 D 3k�1�. In particular (2.47) implies

jfu >
h

Mk�1 g \ f.t1; 0/C �1K1gj > .1 � �/j.t1; 0/C �1K1j:
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So we apply Corollary 2.4.21 again to obtain

inf
L
.k/
2 \f0<t<1g

u D inf
f.t1;0/C�1K2g\f0<t<1g

u >
h

Mk
:

We can do so since �1 � � and Lemma 2.4.23 implies thatL.k/2 � .0; 1/� .�3; 3/d .
In particular, the corresponding domain in which the supersolution is considered is
contained in .0; 1/ � B 1

R
.0/. We used here Remark 2.4.20 when .t1; 0/ C �1K2 is

not contained in f0 < t < 1g. Thus, we finish the proof by induction. ut
Before turning to the proof of Theorem 2.4.15, we observe that the previous

stacked measure estimate implies in particular the following result.

Corollary 2.4.26 (Straight stacked measure estimate). Assume that R �
1p

10.mC1/ . Under the assumptions of Proposition 2.4.24 with k D m, for any

cube L1 � K1

jfu > hg \ L1j > .1 � �/jL1j ) u >
h

Mm
in L1

.m/ � Q1.1; 0/:

Proof. Apply Proposition 2.4.24 with k D m and remark that L1
.m/ � L

.m/
2 .

The fact that L1
.m/ � Q1.1; 0/ (see Fig. 2.7) comes from the fact that 10.m C 1/

R2 � 1. ut

2.4.2.6 A Stacked Covering Lemma

When proving the fundamental L"-estimate (sometimes called the weak Harnack
inequality) for fully nonlinear elliptic equations, the Calderón–Zygmund decom-
position lemma plays an important role (see [CafCab] for instance). It has to be
adapted to the parabolic framework.

We need first some definitions. A cube Q is a set of the form .t0; x0/C .0; s2/ �
.�s; s/d . A dyadic cube K of Q is obtained by repeating a finite number of times
the following iterative process: Q is divided into 2dC2 cubes by considering all the
translations of .0; s2=4/ � .0; s/d by vectors of the form .l.s2=4/; sk/ with k 2 Z

d

and l 2 Z included in Q. When a cube K1 is split in different cubes including K2,
K1 is called a predecessor of K2.

Given m 2 N, and a dyadic cube K of Q, the set NK.m/ is obtained by “stacking”
m copies of its predecessor NK . More rigorously, if the predecessor NK has the form
.a; b/ � L, then we define NK.m/ D .b; b Cm.b � a// � L. Figure 2.8 corresponds
to the case m D 3.

Lemma 2.4.27 (Stacked covering lemma). Let m 2 N. Consider two subsets A
and B of a cube Q. Assume that jAj � ıjQj for some ı 2 .0; 1/. Assume also the
following: for any dyadic cube K � Q,
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L1 L1

L1
(3)

Fig. 2.7 L1 and the predecessors L1 and L1
.3/

jK \Aj > ıjAj ) NKm � B:

Then jAj � ı mC1
m

jBj.
Remark 2.4.28. This lemma is implicitly used in [Wang92a] (see e.g. Lemma 3.23
of this paper) but details of the proof are not given.

The proof uses a Lebesgue’s differentiation theorem with assumptions that are
not completely classical, even if we believe that such a generalization is well-known.
For the sake of completeness, we state and prove it in appendix (see Theorem 2.5.1
and Corollary 2.5.2).

Proof of Lemma 2.4.27. By iterating the process described to define dyadic cubes,
we know that there exists a countable collection of dyadic cubesKi such that

jKi \ Aj � ıjKi j and j NKi \ Aj � ıj NKi j

where NKi is a predecessor ofKi . We claim that thanks to Lebesgue’s differentiation
theorem (Corollary 2.5.2), there exists a set N of null measure such that

A � .[1
iD1Ki /[N:
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K
K̄

K̄(3)

Fig. 2.8 A dyadic cube K and stacked predecessors NK.m/

Indeed, consider .t; x/ 2 A n [1
iD1Ki . On one hand, since .t; x/ 2 Q, it belongs to

a sequence of closed dyadic cubes of the form Lj D .tj ; xj /C Œ0; r2j � � Œ�rj ; rj �d
with rj ! 0 as j ! C1 such that

jA\ Lj j � ıjLj j

that is to say

�
Z
Lj

1A � ı < 1:

On the other hand, for .t; x/ 2 A n [1
iD1Ki ,

0 < 1 � ı � 1 � �
Z
Lj

1A D �
Z
Lj

j1A � 1A.t; x/j:

We claim that the right hand side of the previous equality goes to 0 as j ! 1 as
soon as .t; x/ … N whereN is a set of null measure. Indeed, Corollary 2.5.2 implies
that for .t; x/ outside of such a set N ,
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�
Z
Lj

j1A � 1A.t; x/j � �
Z

QLj
j1A � 1A.t; x/j ! 0

where QLj D .t; x/C Œ0; 4r2j � � Œ�2rj ; 2rj �d . We conclude that A n [iKi � N .

We can relabel predecessors NKi so that they are pairewise disjoint. We thus have
A � [1

iD1Ki [N with NKm
i � B thanks to the assumption; in particular,

A � [1
iD1Ki [N � [1

iD1 NKi [ NKm
i [N

with [1
iD1 NKm

i � B. Classically, we write

jAj �
X
i�1

jA\ NKi j � ı
X
i�1

j NKi j � ıj [1
iD1 NKi j: (2.48)

In order to conclude the proof of the lemma, it is thus enough to prove that for a
countable collection . NKi/i of disjoint cubes, we have

j [1
iD1 NKi [ NKm

i j � m

mC 1
j [1

iD1 NKm
i j: (2.49)

Indeed, combining (2.48) and (2.49) yields the desired estimate (keeping in mind
that [i

NKm
i � B).

Estimate (2.49) is not obvious since, even if the NKi ’s are pairwise disjoint, the
stacked cubes NKm

i can overlap. In order to justify (2.49), we first write

[1
iD1 NKi [ NKm

i D [1
jD1Jj � Lj

where Lj are disjoint cubes of Rd and Jj are open sets of R of the form

J D [1
kD1.ak; ak C .mC 1/hk/:

Remark that

[1
iD1 NKm

i D [1
jD1 QJj � Lj

where QJj has the general form

QJ D [1
kD1.ak C hk; ak C .mC 1/hk/:

Hence, the proof is complete once Lemma 2.4.29 below is proved. ut
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Lemma 2.4.29. Let .ak/NkD1 and .hk/NkD1 be two (possibly infinite) sequences of
real numbers for N 2 N [ f1g with hk > 0 for k D 1; : : : ; N . Then

ˇ̌[N
kD1.ak; ak C .mC 1/hk/

ˇ̌ � m

mC 1

ˇ̌[N
kD1.ak C hk; ak C .mC 1/hk/

ˇ̌
:

Proof. We first assume that N is finite. We write [N
kD1.ak C hk; ak C .mC 1/hk/

as [L
lD1Il where Il are disjoint open intervals. We can write them as

Il D [Nl
kD1.bkClk; bkC.mC1/lk/ D . inf

kD1;:::;Nl
.bkClk/; sup

kD1;:::;Nl
.bkC.mC1/lk//:

Pick kl such that infkD1;:::;Nl .bk C lk/ D bkl C lkl . In particular,

jIl j D sup
kD1;:::;Nl

.bk C .mC 1/lk//� inf
kD1;:::;Nl

.bk C lk/

� mlkl :

Then

ˇ̌[N
kD1.ak C hk; ak C .mC 1/hk/

ˇ̌ � m
X
l

lkl D m

mC 1

X
l

.mC 1/lkl :

It is now enough to remark that .m C 1/lkl coincide with the length of one of the
intervals f.ak; ak C .m C 1/hk/gk and they are distinct since so are the Il ’s. The
proof is now complete in the case where N is finite.

If now N D 1, we get from the previous case that for any N 2 N,

ˇ̌[N
kD1.ak; ak C .mC 1/hk/

ˇ̌ � m

mC 1

ˇ̌[N
kD1.ak C hk; ak C .mC 1/hk/

ˇ̌

� m

mC 1
j[1

kD1.ak C hk; ak C .mC 1/hk/j :

It is now enough to let N ! 1 to conclude. ut

2.4.2.7 Proof of the L"-Estimate

The proof of the L" estimate consists in obtaining a decay in the measure of the
sets fu > Mkg \ QK1 (see Fig. 2.9). As in the elliptic case, the strategy is to apply
the covering Lemma 2.4.27 iteratively making use of Corollary 2.4.26. The main
difficulty of the proof (which is not present in the elliptic case) comes from the fact
that if K is a cube contained in QK1, then nothing prevents NK.m/ spilling out of K1.
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K1K̃1

K̃2

Fig. 2.9 The two neighbourhoods QK1 and QK2

Proof of Theorem 2.4.15. First, we can assume that

inf
QK2

u � 1 and kf kLdC1..0;1/�B 1
R
.0// � "0

(where "0 comes from Proposition 2.4.24) by considering

vı.t; x/ D u

inf QK2 u C "�1
0 kf kLdC1..0;1/�B 1

R
.0// C ı

:

We thus want to prove that there exits a universal constant C > 0 such that

Z
QK1

u".t; x/ dt dx � C: (2.50)

In order to get (2.43), it is enough to find universal constants m; k0 2 N and B > 1

such that for all k � k0,

jfu > Mkmg \ .0;R2=2C C1B
�k/ � .�R;R/d j � C.1 � �=2/k (2.51)

where C is universal and M and � comes from Proposition 2.4.24. Indeed, first for
t 2 ŒM km;M .kC1/m/, we have

jfu > tg \ .0;R2=2C C1B
�k/ � .�R;R/d j � C.1� �=2/k � C t�"

with " D � ln.1��=2/
m lnM > 0. We deduce that for all t > 0, we have

jfu > tg \ QK1j � Ct�":
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Now we use the formula
Z

QK1
u".t; x/ dt dx D "

Z 1

0


"�1jfu > 
g \ QK1jd


� "j QK1j
Z 1

0


"�1d
 C "

Z 1

1


"�1jfu > 
g \ QK1jd


and we get (2.50) from (2.51).
We prove (2.51) by induction on k. For k D k0, we simply choose

C � .1 � �=2/�k0 j.0;R2=2C C1B
�1/ � .�R;R/d j:

Now we assume that k � k0, that the result holds true for k and we prove it for
k C 1. In order to do so, we want to apply the covering Lemma 2.4.27 with

A D fu > M.kC1/mg \ .0;R2=2C C1B
�k�1/ � .�R;R/d

B D fu > Mkmg \ .0;R2=2C C1B
�k/ � .�R;R/d

Q D K1 D .0;R2/ � .�R;R/d

for some universal constants B and C1 to be chosen later. We can choose k0
(universal) so that B � K1. For instance

2C1B
�k0 � R2:

The induction assumption reads

jBj � C.1 � �=2/k:

Lemma 2.4.30. We have jAj � .1 � �/jQj.
Proof. Since, inf QK2 u � 1, we have in particular infK3 u � 1. The basic measure
estimate (Proposition 2.4.18) then implies that

jAj � jfu > M g \K1gj � .1� �/jK1j D .1 � �/jQj: ut

Lemma 2.4.31. Consider any dyadic cubeK D .t; x/C �K1 of Q. If

jK\fu > M.kC1/mg\.0;R2=2CC1B�k�1/�.�R;R/d gj > .1��/jKj; (2.52)
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then

NKm � fu > Mkmg \ .0;R2=2C C1B
�k/ � .�R;R/d

where NKm is defined at the beginning of Sect. 2.4.2.6.

Proof. We remark that the straight stacked measure estimate, Corollary 2.4.26,
applied with h D M.kC1/m � Mm, implies

NKm � fu > Mkmg:

We thus have to prove that

NKm � Œ0; R2=2C C1B
�k� � .�R;R/d : (2.53)

Because of (2.52), we have

K \ .0;R2=2C C1B
�k�1/ � .�R;R/d ¤ ;:

Hence

NKm � Œ0; R2=2C C1B
�k�1 C height. NK/C height. NKm/� � .�R;R/d

where height.L/ D supft W 9x; .t; x/ 2 Lg � infft W 9x; .t; x/ 2 Lg. Moreover,

height.K/ D R2�2

height. NK/ D 4 height.K/

height. NKm/ D m height. NK/:

Hence, (2.53) holds true if

R2=2C C1B
�k�1 C 4.mC 1/R2�2 � R2=2C C1B

�k

i.e.

R2�2 � C1.B � 1/
4.mC 1/

B�k�1: (2.54)

In order to estimate R2�2 we are going to use the stacked measure estimate given
by Proposition 2.4.24 together with the fact thatK is a cube for which (2.52) holds.

On one hand, Proposition 2.4.24 and (2.52) imply that as long as l � .k C 1/m,
we have

u > M.kC1/m�l in L.l/2 \ f0 < t < 1gI
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in particular,

inf
[.kC1/m
lD1 L

.l/
2 \f0<t<1g

u > 1:

On the other hand, using notation from Lemma 2.4.23,

inf
[k�

C1
lD1 L

.l/
2 \f0<t<1g

u � inf
QK2

u � 1

Hence .k C 1/m < k� C 1. Moreover, Lemma 2.4.23 implies

R2�2 � .1 � t0/.˛k�/�1 � 9

9.kC1/m :

Hence, we choose B D 9m and C1 D 36.mC1/
9m�1 . ut

We can now apply the covering lemma and conclude that

jAj � ı
mC 1

m
jBj:

We choosem large enough (universal) such that

.1 � �/
mC 1

m
� 1 � �=2:

Recalling that we chose � such that 1
�

D 1 C 2CmaxR
dC2 (where Cmax is the

universal constant appearing in the maximum principle), the previous condition is
equivalent to

m � 4CmaxR
dC2:

Since R � 1, it is enough to choosem � 4Cmax.
Thanks to the induction assumption, we thus finally get

jfu > M.kC1/mg \ .0;R2=2C C1B
�k�1/ � .�R;R/d j � C.1 � �=2/kC1:

The proof is now complete. ut

2.4.3 Harnack Inequality

The main result of this subsection is the following theorem.

Theorem 2.4.32 (Harnack inequality). For any non-negative function u such that

@u
@t

C PC.D2u/ � �f
@u
@t

C P�.D2u/ � f

	
(2.55)
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in Q1, we have

sup
QK4

u � C. inf
QR2

u C kf kLdC1.Q1/
/

where QK4 D .�R2 C 3
8
R4;�R2 C 1

2
R4/ �B R2

2
p

2

.0/.

Remark 2.4.33. The case where u solves (2.55) in Q� instead of Q1 follows by
scaling. Indeed, consider v.t; x/ D u.�2t; �x/ and change constants accordingly.

We will derive Theorem 2.4.32 combining Theorem 2.4.15 with the following
proposition (which in turn also follows from Theorem 2.4.15).

Proposition 2.4.34 (Local maximum principle). Consider a function u such that

@u

@t
C P�.D2u/ � f in Q1: (2.56)

Then for all p > 0, we have

sup
Q1=2

u � C

 �Z
Q1

.uC/p
� 1

p

C kf kLdC1.Q1/

!
:

Proof. First we can assume that u � 0 by remarking that uC satisfies (2.56) with f
replaced with jf j.

Let ‰ be defined by

‰.t; x/ D hmax..1 � jxj/�2� ; .1C t/�� /

where � will be chosen later. We choose h minimal such that

‰ � u in Q1:

In other words

h D min
.t;x/2Q1

u.t; x/

max..1 � jxj/�2� ; .1C t/�� /
:

We want to estimate h from above. Indeed, we have

sup
Q1
2

u � Ch

for some constant C depending on � and Q1
2
.
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In order to do estimate h, we consider a point .t0; x0/ realizing the minimum in
the definition of h. We consider

ı2 D min..1 � jx0j/2; .1C t0//:

In particular

u.t0; x0/ D hı�2�

andQı.t0; x0/ � Q1.
We consider next the function v.t; x/ D C � u.t; x/ where

C D sup
Qˇı.t0;x0/

‰

for some parameter ˇ 2 .0; 1/ to be chosen later. Remark first that

hı�2� � C � h..1 � ˇ/ı/�2� :

Remark next that v is a supersolution of

@v

@t
C PC.D2v/C jf j � 0 in Q1

and v � 0 in .t0 � .Rˇı/2; t0/ � Bˇı.x0/ � Qˇı.t0; x0/. From the L" estimate
(Theorem 2.4.15 properly scaled and translated), we conclude that

Z
L

v" � C.ˇı/dC2
 

inf
.t0�ˇı;x0/Cˇı QK2

v C .ˇı/
d

dC1 kf kLdC1.Q1/

!"

where L D .t0 � ˇı; x0/C ˇı QK1. Moreover,

inf
.t0�ˇı;x0/Cˇı QK2

v � v.t0; x0/

D C � u.t0; x0/

� h

�
.1 � ˇ/�2� � 1

�
ı�2� :

Hence, we have

Z
L

v" � C.ˇı/dC2
�
h

�
.1 � ˇ/�2� � 1

�
ı�2� C .ˇı/

d
dC1 kf kdC1

�"
: (2.57)
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We now consider the set

A D
�
.t; x/ 2 L W u.t; x/ <

1

2
u.t0; x0/ D 1

2
hı�2�

	
:

We have

Z
A

v" � jAj
�
hı�2� � 1

2
hı�2�

�"
D jAj

�
hı�2�

2

�"
:

We thus get from (2.57) the following estimate

jAj � C jLj
��
.1 � ˇ/�2� � 1

�"
C .ı2�h�1/".ˇı/

d"
dC1 kf k"dC1

�
:

Finally, we estimate
R
Q1

u" from below as follows

Z
Q1

u" �
Z
LnA

u" � .jLj � jAj/2�".hı�2� /":

Hence, choosing � D dC2
2"

and combining the two previous inequalities, we get

ˇ2CdC1h" D jLj2�".hı�2� /" �
Z
Q1

u"

C ˇ2CdC2h"
�
.1 � ˇ/�2� � 1

�"

C ˇ2CdC d"
dC1 C2kf k"dC1:

We used ı � 1. Choose now ˇ small enough so that

C2

�
.1 � ˇ/�2� � 1

�"
� C1=2

and conclude in the case p D ". The general case follows by interpolation. ut
Theorem 2.4.32 is a direct consequence of the following one.

Theorem 2.4.35. For any non-negative function u satisfying (2.55) in .�1; 0/ �
B 1

R
.0/, we have

sup
QK3

u � C.inf
QR

u C kf kLdC1..�1;0/�B 1
R
.0///

where QK3 D .�1C 3
8
R2;�1CR2=2/� B R

2
p

2

.0/ (see Fig. 2.10).
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QR

K̃3

(−1, 0) × B 1
R
(0)

Fig. 2.10 The set eK3

Proof of Theorem 2.4.35. On the one hand, from Theorem 2.4.15 (the L" estimate)
applied to u.t C 1; x/ we know that

 Z
.�1;�1CR2=2/�B

R=
p

2

u.x/"dx

!1="
� C.inf

QR

u C kf kLdC1.Q1/
/: (2.58)

On the other hand, we apply Proposition 2.4.34 to the scaled function v.t; x/ D
u..t C 1 � R2=2/=.R2=2/;

p
2x=R/ � 0 and p D " to obtain

sup
Q1
2

v � C

 �Z
Q1

v"
� 1

"

C kf kLdC1.Q1/

!
:

Scaling back to the original variables, we get

sup
QK3

u � C

0
@
 Z

.�1;�1CR2=2/�B
R=

p

2

u"
! 1

"

C kf kLdC1.Q1/

1
A : (2.59)

Combining (2.58) with (2.59) we get

sup
QK3

u � C

�
inf
QR

u C kf kLdC1.Q1/

�
;

which finishes the proof. ut
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2.4.4 Hölder Continuity

An important consequence of Harnack inequality (Theorem 2.4.32) is the Hölder
continuity of functions satisfying (2.55).

Theorem 2.4.36. If u satisfies (2.55) in Q� then u is ˛-Hölder continuous in Q�

and

Œu�˛;Q�=2
� C��˛



juj0;Q� C �

d
dC1 kf kLdC1.Q�/

�
:

Proof. We only deal with � D 1. We prove that if u satisfies (2.55) in Q1 then u is
˛-Hölder continuous at the origin, i.e.

ju.t; x/� u.0; 0/j � C
�juj0;Q1 C kf kLdC1.Q1/

�
.jxj C p

t/˛: (2.60)

To get such an estimate, it is enough to prove that the oscillation of the function u in
Q� decays as �˛; more precisely, we consider

M� D sup
Q�

u;

m� D inf
Q�

u;

oscQ� u D M� �m�:

Then (2.60) holds true as soon as

oscQ� u � C
�juj0;Q1 C kf kLdC1.Q1/

�
�˛: (2.61)

Indeed, consider .t; x/ 2 Q� nQ�=2 and estimate ju.t; x/ � u.0; 0/j from above by
oscQ� u and �=2 from above by jxj1 C p

t .
In order to prove (2.61), we consider the two functions u � m� � 0 and

M� � u � 0 inQ�. They both satisfy (2.55) inQ�. From the Harnack inequality, we
thus get

sup
� QK4
.u �m�/ � C. inf

QR2�

.u �m�/C �
d

dC1 kf kdC1/

sup
� QK4
.M� � u/ � C. inf

QR2�

.M� � u/C �
d

dC1 kf kdC1/

where � QK4 � Q� follows from QK4 � .�1; 0/ � B1. We next add these two
inequalities which yields
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oscQ� u � C.oscQ� u � oscQ�� u C �
d

dC1 kf kdC1/

with C > 1 and where � denotes R2. Rearranging terms, we get

oscQ�� u � C � 1

C
oscQ� u C �

d
dC1 kf kdC1

where C is universal. Then an elementary iteration lemma allows us to achieve the
proof of the theorem; see Lemma 2.5.13 in appendix with h.�/ D oscQ� u and
ı D .C � 1/=C and ˇ D d=.d C 1/. ut

Appendix: Technical Lemmas

A.1 Lebesgue’s Differentiation Theorem

The purpose of this appendix is to prove a version of Lebesgue’s differentiation
theorem with parabolic cylinders. Recall that the usual version of the result says
that if f 2 L1.�; dt ˝ dx/ where� is a Borel set of RdC1, then for a.e. .t; x/ 2 �,

lim
j!1

�
Z
Gj

jf � f .t; x/j D 0

as long as the sequence of sets Gj satisfies the regularity condition:

Gj � Bj

jGj j � cjBj j
where Bj is a sequence of balls Brj .t; x/ with rj ! 0.

A sequence of parabolic cylinders Qrj .t; x/ cannot satisfy the regularity
condition because of the different scaling between space and time. Indeed
jQrj .t; x/j D rdC2

j which is an order of magnitude smaller than rdC1
j .

Fortunately, the classical proof of Lebesgue’s differentiation theorem can be
repeated and works for parabolic cylinders as well, as it is shown below.

Theorem 2.5.1 (Lebesgue’s differentiation theorem). Consider an integrable
function f 2 L1.�; dt ˝ dx/ where � is an open set of R

dC1. Then for a.e.
.t; x/ 2 �,

lim
r!0C

�
Z
.t�r2;t /�Br .x/

jf � f .t; x/j D 0

where �R
O
g D 1

jO j
R
O
g for any Borel set O � R

dC1 and integrable function g.
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In the proof, we will in fact use the following corollary.

Corollary 2.5.2 (Generalized Lebesgue’s differentiation theorem). Let Gj be a
family of sets which is regular in the following sense: there exists a constant c > 0

and rj ! 0 such that

Gj � .t � r2j ; t/ �Brj .x/;
jGj j � crdC2

j :

Then, except for a set of measure zero which is independent of the choice of fGj g,
we have

lim
j!C1

�
Z
Gj

jf � f .t; x/j D 0:

Remark 2.5.3. It is interesting to point out that if the parabolic cylinders were
replaced by other families of sets not satisfying the regularity condition, the result
of Lemma 2.5.5 may fail. For example if we take

QMf.t; x/ D sup
.a;b/�Br .y/3.t;x/

�
Z
.a;b/�Br .y/\�

jf j

then Lemma 2.5.5 would fail for QMf .

Proof of Corollary 2.5.2. We obtain Corollary 2.5.2 as an immediate consequence
of Theorem 2.5.1 by noting that since Gj � .t � r2j ; t/ �Brj .x/.

�
Z
Gj

jf � f .t; x/j � r2jBr j
jGj j �

Z
.t�r2;t /�Br .x/

jf � f .t; x/j:

Thus, the result holds at all points where this right hand side goes to zero, which is
a set of full measure by Theorem 2.5.1 and that r

2jBr j
jGj j � c > 0. ut

In order to prove Theorem 2.5.1, we first need a version of Vitali’s covering lemma.

Lemma 2.5.4 (Vitali’s covering lemma). Consider a bounded collection of cubes
.Q˛/˛ of the form Q˛ D .t˛ � r2˛; t˛/ � Br˛ .x˛/ and a set A such that A � [˛Q˛.
Then there is a finite number of cubes Q1; : : : ;QN such that A � [N

jD15Qj where
5Qj D .t˛ � 25r2˛; t˛/ � B5r˛ .x˛/.

Consider next the maximal function Mf associated with a function f 2
L1.�; dt ˝ dx/

Mf .t; x/ D sup
Q3.t;x/

�
Z
Q\�

jf j

where the supremum is taken over cubesQ of the form .s; y/C .�r2; 0/ � Br .
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Lemma 2.5.5 (The maximal inequality). Consider f 2 L1.�; dt ˝ dx/, f
positive, and � > 0, we have

jfMf > �gj � C

�
kf kL1

for some constant C depending only on dimension d .

Proof. For all x 2 fMf > �g, there exists Q 3 x such that

inf
Q
f � �

2
jQj:

Hence, the set fMf > �g can be covered by cubesQ. From Vitali’s covering lemma,
there exists a finite cover of fMf > �g with some 5Q’s:

fMf > �g � [N
jD15Qj

with Qj that are disjoint and such that

Z
Qj\�

f � �

2
jQj \�j:

Hence
Z
�

f �
Z

[j Qj\�
f D

X
j

Z
Qj\�

f

� �

2
j [j Qj \�j D �

2
� 1

5dC2 j [j 5Qj \�j � �

C
jfMf > �gj

with C D 2 � 5dC2. ut
We can now prove Lebesgue’s differentiation theorem (Theorem 2.5.1).

Proof of Theorem 2.5.1. We can assume without loss of generality that the set �
is bounded. We first remark that the result is true if f is continuous. If f is not
continuous, we consider a sequence .fn/n of continuous functions such that

kf � fnkL1 � C

2n
:

Moreover, up to a subsequence, we can also assume that for a.e. .t; x/ 2 �,

fn.t; x/ ! f .t; x/ as n ! 1:
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Thanks to the maximal inequality (Lemma 2.5.5), we have in particular

jfM.f � fn/ > �gj � C

�2n
:

By Borel–Cantelli’s Lemma, we conclude that for all � > 0, there exists n� 2 N

such that for all n � n�,

M.f � fn/ � � a.e. in �:

We conclude that for a.e. .t; x/ 2 � and all k 2 N, there exists a strictly increasing
sequence nk such that for all r > 0 such that Qr.t; x/ � �,

�
Z
Qr.t;x/

jf � fnk j � M.f � fnk / � 1

k
:

Moreover, since fn is continuous and � is bounded, there exists rk > 0 such that
for r 2 .0; rk/, we have

�
Z
Qr .t;x/

jfnk � fnk .t; x/j � 1

k
:

Moreover, for a.e. .t; x/ 2 �,

jfnk .t; x/ � f .t; x/j ! 0 as k ! 1:

These three facts imply that for a.e. .t; x/ 2 �, for all " > 0, there exists r" > 0

such that r 2 .0; r"/,

�
Z
Qr .t;x/

jf � f .t; x/j � ":

This achieves the proof of the lemma. ut

A.2 Jensen–Ishii’s Lemma for N Functions

When proving Theorem 2.4.9 (more precisely, Lemma 2.4.6), we used the following
generalization of Lemmas 2.3.23 and 2.3.30 whose proof can be found in [CIL92].

Lemma 2.5.6 (Jensen–Ishii’s Lemma III). Let Ui , i D 1; : : : ; N be open sets of
R
d and I an open interval of R. Consider also lower semi-continuous functions

ui W I �Ui ! R such that for all v D ui , i D 1; : : : ; N , .t; x/ 2 I �Ui , there exists
r > 0 such that for all M > 0 there exists C > 0,
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.s; y/ 2 Qr.t; x/

.ˇ; q; Y / 2 P�v.s; y/
jv.s; y/j C jqj C jY j � M

9=
; ) �ˇ � C:

Let x D .x1; : : : ; xN / and x0 D .x01 ; : : : ; x
0
N /. Assume that

PN
iD1 ui .t; xi /��.t; x/

reaches a local minimum at .t0; x0/ 2 I � …iUi . If ˛ denotes @t�.t0; x0/ and
pi denotes Dxi �.x0/ and A denotes D2�.t0; x0/, then for any ˇ > 0 such that
I C ˇA > 0, there exist .˛i ; Xi / 2 R � Sd , i D 1; : : : ; N , such that for all
i D 1; : : : ; N ,

.˛i ; pi ; Xi / 2 P�
u.t0; x

0
i /

NX
iD1

˛i D ˛

and

1

ˇ

0
BBBB@

I 0 : : : 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 : : : 0 I

1
CCCCA �

0
BBBB@

X1 0 : : : 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 : : : 0 XN

1
CCCCA � Aˇ

where Aˇ D .I C ˇA/�1A.

Remark 2.5.7. The condition on the functions ui is satisfied as soon as the ui ’s
are supersolutions of a parabolic equation. This condition ensures that some
compactness holds true when using the doubling variable technique in the time
variable. See [CIL92, Theorem 8.2, p. 50] for more details.

A.3 Technical Lemmas for Monotone Envelopes

When proving the maximum principle (Theorem 2.4.9), we used the two following
technical lemmas.

Lemma 2.5.8. Consider a convex set � of R
d and a lower semi-continuous

function v W Œa; b� � N� ! R which is non-increasing with respect to t 2 .a; b/

and convex with respect to x 2 �. Assume that v is bounded from above and that
for all .˛; p;X/ 2 P�v.t; x/, we have

�˛ � C and X � CI:
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Then v is Lipschitz continuous with respect t 2 .a; b/ and C1;1 with respect to
x 2 �.

Proof of Lemma 2.5.8. We assume without loss of generality that � is bounded. In
this case, v is bounded from above and from below, hence is bounded. Next, we
also get that v is Lipschitz continuous with respect to x in Œa; b� � F for all closed
convex set F � � such that d.F; @�/ > 0.

Step 1.

We first prove that v is Lipschitz continuous with respect to t : for all .t0; x0/ 2
.a; b/ ��,

M D sup
s;t2.a;b/;x;y2�

�
v.t; x/ � v.s; y/ �Ljt � sj � L

4"
jx � yj2 �L"

�L0jx � x0j2 � L0.t � t0/
2

	
� 0

forL large enough only depending onC and the Lipschitz constant of v with respect
to x around .t0; x0/ and forL0 large enough. We argue by contradiction by assuming
that M > 0. Consider .Ns; Nt ; Nx; Ny/ where the maximum M is reached. Remark first
that

L0j Ny � x0j2 C L0.Ns � t0/2 C LjNt � Nsj C L

4"
j Nx � Nyj2 C L" � v.Nt ; Nx/ � v.Ns; Ny/

� 2jvj0;Œa;b�� N�:

In particular, we can chooseL0 andL large enough so that .Ns; Ny/; .Nt ; Nx/ 2 .a; b/��.
Remark next that Nt ¤ Ns. Indeed, if Nt D Ns, then

0 < M � v.Nt ; Nx/� v.Nt ; Ny/ � L

4"
j Nx � Nyj2 � L"

and choosing L larger than the Lipschitz constant of v with respect to x yields
a contradiction. Hence the function v is touched from below at .Ns; Ny/ by the test
function

.s; y/ 7! C0 � L

4"
j Nx � yj2 � LjNt � sj

where C0 is a constant depending on .Nt ; Nx/. In particular,

.L sign.Nt � Ns/; L.4"/�1. Nx � Ny/; L.4"/�1I / 2 P�v.Ns; Ny/:
We thus should haveL � C . ChoosingL > C yields also the desired contradiction.
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Step 2.

In order to prove that for all t 2 .a; b/, u.t; �/ is C1;1 with respect to x, it is enough
to prove that for all .p;X/ 2 D2;�u.t; x/ (see below),X � CI . Indeed, this implies
that u.t; �/C C

2
j � j2 is concave [ALL97]. Since u.t; �/ is convex, this implies that it

is C1;1 [CanSin04].
.p;X/ 2 D2;�u.t; x/means that there exists 2 C2.Rd / such thatp D D .x/

and X D D2 .x/ and

 .y/ �  .x/ � u.t; y/ � u.t; x/

for y 2 Br.x/. We can further assume that the minimum of u.t; �/�  is strict. We
then consider the minimum of u.s; x/� .x/C"�1.s�t/2 in .t�r; tCr/�Br .x/. For
" small enough, this minimum is reached in an interior point .t"; x"/ and .t"; x"/ !
.t; x/ as " ! 0. Then

."�1.s" � t/;D .x"/;D2 .x"// 2 P�u.t"; x"/:

Hence,D2 .x"/ � CI. Letting " ! 0 yields X � CI . This achieves Step 2.
The proof of the lemma is now complete. ut

Lemma 2.5.9. Consider a convex set � of Rd and v W .a; b/ � � ! R which is
non-increasing with respect to t 2 .a; b/ and convex with respect to x 2 �. Then
for all .˛; p;X/ 2 P�v.t; x/, that there exists .˛n; pn;Xn/ such that

.˛n; pn;Xn/ 2 P�v.tn; xn/

.tn; xn; ˛n; pn/ ! .t; x; ˛; p/

X � Xn C on.1/; Xn � 0:

The proof of this lemma relies on Alexandroff theorem in its classical form.
A statement and a proof of this classical theorem can be found for instance in
[EG92]. We will only use the following consequence of this theorem.

