Chapter 2
A Brief Overview of Collision Detection

In this chapter we will provide a short overview on classical and recent research in
collision detection. In the introduction, we already mentioned the general complex-
ity of the collision detection problem due to its theoretical quadratic running time
for polygonal models like Chazelle’s polyhedron (see Fig. 1.1).

However, this is an artificial example, and in most real world cases there are only
very few colliding polygons. Hence, the goal of collision detection algorithms is to
provide an output sensitive running time. This means that they try to eliminate as
many of the O (n?) primitive tests as possible, for example by an early exclusion of
large parts of the objects that cannot collide. Consequently, the collision detection
problem can be regarded as a filtering process.

Recent physics simulation libraries like PhysX [163], Bullet [36] or ODE [203]
implement several levels of filtering in a so-called collision detection pipeline.

Usually, a scene does not consist only of a single pair of objects, but of a larger
set of 3D models that are typically organized in a scenegraph. In a first filtering step,
the broad phase or N-body culling, a fast test enumerates all pairs of potentially col-
liding objects (the so-called potentially collision set (PCS)) to be checked for exact
intersection in a second step, which is called the narrow phase. The narrow phase is
typically divided into two parts: first a filter to achieve pairs of potentially colliding
geometric primitives is applied and finally these pairs of primitives are checked for
collision. Depending on the scene, more filtering levels between these two major
steps can be used to further speed-up the collision detection process [247]. Fig-
ure 2.1 shows the design of CollDet [250], a typical collision detection pipeline.
All data structures that are developed for this work have been integrated into the
CollDet framework.

However, the chronological order of the collision detection pipeline is only one
way to classify collision detection algorithms, and there exist many more distinctive
factors. Other classifications are e.g. rigid bodies vs. deformable objects. Usually,
the filtering steps rely on geometric acceleration data structures that are set up in a
pre-processing step. If the objects are deformable, these pre-calculated data struc-
tures can become invalid. Consequently, deformable objects require other data struc-
tures or, at least, additional steps to update or re-compute the pre-processed struc-

R. Weller, New Geometric Data Structures for Collision Detection and Haptics, 9
Springer Series on Touch and Haptic Systems, DOI 10.1007/978-3-319-01020-5_2,
© Springer International Publishing Switzerland 2013

http://dx.doi.org/10.1007/978-3-319-01020-5_2

2 A Brief Overview of Collision Detection

Application | Scene Graph Collision Collision
O Front-End Matrix
Q O Collision
O C) Obj.s
——————
Exact Coll. Neighbor Neighbor
; Detection Filtering 2 Filtering 1
Coll.) 7 e ST
(Handler } .:13!_ ../\=
) ‘ =

hg

Set transform.

in scene graph Broad phase

Narrow phase

Fig. 2.1 The typical design of a collision detection pipeline

tures. Additionally, deformable objects require a check for self-collisions. Some of
these methods are described in Sect. 2.5.

Another distinctive feature is the representation of the geometric objects. Es-
pecially in computer graphics, the boundary of objects is usually approximated by
polygons. Hence, most collision detection algorithms are designed for polygonal ob-
jects. However, in CAD/CAM applications also curved surface representations like
non-uniform rational B-splines (NURBS) play an important role. For instance, Page
and Guibault [175] described a method based on oriented bounding boxes (OBBs)
especially for NURBS surfaces. Lau et al. [131] developed an approach based on
axis aligned bounding boxes (AABBs) for inter-objects as well as self-collision de-
tection between deformable NURBS. GreB et al. [76] also used an AABB hierarchy
for trimmed NURBS but transferred the computation to the GPU. Kim et al. [108]
proposed an algorithm based on bounding coons patches with offset volumes for
NURBS surfaces. Another object modeling technique often used in CAD/CAM is
the constructive solid geometry (CSG). Objects are recursively defined by union,
intersection or difference operations of basic shapes like spheres or cylinders. In
order to detect collisions between CSG objects, Zeiller [251] used an octree-like
data structure for the CSG tree. Su et al. [208] described an adaptive selection strat-
egy of optimal bounding volumes for sub-trees of objects in order to realize a fast
localization of possible collision regions.

Point clouds become more and more popular due to cheap depth-cameras that can
be used for 3D scanning like Microsoft’s Kinect [94]. One of the first approaches to
detect collision between point clouds was developed by Klein and Zachmann [116].
They use a bounding volume hierarchy in combination with a sphere covering of
parts of the surface. Klein and Zachmann [117] proposed an interpolation search
approach of the two implicit functions in a proximity graph in combination with

2 A Brief Overview of Collision Detection 11

randomized sampling. El-Far et al. [47] support only collisions between a single
point probe and a point cloud. For this, they fill the gaps surrounding the points
with AABBs and use an octree for further acceleration. Figueiredo et al. [53] used
R-trees, a hierarchical data structure that stores geometric objects with intervals in
several dimensions [80], in combination with a grid for the broad phase. Pan et al.
[177] described a stochastic traversal of a bounding volume hierarchy. By using ma-
chine learning techniques, their approach is also able to handle noisy point clouds.
In addition to simple collision tests, they support the computation of minimum dis-
tances [178].

This directly leads to the next classification feature: The kind of information
that is provided by the collision detection algorithm. Actually, almost all simulation
methods work discretely; this means that they check only at discrete points in time
whether the simulated objects collide. As a consequence, inter-penetration between
simulated objects is often unavoidable. However, in order to simulate a physically
plausible world, objects should not pass through each other and objects should move
as expected when pushed or pulled. As a result, there exist a number of collision
response algorithms to resolve inter-penetrations. For example, the penalty-based
method computes non-penetration constraint forces based on the amount of inter-
penetration [207]. Other approaches like the impulse-based method or constraint-
based algorithms need information about the exact time of contact to apply impul-
sive forces [110].

Basic collision detection algorithms simply report whether or not two objects in-
tersect. Additionally, some of these approaches provide access to a single pair of in-
tersecting polygons or they yield the set of all intersecting polygons. Unfortunately,
this is not sufficient to provide the information required for most collision response
schemes. Hence, there also exist methods that are able to compute some kind of
penetration depth, e.g. a minimum translational vector to separate the objects. More
advanced algorithms provide the penetration volume. Especially in path-planning
tasks, but also in constraint-based simulations, it is helpful to track the minimum
separation distance between the objects in order to avoid collisions. Finally, the
continuous collision detection computes the exact point in time when a collision oc-
curs between two object configurations. Section 2.3 provides an overview over al-
gorithms that compute these different penetration measurements. Usually, the more
information the collision detection algorithm provide, the longer is its query time.

More classifications of collision detection algorithms are possible. For instance,
real-time vs. offline, hierarchical vs. non-hierarchical, convex vs. non-convex, GPU-
based methods vs. CPU, etc. This already shows the great variety of different ap-
proaches.

Actually, collision detection has been researched for almost three decades.
A complete overview over all existing approaches would fill libraries and thus is
far beyond the scope of this chapter. So, in the following, we will present classic
methods that are still of interest, as well as recent directions that are directly related
to our work. As a starting point for further information on the wide field of collision
detection we refer the interested reader to the books by Ericson [49], Coutinho [37],
Zachmann and Langetepe [249], Eberly [43], Den Bergen [228], Bicchi et al. [18]

12 2 A Brief Overview of Collision Detection

=

(a) AABB (b) Sphere (c) 8-DOP (d) OBB

Fig. 2.2 Different bounding volumes

or Lin et al. [141] and the surveys by Jimenez et al. [97], Kobbelt and Botsch [120],
Ganjugunte [60], Lin and Gottschalk [140], Avril et al. [8], Kockara et al. [121],
Gottschalk [71], Fares and Hamam [51], Teschner et al. [218] and Kamat [103].

2.1 Broad Phase Collision Detection

The first part of the pipeline, called the broad-phase, should provide an efficient
removal of those pairs of objects that are not in collision. Therefore, objects are
usually enclosed into basic shapes that can be tested very quickly for overlap. Typi-
cal basic shapes are axis aligned bounding boxes (AABB), spheres, discrete oriented
polytopes (k-DOP) or oriented bounding boxes (OBB) (see Fig. 2.2).

The most simple method for the neighbor finding phase is a brute-force approach
that compares each object’s bounding volume with all others’ bounding volumes.
The complexity of this approach is O (n?), where n denotes the number of objects
in the scene. Woulfe et al. [241] implemented this brute-force method on a Field-
Programmable Gate Array (FPGA) using AABBs. However, even this hardware-
based approach cannot override the quadratic complexity.

Moreover, Edelsbrunner and Maurer [45] have shown that the optimal algorithm
to find intersections of # AABBs in 3D has a complexity of O (nlog?n + k), where
k denotes the number of objects that actually intersect. Two main approaches have
been proposed to take this into account: spatial partitioning and topological meth-
ods.

Spatial partitioning algorithms divide the space into cells. Objects whose bound-
ing volumes share the same cell are selected for the narrow phase. Examples for
such spatial partitioning data structures are regular grids [247], hierarchical spatial
hash tables [156], octrees [12], kd-trees [17] and binary space partitions (BSP-trees)
[162]. The main disadvantage of spatial subdivision schemes for collision detection
is their static nature: they have to be rebuilt or updated every time the objects change
their configuration. For uniform grids such an update can be performed in constant
time and grids are perfectly suited for parallelization. Mazhar [149] presented a
GPU implementation for this kind of uniform subdivision. However, the effective-
ness of uniform grids disappears if the objects are of widely varying sizes. Luque
et al. [147] proposed a semi-adjusting BSP-tree that does not require a complete

2.2 Narrow Phase Basics 13

re-structuring, but adjusts itself while maintaining desirable balancing and height
properties.

In contrast to space partitioning approaches, the topological methods are based
on the position of an object in relation to the other objects. The most famous method
is called Sweep-and-Prune [32]. The main idea is to project the objects’ bounding
volume on one or more axes (e.g. the three coordinate axis (x, y, z)). Only those
pairs of objects whose projected bounding volumes overlap on all axes have to be
considered for the narrow phase. Usually, this method does not construct any inter-
nal structure but starts from scratch at each collision check.

Several attempts have been proposed to parallelize the classical Sweep-And-
Prune approach. For instance, Avril et al. [10] developed an adaptive method that
runs on multi-core and multi-threaded architectures [9] and uses all three coordinate
axes. Moreover, they presented an automatic workload distribution based on off-line
simulations to determine fields of optimal performance [11]. Liu et al. [143] ported
the Sweep-and-Prune approach to the GPU using the CUDA framework. They use
a principal component analysis to determine a good sweep direction and combine it
with an additional spatial subdivision.

Tavares and Comba [217] proposed a topological algorithm that is based on De-
launay triangulations instead of Sweep-and-Prune. The vertices of the triangulation
represent the center of mass of the objects and the edges are the object pairs to be
checked in the narrow phase.

However, even if all these algorithms are close to the optimal solution proved by
Edelsbrunner and Maurer [45], in accordance to Zachmann [247], they are profitable
over the brute-force method only in scenarios with more than 100 dynamically sim-
ulated objects. This is due to the high constant factor that is hidden in the asymptotic
notation. Maybe this is also why much more research is done on the acceleration of
the narrow phase.

2.2 Narrow Phase Basics

While the broad phase lists pairs of possible colliding objects, the objective of the
narrow phase is to determine exact collision checks between these pairs.

A brute force solution for the narrow phase could simply check all geometric
primitives of one object against all primitives of the other object. Surely this would
again result in quadratic complexity. Due to the fast evolution of modern graphics
hardware, objects can consist of millions of polygons today, and a quadratic running
time is not an option. Consequently, more intelligent algorithms are required.

Actually, the narrow phase can be divided into two phases by itself. In a first
phase, non-overlapping parts of the objects are culled; in a second step, an accurate
collision detection is performed between pairs of geometric primitives that are not
culled in the first phase.

Instead of data structures that partition the world-space in the broad phase, in
the narrow phase, most often object partitioning techniques are used for the culling

14 2 A Brief Overview of Collision Detection

Level 1
—
/ AN
Level 2
—-
¥ \ '/ X
Level 3
e
7

Fig. 2.3 The BVH principle: Geometric objects are divided recursively into subsets of their geo-
metric primitives (left) and each node on the tree realizes a bounding volume for all primitives in
its sub-tree (right)

stage. The common data structures for this task are bounding volume hierarchies
(BVHs). The technique of bounding volumes, known from the previous section
(Fig. 2.2), is recursively applied to a whole object. This results in a tree-like struc-
ture. Each node in such a tree is associated to a bounding volume that encloses all
primitives in its sub-tree (see Fig. 2.3).

Usually, a BVH is constructed in a pre-processing step that can be compu-
tationally more or less expensive. During running time a simultaneous recursive
traversal of the BVHs of two objects allows a conservative non-intersection prun-
ing: if an intersection is detected in the root of the BVH, the traversal proceeds
by checking the bounding volumes of the root node’s children and so on until the
leaf nodes are reached and an exact collision test between the geometric primitives
can be performed. Non-overlapping BVs are discarded from further consideration.
The whole traversal algorithm results in a bounding volume test tree (BVIT) (see
Fig. 2.4).

Usually, BVs for the BVHs are spheres [92, 185], AABBs [182, 225] and
their memory optimized derivative called BoxTree [248], which is closely related
to kd-Trees, k-DOPs [118, 245], a generalization of AABBs, OBBs [2, 15, 70]
or convex hull trees [46]. Additionally, a wide variety of special BVs for spe-

2.2 Narrow Phase Basics 15

Fig. 2.4 The simultaneous recursive traversal of two BVHs during the collision check results in a
bounding volume test tree

cial applications has been developed. For instance, we have spherical shells [125],
swept spheres [126], spheres that are cut by two parallel planes called slab cut
balls [130], quantized orientation slabs with primary orientations (QuOSPO) trees
[85] that combine OBBs with k-DOPs, or combinations of spherical shells with
OBBs as proposed by Krishnan et al. [124] for objects that are modeled by Bezier
patches.

The optimal bounding volume should

tightly fit the underlying geometry
provide fast intersection tests

be invariant undergoing rigid motion

not use too much memory

be able to be build automatically and fast

Unfortunately, these factors are contradictory. For example, spheres offer very
fast overlap and distance tests and can be stored very memory efficiently, but they
poorly fit flat geometries. AABBs also offer fast intersection tests, but they need to
be realigned after rotations. Or, if no realignment is used, a more expensive OBB
overlap test is required. But in this case, the tighter fitting OBBs could be used di-
rectly. However, they also require more memory. Convex hulls offer the tightest fit
among convex BVs, but the overlap test is very complex and their memory con-
sumption depends on the underlying geometry.

Consequently, choosing the right BVHs is always a compromise and depends
on the scenario. Basically, the quality of BVH-based algorithms can be measured
by the following cost function, which was introduced by Weghorst et al. [235] to
analyze hierarchical methods for ray tracing and later was adapted to hierarchical

16 2 A Brief Overview of Collision Detection
collision detection methods by Gottschalk et al. [70]:

T =N,Cy+ N,Cp, with

T = Total cost of testing a pair of models for intersection
N, = Number of BV Tests
C, = Cost of a BV Test

2.1)

N = Number of Primitive Tests

Cp = Cost of a Primitive Test

In addition to the shape of the BV, there are more factors that affect the efficiency
of a BVH, including the height of the hierarchy, which may but should not be influ-
enced by its arity or the traversal order during collision queries. The first two factors
have to be considered already during the construction of the BVH.

Basically, there exist two major strategies to build BVHs: bottom-up and top-
down. The bottom-up approach starts with elementary BVs of leaf nodes and merges
them recursively together until the root BV is reached. A very simple merging
heuristic is to visit all nearest neighbors and minimize the size of the combined
parent nodes in the same level [191]. Less greedy strategies combine BVs by using
tilings [137].

However, the most popular method is the top-down approach. The general idea
is to start with the complete set of elementary BVs, then split that into some parts
and create a BVH for each part recursively. The main problem is to choose a good
splitting criterion. A classical splitting criterion is to simply pick the longest axis
and split it in the middle of this axis. Another simple heuristic is to split along the
median of the elementary bounding boxes along the longest axis. However, it is
easy to construct worst case scenarios for these simple heuristics. The surface area
heuristic (SAH) tries to avoid these worst cases by optimizing the surface area and
the number of geometric primitives over all possible split plane candidates [68].
Originally developed for ray tracing, it is today also used for collision detection.
The computational costs can be reduced to O (nlogn) [232, 233] and there exist
parallel algorithms for the fast construction on the GPU [132]. Many other splitting
criteria were compared by Zachmann [246].

In addition to the splitting criterion, also the choice of the BV affects the per-
formance of the hierarchy creation process. Even if this is a pre-processing step,
extremely high running times are undesirable in many applications. Computing an
AABB for a set of polygons or a set of other AABBs is straightforward. Also k-
DOPs can be computed relatively easy. But the only optimal solution for OBB com-
putation is O3) and very hard to implement [166]. Chang et al. [24] presented a
close to optimal solution based on a hybrid method combining genetic and Nelder-
Mead algorithms. Other heuristics, like principal component analysis [100], are not
able to guarantee the desired quality in all cases. On the other hand, very compli-
cated BVs, like the convex hull, can be computed efficiently in O (nlogn) [102].

2.2 Narrow Phase Basics 17

With OBBs, also the computation of a minimum enclosing sphere turns out to be
very complicated. Welzl [236] formulated it as a linear programming problem.

However, the choice of spheres as BVs also points to another challenge: the set
of elementary BVs. For AABBs, OBBs or k-DOPs, usually a single primitive or a
set of adjacent primitives are enclosed in an elementary BV. For spheres this is not
an optimal solution, because proximate primitives, often represented by polygons,
usually form some kind of flat geometry that poorly fits into a sphere. Therefore,
Bradshaw and O’ Sullivan [20] presented a method based on the medial axis to group
also distant spheres in the same elementary BV.

The influence of the trees’ branching factor is widely neglected in the literature.
Usually, most authors simply use binary trees for collision detection. But according
to Zachmann and Langetepe [249] the optimum can be larger. Mezger et al. [155]
stated that, especially for deformable objects, 4-ary or 8-ary trees could improve the
performance. This is mainly due to the smaller number of BV updates. However,
we will return to this topic in Sect. 2.5.

During running time, the performance of the BVH depends on the traversal or-
der. Usually, a simultaneous recursive traversal of both BVHs is applied. The easiest
way to do this is via the depth-first-search (DFS). Gottschalk [72] additionally pro-
posed a breath-first-search (BFS) traversal using a queue. For complex objects with
many polygons and hence deep trees, the DFS can lead to a stack overflow. How-
ever, on modern CPUs with large stack sizes, the DFS is much faster. O’Sullivan
and Dingliana [168] proposed a best-first-search method for sphere trees. It simply
descends into sub-trees with largest BV-overlap first. However, in our experience,
the time to keep a priority queue often exceeds its advantages.

The final step in the collision detection pipeline is the primitive test. Most often
the surfaces of the objects are represented by polygons or, more specific, triangles.
A general polygon—polygon intersection test is described by Chin and Wang [29].
For the special case of triangles, there exist a wide variety of fast intersection tests,
e.g. by Méller [159] or Tropp et al. [222]. Even today new optimized approaches
are proposed for special cases: for instance Chang and Kim [25] described a trian-
gle test that takes into account that many intermediate computation results from an
OBB test can be re-used for the triangle intersection. Many fast intersection tests
are implemented by Held [87] and Schneider and Eberly [197].

Another important class of geometric primitives are convex polytopes. Not only
because they are widely used in physics-based simulations, but also from an histori-
cal point of view: some of the first collision detection algorithms are based on them.
Moreover, they can be used as both geometric primitives and bounding volumes.
Actually, there exist two main approaches for convex polytopes: feature-based al-
gorithms and simplex-based algorithms.

The first feature-based method was proposed by Lin and Canny [139]. Features
of a convex polyhedron are vertices, edges and faces. The Lin—Canny algorithm per-
forms a local search on these features using a pre-computed Voronoi diagram [231].
The convexity guarantees that local minima are avoided. Furthermore, the algo-
rithm uses spatial and temporal coherence between two distinctive queries: usually,
objects do not move too much between two frames of a physics-based simulation.

18 2 A Brief Overview of Collision Detection

Hence, the closest feature in the current frame is close to the closest feature from
the next frame. A major drawback of the algorithm is that it cannot handle inter-
sections. In this case it runs in an endless loop. V-Clip [157], an extension of the
classical Linn—Canny method, eliminates this serious defect.

The best known simplex-based algorithm was developed by Gilbert et al. [65].
Instead of using Voronoi diagrams, the GJK-algorithm is based on Minkowski dif-
ferences. In addition to the boolean collision detection that simply reports whether
two objects collide or not, the GJK-algorithm also returns a measure of the inter-
penetration [22]. Moreover, it achieves the same almost constant time complexity as
Lin—Canny. A stable and fast implementation of the enhanced GJK algorithms was
presented by Bergen [226].

Both kinds of algorithms are designed for convex polyhedra. However, by us-
ing a convex decomposition of well-behaved concave polyhedrons, they can also
be extended to other objects [26]. But finding good convex decompositions is not
straightforward and is still an active field of research [81, 138].

2.3 Narrow Phase Advanced: Distances, Penetration Depths
and Penetration Volumes

For physics-based simulations a simple boolean answer at discrete points in time to
whether a pair of objects intersect or not is often not sufficient. Usually, some kind
of contact information is required to compute repelling forces or non-intersection
constraints.

As long as a pair of objects rests in a collision-free configuration, a simple way
to characterize the extent of repelling forces is to use the minimum distance be-
tween them. However, collisions are often unavoidable due to the discrete structure
of the simulation process. Therefore, a penetration measure is required for configu-
rations where the objects overlap. Some authors proposed a minimum translational
vector to separate the objects. This is often called the penetration depth. The most
complicated, but also the only physically plausible inter-penetration measure is the
penetration volume [164], which corresponds directly to the amount of water being
displaced by the overlapping parts of the objects. Last but not least, it is possible to
compute the exact point in time between two discrete collision checks; this is called
continuous collision detection. In fact, it is not a measure of the amount of inter-
penetration, but the techniques that are used for its computation are very similar to
other penetration depth computations.

2.3.1 Distances

The Lin—Canny algorithm, described in the previous section, is already an example
of one using minimum distance computations. Tracking of the closest features di-
rectly delivers the required distances. Actually, computing minimum distances can

2.3 Narrow Phase Advanced 19

be performed in a very similar way to conventional boolean collision detection using
BVHs.

The traditional recursive BVH traversal algorithm, described above, tests
whether two BVs—one from each BVH—overlap. If this is the case, the recursion
continues to their children. If they do not, the recursion terminates. If two leaves are
reached, a primitive intersection test is performed.

The simple recursive scheme can be modified easily for minimum distance com-
putations: just the intersection test of the primitives has to be replaced by a distance
computation between the primitives and the intersection test between the BVs by a
distance test between the BVs. During the traversal, an upper bound for the distance
between two primitives is maintained by a variable §. This variable can be initial-
ized with oo or the distance between any pair of primitives. é has to be updated if a
pair of primitives with a smaller distance is found.

Obviously, BVs with larger distances than § can be culled, because if the BVs
have a larger distance, this must also be true for all enclosed primitives. This is ex-
actly the way most authors using BVHs implemented their algorithms; e.g. Larsen
et al. [126] used the swept-sphere method as BVs together with several speed-up
techniques, Quinlan [185] proposed sphere trees, Bergen [226] used AABBs in
combination with the GJK-based Minkowski difference; Lauterbach et al. [133] im-
plemented OBB trees running on the GPU. Johnson and Cohen [98] generalized
the basic BVH-based distance computation in the framework of minimum distance
computations.

Actually, all these approaches can be interrupted at any time and they deliver an
upper bound for the minimum distance. Other approaches are able to additionally
provide a lower bound, like the spherical sector representation presented by Bonner
and Kelley [19], or the inner—outer ellipsoids by Ju et al. [101] and Liu et al. [144].

Another alternative for distance computations are distance fields [56], which can
also be combined with BVHs [58].

However, all these approaches use the Euclidean distance between the objects.
Other authors also proposed different metrics like the Hausdorff-distance, which de-
fines the maximum deviation of one object from the other object [213, 243]. Zhang
et al. [256] used a so-called DISP distance, which is defined as the maximum length
of the displacement vector over every point on the model at two different configura-
tions. This metric can be used for motion planning tasks [134].

A local minimum distance for a stable force feedback computation was proposed
by Johnson et al. [99]. They used spatialized normal cone pruning for the collision
detection. The normal cone approach differs from prior works using BVHs, because
it searched for extrema of a minimum distance formulation in the space of normals
rather than in Euclidean space.

2.3.2 Continuous Collision Detection

Computing repelling forces on the separating distance can lead to visual artifacts in
physics-based simulations, e.g. when the objects bounce away before they really are

20 2 A Brief Overview of Collision Detection

in visual contact. Moreover, if the objects move too fast, or the time step between
two collision queries is too large, the objects could pass through each other. To avoid
errors like this tunneling effect, it would be better to really compute the exact time
of impact between a pair of objects [35]. Several techniques have been proposed to
solve this continuous collision detection problem, which is sometimes also called
dynamic collision detection.

The easiest way is to simply reuse the well researched and stable algorithms
known from static collision detection. Visual interactive applications usually require
updating rates of 30 frames per second, i.e. there passes about 30 milliseconds of
time between two static collision checks. Recent boolean collision detection algo-
rithms require only a few milliseconds, depending on the objects’ configuration.
Hence, there is plenty of time to perform more than one query between two frames.
A simple method, the so called method of pseudo-continuous collision, realizes ex-
actly this strategy: it performs static collision detection with smaller time steps [88].
Even with a higher sampling frequency, it is, however, still possible to miss contacts
between thin objects.

Conservative advancement is another simple technique that avoids these prob-
lems. The objects are repeatedly advanced by a certain time-step, which guaran-
tees a non-penetration constraint [158]. Usually, the minimum distance is used to
compute iteratively new upper bounds for the advancement [259]. Conservative ad-
vancement is also perceived as a discrete ancestor of the kinetic data structures that
we will review in the next chapter.

Another method is to simply enclose the bounding volumes at the beginning and
at the end of a motion step by a swept volume. This can be done very efficiently for
AABBs [44]. Coming and Staadt [34] described a velocity-aligned DOP as swept
volume for underlying spheres as BVs, and Redon et al. [189] proposed an algorithm
for OBBs. Taeubig and Frese [210] used sphere swept convex hulls. Also ellipsoids
are an option [30].

The swept volumes guarantee conservative bounds for their underlying primi-
tives, and consequently the swept BVHs can be traversed similarly to the discrete
BVHs. However, an additional continuous collision test for the primitives is required
to achieve the exact time of impact. Actually, these tests (and in fact, also the tests
between the BVs) depend on the trajectories of the primitives, which are usually not
known between two simulation steps. Often, a simple linear interpolation is used
to approximate the in-between motion [239]. For a pair of triangles this yields six
face—vertex and nine edge—edge tests. Each of these elementary tests requires one
to solve a cubic equation. This is computationally relatively costly. Therefore, some
authors additionally proposed feature-based pre-tests, like the subspace filters by
Tang et al. [211] or additional BVs like k-DOPs for the edges [93].

However, more accurate but also more complicated interpolation schemes have
been described as well. Canny [23] proposed quaternions instead of Euler angles but
still got a 6D complexity. Screw motions are often used [105] because they can also
be computed by solving cubic polynomials. Redon et al. [187] combined them with
interval arithmetic. Zhang et al. [260] defined Taylor models for articulated models
with non-convex links. Von Herzen et al. [230] used Lipschitz bounds and binary
subdivision for parametric surfaces.

2.3 Narrow Phase Advanced 21

There exist a few other acceleration techniques; e.g. Kim et al. [106] implement
a dynamic task assignment for multi-threaded platforms, or Fahn and Wang [50]
avoid BVHs by using a regular grid in combination with an azimuth elevation map.
However, continuous collision detection is still computationally too expensive for
real-time applications, especially, when many complex dynamic objects are simu-
lated simultaneously.

2.3.3 Penetration Depth

The minimum distance is not a good measure to define repelling forces, and com-
puting the exact time of impact using continuous collision detection is too time
consuming for real-time applications. Consequently, in research one has developed
another penetration measure: the penetration depth. In fact, it is not entirely cor-
rect to speak about the penetration depth, because there exist many different, partly
contradictory, definitions. A widely used definition describes it as the distance that
corresponds to the shortest translation required to separate two intersecting objects
[41].

The same authors also delivered a method for their computation based on the
Dobkin and Kirkpatrick hierarchy and Minkowski differences. They derived a com-
plexity of O(n?) for convex and O (n*) for non-convex polyhedral objects consist-
ing of n polygons. Cameron [22] presented a similar approach for convex objects,
which can additionally track the minimum distance in non-intersection cases. Es-
pecially the computation of the Minkowski difference is very time consuming and
difficult. Therefore, several approximation schemes have been developed: for in-
stance Bergen [227] described an expanding polytope algorithm that yields a poly-
hedral approximation of the Minkowski difference. Agarwal et al. [1] proposed an
approximation algorithm based on ray-shooting for convex polyhedra. Kim et al.
[109] implicitly constructed the Minkowski difference by local dual mapping on the
Gaussian map. Additionally, the authors enhanced their algorithm by using heuris-
tics to reduce the number of features [111, 113]. Other approximations rely on dis-
cretized objects and distance fields [54].

Some authors computed local approximations of the penetration depth if the ob-
jects intersect in multiple disjoint zones. Therefore, penetrating zones were parti-
tioned into coherent regions and a local penetration depth was computed for each of
these regions separately. Redon and Lin [188] computed a local penetration direc-
tion for these regions and then used this information to estimate a local penetration
depth on the GPU. Je et al. [96] presented a method based on their continuous col-
lision detection algorithm using conservative advancement [212]: they constructed
a linear convex cone around the collision free configuration found via CCD and
then formulated a projection of the colliding configuration onto this cone as a linear
complementarity problem iteratively.

Also other metrics have been proposed for the characterization of penetrating
objects: for instance, Zhang et al. [255] presented an extended definition of the pen-

22 2 A Brief Overview of Collision Detection

etration depth that also takes the rotational component into account, called the gen-
eralized penetration depth. It differs from the translational penetration depth only
in non-convex cases, and the computation of an upper bound can be reduced to the
convex containment problem if at least one object is convex [257]. Gilbert and Ong
[66] defined a growth distance that unifies the penetration measure for intersecting
but also disjoint convex objects: basically, it measures how much the objects must be
grown so that they were just in contact. Also an algorithm for the computation of the
growth distance was presented [165]. Zhu et al. [261] used a gauge function [90] in-
stead of the Euclidean norm to define pseudo-distances for overlapping objects and
they presented a constrained optimization-based algorithm for its calculation.

The publication years presented in this subsection already show that penetra-
tion depth computation has recently become a very active field of research. This is
mainly because computing the penetration depth is still computationally very expen-
sive and becomes practically relevant only on very fast machines. However, using
the classical penetration depth still has another serious drawback: the translational
vector is not continuous at points lying on the medial axis. This results in flipping
directions of the contact normals when used directly as penalty force vector. More-
over, it is not straightforward to model multiple simultaneous contacts. Tang et al.
[214] tried to avoid these problems by accumulating penalty forces along the pen-
etration time intervals between the overlapping feature pairs using a linear CCD
approach.

2.3.4 Penetration Volume

Compared to other penetration measures, the literature on penetration volume com-
putation is sparse. More precisely, there exist only two other algorithms apart from
our approach: one method, proposed by Hasegawa and Sato [84], constructs the in-
tersection volume of convex polyhedra explicitly. For this reason, it is applicable
only to very simple geometries, like cubes, at interactive rates.

The other algorithm was developed by Faure et al. [52] simultaneously with our
Inner Sphere Trees. They compute an approximation of the intersection volume from
layered depth images on the GPU. This approach is applicable to deformable ge-
ometries but restricted to image space precision. And apart from that, it is relatively
slow and it cannot provide continuous forces and torques for collision response.

2.4 Time Critical Collision Detection

Despite the computational power available, the performance of collision detection
algorithms is still critical in many applications, especially if a required time bud-
get must never be exceeded. This problem arises in almost all interactive real-time
applications where frame rates of at least 30 fps are needed for a smooth visual

2.4 Time Critical Collision Detection 23

feedback. Consequently, only 30 msec remain for rendering and physics-based sim-
ulation. For the rendering step, there exists the technique of levels-of-details (LOD)
to reduce the workload of the graphics pipeline [146]. The main idea is to store
geometric data in several decreasing resolutions and choose the right LOD for ren-
dering according to the distance from the viewpoint. Similar techniques can also be
applied to the physics-based simulation; more precisely, to the collision detection
step. Hence, this so-called time-critical collision detection reduces the computation
time at the cost of accuracy.

Typically, time-critical collision detection methods rely on simplifications of the
complex objects like the visual LOD representations. This can be done either ex-
plicitly or implicitly. Moreover, they often use frame-to-frame coherence because in
physics-based simulations there should usually be no discontinuities, and hence the
contact information between two collision checks does not differ too much.

For instance, the BVTT derived from a simultaneous BVH traversal (see Fig. 2.4
in the previous section) holds in each node the result of the query between two BVs.
Those BV pairs where the traversal stops build a list in the BVTT, the separation
list [27]. In case of high coherence, the traversal does not have to be restarted at the
roots of the BVHs for each query, but this list can be directly re-used. Ehmann and
Lin [46] called this the generalized front tracking. Lin and Li [142] enhanced this
method by defining an incremental algorithm that prioritizes the visiting order: dan-
gerous regions where collisions may occur with a high probability are prioritized.

These are, however, just examples for coherence. In fact, the classical simultane-
ous BVH traversal lends itself well to time-critical collision detection: the traversal
can simply be interrupted when the time budget is exhausted. This was first pro-
posed by Hubbard [92], who additionally used a round-robin order for the collision
checks. This approach was later extended by O’Sullivan and Dingliana [168, 169]
and Dingliana and O’Sullivan [39]: like Hubbard [92] they also used an interrupt-
ible sphere tree traversal but added a more appropriate collision response solution
to Hubbard’s elementary response model. A similar method can also be adopted
for deformable objects [154]. Another extension using sphere trees with a closest
feature map to avoid over-estimations of the contact information was presented by
Giang and O’Sullivan [62, 63].

Klein and Zachmann [115] described an average case approach for time-critical
traversals (ADB-trees): for each pair of BVs they computed the probability that
an intersection of the underlying primitives will occur. Coming and Staadt [33]
presented an event-based time-critical collision detection scheme relying on stride-
scheduling in combination with kinetic Sweep-and-Prune and an interruptible GJK
version.

Other authors created the LOD explicitly. For example, Otaduy and Lin [171]
presented a dual hierarchy for both the multi-resolution representation of the geom-
etry and its BVH using convex hulls. A similar approach, called clustered hierarchy
of progressive meshes, was developed by Yoon et al. [243] for very large scenes
that require out-of-core techniques. James and Pai [95] used the reduced models not
only for fast collision detection, but also presented a deformation method based on
their bounded deformation trees.

24 2 A Brief Overview of Collision Detection

2.4.1 Collision Detection in Haptic Environments

Almost all collision detection approaches described above are primarily designed
to work in at least visual real-time. As mentioned in the introduction, for a
smooth visual sensation update-rates of 30 Hz are sufficient, whereas haptic ren-
dering requires an update frequency of 1000 Hz for a realistic haptic sensation.
Moreover, detailed contact information has to be provided for a realistic percep-
tion.

None of the previously described methods, especially those computing penetra-
tion depths or times of impact, can be accelerated by a factor of 30 out of the box
for reasonable scene complexities in haptic environments. Consequently, collision
detection for haptics often leads to further simplifications in order to guarantee the
high frequency, but also to compute plausible forces.

24.1.1 3 DOF

In the early times of haptic human—computer history, the beginning 1990s [195],
a major simplification affected both the design of haptic hardware interfaces and
the collision detection: instead of simulating the complex interaction of rigid bod-
ies, only a single point probe was used for the interaction. This required only the
computation of three force components at the probe’s tip. As a result, many 3 DOF
haptic devices, like the SensAble Phantom Omni Massie and Salisbury [148], en-
tered the market and also a lot of research was done on 3 DOF haptic rendering
algorithms.

One of the first algorithms for this problem was presented by Zilles and Salisbury
[262]. They proposed the usage of a two different points: one represents the real
position of the probe’s tip, whereas the second, they call it god object, is constrained
to the surface of the polygonal object. A spring—damper model between these points
defines the force. Ruspini et al. [194] extended this approach by sweeping a sphere
instead of using a single point in order to avoid the god object slipping into a virtual
object through small gaps. Ho et al. [89] also took the movement of the god object
into account by using a line between its previous and its recent position. BVHs
can be used for accelerating the collision detection. For example, Gregory et al.
[75] developed a hybrid hierarchical representation consisting of uniform grids and
OBBs.

Also algorithms for other than polygonal object representations have been pro-
posed: Thompson et al. [220] developed an algorithm that is applicable for 3 DOF
rendering of NURBS surfaces without the use of any intermediate representation.
Gibson [64] and Avila and Sobierajski [7] described approaches for volumetric rep-
resentations. More recent works also included the GPU for faster collision detection
using local occupancy maps [107].

2.4 Time Critical Collision Detection 25

Fig. 2.5 The Voxmap-Pointshell approach for 6 DOF haptic rendering uses two different data
structures: A voxelization (/eft) and a point-sampling of the objects’ surface (right)

2.4.1.2 6 DOF

Many applications, like training or virtual prototyping, require interaction with com-
plex virtual tools instead of just a single point probe to ensure a sufficient degree of
realism. As soon as the haptic probe includes 3D objects, the additional render-
ing of torques becomes important. Also, simultaneous multiple contacts with the
environment may occur. This significantly increases the complexity of the collision
detection but also of the collision response. Generally, a complete 6 DOF rigid-body
simulation, including forces and torques, has to be performed in only 1 millisecond.
For very simple objects, consisting of only a few hundred polygons, the tradi-
tional collision approaches described above can be used. Ortega et al. [167] ex-
tended the god-object method to 6 DOF haptic rendering using continuous collision
detection to derive the position and orientation of the god object. However, they
cannot guarantee to meet the time budget; therefore they use asynchronous update
processes. Kolesnikov and Zefran [123] presented an analytical approximation of
the penetration depth with additional considerations of the rotational motion.
Despite simplifications of temporal constraints, most often geometric simplifica-
tions were used. Many 6 DOF haptic rendering approaches are based on the Voxmap
Pointshell (VPS) method [151]. The main idea is to divide the virtual environment
into a dynamic object that is allowed to move freely through the virtual space and
static objects that are fixed in the world. The static environment is discretized into a
set of voxels, whereas the dynamic object is described by a set of points that repre-
sents its surface (see Fig. 2.5). During query time, for each of these points it is deter-
mined with a simple boolean test, whether it is located in a filled volume element or
not. Today, voxelization can be efficiently computed using the GPU [42, 179, 198].
Many extensions for the classical VPS algorithms have been proposed: for in-
stance, the use of distance fields instead of simple boolean voxmaps [152] or an
additional voxel hierarchy for the use of temporal coherence [153], since also re-
cent computer hardware can perform only a few thousands intersection tests in 1
millisecond. Prior and Haines [183] described a proximity agent method to reduce

26 2 A Brief Overview of Collision Detection

Fig. 2.6 Deformable objects like cloth require special algorithms, because pre-computed data
structures become invalid after the deformation. Moreover, collision between parts of the object
itself may occur

the number of collision tests for multiple object pairs in collaborative virtual en-
vironments. Renz et al. [190] presented extensions to the classic VPS, including
optimizations to force calculation in order to increase its stability. Barbi¢ and James
[13] developed a distance-field-based approach that can handle contacts between
rigid objects and reduced deformable models at haptic rates. Later they extended
their approach to cover also deformable versus deformable contacts [14]. Ruffaldi
et al. [193] described an implicit sphere tree based on an octree that represents the
volumetric data. However, even these optimizations cannot completely avoid the
limits of VPS, namely aliasing effects and huge memory consumption.

Other authors use level-of-detail techniques to simplify the complexity of large
polygonal models [145]. Otaduy and Lin [172] presented a sensation preserving
simplification algorithm and a collision detection framework that adaptively selects
a LOD. Later, they added a linearized contact model using contact clustering [170].
Another idea is to combine low-resolution geometric objects along with texture im-
ages that encode the surface details [173]. Kim et al. [112] also clustered contacts
based on their spatial proximity to speed up a local penetration depth estimation us-
ing an incremental algorithm. Johnson et al. [99] approximated the penetration depth
by extending their normal cone approach. Glondu et al. [67] developed a method for
very large environments using a neighborhood graph: for objects that are closer to
the haptic probe they used the LOD.

2.5 Collision Detection for Deformable Objects

Usually, collision detection algorithms rely on pre-computed data structures like
BVHs. This works fine, as long as the geometry of the objects does not change,
i.e. if the objects are rigid. However, our world consists not only of rigid objects
but includes a lot of deformable objects, like cloth (see Fig. 2.6). Consequently, a
realistic simulation should also be able to handle deformable models. Beside cloth
simulation, popular deformable applications include character animation, surgery
simulation, and fractures.

An additional challenge for collision detection of deformable objects is the pos-
sibility that parts of one object intersect other parts of the same object, the so-called

2.5 Collision Detection for Deformable Objects

r—ﬂ)% m
(a) Bottom-up update (b) Top-down update

o

(c) Hybrid update

Fig. 2.7 Different updating strategies for BVHs

self-collisions. Actually, BVHs can easily be employed to find self-collisions by
simply checking the BVH of an object against itself and rejecting collisions be-
tween adjacent primitives [229]. Additionally, techniques like hierarchies of normal
cones [184] or power diagrams [77] can be used for further acceleration.

Since BVHs have proven to be very efficient for rigid objects, and, moreover,
they can easily be extended to self-collision detection, researchers also want to use
them for deformable objects. As the BVHs become invalid after deformations, sev-
eral approaches have been published to handle this problem: the easiest method is
to rebuild the BVH from scratch after each deformation. Unfortunately, it turns out
that a complete rebuild is computationally too expensive. Even modern GPU accel-
eration cannot guarantee real-time performance for BVH construction in reasonably
complex scenes [132]. Some authors reduced the rebuild to interesting regions. For
example, Smith et al. [202] used a lazy reconstruction of an octree for all primitives
in the overlap region, or they keep a more complex data structure like a full octree
and simply reinsert all primitives in the leaves in each frame [61]. Other approaches
completely avoid hierarchies but used regular spatial subdivision data structures like
uniform grids [224, 252]. Spatial hashing helps to reduce the high memory require-
ments of uniform grids [219]. However, choosing the right grid size remains an
unsolved problem due to the inherent “teapot in a stadium” problem [82].

Another method is to avoid the complete rebuild by simply updating the BVs
of a pre-computed BVH after deformations. Bergen [225] stated that updating is
about ten times faster compared to a complete rebuild of an AABB hierarchy, and
as long as the topology of the object is conserved, there is no significant performance
loss in the collision check compared to rebuilding. Basically, there exist two main
techniques for updating a BVH: bottom-up and top-down. Bottom-up updates start
by refitting the BVs of the primitives and merge them upwards with the root of
the tree. This can be done efficiently for AABB trees [229] and sphere trees [21].
However, during a collision query usually not all of these BVs are visited. Hence
a lot of work may be done on updates that are not required. A simple strategy to
reduce the number of updated BVs is to update them on-line, when they are in fact
visited during a traversal. This requires the traversal of all primitives placed under a
BV. This is the typical top-down approach [127]. Of course, this raises the question:
Which of the two methods is better?

28 2 A Brief Overview of Collision Detection

Basically, the performance of deformable collision detection algorithms can be
derived by a simple extension of the cost function for rigid objects (see Eq. (2.1)):

T=N,C,+N,C,+N,C, with
T = Total cost of testing a pair of models for intersection
N, = Number of BV Tests

C, = Cost of a BV Test
2.2)
N, = Number of Primitive Tests

Cp = Cost of a Primitive Test
N, = Number of BV Updates
C, = Cost of a BV Update

Usually, N, is higher for the bottom-up update than for the top-down approach.
On the other hand, C,, is higher for the top-down method. Consequently, there is no
definite answer to the question. Actually, according to Larsson and Akenine-Mdller
[127], if many deep nodes in a tree are reached, it gives a better overall performance
to update the AABBs in a tree bottom-up. In simple cases, however, with only a
few deep nodes visited in a collision test, the top-down update performs better. As a
compromise, the authors proposed a hybrid updating strategy: for a tree with depth
n, initially the first 5 should be updated bottom-up. The lower nodes should be up-
dated top-down on the fly during collision traversal (see Fig. 2.7). Mezger et al.
[155] accelerated the update by omitting the update process for several time steps.
Therefore, the BVs are inflated by a certain distance, and as long as the enclosed
polygon does not move farther than this distance, the BV does not need to be up-
dated.

If specific information about the underlying deformation scheme or the geomet-
ric objects is available, additional updating techniques can be used for further ac-
celeration. For instance, Larsson and Akenine-Moller [128] proposed a method for
morphing objects, where the objects are constructed by interpolation between some
morphing targets: one BVH is constructed for each of the morph targets so that the
corresponding nodes contain exactly the same vertices. During running time, the
current BVH can be constructed by interpolating the BVs. Spillmann et al. [206]
presented a fast sphere tree update for meshless objects undergoing geometric de-
formations that also supports level-of-detail collision detection. Lau et al. [131]
described a collision detection framework for deformable NURBS surfaces using
AABB hierarchies. They reduce the number of updates by searching for special de-
formation regions. Guibas et al. [77] used cascade verification in a sphere tree for
deformable necklaces. Sobottka et al. [205] extended this approach to hair simula-
tion using AABBs and k-DOPs [204].

Refitting BVHs works as long as the objects do not deform too much, that is,
when the accumulated overlap of the refitted BVs is not too large. This problem
arises for example in simulations of fracturing objects. In this case, a complete or

2.6 Related Fields 29

partial rebuild of the BVH may increase the running time significantly. Larsson
and Akenine-Moller [129] proposed an algorithm that can handle highly dynamic
breakable objects efficiently: they start a refitting bottom-up update at the BVs in
the separation list and use a simple volume heuristic to detect degenerated sub-trees
that must be completely rebuilt. Otaduy et al. [174] used a dynamic re-structuring
of a balanced AVL-AABB tree. Tang et al. [215] described a two-level BVH for
breakable objects based on mesh connectivity and bounds on the primitives’ nor-
mals.

2.5.1 Excursus: GPU-Based Methods

Popular methods for real-time simulation of deformable objects like mass—spring
systems [136, 160], but also multi-body simulations [48, 216], can be easily par-
allelized. Consequently, they are perfectly suited for modern GPU architectures.
Hence, it is obvious to develop also collision detection schemes that work directly
on the graphics hardware instead of copying data back and forth between main mem-
ory and GPU memory.

Actually, GPU-based algorithms have been proposed for all parts of the collision
detection pipeline: the broad-phase Le Grand [135], Liu et al. [143], the narrow-
phase Chen et al. [28], GreB et al. [76] and even for the primitive tests [73, 240].

The first approaches relied on the fixed-function graphics pipeline of at least
OpenGL 1.6 and used image space techniques. For instance, Knott and Pai [119]
implemented a ray-casting algorithm based on frame buffer operations to detect
static interferences between polyhedral objects. Heidelberger et al. [86] described an
algorithm for computation of layered depth images using depth and stencil buffers.

Later, the fixed function pipelines had been replaced by programmable vertex and
fragment processors. This also changed the GPU collision detection algorithms: for
example, Zhang and Kim [258] performed massively parallel pairwise intersection
tests of AABBs in a fragment shader. Kolb et al. [122] used shaders for the simula-
tion of large particle systems, including collisions between the particles.

Today, GPU processors are freely programmable via APIs such as OpenCL or
CUDA. This further improves the flexibility of GPU-based collision detection al-
gorithms, like the approach by Pan and Manocha [176] that uses clustering and
collision-packet traversal or the method based on linear complementary program-
ming for convex objects by Kipfer [114].

Moreover, several special hardware designs to accelerate collision detection were
developed [6, 186]. With the Ageia PhysX card [38], one saw a special hardware
card even managing to enter the market. But due to increasing performance and
flexibility of GPUs it seems that special physics processing hardware has become
obsolete.

30 2 A Brief Overview of Collision Detection

Fig. 2.8 Ray tracing
supports a wide variety of
optical effects like reflections,
refractions, and shadows

2.6 Related Fields

Of course, data structures for the acceleration of geometric queries are not restricted
to collision detection. They are also widely used in ray tracing (see Sect. 2.6.1),
object recognition [199], 3D audio rendering [223, 234] or occlusion [242, 254],
view frustum [31] and backface culling [253]. Moreover, they accelerate visibility
queries including hierarchical z-Buffers [74] and back-to-front [55] or front-to-back
[69] rendering via BSP-Trees. Geometric hierarchies help to index [79, 201] and
search [180] geometric databases efficiently, and they improve hardware tessellation
[161].

This small selection of very different applications and the large number of data
structures already presented just for the field of collision detection in the previous
sections suggests that there is available an almost uncountable number of different
approaches. A perfect geometric data structure would be one that can process every
imaginable geometric search query optimally. Unfortunately, such a data structure
does not—and maybe cannot—exist. Quite to the contrary, much research is con-
cerned with finding optimal data structures for each small sub-problem. However,
maintaining dozens of different optimized data structures in a simple virtual en-
vironment with ray tracing, sound rendering and collision detection could also be
very inefficient due to memory waste and the computational cost of hierarchy up-
dates. Consequently, there is also a counter movement that proposes the use of more
general data structures [78].

2.6.1 Excursus: Ray Tracing

Basically, ray tracing is a rendering technique that realizes global illumination for
perfect reflections (see Fig. 2.8). Instead of scan converting all polygons in the
scene, as traditional renderers like OpenGL and DirectX do, a ray of light is traced
backward from the eye through the scene. If the ray hits an object, an additional
ray is shot to the light sources and moreover, reflected and refracted rays are further
traced recursively [238]. Consequently, the main challenge on tracing rays is to find
intersections between these rays and the scene. This problem is closely related to

References 31

collision detection where two objects are checked for intersection. Therefore, also
the geometric acceleration data structures are very similar.

A complete overview of all existing data structures for ray tracing is far beyond
the scope of this excursus. As a starting point we would like to refer the interested
reader to the books and surveys of Hanrahan [83], Arvo and Kirk [5], Shirley and
Morley [200], and Suffern [209]. In the following, we will briefly point out simi-
larities and differences between ray tracing and collision detection and dwell on the
open challenges.

Almost all data structures that were proposed for collision detection had been
earlier applied to ray tracing. This includes non-hierarchical data structures like
uniform grids [3, 57], as well as bounding volume hierarchies [104, 192]. However,
a ray has to be tested for intersection with the whole scene, whereas during the
collision detection process objects are checked for collision with other objects in the
same scene. Therefore, the data structures for ray tracing are usually used at a scene
level, while collision detection uses them on an object level. Consequently, other
spatial subdivision data structures that are rarely used in collision detection, like
octrees [196, 237] and kd-trees [59], which were originally developed for associative
searches [16], became more popular for ray tracing [233].

However, these data structures are primarily designed for static scenes. If objects
in the scene move or deform, the data structures have to be updated or rebuilt. As
in collision detection for deformable objects, it is still a challenge to find the right
updating strategy and a lot of recent work has been done on this problem recently
[4, 244]. Moreover, even when using fast acceleration data structures, ray tracing
is computational very expensive and is not applicable for real-time rendering on
consumer hardware. However, the first GPU implementations that support parallel
tracing of rays seem to be very promising [40, 91, 150, 181, 221].

References

1. Agarwal, P. K., Guibas, L. J., Har-Peled, S., Rabinovitch, A., & Sharir, M. (2000). Penetra-
tion depth of two convex polytopes in 3d. Nordic Journal of Computing, 7(3),227-240. URL
http://dl.acm.org/citation.cfm?id=642992.642999.

2. Albocher, D., Sarel, U., Choi, Y.-K., Elber, G., & Wang, W. (2006). Efficient continuous
collision detection for bounding boxes under rational motion. In /CRA (pp. 3017-3022).
New York: IEEE. URL http://dblp.uni-trier.de/db/conf/icra/icra2006.html.

3. Amanatides, J., & Woo, A. (1987). A fast voxel traversal algorithm for ray tracing. In Euro-
graphics 1987 (pp. 3-10).

4. Andrysco, N., & Tricoche, X. (2011). Implicit and dynamic trees for high perfor-
mance rendering. In Proceedings of graphics interface 2011, GI ’11, School of Com-
puter Science, University of Waterloo, Waterloo, Ontario (pp. 143-150). Waterloo:
Canadian Human-Computer Communications Society. ISBN 978-1-4503-0693-5. URL
http://dl.acm.org/citation.cfm?id=1992917.1992941.

5. Arvo,J., & Kirk, D. (1989). A survey of ray tracing acceleration techniques. In A. S. Glassner
(Ed.), An introduction to ray tracing (pp. 201-262). London: Academic Press Ltd. ISBN 0-
12-286160-4. URL http://dl.acm.org/citation.cfm?id=94788.94794.

http://dl.acm.org/citation.cfm?id=642992.642999
http://dblp.uni-trier.de/db/conf/icra/icra2006.html
http://dl.acm.org/citation.cfm?id=1992917.1992941
http://dl.acm.org/citation.cfm?id=94788.94794

32

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

2 A Brief Overview of Collision Detection

Atay, N., Lockwood, J. W., & Bayazit, B. (2005). A collision detection chip on reconfig-
urable hardware (Technical report). In Proceedings of pacific conference on computer graph-
ics and applications (pacific graphics).

Avila, R. S., & Sobierajski, L. M. (1996). A haptic interaction method for vol-
ume visualization. In Proceedings of the 7th conference on visualization ’96, VIS ’96
(pp. 197-ff). Los Alamitos: IEEE Computer Society Press. ISBN 0-89791-864-9. URL
http://dl.acm.org/citation.cfm?id=244979.245054.

Avril, Q., Gouranton, V., & Arnaldi, B. (2009). New trends in collision detection perfor-
mance. In S. Richir & A. Shirai (Eds.), Laval virtual VRIC’09 proceedings, BP 0119, 53001
Laval Cedex, France, April 2009 (pp. 53-62).

Avril, Q., Gouranton, V., & Arnaldi, B. (2010). A broad phase collision detection algorithm
adapted to multi-cores architectures. In S. Richir & A. Shirai (Eds.), VRIC’10 proceedings,
April 2010.

Auvril, Q., Gouranton, V., & Arnaldi, B. (2010). Synchronization-free parallel collision detec-
tion pipeline. In /CAT 2010, December 2010.

. Avril, Q., Gouranton, V., & Arnaldi, B. (2011). Dynamic adaptation of broad phase collision

detection algorithms. In IEEE international symposium on virtual reality innovations, March
2011.

Bandi, S., & Thalmann, D. (1995). An adaptive spatial subdivision of the object space for
fast collision detection of animated rigid bodies. Computer Graphics Forum, 14(3),259-270.
URL http://dblp.uni-trier.de/db/journals/cgf/cgt14.html#BandiT95.

Barbic, J., & James, D. L. (2007). Time-critical distributed contact for 6-dof haptic rendering
of adaptively sampled reduced deformable models. In 2007 ACM SIGGRAPH / eurographics
symposium on computer animation, August 2007.

Barbic, J., & James, D. L. (2008). Six-dof haptic rendering of contact between geometrically
complex reduced deformable models. IEEE Transactions on Haptics, 1(1), 39-52.
Barequet, G., Chazelle, B., Guibas, L. J., Mitchell, J. S. B., & Tal, A. (1996). Boxtree: a
hierarchical representation for surfaces in 3d. Computer Graphics Forum, 15(3), 387-396.
URL http://dblp.uni-trier.de/db/journals/cgf/cgf15.html#BarequetCGMT96.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9), 509-517. doi:10.1145/361002.361007. URL http://doi.
acm.org/10.1145/361002.361007.

. Bentley, J. L., & Friedman, J. H. (1979). Data structures for range searching. ACM

Computing Surveys, 11(4), 397-409. doi:10.1145/356789.356797. URL http://doi.acm.org/
10.1145/356789.356797.

Bicchi, A., Buss, M., Ernst, M. O., & Peer, A. (Eds.) (2008). Springer tracts in advanced
robotics (STAR): Vol. 45. The sense of touch and its rendering: progresses in haptics research.
Berlin: Springer.

Bonner, S., & Kelley, R. B. (1988). A representation scheme for rapid 3-d collision detection.
In IEEE international symposium on intelligent control (pp. 320-325).

Bradshaw, G., & O’Sullivan, C. (2004). Adaptive medial-axis approximation for sphere-
tree construction. ACM Transactions on Graphics, 23(1), 1-26. doi:10.1145/966131.966132.
URL http://doi.acm.org/10.1145/966131.966132.

Brown, J., Sorkin, S., Bruyns, C., Latombe, J.-C., Montgomery, K., & Stephanides, M.
(2001). Real-time simulation of deformable objects: tools and application. In COMP. AN-
IMATION.

Cameron, S. (1997). Enhancing gjk: computing minimum and penetration distances between
convex polyhedra. In Proceedings of international conference on robotics and automation
(pp. 3112-3117).

Canny, J. (1984). Collision detection for moving polyhedra (Technical report). Massachusetts
Institute of Technology, Cambridge, MA, USA.

Chang, C.-T., Gorissen, B., & Melchior, S. (2011). Fast oriented bounding box optimization
on the rotation group so(3,ℝ). ACM Transactions on Graphics, 30(5), 122:1-122:16.
doi:10.1145/2019627.2019641. URL http://doi.acm.org/10.1145/2019627.2019641.

http://dl.acm.org/citation.cfm?id=244979.245054
http://dblp.uni-trier.de/db/journals/cgf/cgf14.html#BandiT95
http://dblp.uni-trier.de/db/journals/cgf/cgf15.html#BarequetCGMT96
http://dx.doi.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://dx.doi.org/10.1145/356789.356797
http://doi.acm.org/10.1145/356789.356797
http://doi.acm.org/10.1145/356789.356797
http://dx.doi.org/10.1145/966131.966132
http://doi.acm.org/10.1145/966131.966132
http://dx.doi.org/10.1145/2019627.2019641
http://doi.acm.org/10.1145/2019627.2019641

References 33

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

Chang, J.-W., & Kim, M.-S. (2009). Technical section: efficient triangle-triangle in-
tersection test for obb-based collision detection. Computer Graphics, 33(3), 235-240.
doi:10.1016/j.cag.2009.03.009.

Chazelle, B. (1984). Convex partitions of polyhedra: a lower bound and worst-case optimal
algorithm. SIAM Journal on Computing, 13(3), 488-507. doi:10.1137/0213031.

Chen, J.-S., & Li, T.-Y. (1999). Incremental 3D collision detection with hier-
archical data structures. November 22. URL http://citeseer.ist.psu.edu/356263.html;
http://bittern.cs.nccu.edu.tw/li/Publication/pdf/vrst98.pdf.

Chen, W., Wan, H., Zhang, H., Bao, H., & Peng, Q. (2004). Interactive collision detec-
tion for complex and deformable models using programmable graphics hardware. In Pro-
ceedings of the ACM symposium on virtual reality software and technology, VRST ’04
(pp. 10-15). New York: ACM. ISBN 1-58113-907-1. doi:10.1145/1077534.1077539. URL
http://doi.acm.org/10.1145/1077534.1077539.

Chin, F., & Wang, C. A. (1983). Optimal algorithms for the intersection and the mini-
mum distance problems between planar polygons. I[EEE Transactions on Computers, 32(12),
1203-1207. doi:10.1109/TC.1983.1676186.

Choi, Y.-K., Chang, J.-W., Wang, W., Kim, M.-S., & Elber, G. (2009). Continuous collision
detection for ellipsoids. IEEE Transactions on Visualization and Computer Graphics, 15(2),
311-324. URL http://www.ncbi.nlm.nih.gov/pubmed/19147893.

Clark, J. H. (1976). Hierarchical geometric models for visible surface algorithms.
Communications of the ACM, 19(10), 547-554. doi:10.1145/360349.360354. URL
http://doi.acm.org/10.1145/360349.360354.

Cohen, J. D., Lin, M. C., Manocha, D., & Ponamgi, M. (1995). I-collide: an interac-
tive and exact collision detection system for large-scale environments. In Proceedings
of the 1995 symposium on interactive 3D graphics, 13D "95 (pp. 189-ff). New York:
ACM. ISBN 0-89791-736-7. doi:10.1145/199404.199437. URL http://doi.acm.org/10.1145/
199404.199437.

Coming, D. S., & Staadt, O. G. (2007). Stride scheduling for time-critical collision
detection. In Proceedings of the 2007 ACM symposium on virtual reality software
and technology, VRST '07 (pp. 241-242). New York: ACM. ISBN 978-1-59593-863-3.
doi:10.1145/1315184.1315240. URL http://doi.acm.org/10.1145/1315184.1315240.
Coming, D. S., & Staadt, O. G. (2008). Velocity-aligned discrete oriented polytopes for
dynamic collision detection. IEEE Transactions on Visualization and Computer Graphics,
14(1), 1-12. doi:10.1109/TVCG.2007.70405.

Coumans, E. (2005). Continuous collision detection and physics (Technical report). Sony
Computer Entertainment. August.

Coumans, E. (2012). Bullet physics library. http://bulletphysics.com.

Coutinho, M. G. (2001). Dynamic simulations of multibody systems. London: Springer. ISBN
0-387-95192-X.

Davis, C., Hegde, M., Schmid, O. A., Maher, M., & Bordes, J. P. (2003). System incorporat-
ing physics processing unit 1.

Dingliana, J., & O’Sullivan, C. (2000). Graceful degradation of collision handling in physi-
cally based animation. Computer Graphics Forum, 19(3), 239-247 (Proc. of EUROGRAPH-
ICS 2000).

Djeu, P., Hunt, W., Wang, R., Elhassan, I., Stoll, G., & Razor, W. R. M. (2011).
An architecture for dynamic multiresolution ray tracing. ACM Transactions on Graph-
ics, 30(5), 115:1-115:26. doi:10.1145/2019627.2019634. URL http://doi.acm.org/10.1145/
2019627.2019634.

Dobkin, D. P., Hershberger, J., Kirkpatrick, D. G., & Suri, S. (1993). Computing the
intersection-depth of polyhedra. Algorithmica, 9(6), 518-533.

Dong, Z., Chen, W., Bao, H., Zhang, H., & Peng, Q. (2004). Real-time voxelization for
complex polygonal models. In Proceedings of the computer graphics and applications, 12th
pacific conference, PG *04 (pp. 43-50). Washington: IEEE Computer Society. ISBN 0-7695-
2234-3. URL http://dl.acm.org/citation.cfm?id=1025128.1026026.

http://dx.doi.org/10.1016/j.cag.2009.03.009
http://dx.doi.org/10.1137/0213031
http://citeseer.ist.psu.edu/356263.html
http://bittern.cs.nccu.edu.tw/li/Publication/pdf/vrst98.pdf
http://dx.doi.org/10.1145/1077534.1077539
http://doi.acm.org/10.1145/1077534.1077539
http://dx.doi.org/10.1109/TC.1983.1676186
http://www.ncbi.nlm.nih.gov/pubmed/19147893
http://dx.doi.org/10.1145/360349.360354
http://doi.acm.org/10.1145/360349.360354
http://dx.doi.org/10.1145/199404.199437
http://doi.acm.org/10.1145/199404.199437
http://doi.acm.org/10.1145/199404.199437
http://dx.doi.org/10.1145/1315184.1315240
http://doi.acm.org/10.1145/1315184.1315240
http://dx.doi.org/10.1109/TVCG.2007.70405
http://bulletphysics.com
http://dx.doi.org/10.1145/2019627.2019634
http://doi.acm.org/10.1145/2019627.2019634
http://doi.acm.org/10.1145/2019627.2019634
http://dl.acm.org/citation.cfm?id=1025128.1026026

34

43,
44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

2 A Brief Overview of Collision Detection

Eberly, D. H. (2003). Game physics. New York: Elsevier Science Inc. ISBN 1558607404.
Eckstein, J., & Schomer, E. (1999). Dynamic collision detection in virtual reality appli-
cations. In V. Skala (Ed.), WSCG’99 conference proceedings. URL citeseer.ist.psu.edu/
eckstein99dynamic.html.

Edelsbrunner, H., & Maurer, H. A. (1981). On the intersection of orthogonal objects. In-

Sformation Processing Letters, 13(4/5), 177-181. URL http://dblp.uni-trier.de/db/journals/

ipl/ipl13.html#EdelsbrunnerM81.

Ehmann, S. A., & Lin, M. C. (2001). Accurate and fast proximity queries between polyhedra
using convex surface decomposition. Computer Graphics Forum, 20(3), 500-510 (Proc. of
EUROGRAPHICS 2001).

El-Far, N. R., Georganas, N. D., & El Saddik, A. (2007). Collision detection and force re-
sponse in highly-detailed point-based hapto-visual virtual environments. In Proceedings of
the 11th IEEE international symposium on distributed simulation and real-time applica-
tions, DS-RT ’07 (pp. 15-22). Washington: IEEE Computer Society. ISBN 0-7695-3011-7.
doi:10.1109/DS-RT.2007.17.

Elsen, E., Houston, M., Vishal, V., Darve, E., Hanrahan, P., & Pande, V. (2006). N-body
simulation on gpus. In Proceedings of the 2006 ACM/IEEE conference on supercomput-
ing, SC "06, New York: ACM. ISBN 0-7695-2700-0. doi:10.1145/1188455.1188649. URL
http://doi.acm.org/10.1145/1188455.1188649.

Ericson, C. (2004). The Morgan Kaufmann series in interactive 3-D technology: Real-time
collision detection. San Francisco: Morgan Kaufmann Publishers Inc. ISBN 1558607323.
Fahn, C.-S., & Wang, J.-L. (1999). Efficient time-interupted and time-continuous collision
detection among polyhedral. Journal of Information Science and Engineering, 15(6), 769—
799.

Fares, C., & Hamam, A. (2005). Collision detection for rigid bodies: a state of the art review.
In GraphiCon.

Faure, F., Barbier, S., Allard, J., & Falipou, F. (2008). Image-based collision detection and
response between arbitrary volumetric objects. In ACM siggraph/eurographics symposium
on computer animation, SCA, Dublin, Irlande. July 2008.

Figueiredo, M., Oliveira, J., Araujo, B., & Madeiras, J. (2010). An efficient collision detec-
tion algorithm for point cloud models. In Proceedings of graphicon.

Fisher, S., & Lin, M. C. (2001). Deformed distance fields for simulation of non-
penetrating flexible bodies. In Proceedings of the eurographic workshop on computer an-
imation and simulation (pp. 99-111). New York: Springer. ISBN 3-211-83711-6. URL
http://dl.acm.org/citation.cfm?id=776350.776360.

Fuchs, H., Kedem, Z. M., & Naylor, B. F. (1980). On visible surface genera-
tion by a priori tree structures. SIGGRAPH Computer Graphics, 14(3), 124-133.
doi:10.1145/965105.807481. URL http://doi.acm.org/10.1145/965105.807481.

Fuhrmann, A., Sobotka, G., & Grof3, C. (2003). Distance fields for rapid collision detec-
tion in physically based modeling. In Proceedings of GraphiCon 2003 (pp. 58-65). URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4043 &rep=rep 1 &type=pdf.
Fujimoto, A., Tanaka, T., & Iwata, K. (1986). Arts: Accelerated ray-tracing system. /EEE
Computer Graphics and Applications, 6(4), 16-26.

Funfzig, C., Ullrich, T., & Fellner, D. W. (2006). Hierarchical spherical distance
fields for collision detection. IEEE Computer Graphics and Applications, 26(1), 64-74.
doi:10.1109/MCG.2006.17.

Fussell, D. S., & Subramanian, K. R. (1988). Fast ray tracing using k-d trees (Technical
report). University of Texas at Austin, Austin, TX, USA.

Ganjugunte, S. K. (2007). A survey on techniques for computing penetration depth.
Ganovelli, F., & Dingliana, J. (2000). Buckettree: improving collision detection between
deformable objects. In Proceedings of SCCG2000: spring conference on computer graphics,
Budmerice (pp. 4-6).

Giang, T., & O’Sullivan, C. (2005). Closest feature maps for time-critical collision handling.
In International workshop on virtual reality and physical simulation (VRIPHYS’05), Novem-

http://citeseer.ist.psu.edu/eckstein99dynamic.html
http://citeseer.ist.psu.edu/eckstein99dynamic.html
http://dblp.uni-trier.de/db/journals/ipl/ipl13.html#EdelsbrunnerM81
http://dblp.uni-trier.de/db/journals/ipl/ipl13.html#EdelsbrunnerM81
http://dx.doi.org/10.1109/DS-RT.2007.17
http://dx.doi.org/10.1145/1188455.1188649
http://doi.acm.org/10.1145/1188455.1188649
http://dl.acm.org/citation.cfm?id=776350.776360
http://dx.doi.org/10.1145/965105.807481
http://doi.acm.org/10.1145/965105.807481
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.4043&rep=rep1&type=pdf
http://dx.doi.org/10.1109/MCG.2006.17

References 35

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.

74.

75.

76.

71.

78.

79.

80.

ber (pp. 65-72). URL http://isg.cs.tcd.ie/cosulliv/Pubs/Giang Vriphys.pdf.

Giang, T., & O’Sullivan, C. (2006). Virtual reality interaction and physical simulation: ap-
proximate collision response using closest feature maps. Computer Graphics, 30(3), 423—
431. doi:10.1016/j.cag.2006.02.019.

Gibson, S. F. F. (1995). Beyond volume rendering: visualization, haptic exploration, and
physical modeling of voxel-based objects. In Proc. eurographics workshop on visualization
in scientific computing (pp. 10-24). Berlin: Springer.

Gilbert, E. G., Johnson, D. W., & Keerthi, S. S. (1988). A fast procedure for computing the
distance between complex objects in three-dimensional space. IEEE Journal of Robotics and
Automation, 4(2), 193-203.

Gilbert, E. G., & Ong, C. J. (1994). New distances for the separation and penetration of
objects. In ICRA (pp. 579-586).

Glondu, L., Marchal, M., & Dumont, G. (2010). A new coupling scheme for haptic ren-
dering of rigid bodies interactions based on a haptic sub-world using a contact graph. In
Proceedings of the 2010 international conference on haptics: generating and perceiving tan-
gible sensations, part I, EuroHaptics’10 (pp. 51-56). Berlin: Springer. ISBN 3-642-14063-7,
978-3-642-14063-1. URL http://dl.acm.org/citation.cfm?id=1884164.1884173.

Goldsmith, J., & Salmon, J. (1987). Automatic creation of object hierarchies for ray tracing.
IEEE Computer Graphics and Applications, 7(5), 14-20. doi:10.1109/MCG.1987.276983.
Gordon, D., & Chen, S. (1991). Front-to-back display of bsp trees. IEEE Computer Graphics
and Applications, 11(5), 79-85. doi:10.1109/38.90569.

Gottschalk, S., Lin, M. C., & Manocha, D. (1996). Obbtree: a hierarchical structure for rapid
interference detection. In Proceedings of the 23rd annual conference on computer graphics
and interactive techniques, SIGGRAPH 96 (pp. 171-180). New York: ACM. ISBN 0-89791-
746-4. doi:10.1145/237170.237244. URL http://doi.acm.org/10.1145/237170.237244.
Gottschalk, S. (1997). Collision detection techniques for 3d models.

Gottschalk, S. A. (2000). Collision queries using oriented bounding boxes. PhD thesis, The
University of North Carolina at Chapel Hill. AAI9993311.

Govindaraju, N. K., Knott, D., Jain, N., Kabul, 1., Tamstorf, R., Gayle, R., Lin, M.
C., & Manocha, D. (2005). Interactive collision detection between deformable models
using chromatic decomposition. ACM Transactions on Graphics, 24(3), 991-999. URL
http://dblp.uni-trier.de/db/journals/tog/tog24.html#GovindarajuKJIKTGLMOS.

Greene, N., Kass, M., & Miller, G. (1993). Hierarchical z-buffer visibility. In Proceedings
of the 20th annual conference on computer graphics and interactive techniques, SIGGRAPH
'93 (pp. 231-238). New York: ACM. ISBN 0-89791-601-8. doi:10.1145/166117.166147.
URL http://doi.acm.org/10.1145/166117.166147.

Gregory, A., Lin, M. C., Gottschalk, S., & Taylor, R. (1999). A framework for fast and
accurate collision detection for haptic interaction. In Proceedings of the IEEE virtual re-
ality, VR ’99 (p. 38). Washington: IEEE Computer Society. ISBN 0-7695-0093-5. URL
http://dl.acm.org/citation.cfm?id=554230.835691.

GreB, A., Guthe, M., & Klein, R. (2006). Gpu-based collision detection for deformable pa-
rameterized surfaces. Computer Graphics Forum, 25(3), 497-506.

Guibas, L., Nguyen, A., Russel, D., & Zhang, L. (2002). Collision detection for deforming
necklaces. In Proceedings of the eighteenth annual symposium on computational geometry,
SCG 02 (pp. 33-42). New York: ACM. ISBN 1-58113-504-1. doi:10.1145/513400.513405.
URL http://doi.acm.org/10.1145/513400.513405.

Giinther, J., Mannuf}, F., & Hinkenjann, A. (2009). Centralized spatial data structures for
interactive environments. In Proceedings of workshop on software engineering and archi-
tectures for realtime interactive systems, in conjunction with IEEE virtual reality. URL
http://cg.inf.fh-bonn-rhein-sieg.de/basilic/Publications/2009/GMHO09.

Giinther, O. (1989). The design of the cell tree: an object-oriented index structure for geo-
metric databases. In ICDE (pp. 598-605).

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. SIG-
MOD Record, 14(2), 47-57. doi:10.1145/971697.602266. URL http://doi.acm.org/10.1145/

http://isg.cs.tcd.ie/cosulliv/Pubs/GiangVriphys.pdf
http://dx.doi.org/10.1016/j.cag.2006.02.019
http://dl.acm.org/citation.cfm?id=1884164.1884173
http://dx.doi.org/10.1109/MCG.1987.276983
http://dx.doi.org/10.1109/38.90569
http://dx.doi.org/10.1145/237170.237244
http://doi.acm.org/10.1145/237170.237244
http://dblp.uni-trier.de/db/journals/tog/tog24.html#GovindarajuKJKTGLM05
http://dx.doi.org/10.1145/166117.166147
http://doi.acm.org/10.1145/166117.166147
http://dl.acm.org/citation.cfm?id=554230.835691
http://dx.doi.org/10.1145/513400.513405
http://doi.acm.org/10.1145/513400.513405
http://cg.inf.fh-bonn-rhein-sieg.de/basilic/Publications/2009/GMH09
http://dx.doi.org/10.1145/971697.602266
http://doi.acm.org/10.1145/971697.602266

36

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

2 A Brief Overview of Collision Detection

971697.602266.

. Hachenberger, P. (2007). Exact Minkowksi sums of polyhedra and exact and efficient de-

composition of polyhedra in convex pieces. In Proceedings of the 15th annual European
conference on algorithms, ESA’07 (pp. 669—680). Berlin: Springer. ISBN 3-540-75519-5.
URL http://dl.acm.org/citation.cfm?id=1778580.1778642.

Haines, E. (1988). Spline surface rendering, and what’s wrong with octrees. Ray Tracing
News, 1.

Hanrahan, P. (1989). A survey of ray-surface intersection algorithms. In A. S. Glassner (Ed.),
An introduction to ray tracing (pp. 79-119). London: Academic Press Ltd. ISBN 0-12-
286160-4. URL http://dl.acm.org/citation.cfm?id=94788.94791.

Hasegawa, S., & Sato, M. (2004). Real-time rigid body simulation for haptic interactions
based on contact volume of polygonal objects. Computer Graphics Forum, 23(3), 529-538.
He, T. (1999). Fast collision detection using quospo trees. In Proceedings of the 1999 sym-
posium on interactive 3D graphics, 13D ’99 (pp. 55-62). New York: ACM. ISBN 1-58113-
082-1. doi:10.1145/300523.300529. URL http://doi.acm.org/10.1145/300523.300529.
Heidelberger, B., Teschner, M., & Gross, M. (2004). Detection of collisions and self-
collisions using image-space techniques. In Proceedings of the 12th international con-
ference in central Europe on computer graphics, visualization and computer vision’2004
(WSCG’2004), University of West Bohemia, Czech Republic, February (pp. 145-152).
Held, M. (1998). Erit: a collection of efficient and reliable intersection tests. Journal of
Graphics Tools, 2(4), 25-44. URL http://dl.acm.org/citation.cfm?id=763345.763348.

Held, M., Klosowski, J. T., & Mitchell, J. S. B. (1996). Collision detection for fly-
throughs in virtual environments. In Proceedings of the twelfth annual symposium on com-
putational geometry, SCG ’96 (pp. 513-514). New York: ACM. ISBN 0-89791-804-5.
doi:10.1145/237218.237428. URL http://doi.acm.org/10.1145/237218.237428.

Ho, C.-H., Basdogan, C., & Srinivasan, M. A. (1999). Efficient point-based rendering tech-
niques for haptic display of virtual objects. Presence: Teleoperators & Virtual Environments,
8(5), 477-491. doi:10.1162/105474699566413.

Hoang, T. (1998). Convex analysis and global optimization. Nonconvex optimization and
its applications. Dordrecht: Kluwer Academic Publishers. ISBN 9780792348184. URL
http://books.google.co.uk/books?id=hVkJc2IRDdcC.

Horn, D. R., Sugerman, J., Houston, M., & Hanrahan, P. (2007). Interactive k-d tree
gpu raytracing. In Proceedings of the 2007 symposium on interactive 3D graphics and
games, 13D °07 (pp. 167-174). New York: ACM. ISBN 978-1-59593-628-8. doi:10.1145/
1230100.1230129. URL http://doi.acm.org/10.1145/1230100.1230129.

Hubbard, P. M. (1996). Approximating polyhedra with spheres for time-critical collision
detection. ACM Transactions on Graphics, 15(3), 179-210.

Hutter, M. (2007). Optimized continuous collision detection for deformable triangle meshes.
Computer, 15(1-3), 25-32. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.85.1140&rep=rep1 &type=pdf.

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges,
S., Freeman, D., Davison, A., & Fitzgibbon, A. (2011). Kinectfusion: real-time 3d recon-
struction and interaction using a moving depth camera. In Proceedings of the 24th an-
nual ACM symposium on user interface software and technology, UIST ’11 (pp. 559-568).
New York: ACM. ISBN 978-1-4503-0716-1. doi:10.1145/2047196.2047270. URL http://
doi.acm.org/10.1145/2047196.2047270.

James, D. L., & Pai, D. K. (2004). Bd-tree: output-sensitive collision detection for re-
duced deformable models. In ACM SIGGRAPH 2004 papers, SSIGGRAPH *04 (pp. 393—
398). New York: ACM. doi:10.1145/1186562.1015735. URL http://doi.acm.org/10.1145/
1186562.1015735.

Je, C.,, Tang, M., Lee, Y., Lee, M., & Kim, Y. J. (2012). Polydepth: real-time
penetration depth computation using iterative contact-space projection. ACM Transac-
tions on Graphics, 31(1), 5:1-5:14. doi:10.1145/2077341.2077346. URL http://doi.acm.
org/10.1145/2077341.2077346.

http://doi.acm.org/10.1145/971697.602266
http://dl.acm.org/citation.cfm?id=1778580.1778642
http://dl.acm.org/citation.cfm?id=94788.94791
http://dx.doi.org/10.1145/300523.300529
http://doi.acm.org/10.1145/300523.300529
http://dl.acm.org/citation.cfm?id=763345.763348
http://dx.doi.org/10.1145/237218.237428
http://doi.acm.org/10.1145/237218.237428
http://dx.doi.org/10.1162/105474699566413
http://books.google.co.uk/books?id=hVkJc2IRDdcC
http://dx.doi.org/10.1145/1230100.1230129
http://dx.doi.org/10.1145/1230100.1230129
http://doi.acm.org/10.1145/1230100.1230129
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.1140&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.1140&rep=rep1&type=pdf
http://dx.doi.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2047196.2047270
http://dx.doi.org/10.1145/1186562.1015735
http://doi.acm.org/10.1145/1186562.1015735
http://doi.acm.org/10.1145/1186562.1015735
http://dx.doi.org/10.1145/2077341.2077346
http://doi.acm.org/10.1145/2077341.2077346
http://doi.acm.org/10.1145/2077341.2077346

References 37

97.
98.
99.
100.
101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

Jimenez, P., Thomas, F., & Torras, C. (2000). 3d collision detection: a survey. Computers &
Graphics, 25, 269-285.

Johnson, D. E., & Cohen, E. (1998). A framework for efficient minimum distance computa-
tions. In Proc. IEEE intl. conf. robotics and automation (pp. 3678-3684).

Johnson, D. E., Willemsen, P., & