
Chapter 1
Preliminaries

In this chapter, we first recall some basic covering lemmas and notions of doubling
cubes, using these we further establish the Lebesgue differentiation theorem and the
Calderón–Zygmund decomposition.

1.1 Covering Lemmas

This section is devoted to some basic covering lemmas. We first recall the following
Besicovitch covering theorem which is very important and useful in our context.

Theorem 1.1.1. Let E be a bounded set in R
D . If, for every x 2 E , there exists a

closed cube Q.x/ centered at x, then it is possible to choose, from among the given
cubes fQ.x/gx2E , a subsequence fQkgk (possibly finite) such that

(i) E � S
k Qk;

(ii) no point of RD is in more than ND (a number that only depends on D) cubes
of the sequences fQkg, namely, for every z 2 R

D ,
X

k

�Qk
.z/ � NDI

(iii) the sequence fQkgk can be distributed in BD (a natural number that only
depends on D) families of disjoint cubes.

Proof. For any set � � R
D , denote by d� the diameter of �. Now let

a0 WD supfdQ.x/ W x 2 Eg:
If a0 D 1, then we can take a single cube Q.x/ to cover E and the conclusions of
Theorem 1.1.1 hold true. Assume that a0 < 1. We choose Q1 2 fQ.x/gx2E with
center x1 2 E such that dQ1 > a0=2. Let

a1 WD supfdQ.x/ W x 2 .E n Q1/g:
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6 1 Preliminaries

We now choose Q2 with center x2 2 .E n Q1/ such that dQ2 > a1=2. Going on in
this way, if there exists some m 2 N WD f1; 2; : : : g such that

E n
 

m[

kD1

Qk

!

D ;; (1.1.1)

then the selection process is finished. Otherwise, we go on our selection and obtain
a sequence of points, fxkgk, and cubes, fQkgk , such that, for all i; j with i 6D j ,

1

3
Qi

\ 1

3
Qj D ;: (1.1.2)

To see this, we first observe that, for all k 2 N, it holds true that ak � ak�1 < 1
and

ak�1=2 < dQk
� ak�1:

From this observation, we further deduce that, for all 0 � j < i , dQi =2 < dQj ,
which is equivalent to the fact that `.Qi/=2 < `.Qj /. Combining this with the fact
that xi … Qj , we obtain (1.1.2).

From (1.1.2) and the fact that E is a bounded set, it follows that the sequence
f`.Qk/gk is either finite or `.Qk/ ! 0 as k ! 1 (For otherwise, (1.1.1) does not
hold true for all m 2 N and there exists � 2 .0; 1/ such that, for any N 2 N, there
exists k 2 N satisfying that k > N and `.Qk/ � �. We then choose a subsequence
fQkN g1

N D1 of fQkg1
kD1 such that, for any kN , `.QkN / � �. This, together with

(1.1.2) and the fact that E is bounded, further implies (1.1.1) for some m 2 N,
which is impossible). If the selection process stops, the conclusion (i) is trivial.
If the sequence f`.Qk/gk is infinite and `.Qk/ ! 0, then dQk

! 0 and hence
ak ! 0. Thus, there exists x 2 E n .[1

kD1Qk/ and hence there exists k0 such that
ak0 < dQ.x/, which is contradictory to our selection. Thus, E � [1

kD1Qk and (i)
holds true in this case.

To see (ii), fix z 2 R
D and draw D hyperplanes through z and consider the 2D

closed “hyperquadrants” through z determined by them. Fix k with Qk including z.
Let

J WD fj 2 N W Qj 3 z and xj lies in the same “hyperquadrants” as xkg:

By the fact that xi … Qj and `.Qi/=2 < `.Qj / for all i , j 2 N with i > j , we see
that

`.Qk/ < `.Qj / < 2`.Qk/

when j 2 J and j > k, and

`.Qj / < `.Qk/ < 2`.Qj /
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when j 2 J and j < k. This further implies that 1
3
Qj � 8

3
Qk for all j 2 J , which,

together with (1.1.2), implies that there exists a positive constant N depending on
D such that the cardinality of J is at most N C 1. Thus, the cardinality of cubes
containing z is at most ND WD 2D.N C 1/, which completes the proof of (ii).

