
Preface

Dynamical systems perturbed by small random noise have received a vast attention
over the last decades in many areas of science extending from physics through
chemistry and biology to climatology. They typically represent a deterministic
large scale phenomenon expressed in terms of an ordinary or partial differential
equation which inherits the noisy residual of a rapidly fluctuating low intensity
perturbation on much smaller scales. Commonly, these systems largely mimic the
phenomenon’s unperturbed deterministic behavior up to a characteristic time scale.
This scale is a function of the intensity of the perturbation, depends essentially on
the underlying nature of the noise and, to a minor extent, on the state space geometry
of the deterministic system. Beyond that scale the system exhibits noise induced
excursions.

If the deterministic system has several stable equilibria to which it converges
in generic relaxation times if started in their respective domains of attraction,
these excursions lead to transitions between different equilibria starting from small
neighborhoods of one of them. If the system is rescaled with its characteristic time
scale, the quasi-deterministic waiting time for a transition from an initial equilibrium
is of the order of a time unit on an exponential clock. In its characteristic time
scale, the complex fluctuating perturbed system therefore behaves asymptotically
as a continuous time Markov chain switching between the stable equilibria of the
unperturbed system, turning them into metastable states.

In the mathematics literature such systems first appeared in the beginning of the
1970s, mainly in the context of large deviations for Gaussian perturbations. For this
type of noise, characteristic time scales are of order exp.V="2/, where " is the noise
intensity, and the quantity V related to the geometry of the deterministic system.
The large deviations approach as well as its potential theoretic extension turned out
to be very fertile, and large deviation principles describing their metastable behavior
have been discovered for large classes of ordinary and partial differential equations.

For dynamical systems with non-Gaussian noise, exit and transition problems
have been much less studied. The most interesting non-Gaussian noise is given by
the ˛-stable one, arising in local limit theorems for heavy-tailed random walks.
The most prominent example in this class is Cauchy noise, well known to lack
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first moments as well as a suitable Cameron–Martin space. Therefore for the study
of the metastable behavior of dynamical systems perturbed by it, large deviation
techniques may not apply. After an abstract approach via its Markov generator by
Godovanchuk in 1979, Imkeller and Pavlyukevich solved the first exit problem for
one-dimensional systems and described their metastable behavior in 2006. Their
study is crucially based on a skilled distinction between large and small jumps of
the noise and the strong Markov property of the system, which allows to compensate
for the lack of moments. The precise heuristics behind this approach is explained
in detail in Sect. 1.2. In strong contrast to the Gaussian case, the characteristic time
scale is of order Q="˛, where " is the noise intensity, ˛ the stability index of the
noise, and Q a quantity depending on the geometry of the deterministic system and
the Lévy measure.

These lecture notes treat the first exit problem and metastability for a paradigm
class of reaction–diffusion equations—the Chafee–Infante equations—perturbed
by additive regularly varying noise in the infinite-dimensional space of weakly
differentiable functions over an interval. The corresponding principal results are
contained in the following theorems. Theorem 5.16 states the convergence of the
rescaled first exit times from domains of attraction of equilibria to those of a
reduced model in terms of exponential moments on the same probability space.
Theorem 7.10 describes metastability for the system in the characteristic time scale.
To our knowledge this is the first treatment of this type of problems for stochastic
partial differential equations. Also the techniques used in the proofs are new to the
field.

The lecture notes address graduate students and researchers in mathematics and
natural scientists with a background in partial differential equations and stochastic
analysis, who would like to understand in detail the rich and subtle interplay of the
deterministic infinite-dimensional dynamics and the jump behavior in terms of the
Lévy measure of the random perturbation.

The text is as self-contained as possible with a proof or at least a sketch of it for
every proposition in all different areas involved. In particular we give an overview of
the literature on the deterministic Chafee–Infante equations. We prove fine estimates
on the relaxation time in Chap. 2, which do not exist in the literature so far. In
the sequel we give an introduction to stochastic reaction–diffusion equations and
establish all properties relevant to our purposes, in particular the existence of a
global solution and the strong Markov property in Chap. 3. The mathematical core
of the text is presented in Chaps. 4–7. It concludes with an additional chapter in
the appendix, where we explain the climate dynamics motivation for our paradigm
model.
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