Theorem 2.5.10. Consider a convex set� of Rd and a function v W .a; b/�� ! R

which is convex with respect to .t; x/ 2 .a; b/��. Then for almost .t; x/ 2 .a; b/�
�, there exists .˛; p;X/ 2 P� \ PCv.t; x/, that is to say such that,

v.s; y/ D v.t; x/C˛.s�t/Cp �.y�x/C 1

2
X.y�x/ �.y�x/Co.js�t jCjy�xj2 /:

(2.62)

Jensen’s lemma is also needed (stated here in a “parabolic” version for the sake
of clarity).

Lemma 2.5.11 (Jensen). Consider a convex set� of Rd and a function v W .a; b/�
� ! R such that there exists .
; C / 2 R

2 such that u.t; x/C 
 t2 CC jxj2 is convex
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with respect to .t; x/ 2 .a; b/ � �. If u reaches a strict local maximum at .t0; x0/,
then for r > 0 and ı > 0 small enough, the set

K D f.t; x/ 2 .t0 � r; t0 C r/ �Br.x0/ W 9.
; p/ 2 .�ı; ı/ �Bı;
.s; y/ 7! u.s; y/� 
s � p � y reaches a local maximum at .t; x/g

has a positive measure.

See [CIL92] for a proof. We can now turn to the proof of Lemma 2.5.8. The proof
of Lemma 2.5.9 below mimics the proof of [ALL97, Lemma 3] in which there is no
time dependence.

Proof of Lemma 2.5.9. Consider a test function � such that u � � reaches a local
maximum at .t; x/ and

.˛; p;X/ D .@t�;D�;D
2�/.t; x/:

Without loss of generality, we can assume that this maximum is strict; indeed,
replace � with �.s; y/� jy�xj2 � .s� t/2 for instance. Then consider the function

v".t; x/ D inf
y2Rd ;s�0

�
v.s; y/C 1

"
jy � xj2 C 1

"
.s � t/2

	
:

One can check that v" is still convex with respect to x and non-increasing with
respect to t and that

.t; x/ 7! v".t; x/C 1

"
jxj2 C 1

"
t2

is concave with respect to .t; x/. Moreover, v" � v and

lim
"!0

v".t; x/ D v.t; x/:

This implies that there exists .t"; x"/ ! 0 as " ! 0 such that v" � � reaches a local
maximum at .t"; x"/. Remarking that v" � � satisfies the assumptions of Jensen’s
lemma, Lemma 2.5.11 above, we combine it with Theorem 2.5.10 and we conclude
that we can find slopes .
n; pn/ ! .0; 0/ and points .tn; xn/ ! .t"; x"/ as n ! 1
where v" � � satisfies (2.62) and v" � � � 
ns � pny reaches a local maximum at
.tn; xn/. In other words,

.
n C @t�.tn; xn/; pn CD�.tn; xn/;D
2v".tn; xn// 2 P�v".tn; xn/

with

D2v".tn; xn/ � 0
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and

D2�.tn; xn/ � D2v".tn; xn/:

In order to conclude, we use the classical following result from viscosity solution
theory (see [CIL92] for a proof):

Lemma 2.5.12. Consider .sn; yn/ such that

v".tn; xn/ D v.sn; yn/C "�1jyn � xnj2 C "�1.tn � sn/2:

Then

jyn � xnj2 C .tn � sn/2 � "jvCj0;.a;b/��
and

P�u".tn; xn/ � P�u.sn; yn/:

We used in the previous lemma that v is bounded from above since� is bounded.
Putting all the previous pieces of information together yields the desired result. ut

A.4 An Elementary Iteration Lemma

The following lemma is classical, see for instance [GT01, Lemma 8.23].

Lemma 2.5.13. Consider a non-decreasing function h W .0; 1/ ! R
C such that for

all � 2 .0; 1/,

h.��/ � ıh.�/C C0�
ˇ

for some ı; �; ˇ 2 .0; 1/. Then for all � 2 .0; 1/,

h.�/ � C˛�
˛

for all ˛ D 1
2

min. ln ı
ln � ; ˇ/ 2 .0; 1/.

Proof. Consider k 2 N, k � 1, and get by induction that for all �0; �1 2 .0; 1/ with
�1 � �0,

h.�k�1/ � ıkh.�1/C C0�
ˇ
1

k�1X
jD0

� ǰ :
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Then write

h.�k�1/ � ıkh.�0/C C0
�
ˇ
1

1 � �ˇ

� .�k/
Q̌
h.�0/C C0

�
ˇ
1

1 � �ˇ

� .�k/2˛h.�0/C C0
�2˛1
1 � �ˇ

where Q̌ D ln ı
ln � . Now pick � 2 Œ�kC1�1; �k�1/ and choose �1 D p

�0� and get from

the previous inequality the desired result for � 2 .0; �0/. Choose next �0 D 1
2

and
conclude for � 2 .0; 1/. ut
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