In order to prove (iii), we rearrange the sequence fQkgk such that the side length
of the new sequence, which is still denoted by fQkgk , is decreasing in k. We fix
a cube Qj of the sequence fQkgk . By (ii), at most ND members of the sequence
contain a fixed vertex of Qj . Observe that every cube Qk with k < j is of a size not
smaller than that of Qj . Thus, if Qk \Qj 6D ; and k < j , then Qk contains at least
one of the 2D vertices of Qj . This implies that there exist at most 2DND sets of the
collection fQ1; : : : ; Qj �1g with non empty intersection with Qj . Consequently,
we distribute the sequence fQkgk in 2DND C 1 disjoint sequences in the following
way: we let Qi 2 Qi for i 2 f1; : : : ; 2DND C 1g. Since Q2DNDC2 is disjoint with
Qk0 for some k0 � 2DND C 1, we let Q2DND C2 2 Qk0 . In the same way, Q2DND C3

is disjoint with all sets in some Q Qk , and we let Q2DNDC3 2 Q Qk , and so on. This
finishes the proof of (iii), and hence Theorem 1.1.1. ut
Remark 1.1.2. (i) Theorem 1.1.1 is not valid anymore, if x can be in the boundary

of Q.x/ or arbitrarily close to it. However, if the point x is “far” from the
boundary of Q.x/ (for example, x 2 ��1Q.x/ for a fixed � 2 .1; 1/ and any
point x and Q.x/), then Theorem 1.1.1 also holds true.1

(ii) We remark that, if E in Theorem 1.1.1 is not bounded, but

sup
x2E

f`.Q.x//g DW M < 1;

then Theorem 1.1.1 still holds true with ND and BD replaced by some positive
constants QND and QBD . Indeed, it suffices to partition R

D in cubes of side length
M and then apply Theorem 1.1.1 to the intersection of E with each one of these
cubes. We omit the details.

Let � 2 .1; 1/. For any f 2 L1
loc .�/ and x 2 R

D , let

M.�/f .x/ WD sup
��1Q3x

1

�.Q/

Z

Q

jf .y/j d�.y/;

where the supremum is taken over all cubes Q satisfying that ��1Q 3 x. As an
application of Theorem 1.1.1, we obtain the boundedness of M.�/ from L1.�/ to
L1; 1.�/ and on Lp.�/ for p 2 .1; 1� as follows.

Corollary 1.1.3. Let � 2 .1; 1/ and p 2 .1; 1�. Then M.�/ is bounded from
L1.�/ to L1; 1.�/ and on Lp.�/.

1See [23, p. 7].
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Proof. Assume that f 2 L1.�/. For each t 2 .0; 1/, let

Et WD fx 2 R
D W M.�/f .x/ > tg:

By applying Theorem 1.1.1 to Et , it is not difficult to see that M.�/ is of weak
type (1, 1). Observe that M.�/ is bounded on L1.�/: These two facts, together
with the Marcinkiewicz interpolation theorem, imply that M.�/ is also bounded on
Lp.�/ for any p 2 .1; 1/, which completes the proof of Corollary 1.1.3. ut

Also, we need the following Whitney decomposition.2

Proposition 1.1.4. Let � � R
D be open and � 6D R

D . Then � can be
decomposed as

� D
[

i2I

Qi ;

where fQigi2I are cubes with disjoint interiors, 20Qi � � for all i 2 I; and
there exist some constants ˇ 2 .20; 1/ and NW 2 N such that, for all k 2 I ,
ˇQk n � 6D ; and there are at most NW cubes Qi with 10Qk \ 10Qi 6D ;
(in particular, the family of cubes f10Qigi2I has finite overlapping).

1.2 Doubling Cubes

In this section, we aim to introduce the notion of doubling cubes. A non-doubling
measure � on R

D means that � is a nonnegative Radon measure which only satisfies
the polynomial growth condition (0.0.1). Also, let Q.x; r/ be the cube centered at x

with side length r . Moreover, we always assume that the constant C0 in (0.0.1) has
been chosen big enough such that, for all cubes Q � R

D ,

�.Q/ � C0Œ`.Q/�n;

where n 2 .0; D�. Observe that, if (0.0.1) holds true for any ball B.x; r/, then,
for any cube Q.x; r/,

�.Q.x; r// � �

 

B

 

x;

p
D

2
r

!!

� C0

 p
D

2

!n

rn:

Conversely, if we have �.Q.x; r// � C0r
n for any x 2 R

D and r 2 .0; 1/, then,
for any ball B.x; r/,

�.B.x; r// � �.Q.x; 2r// � C02
nrn:

2See [121, p. 15].
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The measure in (0.0.1) is not necessary to satisfy the following doubling
condition that there exists a positive constant C such that, for all balls B ,

�.2B/ � C�.B/; (1.2.1)

where above and in what follows, for all balls B WD B.x; r/ and positive constant
�, �B WD B.x; �r/. Though (1.2.1) is not assumed uniformly for all balls, it turns
out there exist some cubes satisfying such an inequality.

Definition 1.2.1. Let ˛ 2 .1; 1/ and ˇ 2 .˛n; 1/. A cube Q is called an
.˛; ˇ/-doubling cube if �.˛Q/ � ˇ�.Q/:

Proposition 1.2.2. Let ˛ 2 .1; 1/ and ˇ 2 .˛n; 1/. Then the following two
statements hold true:

(i) For any x 2 supp � and R 2 .0; 1/, there exists some .˛; ˇ/-doubling cube
Q centered at x with `.Q/ � R;

(ii) If ˇ > ˛D , then, for �-almost every x 2 R
D , there exists a sequence of

.˛; ˇ/-doubling cubes, fQkgk2N, centered at x with `.Qk/ ! 0 as k ! 1.

Proof. We first prove (i). To this end, assume that (i) does not hold true. Then there
exist some positive constant C and x0 2 supp � such that, for any cube Q centered
at x0 with `.Q/ � C , we have �.˛Q/ > ˇ�.Q/. Now we take Q0 be such a cube
with �.Q0/ > 0. Then, by our assumption and the growth condition, we see that,
for any k 2 N,

ˇk�.Q0/ < �.˛kQ0/ � C0˛
knŒ`.Q0/�

n;

which in turn implies that

�.Q0/ < C0

�
˛n

ˇ

�k

Œ`.Q0/�
n:

Letting k ! 1, we have �.Q0/ D 0, which contracts to �.Q0/ > 0. This implies
that there exists some .˛; ˇ/-doubling cube Q centered at x0 with `.Q/ � C0.
Thus, (i) holds true.

To prove (ii), for any fixed ˛ 2 .1; 1/ and ˇ 2 .˛D; 1/, let

� WD fx 2 R
D W there does not exist any sequence of .˛; ˇ/ � doubling

cubes centered at x whose side lengths tend to zerog:

We show that �.�/ D 0. For any m 2 N, let

�m WD fx 2 R
D W all cubes centered at x with side lengths

less than 1=m are not .˛; ˇ/ � doubling cubesg:
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Observe that � D [1
mD1�m. It suffices to prove that �.�m/ D 0 for any m 2 N.

To this end, we fix a cube Q with `.Q/ � 1
2m

and denote by QN
x the cube

centered at x whose side length is ˛�N `.Q/ for any x 2 �m \ Q and N 2 N.
By Theorem 1.1.1, there exists a sequence of cubes, fQN

k gk2IN , such that

�m

\
Q �

[

k2IN

QN
k and

X

k2IN

�QN
k

. 1:

Since the center of QN
k is in �m and `.QN

k / � 1
2m

, QN
k is not a .˛; ˇ/-doubling

cube for each k. Therefore, from this and the fact that ˛N QN
k � 3Q, it follows that

�.QN
k / < ˇ�1�.˛QN

k / < � � � < ˇ�N �.˛N QN
k / � ˇ�N �.3Q/: (1.2.2)

On the other hand, by the facts
P

k2IN
�QN

k
. 1 and QN

k � 3Q, we conclude
that

X

k2IN

jQN
k j . j3Qj; (1.2.3)

where j � j denotes the D-dimensional Lebesgue measure. The inequality (1.2.3) is
equivalent to that

#.IN /˛�NDŒ`.Q/�D . 3DŒ`.Q/�D;

where above and in what follows, for any set E , #.E/ denotes its cardinality. Then
we have #.IN / . ˛ND, which, together with (1.2.2), in turn implies that

�
�
�m

\
Q
�

�
X

k2IN

�.QN
k / . ˛NDˇ�N �.3Q/:

Letting N ! 1, we see that �.�m \ Q/ D 0.
Notice that, for each m 2 N, RD D [i Qm; i , where fQm; i gi are cubes with

`.Qm; i / D 1

2m

for all i . We then find that

�.�m/ �
X

i

�
�
�m

\
Qm; i

�
D 0:

This further implies that �.�/ D 0 and finishes the proof of (ii) and hence
Proposition 1.2.2. ut
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Let � 2 .1; 1/. In the following, we always take ˇ� WD �DC1. For any cube
Q, let QQ� be the smallest .�; ˇ�/-doubling cube which has the form �kQ with k 2
N [ f0g DW ZC. If � D 2, we denote the cube QQ� simply by QQ. Moreover, by a
doubling cube Q, we always mean a .2; 2DC1/-doubling cube.

Example 1.2.3. Let

� WD �Q dx dy C �I dx;

where Q WD Œ�1; 1� � Œ�1; 1� and I WD Q \ R D f.x; 0/ W �1 � x � 1g. If B

is the disc centered at .x; y/ 2 Q, y 2 .0; 1/, of radius y, then �.B/ � y2 while
�.2B/ � y with the implicit equivalent positive constants independent of x and y,
and hence � is a non-doubling measure.

Example 1.2.4. Let E � C be compact. Define the capacity

˛C.E/ WD supf�.E/ W � is a positive Radon measure supported on E such that
C� is a continuous function on C and kC�kL1.C/ � 1g;

where C� is the Cauchy transform defined by setting, for all x … supp �,

C�.x/ WD
Z

C

1

z � x
d�.z/:

Now let �0 be a Radon measure supported on E such that C�0 is a continuous
function on C, kC�0kL1.C/ � 1 and �0.E/ � ˛C.E/=2. Then we conclude that,
for all x 2 C and r 2 .0; 1/, �0.B.x; r// � r .3

1.3 The Lebesgue Differentiation Theorem

In this section, we establish the Lebesgue differentiation theorem. To begin with,
we recall the fact that continuous functions are dense in Lp.�/ for any p 2 Œ1; 1/.4

Lemma 1.3.1. Let p 2 Œ1; 1/ and f 2 Lp.�/. Then, for any � 2 .0; 1/,
there exists a continuous function g with compact support on R

D such that
kf � gkLp .�/ < �.

The main result of this section is as follows.

3See [137, p. 530] and [37, p. 40].
4See [111, p. 69].
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Theorem 1.3.2. Let f 2 L1
loc .�/. Then, for �-almost every x 2 supp � and any

sequence of cubes, fQk.x/gk , centered at x with `.Qk.x// ! 0, k ! 1,

lim
k!1

1

�.Qk.x//

Z

Qk.x/

f .y/ d�.y/ D f .x/: (1.3.1)

Proof. By a standard localization, it suffices to consider the case when f 2 L1.�/.
We claim that (1.3.1) holds true for any continuous function g. To this end, for any
x 2 R

D and each k, let

Ik.x/ WD
ˇ
ˇ
ˇ
ˇ

1

�.Qk.x//

Z

Qk.x/

g.y/ d�.y/ � g.x/

ˇ
ˇ
ˇ
ˇ :

Since g is continuous, for any � 2 .0; 1/, there exists K 2 N, depending on x

and �, such that, for any k > K and y 2 Qk.x/, jg.y/ � g.x/j < �. From this fact,
it follows that

Ik.x/ � 1

�.Qk.x//

Z

Qk.x/

jg.y/ � g.x/j d�.y/ � �:

Since � is arbitrary, we further conclude that Ik.x/ ! 0, k ! 1. Thus, the claim
holds true.

We now show that, for any f 2 L1.�/ and �-almost every x,

lim sup
k!1

jmQk.x/.f / � f .x/j D 0:

By Lemma 1.3.1, there exists a sequence of continuous functions, ffngn, on R
D

such that kf � fnkL1.�/ ! 0, n ! 1. It then follows from the claim that, for each
n 2 N,

lim sup
k!1

ˇ
ˇmQk.x/.f / � f .x/

ˇ
ˇ

� lim sup
k!1

�ˇ
ˇmQk.x/.f / � mQk.x/.fn/

ˇ
ˇC ˇ

ˇmQk.x/.fn/ � fn.x/
ˇ
ˇ
�

Cjfn.x/ � f .x/j
� M.2/.f � fn/.x/ C jfn.x/ � f .x/j:

For any � 2 .0; 1/, let

E� WD
�

x 2 R
D W lim sup

k!1

ˇ
ˇmQk.x/.f / � f .x/

ˇ
ˇ > �

	

:
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Then, by Corollary 1.1.3 and Lemma 1.3.1, we see that

�.E�/ � �
�n

x 2 R
D W M.2/.f � fn/.x/ >

�

2

o�

C�
�n

x 2 R
D W jfn.x/ � f .x/j >

�

2

o�

. 1

�
kfn � f kL1.�/;

which tends to 0, as n ! 1. Therefore, we obtain �.E�/ D 0. This finishes the
proof of Theorem 1.3.2. ut

As a consequence of Theorem 1.3.2, we further obtain the following conclusion.

Corollary 1.3.3. Let p 2 Œ1; 1/ and f 2 L
p

loc.�/. Then, for �-almost every x 2
supp � and Qk.x/ as in Theorem 1.3.2,

lim
k!1

1

�.Qk.x//

Z

Qk.x/

jf .y/ � f .x/jp d�.y/ D 0:

Proof. Let Q WD frigi2N be the set of all rational numbers and, for each i ,

Zi WD
�

x 2 supp � W lim sup
k!1

1

�.Qk.x//

Z

Qk.x/

jf .y/ � ri jp d�.y/

6D jf .x/ � ri jp
	

:

Since jf .y/ � ri jp 2 L1
loc .�/, it follows, from Theorem 1.3.2, that �.Zi / D 0 for

any i 2 N. Define

Z0 WD fx 2 supp � W jf .x/j D 1g:
Then �.[1

iD0Zi / D 0 and, to show Corollary 1.3.3, it suffices to prove that,
whenever x … [1

iD0Zi ,

lim sup
k!1

1

�.Qk.x//

Z

Qk.x/

jf .y/ � f .x/jp d�.y/ D 0: (1.3.2)

Now, for any � 2 .0; 1/ and each x, we choose ri 2 Q such that jf .x/ � ri jp < �.
By the fact that x … [1

iD0Zi , we see that

lim sup
k!1

1

�.Qk.x//

Z

Qk.x/

jf .y/ � f .x/jp d�.y/ D jf .x/ � ri jp � �:

Since � is arbitrary, it follows that (1.3.2) holds true, which completes the proof of
Corollary 1.3.3. ut



14 1 Preliminaries

1.4 The Calderón–Zygmund Decomposition

This section is devoted to the Calderón–Zygmund decomposition.

Theorem 1.4.1. Let p 2 Œ1; 1/. Then, for any f 2 Lp.�/ and any � 2 .0; 1/

(with � 2 .2DC1kf kLp.�/=k�k; 1/ if k�k < 1),

(a) there exists a family fQigi of almost disjoint cubes, that is,
P

i �Qi � C , such
that

1

�.2Qi/

Z

Qi

jf .x/jp d�.x/ >
�p

2DC1
; (1.4.1)

1

�.2	Qi/

Z

	Qi

jf .x/jp d�.x/ � �p

2DC1
for all 	 2 .2; 1/ (1.4.2)

and

jf .x/j � � for �-almost every x 2 R
D n

 
[

i

Qi

!

I (1.4.3)

(b) for each i , let Ri be a .6; 6DC1/-doubling cube concentric with Qi with

`.Ri / > 4`.Qi/ and !i WD �Qi =

 
X

k

�Qk

!

:

Then there exists a family f'igi of functions such that, for each i and �-almost
every x 2 R

D , 'i.x/ D 0 if x … Ri , and 'i has a constant sign on Ri ,

Z

RD

'i.x/ d�.x/ D
Z

Qi

f .x/!i .x/ d�.x/ (1.4.4)

and

X

i

j'i.x/j � B� for �-almost every x 2 R
D; (1.4.5)

where B is some positive constant and, when p D 1, it holds true that

k'i kL1.�/�.Ri / � C

Z

Qi

jf .x/j d�.x/ (1.4.6)
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or, when p 2 .1; 1/, it holds true that


Z

Ri

j'i .x/jp d�.x/

�1=p

Œ�.Ri /�
1=p0 � C

�p�1

Z

Qi

jf .x/jp d�.x/; (1.4.7)

here above and in what follows, for p 2 Œ1; 1�, p0 stands for the conjugate
index of p, namely, 1

p
C 1

p0

D 1:

Proof. Since the proof in the case that k�k < 1 is similar, we only consider the
case that k�k D 1. Taking into account Proposition 1.2.2 and Theorem 1.3.2,
for �-almost every x 2 R

D such that jf .x/jp > �p, there exists some cube Qx

satisfying that

1

�.2Qx/

Z

Qx

jf .x/jp d�.x/ >
�p

2DC1
(1.4.8)

and such that, if OQx is centered at x with `. OQx/ > 2`.Qx/, then

1

�.2 OQx/

Z

OQx

jf .x/jp d�.x/ � �p

2DC1
:

Now we apply Theorem 1.1.1 to obtain an almost disjoint subfamily fQigi of cubes
satisfying (1.4.1), (1.4.2) and (1.4.3). Indeed, if

� WD fx 2 R
D W jf .x/jp > �pg

is bounded, then the existence of fQigi comes from Theorem 1.1.1 directly.
Otherwise, we choose a cube Q0 centered at the origin big enough such that

2DC1kf kp

Lp.�/=�.Q0/ < �:

Then, for any cube Q containing Q0, we have

2DC1kf kp

Lp.�/=�.Q/ < �: (1.4.9)

For any m 2 ZC, let Qm WD .5=4/mQ0. Now we apply Theorem 1.1.1 to

.Qm n Qm�1/
\

�

(if m D 0 then we apply Theorem 1.1.1 to Q0 \ �) and Qx centered at

x 2 supp �
\

.Qm n Qm�1/
\

�

to obtain a sequence fQmi gi2ƒm .
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Now (a) is reduced to showing that the sequence fQmi gi2ƒm; m2Z
C

also has
the finite overlapping property. To this end, we first claim that there exists some
constant N0 such that Qx � QmCN0 for all m 2 ZC and x 2 Qm n Qm�1.
Indeed, for any m 2 ZC and x 2 Qm, we see that Q0 � Q.x; 2`.Qm//.
Then, if `.Qx/ > `.Qm/, we would have Q0 � 2Qx, which implies that 2Qx

satisfies (1.4.9). This contradicts (1.4.8). Thus, we conclude that `.Qx/ � `.Qm/,
from which the claim follows. Furthermore, it is not difficult to see that there exist
QN0 and M which is big enough and depends on QN0 such that, for all m � M and

x 2 Qm n Qm�1,

Qx � QmCN0 n Qm� QN0
:

This further implies that, for all m � M and x 2 Qm n Qm�1,

X

m2Z
C

; m�M; i2ƒm

�Qmi
.x/ � .N0 C QN0 C 1/ND;

where ND is as in Theorem 1.1.1. On the other hand, by Theorem 1.1.1, we know
that, for all m � M � 1 and x 2 Qm n Qm�1,

X

m2Z
C

; m�M�1; i2ƒm

�Qmi
.x/ � MND:

Thus, by these two facts, we conclude that the sequence fQmi gm2Z
C

; i2ƒm has the
finite overlapping property.

To prove (b), assume first that the family of cubes, fQigi , is finite. We may further
suppose that this family of cubes is ordered in such a way that the sizes of the cubes
fRigi are non decreasing (namely `.RiC1/ � `.Ri / for all i ). The functions 'i that
we now construct are of the form 'i D ˛i �Ai with ˛i 2 R and Ai � Ri such that
�.Ai / � �.Ri /=2. We let A1 WD R1 and '1 WD ˛1�R1 , where the constant ˛1 is
chosen such that

Z

Q1

f .z/w1.z/ d�.z/ D
Z

RD

'1.z/ d�.z/:

Suppose that '1, : : : , 'k�1 have been constructed, satisfying (1.4.4) and

k�1X

iD1

j'i j � B�;

where B is some constant which is fixed below.
Let fRs1 , : : : , Rsmg be the subfamily of fR1, : : : , Rk�1g such that Rsj \ Rk 6D ;

and f'sj gm
j D1 the corresponding functions. We claim that there exists some positive

constant C1 such that
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�

0

@

8
<

:
x 2 R

D W
X

j

ˇ
ˇ'sj .x/

ˇ
ˇ > 2C1�

9
=

;

1

A � �.Rk/

2
:

Indeed, if all fR1; : : : ; Rk�1g are disjoint with Rk , then the claim holds true
automatically. Otherwise, since `.Rsj / � `.Rk/ (because of the non decreasing
sizes of fRi gi ), it follows that Rsj � 3Rk . Taking into account that, for i 2
f1; : : : ; k � 1g,

Z

RD

j'i.x/j d�.x/ �
Z

Qi

jf .x/j d�.x/;

using that Rk is .6; 6DC1/-doubling, together with the finite overlapping property of
fQigi and (1.4.2), we conclude that there exists a positive constant C1 such that

X

j

Z

RD

j'sj .x/j d�.x/ �
X

j

Z

Qsj

jf .x/j d�.x/

.
Z

3Rk

jf .x/j d�.x/

.

Z

3Rk

jf .x/jp d�.x/

�1=p

Œ�.3Rk/�1=p0

. �Œ�.6Rk/�1=pŒ�.3Rk/�1=p0

� C1��.Rk/:

This implies the claim.
Let

Ak WD Rk

\
8
<

:
x 2 R

D W
X

j

ˇ
ˇ'sj .x/

ˇ
ˇ � 2C1�

9
=

;

and 'k WD ˛k�Ak
; where the constant ˛k satisfies that

Z

RD

'k.z/ d�.z/ D
Z

Qk

f .z/wk.z/ d�.z/:

Notice that �.Ak/ � �.Rk/=2. By this fact, together with (1.4.2), we then see that
there exists a positive constant C2 such that

j˛kj � 1

�.Ak/

Z

Qk

jf .x/j d�.x/ � 2

�.Rk/

Z

1
2 Rk

jf .x/j d�.x/ � C2�
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(this calculation also applies to k D 1). Thus, we find that, for all x 2 R
D ,

j'k.x/j C
k�1X

j D1

j'j .x/j � .2C1 C C2/�:

Therefore, (1.4.5) holds true for all k, if we take B WD 2C1 C C2. Also, if p D 1,
then, by the choices of Ai and 'i , we have

k'i kL1.�/�.Ri / . j˛i j�.Ai / �
ˇ
ˇ
ˇ
ˇ

Z

RD

f .x/wi .x/ d�.x/

ˇ
ˇ
ˇ
ˇ .

Z

Qi

jf .x/j d�.x/:

This implies (1.4.6). If p 2 .1; 1/, then we conclude that


Z

Ri

j'i.x/jp d�.x/

�1=p

Œ�.Ri /�
1=p0 D j˛i jŒ�.Ai /�

1=pŒ�.Ri /�
1=p0

. j˛i j�.Ai/

�
ˇ
ˇ
ˇ
ˇ

Z

Qi

f .x/wi .x/ d�.x/

ˇ
ˇ
ˇ
ˇ

.

Z

Qi

jf .x/jp d�.x/

�1=p

Œ�.Qi /�
1=p0

:

On the other hand, from (1.4.1), it follows that


Z

Qi

jf .x/jp d�.x/

�1=p

Œ�.2Qi/�
1=p0 . 1

�p�1

Z

Qi

jf .x/jp d�.x/: (1.4.10)

By these two facts, we obtain (1.4.7).
Suppose now that the collection fQigi of cubes is not finite. For each fixed N ,

we consider the family fQig1�i�N of cubes. Then, by the argument as above,
we construct functions, 'N

1 , : : : , 'N
N , with supp 'N

i � Ri satisfying

Z

RD

'N
i .x/ d�.x/ D

Z

Qi

f .x/wi .x/ d�.x/;

NX

iD1

ˇ
ˇ'N

i

ˇ
ˇ � B� (1.4.11)

and, when p D 1, it holds true that

�
�'N

i

�
�

L1.�/
�.Ri / .

Z

Qi

jf .x/j d�.x/
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or, when p 2 .1; 1/, it holds true that


Z

Ri

ˇ
ˇ'N

i .x/
ˇ
ˇp d�.x/

�1=p

Œ�.Ri /�
1=p0 . 1

�p�1

Z

Qi

jf .x/jp d�.x/:

Notice that the sign of 'N
i equals the sign of

R
Qi

f .x/wi .x/ d�.x/ and hence it is
independent of N .

Assume that p D 1. Notice that f'N
1 gN 2N � L1.�/ with uniform bound.

By [110, Theorem 3.17], we know that there exists a subsequence f'k
1 gk2I1 which

is convergent in the weak-	 topology of L1.�/ to some function '1 2 L1.�/.
Now we consider a subsequence f'k

2 gk2I2 , with I2 � I1, which is also convergent
in the weak-	 topology of L1.�/ to some function '2 2 L1.�/. In general, for
each j , we consider a subsequence f'k

j gk2Ij , with Ij � Ij �1, that converges in
the weak-	 topology of L1.�/ to some function 'j 2 L1.�/. Observe that the
functions f'j gj satisfy the required properties. Indeed, it follows that5

k'j kL1.�/ � lim inf
k!1

�
�
�'k

j

�
�
�

L1.�/
. 1

�.Rj /

Z

Qj

jf .x/j d�.x/;

which implies (1.4.6). Similarly, if p 2 .1; 1/, then we have (1.4.7).
Fix j . By the argument as above, we may assume that f'k

j gk are all nonnegative

on Rj . The facts that f'k
j gk converges to 'j in the weak-	 topology of L1.�/ and

supp 'k
j � Rj lead to that, for any � 2 .1; 1/,

'j .��Rj nRj
sgn .'j // D 0;

where above and in what follows, sgn .g/ denotes the sign function of the function g.
This implies that 'j .x/ D 0 for �-almost every x 2 R

D nRj . Moreover, it is easy to
see that 'j satisfies (1.4.4) and, for �-almost every x 2 Rj , 'j .x/ � 0. It remains to
show that f'j gj satisfies (1.4.5). Observe that f'j gj � L1

loc .�/. By Theorem 1.3.2,
we conclude that, for any m 2 N and �-almost every x 2 [m

j D1Rj ,

mX

j D1

ˇ
ˇ'j .x/

ˇ
ˇ D lim

r!0

1

�.Q.x; r//

Z

Q.x; r/

mX

j D1

ˇ
ˇ'j .y/

ˇ
ˇ d�.y/

D
mX

j D1

lim
r!0

1

�.Q.x; r//

Z

Q.x; r/

'j .y/ sgn .'j /.y/�Rj .y/ d�.y/

D
mX

j D1

lim
r!0

lim
k!1

1

�.Q.x; r//

Z

Q.x; r/

'k
j .y/ sgn .'k

j /.y/�Rj .y/ d�.y/

5See [157, p. 125].
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�
mX

j D1

lim
k!1 lim

r!0

1

�.Q.x; r//

Z

Q.x; r/

ˇ
ˇ
ˇ'k

j .y/
ˇ
ˇ
ˇ d�.y/

� B�;

where, in the third-to-last inequality, we used the fact that

sgn .'k
j /.x/ D sgn .'j /.x/:

This finishes the proof of Theorem 1.4.1. ut
We now establish another version of the Calderón–Zygmund decomposition.

To this end, let � 2 .1; 1/. We introduce the maximal operator M.�/ by setting, for
any f 2 L1

loc .�/ and x 2 R
D ,

M.�/f .x/ WD sup
Q3x

1

�.�Q/

Z

Q

jf .y/j d�.y/: (1.4.12)

Theorem 1.4.2. Let f 2 L1.�/. For � 2 .0; 1/ (with � 2 .2DC1kf kL1.�/=

k�k; 1/ if k�k < 1), let

�� WD fx 2 R
D W M.2/f .x/ > �g:

Then �� is open and jf j � 2DC1� �-almost everywhere in R
D n ��. Moreover,

if letting the cubes fQigi be the Whitney decomposition of ��, then

(a) for each i , there exists a function !i 2 C 1.RD/ with supp !i � 3
2
Qi ,

0 � !i � 1 and kr!i kL1.�/ � C `.Qi/
�1

such that
P

i !i 
 1 if x 2 ��;
(b) for each i , let Ri be the smallest .6; 6DC1/-doubling cube of the form 6kQi ,

k 2 N, with Ri n �� 6D ;. Then there exists a sequence f˛i gi of functions such
that, for each i and �-almost every x 2 R

D , ˛i .x/ D 0 if x … Ri ,
Z

RD

˛i .x/ d�.x/ D
Z

Qi

f .x/!i .x/ d�.x/; (1.4.13)

k˛i kL1.�/�.Ri / � C

Z

Qi

j˛i .x/j d�.x/ (1.4.14)

and
X

i

j˛i .x/j � QB� for �-almost every x 2 R
D; (1.4.15)

where C and QB are some positive constants;
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(c) f can be written as f WD g C b, where

g WD f

"

1 �
X

i

!i

#

C
X

i

˛i ; b WD
X

i

.f !i � ˛i /

and kgkL1.�/ . �.

Proof. The set �� is open, because M.2/ is lower semi-continuous. Since,
for �-almost every x 2 R

D , there exists a sequence of .2; 2DC1/-doubling cubes
centered at x with side length tending to zero, it follows that, for �-almost every
x 2 R

D such that jf .x/j > 2DC1�, there exists some .2; 2DC1/-doubling cube Q

centered at x with

Z

Q

jf j d�=�.Q/ > 2DC1�

and hence M.2/f .x/ > �: Therefore, for �-almost every x 2 R
D n ��, we find

that jf .x/j � 2DC1�.
The existence of the function !i of (a) is a standard known fact. Moreover, since

Ri n �� 6D ; for each i , we see that

Z

Ri

jf .x/j d�.x/ � ��.2Ri /:

By an argument used in the proofs for (1.4.4), (1.4.5) and (1.4.6), together with this
observation, we further obtain (b).

Finally, from (a), we deduce that

supp

 

f

 

1 �
X

i

wi

!!

� R
D n ��:

Observe that
P

i wi . 1. Then we have

�
�
�
�
�
f

 

1 �
X

i

wi

!�
�
�
�
�

L1.�/

. �:

On the other hand, if (b) holds true, then we see that kPi ˛i k . � and hence (c)
holds true. This finishes the proof of Theorem 1.4.2. ut
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1.5 Notes

• The original theorem of Besicovitch deals with Euclidean balls in R
D by

Besicovitch [5] and with more abstract sets by Morse [98]. Theorem 1.1.1 was
given by M. de Guzmán [23, pp. 2–5].

• The maximal functions, M.�/ and M.�/, were introduced by Tolsa [131]. Tolsa
also showed that M.�/ and M.�/ are both bounded on Lp.�/ for all p 2 .1; 1/

and from L1.�/ to L1; 1.�/. When � D 1, Journé [75, p. 10] proved that M.1/

is not bounded from L1.�/ to L1; 1.�/. Thus, the assumption that � 2 .1; 1/

plays a key role here. Sawano [112] also showed that the non-centered maximal
operator M�.f /, with � 2 .1; 1/, is bounded from L1.�/ to L1; 1.�/ by
establishing a new covering lemma, where, for all f 2 L1

loc.�/ and x 2 R
D ,

M�.f /.x/ WD sup
B3x

1

�.�B/

Z

B

jf .y/j d�.y/

and the supremum is taken over all the balls B of RD such that B 3 x.
Let .X ; d; �/ be a metric measure space such that � only satisfies the

polynomial growth condition as in (0.0.1) with B.x; r/ replaced by

B.x; r/ WD fy 2 X W d.y; x/ < rg :

For all f 2 L1
loc.X ; �/ and x 2 X , the centered Hardy–Littlewood maximal

operator QM�.f /, with � 2 Œ2; 1/, is defined by setting

QM�.f /.x/ WD sup
r2.0;1/

1

�.B.x; �r//

Z

B.x; r/

jf .y/j d�.y/: (1.5.1)

In [103], Nazarov et al. showed that, when � D 3 in (1.5.1), QM� is bounded on
Lp.X ; �/ for all p 2 .1; 1� and from L1.X ; �/ to L1;1.X ; �/. Later, using an
outer measure, Terasawa in [128] extended the aforementioned result in [103] to
any � 2 Œ2; 1/. In [112], Sawano further showed that � D 2 is sharp for the
boundedness of QM� by giving a counterexample.

• Example 1.2.3 was given by Verdera in [145].
• Example 1.2.4 was given by Tolsa in [137]; see also [37].
• The notion of doubling cubes was introduced by Tolsa in [131].
• Theorem 1.3.2 was established by Tolsa in [131].
• Theorem 1.4.1 was established by Tolsa in [131] (see also [133]), and

Theorem 1.4.2 proved by Tolsa in [135]. Another Calderón–Zygmund type
decomposition was established by Mateu et al. in [94].
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