Chapter 1
Preliminaries

In this chapter, we first recall some basic covering lemmas and notions of doubling
cubes, using these we further establish the Lebesgue differentiation theorem and the
Calderén—Zygmund decomposition.

1.1 Covering Lemmas

This section is devoted to some basic covering lemmas. We first recall the following
Besicovitch covering theorem which is very important and useful in our context.

Theorem 1.1.1. Let E be a bounded set in RP. If. for every x € E, there exists a
closed cube Q(x) centered at x, then it is possible to choose, from among the given
cubes {Q(x)}rek, a subsequence {Qy } (possibly finite) such that

@) E C Uy Qs
(i) no point of R? is in more than Np (a number that only depends on D) cubes
of the sequences { Q}}, namely, for every z € RP,

> x0.®) < Np:
k

(iii) the sequence {Qy}x can be distributed in Bp (a natural number that only
depends on D) families of disjoint cubes.

Proof. For any set Q@ C R?, denote by dq the diameter of Q. Now let
aop ;= supi{do) : x € E}.

If ap = oo, then we can take a single cube Q(x) to cover E and the conclusions of
Theorem 1.1.1 hold true. Assume that ay < co. We choose Q; € {Q(x)}rer with
center x; € E suchthatdp, > ao/2. Let

ay :=sup{dow @ x € (E\ Q1)}.

D. Yang et al., The Hardy Space H' with Non-doubling Measures and Their Applications, 5
Lecture Notes in Mathematics 2084, DOI 10.1007/978-3-319-00825-7_1,
© Springer International Publishing Switzerland 2013



6 1 Preliminaries

We now choose Q> with center x, € (E \ Q) such that dp, > a;/2. Going on in
this way, if there exists some m € N := {1,2, ...} such that

E\(U Qk) =0, (1.1.1)

k=1

then the selection process is finished. Otherwise, we go on our selection and obtain
a sequence of points, {xx }r, and cubes, { QO }«, such that, for all i, j withi # j,

1 1
;o502 =0 (1.1.2)

To see this, we first observe that, for all k € N, it holds true that a; < a;_; < c©
and

ax—1/2 <dg, < ap-.

From this observation, we further deduce that, forall 0 < j < i, dp,/2 < de,
which is equivalent to the fact that £(Q;)/2 < £(Q ;). Combining this with the fact
that x; ¢ Q;, we obtain (1.1.2).

From (1.1.2) and the fact that E is a bounded set, it follows that the sequence
{€(Qk)}k is either finite or £(Qx) — 0 as k — oo (For otherwise, (1.1.1) does not
hold true for all m € N and there exists € € (0, co) such that, for any N € N, there
exists k € N satisfying that k > N and £(Q) > €. We then choose a subsequence
1Qky 1=, of {Q}72, such that, for any ky, £(Qky) > €. This, together with
(1.1.2) and the fact that E is bounded, further implies (1.1.1) for some m € N,
which is impossible). If the selection process stops, the conclusion (i) is trivial.
If the sequence {£(Qy)}« is infinite and £(Qx) — O, then dp, — 0 and hence
ax — 0. Thus, there exists x € E \ (U72, Q) and hence there exists ko such that
ax, < dg(x), which is contradictory to our selection. Thus, £ C U2, QO and (i)
holds true in this case.

To see (ii), fix z € R? and draw D hyperplanes through z and consider the 2°
closed “hyperquadrants” through z determined by them. Fix k with Qy including z.
Let

J:={j €eN: Q; > zand x; lies in the same “hyperquadrants” as xy }.

By the fact that x; ¢ Q; and £(Q;)/2 < £(Q;) foralli, j € Nwithi > j, we see
that

Q1) < Q) <26(Q)
when j € J and j > k, and

£(Q)) < t(Qr) <26(Q))
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when j € J and j < k. This further implies that %Q ;i C %Qk forall j € J, which,
together with (1.1.2), implies that there exists a positive constant N depending on
D such that the cardinality of 7 is at most N + 1. Thus, the cardinality of cubes
containing z is at most Np := 2°(N + 1), which completes the proof of (ii).

In order to prove (iii), we rearrange the sequence { O }x such that the side length
of the new sequence, which is still denoted by {Qy }«, is decreasing in k. We fix
a cube Q; of the sequence {Qy}«. By (ii), at most Np members of the sequence
contain a fixed vertex of Q ;. Observe that every cube O with k < j is of a size not
smaller than that of Q ;. Thus,if QN Q; # @ and k < j, then Oy contains at least
one of the 2° vertices of Q ;- This implies that there exist at most 2P Np sets of the
collection {Q1, ..., Q;_1} with non empty intersection with Q ;. Consequently,
we distribute the sequence {Qy } in 22 Np + 1 disjoint sequences in the following
way: we let Q; € Q; fori € {1, ..., 2P Np + 1}. Since Q,py, 4, is disjoint with
Oy, for some kg < 2P Np + 1, we let 020Ny +2 € Q- In the same way, O,o ) 43
is disjoint with all sets in some Qf, and we let Qo y,4+3 € Qf, and so on. This
finishes the proof of (iii), and hence Theorem 1.1.1. |

Remark 1.1.2. (i) Theorem 1.1.1 is not valid anymore, if x can be in the boundary
of Q(x) or arbitrarily close to it. However, if the point x is “far” from the
boundary of Q(x) (for example, x € p~' Q(x) for a fixed p € (1,00) and any
point x and Q(x)), then Theorem 1.1.1 also holds true.!

(i) We remark that, if £ in Theorem 1.1.1 is not bounded, but

sup{f(Q(x))} =: M < oo,

x€E

then Theorem 1.1.1 still holds true with Np and Bp replaced by some positive
constants N p and B p.Indeed, it suffices to partition R? in cubes of side length
M and then apply Theorem 1.1.1 to the intersection of E with each one of these
cubes. We omit the details.

Let p € (1,00). Forany f € L! (u) and x € RP, let

loc

1
M® = — du(y),
f(x) pislquax M(Q)/me)' wu(y)

where the supremum is taken over all cubes Q satisfying that p~'Q > x. As an
application of Theorem 1.1.1, we obtain the boundedness of M® from L'(u) to
L' () and on LP () for p € (1, o0] as follows.

Corollary 1.1.3. Let p € (1,00) and p € (1,00]. Then M) is bounded from
L' () to L () and on LP ().

ISee [23, p. 71.
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Proof. Assume that f € L'(u). Foreacht € (0, 00), let
E i={xeRP: MP f(x)>1t}.

By applying Theorem 1.1.1 to E,, it is not difficult to see that M@ is of weak
type (1, 1). Observe that M is bounded on L*(u1). These two facts, together
with the Marcinkiewicz interpolation theorem, imply that M‘® is also bounded on
L?(w) for any p € (1, 0o0), which completes the proof of Corollary 1.1.3. O

Also, we need the following Whitney decomposition.’

Proposition 1.1.4. Let Q@ C RP be open and Q@ # RP. Then Q can be
decomposed as

e=Jo.
i€l

where {Q;}ie; are cubes with disjoint interiors, 20Q; C Q for alli € I, and
there exist some constants B € (20,00) and Ny € N such that, for all k € I,

BOK \ 2 # O and there are at most Ny cubes Q; with 100, N 10Q; # @
(in particular, the family of cubes {10Q;};er has finite overlapping).

1.2 Doubling Cubes

In this section, we aim to introduce the notion of doubling cubes. A non-doubling
measure |1 on R” means that 41 is a nonnegative Radon measure which only satisfies
the polynomial growth condition (0.0.1). Also, let Q(x, r) be the cube centered at x
with side length r. Moreover, we always assume that the constant Cy in (0.0.1) has
been chosen big enough such that, for all cubes Q C R”,

n(Q) = Gle(Q)I",

where n € (0, D]. Observe that, if (0.0.1) holds true for any ball B(x,r), then,
for any cube Q(x, r),

w(Q(x,r)) < p (B (x, ?r)) =G (\/TB) r'.

Conversely, if we have u(Q(x, r)) < Cor" for any x € R? and r € (0, 00), then,
for any ball B(x,r),

H(B(xsr)) = H(Q(xszr)) = C02nrn-

2See [121, p. 15].
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The measure in (0.0.1) is not necessary to satisfy the following doubling
condition that there exists a positive constant C such that, for all balls B,

pr(2B) = Cu(B), 1.2.1)

where above and in what follows, for all balls B := B(x, r) and positive constant
A, AB := B(x,Ar). Though (1.2.1) is not assumed uniformly for all balls, it turns
out there exist some cubes satisfying such an inequality.

Definition 1.2.1. Let « € (1,00) and § € (@",00). A cube Q is called an
(a, B)-doubling cube if u(aQ) < Bu(Q).

Proposition 1.2.2. Let ¢ € (1,00) and f € (", 00). Then the following two
statements hold true:

(1) Forany x € supp i and R € (0,00), there exists some («, B)-doubling cube
Q centered at x with £(Q) > R;

(i) If B > aP, then, for j-almost every x € RP, there exists a sequence of
(e, B)-doubling cubes, { Qi }ren, centered at x with £(Qy) — 0 as k — oo.

Proof. We first prove (i). To this end, assume that (i) does not hold true. Then there
exist some positive constant C and xo € supp u such that, for any cube Q centered
at xo with £(Q) > C, we have u(xQ) > Bu(Q). Now we take Qy be such a cube
with £(Qp) > 0. Then, by our assumption and the growth condition, we see that,
forany k € N,

B (Qo) < (@ Qo) < Coa"[L(Qu)I",
which in turn implies that

n

k
1(Q0) < Co (%) Qo).

Letting k — oo, we have u(Qo) = 0, which contracts to ;£(Qo) > 0. This implies
that there exists some (c, 8)-doubling cube Q centered at xo with £(Q) > C,.
Thus, (i) holds true.

To prove (ii), for any fixed o € (1, 00) and B € (a”, 00), let

Q:= {x e R : there does not exist any sequence of (t, ) — doubling

cubes centered at x whose side lengths tend to zero}.
We show that ;£(£2) = 0. For any m € N, let

Q= {x € R? : all cubes centered at x with side lengths

less than 1/m are not («, ) — doubling cubes}.
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Observe that 2 = U°_ Q,,. It suffices to prove that j4(£2,) = 0 forany m € N.

To this end, we fix a cube Q with £(Q) < ﬁ and denote by Q¥ the cube

centered at x whose side length is ™V £(Q) forany x € Q,, N Q and N € N,
By Theorem 1.1.1, there exists a sequence of cubes, {Q {{V }kery» such that

QmﬂQC U Q,]{V and ZXQ;IXSL

kely kely

Since the center of QY is in Q,, and £(Q}) < 5, OF is not a («, B)-doubling

2m’

cube for each k. Therefore, from this and the fact that oY (0] ]](V C 30, it follows that

w(OY) < B @) << BV u@V oY) < BV ni0). (1.2.2)

On the other hand, by the facts >, . Iy XoV < 1 and Q{{V C 30, we conclude
that

> 1od s 130l (1.2.3)

kely

where | - | denotes the D-dimensional Lebesgue measure. The inequality (1.2.3) is
equivalent to that

#(In)a PO <37 10Q))",

where above and in what follows, for any set £, #(E) denotes its cardinality. Then
we have #(Iy) < P, which, together with (1.2.2), in turn implies that

n(2nN2) = X n(0f) s B uG0).

kely

Letting N — oo, we see that £(£2,, N Q) = 0.
Notice that, for each m € N, R? = U; Q,,.;, where {Q,, ;}; are cubes with

1
UQni) = 5-
for all i. We then find that

1(@) < 01 () Qi) = 0.

This further implies that w(2) = 0 and finishes the proof of (ii) and hence
Proposition 1.2.2. O
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Let p € (1,00). In the following, we always take f, := oP*1. For any cube

0, let O° be the smallest (p, Bp)-doubling cube which has the form oK 0 with k €
N U {0} =: Zy. If p = 2, we denote the cube QP simply by Q. Moreover, by a
doubling cube Q, we always mean a (2,2°")-doubling cube.

Example 1.2.3. Let
wi= yodxdy+ ypdx,

where Q = [-1,1] x[-1,1]and I := Q NR = {(x,0) : —1 <x < 1}.If B
is the disc centered at (x,y) € Q, y € (0,00), of radius y, then u(B) ~ y? while
w(2B) ~ y with the implicit equivalent positive constants independent of x and y,
and hence p is a non-doubling measure.

Example 1.2.4. Let E C C be compact. Define the capacity

a4+ (E) :=sup{u(E) : pis a positive Radon measure supported on £ such that
Cu is a continuous function on C and ||Cp| oo (c) < 1},

where Cu is the Cauchy transform defined by setting, for all x ¢ supp u,

Cu(x) ::[CZ_%du(z).

Now let 1o be a Radon measure supported on E such that Cp is a continuous
function on C, ||Cuollzeo(cy < 1 and po(E) > a4 (E)/2. Then we conclude that,
forall x € Candr € (0, 00), uo(B(x,r)) < r3

1.3 The Lebesgue Differentiation Theorem

In this section, we establish the Lebesgue differentiation theorem. To begin with,
we recall the fact that continuous functions are dense in L? (i) for any p € [1, 00).*

Lemma 1.3.1. Let p € [l,00) and f € LP(u). Then, for any ¢ € (0,00),
there exists a continuous function g with compact support on RP such that

If = gllrq < e

The main result of this section is as follows.

3See [137, p-530] and [37, p. 40].
4See [111, p. 69].
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Theorem 1.3.2. Let f € L. (). Then, for ju-almost every x € supp u and any

loc

sequence of cubes, { Q1 (x)}k, centered at x with £(Q(x)) — 0, k — oo,

1
Jim 0 kaf(y) w(y) = f(x) (1.3.1)

Proof. By a standard localization, it suffices to consider the case when f € L'(u).
We claim that (1.3.1) holds true for any continuous function g. To this end, for any
x € R? and each k, let

Li(x) == ‘ gy)du(y) —g(x)|.

w(Qk(x)) 0k (x)

Since g is continuous, for any € € (0, 00), there exists K € N, depending on x
and €, such that, forany k > K and y € Qk(x), |g(y) — g(x)| < €. From this fact,
it follows that

i (x) < lg(y) —g()ldu(y) < e.

1
w(Qr(x)) Jo,x)

Since € is arbitrary, we further conclude that I (x) — 0, k — oo. Thus, the claim
holds true.
We now show that, for any f € L'(u) and p-almost every x,

11;11 sup [m o, (f) — f(x)] = 0.

By Lemma 1.3.1, there exists a sequence of continuous functions, { f,},, on R?
such that || f — full1(,) = 0,n — oo. It then follows from the claim that, for each
neN,

li;n sup |mo, 0 (f) — f(x)|
< lim sup [[m 0100 (f) = moy ()] + |mopo (i) = fu(x)]]

+/u(x) = f(x)]
< MO(f = f) ) + 1/ (x) = (o).

For any € € (0, 00), let

E.:={xeR”: lim sup |ka(x)(f) - f(x)| > €
k—o00
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Then, by Corollary 1.1.3 and Lemma 1.3.1, we see that
pE) = p({x e R MO(f = £ () > 5})

+u({x eR”: 1h0 = f0l > 5})

1
S g”fn = Sl
which tends to 0, as n — oo. Therefore, we obtain w(E.) = 0. This finishes the
O

proof of Theorem 1.3.2.
As a consequence of Theorem 1.3.2, we further obtain the following conclusion

Corollary 1.3.3. Let p € [1,00) and f € L{ (w). Then, for p-almost every x €

supp 4 and Qk(x) as in Theorem 1.3.2,

lim ———— |f(y) = f()I” dp(y) = 0.
k=00 u(Qk(x)) Jo, v
Proof. Let Q := {r;};en be the set of all rational numbers and, for each i
Z = %x € suppp : limsup ———— [f(y) = ri|” du(y)
k—00 M(Qk(x)) Ok (x)

£1/() —r,-|f’} .

(n), it follows, from Theorem 1.3.2, that u(Z;) = 0 for

Since | f(y) — ri|P € L},
any i € N. Define

={x € supppu: |f(x)] = oo}.
Then pw(U2,Z;) = 0 and, to show Corollary 1.3.3, it suffices to prove that

whenever x ¢ US2,Z;,
| /() = f()]”du(y) = 0. (1.3.2)

lim sup ————
k—00 M(Qk(-x)) Ok (x)
Now, for any € € (0, c0) and each x, we choose r; € Q such that | f(x) —r;|? <€

By the fact that x ¢ US2,Z;, we see that
lf ) = fI" duly) =

|f(x) —ri]” <e.

lim sup ———
k=00 M(Qk(x)) 0k (x)

Since € is arbitrary, it follows that (1.3.2) holds true, which completes the proof of
O

Corollary 1.3.3.
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1.4 The Calderon-Zygmund Decomposition

This section is devoted to the Calderén—Zygmund decomposition.

Theorem 1.4.1. Let p € [1,00). Then, for any f € L?(u) and any A € (0, 00)
(with A € QP fllLrgo/llill. 00) if | ll < o0),

(a) there exists a family {Q;}; of almost disjoint cubes, that is, Y, yo, < C, such
that

1 AP
won el dne) > S (14.1)
;/ | f()I” dpx) < A for all n € (2, 00) (1.4.2)
w2nQi) Jyo, — 2D+l
and
| f(x)| <A for u-almost every x € RP \ (U Q,) : (1.4.3)

(b) foreachi, let R; be a (6,6°T1)-doubling cube concentric with Q; with

C(R) > 4L(Q;) and w; := yo./ (Z XQk).
k

Then there exists a family {@;}; of functions such that, for each i and ji-almost
every x € R?, ¢;(x) = 0ifx ¢ R;, and ¢; has a constant sign on R;,

/ 01 (x) dpu(x) = / £ (x) du () (1.4.4)
RD Qi

and

Z lgi (x)| < BA for ji-almost every x € R”, (1.4.5)

1

where B is some positive constant and, when p = 1, it holds true that

lorlimaonR) = € [ 7@l (146
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or, when p € (1,00), it holds true that

e ,_C
[ ool dueo] o <

= -1 /Ql_ | f(0)]? du(x), (1.4.7)

here above and in what follows, for p € [1,00], p’ stands for the conjugate
index of p, namely, % + # =1.

Proof. Since the proof in the case that ||| < oo is similar, we only consider the
case that ||| = oo. Taking into account Proposition 1.2.2 and Theorem 1.3.2,
for p-almost every x € RP such that | f(x)|? > AP, there exists some cube Q,
satisfying that

1 AP
1200 /QX | f ()P du(x) > D1 (1.4.8)

and such that, if Qx is centered at x with Z(Qx) > 20(Qy), then

AP
V4 -
8o /QXIf(X)I dpx) = sper

Now we apply Theorem 1.1.1 to obtain an almost disjoint subfamily {Q;}; of cubes
satisfying (1.4.1), (1.4.2) and (1.4.3). Indeed, if

Q:={xeR’: |f(x)|” > AP}

is bounded, then the existence of {Q;}; comes from Theorem 1.1.1 directly.
Otherwise, we choose a cube Qg centered at the origin big enough such that

2PHY £, 0/ 1(Q0) < A
Then, for any cube Q containing Qo, we have

22U 0/ Q) < A (1.4.9)

Foranym € Z4, let Q,, := (5/4)" Qo. Now we apply Theorem 1.1.1 to

(Om\ Qw12

(if m = 0 then we apply Theorem 1.1.1 to Qo N ) and @, centered at

x € supp [ )(Qm \ Qum-1)[ | R

to obtain a sequence {Q,, }iea,,-
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Now (a) is reduced to showing that the sequence {Q,,}ien,, . mez 4 also has
the finite overlapping property. To this end, we first claim that there exists some
constant Ny such that O, C Qu4n, forallm € Zy and x € Q, \ Q1.
Indeed, for any m € Z4 and x € Q., we see that Qo C Q(x,24(Qwm)).
Then, if £(Qx) > £(Qnm), we would have Q¢ C 2Q,, which implies that 20
satisfies (1.4.9). This contradicts (1.4.8). Thus, we conclude that £(Q) < £(Qn),
from which the claim follows. Furthermore, it is not difficult to see that there exist
NO and M which is big enough and depends on ]\70 such that, for all m > M and

X € Qm \ Qm—l,
QX C Qm+N() \ Qm—ﬁo'

This further implies that, for allm > M and x € Q,, \ QOm—1,

> X0, (X) < (No + No + 1)Np,
meZy,m>M,i€Ny,

where Np is as in Theorem 1.1.1. On the other hand, by Theorem 1.1.1, we know
that, forallm < M —land x € Q,, \ Om—1,

> X0, () < MNp.
meZy , m<M—1,i€Ay

Thus, by these two facts, we conclude that the sequence {Q, }mez 4.ien,, has the
finite overlapping property.

To prove (b), assume first that the family of cubes, { Q;};, is finite. We may further
suppose that this family of cubes is ordered in such a way that the sizes of the cubes
{R;}; are non decreasing (namely £(R;+;) > £(R;) for all i). The functions ¢; that
we now construct are of the form ¢; = «; x4, with ; € R and A; C R; such that
w(Ai) > n(R;i)/2. We let A} := R; and ¢; := ) xr,, Where the constant «; is
chosen such that

/ FEOW@ du) = / 02 du ().
01 RD

Suppose that ¢, ..., ¢x—1 have been constructed, satisfying (1.4.4) and

k-1
Z|€0i| < B2,

i=1

where B is some constant which is fixed below.

Let {Ry,, ..., Ry, } be the subfamily of {Ry, ..., Rg—1} such that R;; N Ry # ¢
and {g;; }’]’?=1 the corresponding functions. We claim that there exists some positive
constant C; such that



1.4 The Calder6n—Zygmund Decomposition 17

R
wl{xeR?: Zj: s, (x)| >2C1A ¢ | < #

Indeed, if all {Ry,..., Ry—;} are disjoint with Ry, then the claim holds true
automatically. Otherwise, since £(R;;) < {(Ry) (because of the non decreasing
sizes of {R;};), it follows that R;, C 3Ry. Taking into account that, for i €
{1,...,k—1},

/ i) dpe(x) < / @) ),
RD Qi

using that Ry is (6, 6°+1)-doubling, together with the finite overlapping property of
{Q;}; and (1.4.2), we conclude that there exists a positive constant C; such that

;/RD s, () dpe(x) < ;/QA, | ()] ds(x)
< [ 1relduc

1/p ,
< [ / |f<x)|f’du<x)} LGROT?
3Ry
< A(6R)]YP [ BRO]Y”
< CiAR(Ry).

This implies the claim.
Let

Ap =R [ \1x €R” 1 ) oy, (x)| =2C1A

J

and @i 1= oy x4, , where the constant o satisfies that

[, n@dner= [ r@m@due.
RD Ok
Notice that u(Ax) > n(Ry)/2. By this fact, together with (1.4.2), we then see that

there exists a positive constant C; such that

1
w(Ak)

2
u(R)

e [Q )] dp(x) < / 100l = G
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(this calculation also applies to k = 1). Thus, we find that, for all x € RP,

k—1
e ()] + Y 1o ()] < 2C1 + C)A.

Jj=1

Therefore, (1.4.5) holds true for all k, if we take B := 2C; 4+ C,. Also, if p = 1,
then, by the choices of 4; and ¢;, we have

oo R) 5 ol ~ | [ s duo| 5 [ 1l dnco

This implies (1.4.6). If p € (1, co0), then we conclude that
vy 1/p 1 1/p
[ ool anco | el = e lutan o)
< o [ (Ai)

~| [ reom duco

1/p
<[ e ans] meo
On the other hand, from (1.4.1), it follows that

1/p
[ s duw | oo < o [ rwpdee. asio
0 Qi

By these two facts, we obtain (1.4.7).

