Chapter 2
A Brief Overview of Collision Detection

In this chapter we will provide a short overview on classical and recent research in
collision detection. In the introduction, we already mentioned the general complex-
ity of the collision detection problem due to its theoretical quadratic running time
for polygonal models like Chazelle’s polyhedron (see Fig. 1.1).

However, this is an artificial example, and in most real world cases there are only
very few colliding polygons. Hence, the goal of collision detection algorithms is to
provide an output sensitive running time. This means that they try to eliminate as
many of the O (n?) primitive tests as possible, for example by an early exclusion of
large parts of the objects that cannot collide. Consequently, the collision detection
problem can be regarded as a filtering process.

Recent physics simulation libraries like PhysX [163], Bullet [36] or ODE [203]
implement several levels of filtering in a so-called collision detection pipeline.

Usually, a scene does not consist only of a single pair of objects, but of a larger
set of 3D models that are typically organized in a scenegraph. In a first filtering step,
the broad phase or N-body culling, a fast test enumerates all pairs of potentially col-
liding objects (the so-called potentially collision set (PCS)) to be checked for exact
intersection in a second step, which is called the narrow phase. The narrow phase is
typically divided into two parts: first a filter to achieve pairs of potentially colliding
geometric primitives is applied and finally these pairs of primitives are checked for
collision. Depending on the scene, more filtering levels between these two major
steps can be used to further speed-up the collision detection process [247]. Fig-
ure 2.1 shows the design of CollDet [250], a typical collision detection pipeline.
All data structures that are developed for this work have been integrated into the
CollDet framework.

However, the chronological order of the collision detection pipeline is only one
way to classify collision detection algorithms, and there exist many more distinctive
factors. Other classifications are e.g. rigid bodies vs. deformable objects. Usually,
the filtering steps rely on geometric acceleration data structures that are set up in a
pre-processing step. If the objects are deformable, these pre-calculated data struc-
tures can become invalid. Consequently, deformable objects require other data struc-
tures or, at least, additional steps to update or re-compute the pre-processed struc-
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Fig. 2.1 The typical design of a collision detection pipeline

tures. Additionally, deformable objects require a check for self-collisions. Some of
these methods are described in Sect. 2.5.

Another distinctive feature is the representation of the geometric objects. Es-
pecially in computer graphics, the boundary of objects is usually approximated by
polygons. Hence, most collision detection algorithms are designed for polygonal ob-
jects. However, in CAD/CAM applications also curved surface representations like
non-uniform rational B-splines (NURBS) play an important role. For instance, Page
and Guibault [175] described a method based on oriented bounding boxes (OBBs)
especially for NURBS surfaces. Lau et al. [131] developed an approach based on
axis aligned bounding boxes (AABBs) for inter-objects as well as self-collision de-
tection between deformable NURBS. GreB et al. [76] also used an AABB hierarchy
for trimmed NURBS but transferred the computation to the GPU. Kim et al. [108]
proposed an algorithm based on bounding coons patches with offset volumes for
NURBS surfaces. Another object modeling technique often used in CAD/CAM is
the constructive solid geometry (CSG). Objects are recursively defined by union,
intersection or difference operations of basic shapes like spheres or cylinders. In
order to detect collisions between CSG objects, Zeiller [251] used an octree-like
data structure for the CSG tree. Su et al. [208] described an adaptive selection strat-
egy of optimal bounding volumes for sub-trees of objects in order to realize a fast
localization of possible collision regions.

Point clouds become more and more popular due to cheap depth-cameras that can
be used for 3D scanning like Microsoft’s Kinect [94]. One of the first approaches to
detect collision between point clouds was developed by Klein and Zachmann [116].
They use a bounding volume hierarchy in combination with a sphere covering of
parts of the surface. Klein and Zachmann [117] proposed an interpolation search
approach of the two implicit functions in a proximity graph in combination with
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randomized sampling. El-Far et al. [47] support only collisions between a single
point probe and a point cloud. For this, they fill the gaps surrounding the points
with AABBs and use an octree for further acceleration. Figueiredo et al. [53] used
R-trees, a hierarchical data structure that stores geometric objects with intervals in
several dimensions [80], in combination with a grid for the broad phase. Pan et al.
[177] described a stochastic traversal of a bounding volume hierarchy. By using ma-
chine learning techniques, their approach is also able to handle noisy point clouds.
In addition to simple collision tests, they support the computation of minimum dis-
tances [178].

This directly leads to the next classification feature: The kind of information
that is provided by the collision detection algorithm. Actually, almost all simulation
methods work discretely; this means that they check only at discrete points in time
whether the simulated objects collide. As a consequence, inter-penetration between
simulated objects is often unavoidable. However, in order to simulate a physically
plausible world, objects should not pass through each other and objects should move
as expected when pushed or pulled. As a result, there exist a number of collision
response algorithms to resolve inter-penetrations. For example, the penalty-based
method computes non-penetration constraint forces based on the amount of inter-
penetration [207]. Other approaches like the impulse-based method or constraint-
based algorithms need information about the exact time of contact to apply impul-
sive forces [110].

Basic collision detection algorithms simply report whether or not two objects in-
tersect. Additionally, some of these approaches provide access to a single pair of in-
tersecting polygons or they yield the set of all intersecting polygons. Unfortunately,
this is not sufficient to provide the information required for most collision response
schemes. Hence, there also exist methods that are able to compute some kind of
penetration depth, e.g. a minimum translational vector to separate the objects. More
advanced algorithms provide the penetration volume. Especially in path-planning
tasks, but also in constraint-based simulations, it is helpful to track the minimum
separation distance between the objects in order to avoid collisions. Finally, the
continuous collision detection computes the exact point in time when a collision oc-
curs between two object configurations. Section 2.3 provides an overview over al-
gorithms that compute these different penetration measurements. Usually, the more
information the collision detection algorithm provide, the longer is its query time.

More classifications of collision detection algorithms are possible. For instance,
real-time vs. offline, hierarchical vs. non-hierarchical, convex vs. non-convex, GPU-
based methods vs. CPU, etc. This already shows the great variety of different ap-
proaches.

Actually, collision detection has been researched for almost three decades.
A complete overview over all existing approaches would fill libraries and thus is
far beyond the scope of this chapter. So, in the following, we will present classic
methods that are still of interest, as well as recent directions that are directly related
to our work. As a starting point for further information on the wide field of collision
detection we refer the interested reader to the books by Ericson [49], Coutinho [37],
Zachmann and Langetepe [249], Eberly [43], Den Bergen [228], Bicchi et al. [18]
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or Lin et al. [141] and the surveys by Jimenez et al. [97], Kobbelt and Botsch [120],
Ganjugunte [60], Lin and Gottschalk [140], Avril et al. [8], Kockara et al. [121],
Gottschalk [71], Fares and Hamam [51], Teschner et al. [218] and Kamat [103].

2.1 Broad Phase Collision Detection

The first part of the pipeline, called the broad-phase, should provide an efficient
removal of those pairs of objects that are not in collision. Therefore, objects are
usually enclosed into basic shapes that can be tested very quickly for overlap. Typi-
cal basic shapes are axis aligned bounding boxes (AABB), spheres, discrete oriented
polytopes (k-DOP) or oriented bounding boxes (OBB) (see Fig. 2.2).

The most simple method for the neighbor finding phase is a brute-force approach
that compares each object’s bounding volume with all others’ bounding volumes.
The complexity of this approach is O (n?), where n denotes the number of objects
in the scene. Woulfe et al. [241] implemented this brute-force method on a Field-
Programmable Gate Array (FPGA) using AABBs. However, even this hardware-
based approach cannot override the quadratic complexity.

Moreover, Edelsbrunner and Maurer [45] have shown that the optimal algorithm
to find intersections of # AABBs in 3D has a complexity of O (nlog?n + k), where
k denotes the number of objects that actually intersect. Two main approaches have
been proposed to take this into account: spatial partitioning and topological meth-
ods.

Spatial partitioning algorithms divide the space into cells. Objects whose bound-
ing volumes share the same cell are selected for the narrow phase. Examples for
such spatial partitioning data structures are regular grids [247], hierarchical spatial
hash tables [156], octrees [12], kd-trees [17] and binary space partitions (BSP-trees)
[162]. The main disadvantage of spatial subdivision schemes for collision detection
is their static nature: they have to be rebuilt or updated every time the objects change
their configuration. For uniform grids such an update can be performed in constant
time and grids are perfectly suited for parallelization. Mazhar [149] presented a
GPU implementation for this kind of uniform subdivision. However, the effective-
ness of uniform grids disappears if the objects are of widely varying sizes. Luque
et al. [147] proposed a semi-adjusting BSP-tree that does not require a complete
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re-structuring, but adjusts itself while maintaining desirable balancing and height
properties.

In contrast to space partitioning approaches, the topological methods are based
on the position of an object in relation to the other objects. The most famous method
is called Sweep-and-Prune [32]. The main idea is to project the objects’ bounding
volume on one or more axes (e.g. the three coordinate axis (x, y, z)). Only those
pairs of objects whose projected bounding volumes overlap on all axes have to be
considered for the narrow phase. Usually, this method does not construct any inter-
nal structure but starts from scratch at each collision check.

Several attempts have been proposed to parallelize the classical Sweep-And-
Prune approach. For instance, Avril et al. [10] developed an adaptive method that
runs on multi-core and multi-threaded architectures [9] and uses all three coordinate
axes. Moreover, they presented an automatic workload distribution based on off-line
simulations to determine fields of optimal performance [11]. Liu et al. [143] ported
the Sweep-and-Prune approach to the GPU using the CUDA framework. They use
a principal component analysis to determine a good sweep direction and combine it
with an additional spatial subdivision.

Tavares and Comba [217] proposed a topological algorithm that is based on De-
launay triangulations instead of Sweep-and-Prune. The vertices of the triangulation
represent the center of mass of the objects and the edges are the object pairs to be
checked in the narrow phase.

However, even if all these algorithms are close to the optimal solution proved by
Edelsbrunner and Maurer [45], in accordance to Zachmann [247], they are profitable
over the brute-force method only in scenarios with more than 100 dynamically sim-
ulated objects. This is due to the high constant factor that is hidden in the asymptotic
notation. Maybe this is also why much more research is done on the acceleration of
the narrow phase.

2.2 Narrow Phase Basics

While the broad phase lists pairs of possible colliding objects, the objective of the
narrow phase is to determine exact collision checks between these pairs.

A brute force solution for the narrow phase could simply check all geometric
primitives of one object against all primitives of the other object. Surely this would
again result in quadratic complexity. Due to the fast evolution of modern graphics
hardware, objects can consist of millions of polygons today, and a quadratic running
time is not an option. Consequently, more intelligent algorithms are required.

Actually, the narrow phase can be divided into two phases by itself. In a first
phase, non-overlapping parts of the objects are culled; in a second step, an accurate
collision detection is performed between pairs of geometric primitives that are not
culled in the first phase.

Instead of data structures that partition the world-space in the broad phase, in
the narrow phase, most often object partitioning techniques are used for the culling
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Fig. 2.3 The BVH principle: Geometric objects are divided recursively into subsets of their geo-
metric primitives (left) and each node on the tree realizes a bounding volume for all primitives in
its sub-tree (right)

stage. The common data structures for this task are bounding volume hierarchies
(BVHs). The technique of bounding volumes, known from the previous section
(Fig. 2.2), is recursively applied to a whole object. This results in a tree-like struc-
ture. Each node in such a tree is associated to a bounding volume that encloses all
primitives in its sub-tree (see Fig. 2.3).

Usually, a BVH is constructed in a pre-processing step that can be compu-
tationally more or less expensive. During running time a simultaneous recursive
traversal of the BVHs of two objects allows a conservative non-intersection prun-
ing: if an intersection is detected in the root of the BVH, the traversal proceeds
by checking the bounding volumes of the root node’s children and so on until the
leaf nodes are reached and an exact collision test between the geometric primitives
can be performed. Non-overlapping BVs are discarded from further consideration.
The whole traversal algorithm results in a bounding volume test tree (BVIT) (see
Fig. 2.4).

Usually, BVs for the BVHs are spheres [92, 185], AABBs [182, 225] and
their memory optimized derivative called BoxTree [248], which is closely related
to kd-Trees, k-DOPs [118, 245], a generalization of AABBs, OBBs [2, 15, 70]
or convex hull trees [46]. Additionally, a wide variety of special BVs for spe-
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Fig. 2.4 The simultaneous recursive traversal of two BVHs during the collision check results in a
bounding volume test tree

cial applications has been developed. For instance, we have spherical shells [125],
swept spheres [126], spheres that are cut by two parallel planes called slab cut
balls [130], quantized orientation slabs with primary orientations (QuOSPO) trees
[85] that combine OBBs with k-DOPs, or combinations of spherical shells with
OBBs as proposed by Krishnan et al. [124] for objects that are modeled by Bezier
patches.