Suppose now that the collection {Q;}; of cubes is not finite. For each fixed N,
we consider the family {Q;}i<i<y of cubes. Then, by the argument as above,
we construct functions, (pfv s ey (pﬁ, with supp (piN C R; satisfying

/ o (x) dp(x) :/ S x)wi(x) dp(x),
RD Qi

N
Z|(p,-N| < B (1.4.11)
i=1

and, when p = 1, it holds true that

[0 oo BB S /Q 1@ dnto)
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or, when p € (1, 00), it holds true that

1
~oArl

[/ o ()| du(x)} [(R)]V?" < / | f()|? dpa(x).
R; Qi

Notice that the sign of ¢}V equals the sign of /. 0; f(x)w;(x) du(x) and hence it is
independent of N.

Assume that p = 1. Notice that {¢'}yen C L°°(u) with uniform bound.
By [110, Theorem 3.17], we know that there exists a subsequence {qo{‘ Yker, which
is convergent in the weak-* topology of L°°(u) to some function ¢; € L*®(u).
Now we consider a subsequence {(pé‘}ke 1,» with I, C I, which is also convergent
in the weak-x* topology of L°°(u) to some function ¢, € L°(u). In general, for
each j, we consider a subsequence {<p§ }kelj, with I; C [I;_, that converges in
the weak-* topology of L>°(u) to some function ¢; € L°°(u). Observe that the
functions {g;}; satisfy the required properties. Indeed, it follows that®

. k
o llooquy = lim inf Hrp,» Hmw) =

| f ()| dp(x),
W(R;) /Q i
which implies (1.4.6). Similarly, if p € (1, c0), then we have (1.4.7).

Fix j. By the argument as above, we may assume that {(pﬁ?}k are all nonnegative
on R;. The facts that {qof }k converges to ¢; in the weak-* topology of L°° (1) and
supp (pj? C R; lead to that, for any A € (1, 00),

@; (Xar;\r; sgn(¢;)) =0,

where above and in what follows, sgn (g) denotes the sign function of the function g.
This implies that ¢; (x) = 0 for u-almost every x € RP\ R ;- Moreover, it is easy to
see that ¢; satisfies (1.4.4) and, for p-almost every x € R] ,@j(x) > 0.Itremains to
show that {¢; }; satisfies (1.4.5). Observe that {g; }; C L! (). By Theorem 1.3.2,
we conclude that, for any m € N and pi-almost every x € U"_, R;,

Zi%(x)l eom/wzwy)' du()

m

Z}LnloM(Q(x 2 Lo )@j(y)Sgn(qoj)(y)xR,-(y)dM(y)
] l X, r

_Z LOkme s @O 0) )

3See [157, p. 125].
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m

< lim lim —————
‘ k=00 =0 w(Q(x. 1) Jo.r

o5 (y)‘ du(y)
<B k,
where, in the third-to-last inequality, we used the fact that
sgn (¢))(x) = sgn (¢)(x).
This finishes the proof of Theorem 1.4.1. O

We now establish another version of the Calderén—-Zygmund decomposition.
To this end, let p € (1, 00). We introduce the maximal operator M, by setting, for
any f € L! (u)and x € R?,

loc

My f(x) = sup [ D) i), (14.12)
0>x (9]

1
u(pQ)

Theorem 1.4.2. Let f € L'(u). For A € (0,00) (with A € QP fllp1(,/
lliell, 00) if [| el < 00), let

pi={x eR” 1 Mg f(x) > A}

Then Q2 is open and | f| < 2PT1A p-almost everywhere in RP \ Q;. Moreover,
if letting the cubes {Q;}; be the Whitney decomposition of 2, then

(a) foreachi, there exists a function w; € COO(RD) with supp w; C %Qi,
0<a < land |VoyllLoogy < CLQ:)™

suchthaty ; w; = 1 ifx € Qy;

(b) for each i, let R; be the smallest (6,62 ")-doubling cube of the form 6Q;,
k € N, with R; \ Q2 # 0. Then there exists a sequence {; }; of functions such
that, for eachi and ji-almost every x € RP, a;(x) = 0if x ¢ R;,

/R () dp() = /Q () dia(x), (14.13)
et | oe o e (Re) < € / o ()| dia () (14.14)

and
Z lo; (x)| < BA for p-almost every x € RP, (1.4.15)

i

where C and B are some positive constants;
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(¢) f canbewritten as f := g + b, where

gi=f |:1 —Za)i:| +Z(¥i, b:= Z(fwt — ;)

and ||g||Loo(u) < A

Proof. The set €2, is open, because My is lower semi-continuous. Since,
for p-almost every x € RP, there exists a sequence of (2,2°7!)-doubling cubes
centered at x with side length tending to zero, it follows that, for p-almost every
x € R? such that | f(x)| > 2P T, there exists some (2,2°*!)-doubling cube Q

centered at x with
/Q \fldp/1(Q) > 2P+

and hence M) f(x) > A. Therefore, for p-almost every x € R \ Q;, we find
that | f(x)| < 2P*1A.

The existence of the function w; of (a) is a standard known fact. Moreover, since
R; \ @, # @ for each i, we see that

[ 1@l < aucr),

By an argument used in the proofs for (1.4.4), (1.4.5) and (1.4.6), together with this
observation, we further obtain (b).
Finally, from (a), we deduce that

supp (f (I—Zwi)) CRP\ Q.

Observe that >, w; < 1. Then we have

oz

On the other hand, if (b) holds true, then we see that || >, ;|| < A and hence (c)
holds true. This finishes the proof of Theorem 1.4.2. O

<A

~

Lo ()
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1.5 Notes

+ The original theorem of Besicovitch deals with Euclidean balls in R” by
Besicovitch [5] and with more abstract sets by Morse [98]. Theorem 1.1.1 was
given by M. de Guzman [23, pp.2-5].

o The maximal functions, M® and M), were introduced by Tolsa [131]. Tolsa
also showed that M? and M., are both bounded on L”(u) for all p € (1, 00)
and from L'(u) to L (). When p = 1, Journé [75, p. 10] proved that M1
is not bounded from L'(u) to L' (u). Thus, the assumption that p € (1, c0)
plays a key role here. Sawano [112] also showed that the non-centered maximal
operator M,(f), with p € (1,00), is bounded from L'(u) to L'*°(u) by

establishing a new covering lemma, where, for all f € Llloc(u) and x € R?,

My(f)(x) = sup —

sup /B ) du(y)

and the supremum is taken over all the balls B of R” such that B > x.
Let (X,d, ) be a metric measure space such that p only satisfies the
polynomial growth condition as in (0.0.1) with B(x, r) replaced by

B(x,r):={yeX:dy,x)<r}.

Forall f € Ll (X,u) and x € X, the centered Hardy-Littlewood maximal

loc

operator Mp(f), with p € [2, 00), is defined by setting

~ 1
M = —_— d . 5.
JN@i= s e | F0dR). S

In [103], Nazarov et al. showed that, when p = 3 in (1.5.1), Mp is bounded on
L?(X, ) forall p € (1,00] and from L' (X, ) to L'*°(X, ). Later, using an
outer measure, Terasawa in [128] extended the aforementioned result in [103] to
any p € [2,00). In [112], Sawano further showed that p = 2 is sharp for the
boundedness of M » by giving a counterexample.

* Example 1.2.3 was given by Verdera in [145].

* Example 1.2.4 was given by Tolsa in [137]; see also [37].

* The notion of doubling cubes was introduced by Tolsa in [131].

e Theorem 1.3.2 was established by Tolsa in [131].

e Theorem 1.4.1 was established by Tolsa in [131] (see also [133]), and
Theorem 1.4.2 proved by Tolsa in [135]. Another Calderén—Zygmund type
decomposition was established by Mateu et al. in [94].



2 Springer
http://www.springer.com/978-3-319-00824-0

The Hardy Space H1 with Mon-doubling Measures and
Their Applications

YANG, D.; Yang, D Hu, G

2013, X, 653 p., Softcover

ISBN: 978-3-319-00824-0



	1 Preliminaries
	1.1 Covering Lemmas
	1.2 Doubling Cubes
	1.3 The Lebesgue Differentiation Theorem
	1.4 The Calderón–Zygmund Decomposition
	1.5 Notes