The optimal bounding volume should

tightly fit the underlying geometry
provide fast intersection tests

be invariant undergoing rigid motion

not use too much memory

be able to be build automatically and fast

Unfortunately, these factors are contradictory. For example, spheres offer very
fast overlap and distance tests and can be stored very memory efficiently, but they
poorly fit flat geometries. AABBs also offer fast intersection tests, but they need to
be realigned after rotations. Or, if no realignment is used, a more expensive OBB
overlap test is required. But in this case, the tighter fitting OBBs could be used di-
rectly. However, they also require more memory. Convex hulls offer the tightest fit
among convex BVs, but the overlap test is very complex and their memory con-
sumption depends on the underlying geometry.

Consequently, choosing the right BVHs is always a compromise and depends
on the scenario. Basically, the quality of BVH-based algorithms can be measured
by the following cost function, which was introduced by Weghorst et al. [235] to
analyze hierarchical methods for ray tracing and later was adapted to hierarchical
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collision detection methods by Gottschalk et al. [70]:

T =N,Cy+ N,Cp, with

T = Total cost of testing a pair of models for intersection
N, = Number of BV Tests
C, = Cost of a BV Test

2.1)

N = Number of Primitive Tests

Cp = Cost of a Primitive Test

In addition to the shape of the BV, there are more factors that affect the efficiency
of a BVH, including the height of the hierarchy, which may but should not be influ-
enced by its arity or the traversal order during collision queries. The first two factors
have to be considered already during the construction of the BVH.

Basically, there exist two major strategies to build BVHs: bottom-up and top-
down. The bottom-up approach starts with elementary BVs of leaf nodes and merges
them recursively together until the root BV is reached. A very simple merging
heuristic is to visit all nearest neighbors and minimize the size of the combined
parent nodes in the same level [191]. Less greedy strategies combine BVs by using
tilings [137].

However, the most popular method is the top-down approach. The general idea
is to start with the complete set of elementary BVs, then split that into some parts
and create a BVH for each part recursively. The main problem is to choose a good
splitting criterion. A classical splitting criterion is to simply pick the longest axis
and split it in the middle of this axis. Another simple heuristic is to split along the
median of the elementary bounding boxes along the longest axis. However, it is
easy to construct worst case scenarios for these simple heuristics. The surface area
heuristic (SAH) tries to avoid these worst cases by optimizing the surface area and
the number of geometric primitives over all possible split plane candidates [68].
Originally developed for ray tracing, it is today also used for collision detection.
The computational costs can be reduced to O (nlogn) [232, 233] and there exist
parallel algorithms for the fast construction on the GPU [132]. Many other splitting
criteria were compared by Zachmann [246].

In addition to the splitting criterion, also the choice of the BV affects the per-
formance of the hierarchy creation process. Even if this is a pre-processing step,
extremely high running times are undesirable in many applications. Computing an
AABB for a set of polygons or a set of other AABBs is straightforward. Also k-
DOPs can be computed relatively easy. But the only optimal solution for OBB com-
putation is O3) and very hard to implement [166]. Chang et al. [24] presented a
close to optimal solution based on a hybrid method combining genetic and Nelder-
Mead algorithms. Other heuristics, like principal component analysis [100], are not
able to guarantee the desired quality in all cases. On the other hand, very compli-
cated BVs, like the convex hull, can be computed efficiently in O (nlogn) [102].
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With OBBs, also the computation of a minimum enclosing sphere turns out to be
very complicated. Welzl [236] formulated it as a linear programming problem.

However, the choice of spheres as BVs also points to another challenge: the set
of elementary BVs. For AABBs, OBBs or k-DOPs, usually a single primitive or a
set of adjacent primitives are enclosed in an elementary BV. For spheres this is not
an optimal solution, because proximate primitives, often represented by polygons,
usually form some kind of flat geometry that poorly fits into a sphere. Therefore,
Bradshaw and O’ Sullivan [20] presented a method based on the medial axis to group
also distant spheres in the same elementary BV.

The influence of the trees’ branching factor is widely neglected in the literature.
Usually, most authors simply use binary trees for collision detection. But according
to Zachmann and Langetepe [249] the optimum can be larger. Mezger et al. [155]
stated that, especially for deformable objects, 4-ary or 8-ary trees could improve the
performance. This is mainly due to the smaller number of BV updates. However,
we will return to this topic in Sect. 2.5.

During running time, the performance of the BVH depends on the traversal or-
der. Usually, a simultaneous recursive traversal of both BVHs is applied. The easiest
way to do this is via the depth-first-search (DFS). Gottschalk [72] additionally pro-
posed a breath-first-search (BFS) traversal using a queue. For complex objects with
many polygons and hence deep trees, the DFS can lead to a stack overflow. How-
ever, on modern CPUs with large stack sizes, the DFS is much faster. O’Sullivan
and Dingliana [168] proposed a best-first-search method for sphere trees. It simply
descends into sub-trees with largest BV-overlap first. However, in our experience,
the time to keep a priority queue often exceeds its advantages.

The final step in the collision detection pipeline is the primitive test. Most often
the surfaces of the objects are represented by polygons or, more specific, triangles.
A general polygon—polygon intersection test is described by Chin and Wang [29].
For the special case of triangles, there exist a wide variety of fast intersection tests,
e.g. by Méller [159] or Tropp et al. [222]. Even today new optimized approaches
are proposed for special cases: for instance Chang and Kim [25] described a trian-
gle test that takes into account that many intermediate computation results from an
OBB test can be re-used for the triangle intersection. Many fast intersection tests
are implemented by Held [87] and Schneider and Eberly [197].

Another important class of geometric primitives are convex polytopes. Not only
because they are widely used in physics-based simulations, but also from an histori-
cal point of view: some of the first collision detection algorithms are based on them.
Moreover, they can be used as both geometric primitives and bounding volumes.
Actually, there exist two main approaches for convex polytopes: feature-based al-
gorithms and simplex-based algorithms.

The first feature-based method was proposed by Lin and Canny [139]. Features
of a convex polyhedron are vertices, edges and faces. The Lin—Canny algorithm per-
forms a local search on these features using a pre-computed Voronoi diagram [231].
The convexity guarantees that local minima are avoided. Furthermore, the algo-
rithm uses spatial and temporal coherence between two distinctive queries: usually,
objects do not move too much between two frames of a physics-based simulation.
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Hence, the closest feature in the current frame is close to the closest feature from
the next frame. A major drawback of the algorithm is that it cannot handle inter-
sections. In this case it runs in an endless loop. V-Clip [157], an extension of the
classical Linn—Canny method, eliminates this serious defect.

The best known simplex-based algorithm was developed by Gilbert et al. [65].
Instead of using Voronoi diagrams, the GJK-algorithm is based on Minkowski dif-
ferences. In addition to the boolean collision detection that simply reports whether
two objects collide or not, the GJK-algorithm also returns a measure of the inter-
penetration [22]. Moreover, it achieves the same almost constant time complexity as
Lin—Canny. A stable and fast implementation of the enhanced GJK algorithms was
presented by Bergen [226].

Both kinds of algorithms are designed for convex polyhedra. However, by us-
ing a convex decomposition of well-behaved concave polyhedrons, they can also
be extended to other objects [26]. But finding good convex decompositions is not
straightforward and is still an active field of research [81, 138].

2.3 Narrow Phase Advanced: Distances, Penetration Depths
and Penetration Volumes

For physics-based simulations a simple boolean answer at discrete points in time to
whether a pair of objects intersect or not is often not sufficient. Usually, some kind
of contact information is required to compute repelling forces or non-intersection
constraints.

As long as a pair of objects rests in a collision-free configuration, a simple way
to characterize the extent of repelling forces is to use the minimum distance be-
tween them. However, collisions are often unavoidable due to the discrete structure
of the simulation process. Therefore, a penetration measure is required for configu-
rations where the objects overlap. Some authors proposed a minimum translational
vector to separate the objects. This is often called the penetration depth. The most
complicated, but also the only physically plausible inter-penetration measure is the
penetration volume [164], which corresponds directly to the amount of water being
displaced by the overlapping parts of the objects. Last but not least, it is possible to
compute the exact point in time between two discrete collision checks; this is called
continuous collision detection. In fact, it is not a measure of the amount of inter-
penetration, but the techniques that are used for its computation are very similar to
other penetration depth computations.

2.3.1 Distances

The Lin—Canny algorithm, described in the previous section, is already an example
of one using minimum distance computations. Tracking of the closest features di-
rectly delivers the required distances. Actually, computing minimum distances can
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be performed in a very similar way to conventional boolean collision detection using
BVHs.

The traditional recursive BVH traversal algorithm, described above, tests
whether two BVs—one from each BVH—overlap. If this is the case, the recursion
continues to their children. If they do not, the recursion terminates. If two leaves are
reached, a primitive intersection test is performed.

The simple recursive scheme can be modified easily for minimum distance com-
putations: just the intersection test of the primitives has to be replaced by a distance
computation between the primitives and the intersection test between the BVs by a
distance test between the BVs. During the traversal, an upper bound for the distance
between two primitives is maintained by a variable §. This variable can be initial-
ized with oo or the distance between any pair of primitives. é has to be updated if a
pair of primitives with a smaller distance is found.

Obviously, BVs with larger distances than § can be culled, because if the BVs
have a larger distance, this must also be true for all enclosed primitives. This is ex-
actly the way most authors using BVHs implemented their algorithms; e.g. Larsen
et al. [126] used the swept-sphere method as BVs together with several speed-up
techniques, Quinlan [185] proposed sphere trees, Bergen [226] used AABBs in
combination with the GJK-based Minkowski difference; Lauterbach et al. [133] im-
plemented OBB trees running on the GPU. Johnson and Cohen [98] generalized
the basic BVH-based distance computation in the framework of minimum distance
computations.

Actually, all these approaches can be interrupted at any time and they deliver an
upper bound for the minimum distance. Other approaches are able to additionally
provide a lower bound, like the spherical sector representation presented by Bonner
and Kelley [19], or the inner—outer ellipsoids by Ju et al. [101] and Liu et al. [144].

Another alternative for distance computations are distance fields [56], which can
also be combined with BVHs [58].

However, all these approaches use the Euclidean distance between the objects.
Other authors also proposed different metrics like the Hausdorff-distance, which de-
fines the maximum deviation of one object from the other object [213, 243]. Zhang
et al. [256] used a so-called DISP distance, which is defined as the maximum length
of the displacement vector over every point on the model at two different configura-
tions. This metric can be used for motion planning tasks [134].

A local minimum distance for a stable force feedback computation was proposed
by Johnson et al. [99]. They used spatialized normal cone pruning for the collision
detection. The normal cone approach differs from prior works using BVHs, because
it searched for extrema of a minimum distance formulation in the space of normals
rather than in Euclidean space.

2.3.2 Continuous Collision Detection

Computing repelling forces on the separating distance can lead to visual artifacts in
physics-based simulations, e.g. when the objects bounce away before they really are
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in visual contact. Moreover, if the objects move too fast, or the time step between
two collision queries is too large, the objects could pass through each other. To avoid
errors like this tunneling effect, it would be better to really compute the exact time
of impact between a pair of objects [35]. Several techniques have been proposed to
solve this continuous collision detection problem, which is sometimes also called
dynamic collision detection.

The easiest way is to simply reuse the well researched and stable algorithms
known from static collision detection. Visual interactive applications usually require
updating rates of 30 frames per second, i.e. there passes about 30 milliseconds of
time between two static collision checks. Recent boolean collision detection algo-
rithms require only a few milliseconds, depending on the objects’ configuration.
Hence, there is plenty of time to perform more than one query between two frames.
A simple method, the so called method of pseudo-continuous collision, realizes ex-
actly this strategy: it performs static collision detection with smaller time steps [88].
Even with a higher sampling frequency, it is, however, still possible to miss contacts
between thin objects.

Conservative advancement is another simple technique that avoids these prob-
lems. The objects are repeatedly advanced by a certain time-step, which guaran-
tees a non-penetration constraint [158]. Usually, the minimum distance is used to
compute iteratively new upper bounds for the advancement [259]. Conservative ad-
vancement is also perceived as a discrete ancestor of the kinetic data structures that
we will review in the next chapter.

Another method is to simply enclose the bounding volumes at the beginning and
at the end of a motion step by a swept volume. This can be done very efficiently for
AABBs [44]. Coming and Staadt [34] described a velocity-aligned DOP as swept
volume for underlying spheres as BVs, and Redon et al. [189] proposed an algorithm
for OBBs. Taeubig and Frese [210] used sphere swept convex hulls. Also ellipsoids
are an option [30].

The swept volumes guarantee conservative bounds for their underlying primi-
tives, and consequently the swept BVHs can be traversed similarly to the discrete
BVHs. However, an additional continuous collision test for the primitives is required
to achieve the exact time of impact. Actually, these tests (and in fact, also the tests
between the BVs) depend on the trajectories of the primitives, which are usually not
known between two simulation steps. Often, a simple linear interpolation is used
to approximate the in-between motion [239]. For a pair of triangles this yields six
face—vertex and nine edge—edge tests. Each of these elementary tests requires one
to solve a cubic equation. This is computationally relatively costly. Therefore, some
authors additionally proposed feature-based pre-tests, like the subspace filters by
Tang et al. [211] or additional BVs like k-DOPs for the edges [93].

However, more accurate but also more complicated interpolation schemes have
been described as well. Canny [23] proposed quaternions instead of Euler angles but
still got a 6D complexity. Screw motions are often used [105] because they can also
be computed by solving cubic polynomials. Redon et al. [187] combined them with
interval arithmetic. Zhang et al. [260] defined Taylor models for articulated models
with non-convex links. Von Herzen et al. [230] used Lipschitz bounds and binary
subdivision for parametric surfaces.
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There exist a few other acceleration techniques; e.g. Kim et al. [106] implement
a dynamic task assignment for multi-threaded platforms, or Fahn and Wang [50]
avoid BVHs by using a regular grid in combination with an azimuth elevation map.
However, continuous collision detection is still computationally too expensive for
real-time applications, especially, when many complex dynamic objects are simu-
lated simultaneously.

2.3.3 Penetration Depth

The minimum distance is not a good measure to define repelling forces, and com-
puting the exact time of impact using continuous collision detection is too time
consuming for real-time applications. Consequently, in research one has developed
another penetration measure: the penetration depth. In fact, it is not entirely cor-
rect to speak about the penetration depth, because there exist many different, partly
contradictory, definitions. A widely used definition describes it as the distance that
corresponds to the shortest translation required to separate two intersecting objects
[41].

The same authors also delivered a method for their computation based on the
Dobkin and Kirkpatrick hierarchy and Minkowski differences. They derived a com-
plexity of O(n?) for convex and O (n*) for non-convex polyhedral objects consist-
ing of n polygons. Cameron [22] presented a similar approach for convex objects,
which can additionally track the minimum distance in non-intersection cases. Es-
pecially the computation of the Minkowski difference is very time consuming and
difficult. Therefore, several approximation schemes have been developed: for in-
stance Bergen [227] described an expanding polytope algorithm that yields a poly-
hedral approximation of the Minkowski difference. Agarwal et al. [1] proposed an
approximation algorithm based on ray-shooting for convex polyhedra. Kim et al.
[109] implicitly constructed the Minkowski difference by local dual mapping on the
Gaussian map. Additionally, the authors enhanced their algorithm by using heuris-
tics to reduce the number of features [111, 113]. Other approximations rely on dis-
cretized objects and distance fields [54].

Some authors computed local approximations of the penetration depth if the ob-
jects intersect in multiple disjoint zones. Therefore, penetrating zones were parti-
tioned into coherent regions and a local penetration depth was computed for each of
these regions separately. Redon and Lin [188] computed a local penetration direc-
tion for these regions and then used this information to estimate a local penetration
depth on the GPU. Je et al. [96] presented a method based on their continuous col-
lision detection algorithm using conservative advancement [212]: they constructed
a linear convex cone around the collision free configuration found via CCD and
then formulated a projection of the colliding configuration onto this cone as a linear
complementarity problem iteratively.

Also other metrics have been proposed for the characterization of penetrating
objects: for instance, Zhang et al. [255] presented an extended definition of the pen-
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etration depth that also takes the rotational component into account, called the gen-
eralized penetration depth. It differs from the translational penetration depth only
in non-convex cases, and the computation of an upper bound can be reduced to the
convex containment problem if at least one object is convex [257]. Gilbert and Ong
[66] defined a growth distance that unifies the penetration measure for intersecting
but also disjoint convex objects: basically, it measures how much the objects must be
grown so that they were just in contact. Also an algorithm for the computation of the
growth distance was presented [165]. Zhu et al. [261] used a gauge function [90] in-
stead of the Euclidean norm to define pseudo-distances for overlapping objects and
they presented a constrained optimization-based algorithm for its calculation.

The publication years presented in this subsection already show that penetra-
tion depth computation has recently become a very active field of research. This is
mainly because computing the penetration depth is still computationally very expen-
sive and becomes practically relevant only on very fast machines. However, using
the classical penetration depth still has another serious drawback: the translational
vector is not continuous at points lying on the medial axis. This results in flipping
directions of the contact normals when used directly as penalty force vector. More-
over, it is not straightforward to model multiple simultaneous contacts. Tang et al.
[214] tried to avoid these problems by accumulating penalty forces along the pen-
etration time intervals between the overlapping feature pairs using a linear CCD
approach.

2.3.4 Penetration Volume

Compared to other penetration measures, the literature on penetration volume com-
putation is sparse. More precisely, there exist only two other algorithms apart from
our approach: one method, proposed by Hasegawa and Sato [84], constructs the in-
tersection volume of convex polyhedra explicitly. For this reason, it is applicable
only to very simple geometries, like cubes, at interactive rates.

The other algorithm was developed by Faure et al. [52] simultaneously with our
Inner Sphere Trees. They compute an approximation of the intersection volume from
layered depth images on the GPU. This approach is applicable to deformable ge-
ometries but restricted to image space precision. And apart from that, it is relatively
slow and it cannot provide continuous forces and torques for collision response.

2.4 Time Critical Collision Detection

Despite the computational power available, the performance of collision detection
algorithms is still critical in many applications, especially if a required time bud-
get must never be exceeded. This problem arises in almost all interactive real-time
applications where frame rates of at least 30 fps are needed for a smooth visual
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feedback. Consequently, only 30 msec remain for rendering and physics-based sim-
ulation. For the rendering step, there exists the technique of levels-of-details (LOD)
to reduce the workload of the graphics pipeline [146]. The main idea is to store
geometric data in several decreasing resolutions and choose the right LOD for ren-
dering according to the distance from the viewpoint. Similar techniques can also be
applied to the physics-based simulation; more precisely, to the collision detection
step. Hence, this so-called time-critical collision detection reduces the computation
time at the cost of accuracy.

Typically, time-critical collision detection methods rely on simplifications of the
complex objects like the visual LOD representations. This can be done either ex-
plicitly or implicitly. Moreover, they often use frame-to-frame coherence because in
physics-based simulations there should usually be no discontinuities, and hence the
contact information between two collision checks does not differ too much.

For instance, the BVTT derived from a simultaneous BVH traversal (see Fig. 2.4
in the previous section) holds in each node the result of the query between two BVs.
Those BV pairs where the traversal stops build a list in the BVTT, the separation
list [27]. In case of high coherence, the traversal does not have to be restarted at the
roots of the BVHs for each query, but this list can be directly re-used. Ehmann and
Lin [46] called this the generalized front tracking. Lin and Li [142] enhanced this
method by defining an incremental algorithm that prioritizes the visiting order: dan-
gerous regions where collisions may occur with a high probability are prioritized.

These are, however, just examples for coherence. In fact, the classical simultane-
ous BVH traversal lends itself well to time-critical collision detection: the traversal
can simply be interrupted when the time budget is exhausted. This was first pro-
posed by Hubbard [92], who additionally used a round-robin order for the collision
checks. This approach was later extended by O’Sullivan and Dingliana [168, 169]
and Dingliana and O’Sullivan [39]: like Hubbard [92] they also used an interrupt-
ible sphere tree traversal but added a more appropriate collision response solution
to Hubbard’s elementary response model. A similar method can also be adopted
for deformable objects [154]. Another extension using sphere trees with a closest
feature map to avoid over-estimations of the contact information was presented by
Giang and O’Sullivan [62, 63].

Klein and Zachmann [115] described an average case approach for time-critical
traversals (ADB-trees): for each pair of BVs they computed the probability that
an intersection of the underlying primitives will occur. Coming and Staadt [33]
presented an event-based time-critical collision detection scheme relying on stride-
scheduling in combination with kinetic Sweep-and-Prune and an interruptible GJK
version.

Other authors created the LOD explicitly. For example, Otaduy and Lin [171]
presented a dual hierarchy for both the multi-resolution representation of the geom-
etry and its BVH using convex hulls. A similar approach, called clustered hierarchy
of progressive meshes, was developed by Yoon et al. [243] for very large scenes
that require out-of-core techniques. James and Pai [95] used the reduced models not
only for fast collision detection, but also presented a deformation method based on
their bounded deformation trees.
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2.4.1 Collision Detection in Haptic Environments

Almost all collision detection approaches described above are primarily designed
to work in at least visual real-time. As mentioned in the introduction, for a
smooth visual sensation update-rates of 30 Hz are sufficient, whereas haptic ren-
dering requires an update frequency of 1000 Hz for a realistic haptic sensation.
Moreover, detailed contact information has to be provided for a realistic percep-
tion.

None of the previously described methods, especially those computing penetra-
tion depths or times of impact, can be accelerated by a factor of 30 out of the box
for reasonable scene complexities in haptic environments. Consequently, collision
detection for haptics often leads to further simplifications in order to guarantee the
high frequency, but also to compute plausible forces.

24.1.1 3 DOF

In the early times of haptic human—computer history, the beginning 1990s [195],
a major simplification affected both the design of haptic hardware interfaces and
the collision detection: instead of simulating the complex interaction of rigid bod-
ies, only a single point probe was used for the interaction. This required only the
computation of three force components at the probe’s tip. As a result, many 3 DOF
haptic devices, like the SensAble Phantom Omni Massie and Salisbury [148], en-
tered the market and also a lot of research was done on 3 DOF haptic rendering
algorithms.

One of the first algorithms for this problem was presented by Zilles and Salisbury
[262]. They proposed the usage of a two different points: one represents the real
position of the probe’s tip, whereas the second, they call it god object, is constrained
to the surface of the polygonal object. A spring—damper model between these points
defines the force. Ruspini et al. [194] extended this approach by sweeping a sphere
instead of using a single point in order to avoid the god object slipping into a virtual
object through small gaps. Ho et al. [89] also took the movement of the god object
into account by using a line between its previous and its recent position. BVHs
can be used for accelerating the collision detection. For example, Gregory et al.
[75] developed a hybrid hierarchical representation consisting of uniform grids and
OBBs.

Also algorithms for other than polygonal object representations have been pro-
posed: Thompson et al. [220] developed an algorithm that is applicable for 3 DOF
rendering of NURBS surfaces without the use of any intermediate representation.
Gibson [64] and Avila and Sobierajski [7] described approaches for volumetric rep-
resentations. More recent works also included the GPU for faster collision detection
using local occupancy maps [107].
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Fig. 2.5 The Voxmap-Pointshell approach for 6 DOF haptic rendering uses two different data
structures: A voxelization (/eft) and a point-sampling of the objects’ surface (right)

2.4.1.2 6 DOF

Many applications, like training or virtual prototyping, require interaction with com-
plex virtual tools instead of just a single point probe to ensure a sufficient degree of
realism. As soon as the haptic probe includes 3D objects, the additional render-
ing of torques becomes important. Also, simultaneous multiple contacts with the
environment may occur. This significantly increases the complexity of the collision
detection but also of the collision response. Generally, a complete 6 DOF rigid-body
simulation, including forces and torques, has to be performed in only 1 millisecond.
For very simple objects, consisting of only a few hundred polygons, the tradi-
tional collision approaches described above can be used. Ortega et al. [167] ex-
tended the god-object method to 6 DOF haptic rendering using continuous collision
detection to derive the position and orientation of the god object. However, they
cannot guarantee to meet the time budget; therefore they use asynchronous update
processes. Kolesnikov and Zefran [123] presented an analytical approximation of
the penetration depth with additional considerations of the rotational motion.
Despite simplifications of temporal constraints, most often geometric simplifica-
tions were used. Many 6 DOF haptic rendering approaches are based on the Voxmap
Pointshell (VPS) method [151]. The main idea is to divide the virtual environment
into a dynamic object that is allowed to move freely through the virtual space and
static objects that are fixed in the world. The static environment is discretized into a
set of voxels, whereas the dynamic object is described by a set of points that repre-
sents its surface (see Fig. 2.5). During query time, for each of these points it is deter-
mined with a simple boolean test, whether it is located in a filled volume element or
not. Today, voxelization can be efficiently computed using the GPU [42, 179, 198].
Many extensions for the classical VPS algorithms have been proposed: for in-
stance, the use of distance fields instead of simple boolean voxmaps [152] or an
additional voxel hierarchy for the use of temporal coherence [153], since also re-
cent computer hardware can perform only a few thousands intersection tests in 1
millisecond. Prior and Haines [183] described a proximity agent method to reduce
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Fig. 2.6 Deformable objects like cloth require special algorithms, because pre-computed data
structures become invalid after the deformation. Moreover, collision between parts of the object
itself may occur

the number of collision tests for multiple object pairs in collaborative virtual en-
vironments. Renz et al. [190] presented extensions to the classic VPS, including
optimizations to force calculation in order to increase its stability. Barbi¢ and James
[13] developed a distance-field-based approach that can handle contacts between
rigid objects and reduced deformable models at haptic rates. Later they extended
their approach to cover also deformable versus deformable contacts [14]. Ruffaldi
et al. [193] described an implicit sphere tree based on an octree that represents the
volumetric data. However, even these optimizations cannot completely avoid the
limits of VPS, namely aliasing effects and huge memory consumption.

Other authors use level-of-detail techniques to simplify the complexity of large
polygonal models [145]. Otaduy and Lin [172] presented a sensation preserving
simplification algorithm and a collision detection framework that adaptively selects
a LOD. Later, they added a linearized contact model using contact clustering [170].
Another idea is to combine low-resolution geometric objects along with texture im-
ages that encode the surface details [173]. Kim et al. [112] also clustered contacts
based on their spatial proximity to speed up a local penetration depth estimation us-
ing an incremental algorithm. Johnson et al. [99] approximated the penetration depth
by extending their normal cone approach. Glondu et al. [67] developed a method for
very large environments using a neighborhood graph: for objects that are closer to
the haptic probe they used the LOD.

2.5 Collision Detection for Deformable Objects

Usually, collision detection algorithms rely on pre-computed data structures like
BVHs. This works fine, as long as the geometry of the objects does not change,
i.e. if the objects are rigid. However, our world consists not only of rigid objects
but includes a lot of deformable objects, like cloth (see Fig. 2.6). Consequently, a
realistic simulation should also be able to handle deformable models. Beside cloth
simulation, popular deformable applications include character animation, surgery
simulation, and fractures.

An additional challenge for collision detection of deformable objects is the pos-
sibility that parts of one object intersect other parts of the same object, the so-called
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Fig. 2.7 Different updating strategies for BVHs

self-collisions. Actually, BVHs can easily be employed to find self-collisions by
simply checking the BVH of an object against itself and rejecting collisions be-
tween adjacent primitives [229]. Additionally, techniques like hierarchies of normal
cones [184] or power diagrams [77] can be used for further acceleration.

Since BVHs have proven to be very efficient for rigid objects, and, moreover,
they can easily be extended to self-collision detection, researchers also want to use
them for deformable objects. As the BVHs become invalid after deformations, sev-
eral approaches have been published to handle this problem: the easiest method is
to rebuild the BVH from scratch after each deformation. Unfortunately, it turns out
that a complete rebuild is computationally too expensive. Even modern GPU accel-
eration cannot guarantee real-time performance for BVH construction in reasonably
complex scenes [132]. Some authors reduced the rebuild to interesting regions. For
example, Smith et al. [202] used a lazy reconstruction of an octree for all primitives
in the overlap region, or they keep a more complex data structure like a full octree
and simply reinsert all primitives in the leaves in each frame [61]. Other approaches
completely avoid hierarchies but used regular spatial subdivision data structures like
uniform grids [224, 252]. Spatial hashing helps to reduce the high memory require-
ments of uniform grids [219]. However, choosing the right grid size remains an
unsolved problem due to the inherent “teapot in a stadium” problem [82].

Another method is to avoid the complete rebuild by simply updating the BVs
of a pre-computed BVH after deformations. Bergen [225] stated that updating is
about ten times faster compared to a complete rebuild of an AABB hierarchy, and
as long as the topology of the object is conserved, there is no significant performance
loss in the collision check compared to rebuilding. Basically, there exist two main
techniques for updating a BVH: bottom-up and top-down. Bottom-up updates start
by refitting the BVs of the primitives and merge them upwards with the root of
the tree. This can be done efficiently for AABB trees [229] and sphere trees [21].
However, during a collision query usually not all of these BVs are visited. Hence
a lot of work may be done on updates that are not required. A simple strategy to
reduce the number of updated BVs is to update them on-line, when they are in fact
visited during a traversal. This requires the traversal of all primitives placed under a
BV. This is the typical top-down approach [127]. Of course, this raises the question:
Which of the two methods is better?
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Basically, the performance of deformable collision detection algorithms can be
derived by a simple extension of the cost function for rigid objects (see Eq. (2.1)):

T=N,C,+N,C,+N,C, with
T = Total cost of testing a pair of models for intersection
N, = Number of BV Tests

C, = Cost of a BV Test
2.2)
N, = Number of Primitive Tests

Cp = Cost of a Primitive Test
N, = Number of BV Updates
C, = Cost of a BV Update

Usually, N, is higher for the bottom-up update than for the top-down approach.
On the other hand, C,, is higher for the top-down method. Consequently, there is no
definite answer to the question. Actually, according to Larsson and Akenine-Mdller
[127], if many deep nodes in a tree are reached, it gives a better overall performance
to update the AABBs in a tree bottom-up. In simple cases, however, with only a
few deep nodes visited in a collision test, the top-down update performs better. As a
compromise, the authors proposed a hybrid updating strategy: for a tree with depth
n, initially the first 5 should be updated bottom-up. The lower nodes should be up-
dated top-down on the fly during collision traversal (see Fig. 2.7). Mezger et al.
[155] accelerated the update by omitting the update process for several time steps.
Therefore, the BVs are inflated by a certain distance, and as long as the enclosed
polygon does not move farther than this distance, the BV does not need to be up-
dated.

If specific information about the underlying deformation scheme or the geomet-
ric objects is available, additional updating techniques can be used for further ac-
celeration. For instance, Larsson and Akenine-Moller [128] proposed a method for
morphing objects, where the objects are constructed by interpolation between some
morphing targets: one BVH is constructed for each of the morph targets so that the
corresponding nodes contain exactly the same vertices. During running time, the
current BVH can be constructed by interpolating the BVs. Spillmann et al. [206]
presented a fast sphere tree update for meshless objects undergoing geometric de-
formations that also supports level-of-detail collision detection. Lau et al. [131]
described a collision detection framework for deformable NURBS surfaces using
AABB hierarchies. They reduce the number of updates by searching for special de-
formation regions. Guibas et al. [77] used cascade verification in a sphere tree for
deformable necklaces. Sobottka et al. [205] extended this approach to hair simula-
tion using AABBs and k-DOPs [204].

Refitting BVHs works as long as the objects do not deform too much, that is,
when the accumulated overlap of the refitted BVs is not too large. This problem
arises for example in simulations of fracturing objects. In this case, a complete or
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partial rebuild of the BVH may increase the running time significantly. Larsson
and Akenine-Moller [129] proposed an algorithm that can handle highly dynamic
breakable objects efficiently: they start a refitting bottom-up update at the BVs in
the separation list and use a simple volume heuristic to detect degenerated sub-trees
that must be completely rebuilt. Otaduy et al. [174] used a dynamic re-structuring
of a balanced AVL-AABB tree. Tang et al. [215] described a two-level BVH for
breakable objects based on mesh connectivity and bounds on the primitives’ nor-
mals.

2.5.1 Excursus: GPU-Based Methods

Popular methods for real-time simulation of deformable objects like mass—spring
systems [136, 160], but also multi-body simulations [48, 216], can be easily par-
allelized. Consequently, they are perfectly suited for modern GPU architectures.
Hence, it is obvious to develop also collision detection schemes that work directly
on the graphics hardware instead of copying data back and forth between main mem-
ory and GPU memory.

Actually, GPU-based algorithms have been proposed for all parts of the collision
detection pipeline: the broad-phase Le Grand [135], Liu et al. [143], the narrow-
phase Chen et al. [28], GreB et al. [76] and even for the primitive tests [73, 240].

The first approaches relied on the fixed-function graphics pipeline of at least
OpenGL 1.6 and used image space techniques. For instance, Knott and Pai [119]
implemented a ray-casting algorithm based on frame buffer operations to detect
static interferences between polyhedral objects. Heidelberger et al. [86] described an
algorithm for computation of layered depth images using depth and stencil buffers.

Later, the fixed function pipelines had been replaced by programmable vertex and
fragment processors. This also changed the GPU collision detection algorithms: for
example, Zhang and Kim [258] performed massively parallel pairwise intersection
tests of AABBs in a fragment shader. Kolb et al. [122] used shaders for the simula-
tion of large particle systems, including collisions between the particles.

Today, GPU processors are freely programmable via APIs such as OpenCL or
CUDA. This further improves the flexibility of GPU-based collision detection al-
gorithms, like the approach by Pan and Manocha [176] that uses clustering and
collision-packet traversal or the method based on linear complementary program-
ming for convex objects by Kipfer [114].

Moreover, several special hardware designs to accelerate collision detection were
developed [6, 186]. With the Ageia PhysX card [38], one saw a special hardware
card even managing to enter the market. But due to increasing performance and
flexibility of GPUs it seems that special physics processing hardware has become
obsolete.
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Fig. 2.8 Ray tracing
supports a wide variety of
optical effects like reflections,
refractions, and shadows

2.6 Related Fields

Of course, data structures for the acceleration of geometric queries are not restricted
to collision detection. They are also widely used in ray tracing (see Sect. 2.6.1),
object recognition [199], 3D audio rendering [223, 234] or occlusion [242, 254],
view frustum [31] and backface culling [253]. Moreover, they accelerate visibility
queries including hierarchical z-Buffers [74] and back-to-front [55] or front-to-back
[69] rendering via BSP-Trees. Geometric hierarchies help to index [79, 201] and
search [180] geometric databases efficiently, and they improve hardware tessellation
[161].

This small selection of very different applications and the large number of data
structures already presented just for the field of collision detection in the previous
sections suggests that there is available an almost uncountable number of different
approaches. A perfect geometric data structure would be one that can process every
imaginable geometric search query optimally. Unfortunately, such a data structure
does not—and maybe cannot—exist. Quite to the contrary, much research is con-
cerned with finding optimal data structures for each small sub-problem. However,
maintaining dozens of different optimized data structures in a simple virtual en-
vironment with ray tracing, sound rendering and collision detection could also be
very inefficient due to memory waste and the computational cost of hierarchy up-
dates. Consequently, there is also a counter movement that proposes the use of more
general data structures [78].

2.6.1 Excursus: Ray Tracing

Basically, ray tracing is a rendering technique that realizes global illumination for
perfect reflections (see Fig. 2.8). Instead of scan converting all polygons in the
scene, as traditional renderers like OpenGL and DirectX do, a ray of light is traced
backward from the eye through the scene. If the ray hits an object, an additional
ray is shot to the light sources and moreover, reflected and refracted rays are further
traced recursively [238]. Consequently, the main challenge on tracing rays is to find
intersections between these rays and the scene. This problem is closely related to
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collision detection where two objects are checked for intersection. Therefore, also
the geometric acceleration data structures are very similar.

A complete overview of all existing data structures for ray tracing is far beyond
the scope of this excursus. As a starting point we would like to refer the interested
reader to the books and surveys of Hanrahan [83], Arvo and Kirk [5], Shirley and
Morley [200], and Suffern [209]. In the following, we will briefly point out simi-
larities and differences between ray tracing and collision detection and dwell on the
open challenges.

Almost all data structures that were proposed for collision detection had been
earlier applied to ray tracing. This includes non-hierarchical data structures like
uniform grids [3, 57], as well as bounding volume hierarchies [104, 192]. However,
a ray has to be tested for intersection with the whole scene, whereas during the
collision detection process objects are checked for collision with other objects in the
same scene. Therefore, the data structures for ray tracing are usually used at a scene
level, while collision detection uses them on an object level. Consequently, other
spatial subdivision data structures that are rarely used in collision detection, like
octrees [196, 237] and kd-trees [59], which were originally developed for associative
searches [16], became more popular for ray tracing [233].

However, these data structures are primarily designed for static scenes. If objects
in the scene move or deform, the data structures have to be updated or rebuilt. As
in collision detection for deformable objects, it is still a challenge to find the right
updating strategy and a lot of recent work has been done on this problem recently
[4, 244]. Moreover, even when using fast acceleration data structures, ray tracing
is computational very expensive and is not applicable for real-time rendering on
consumer hardware. However, the first GPU implementations that support parallel
tracing of rays seem to be very promising [40, 91, 150, 181, 221].
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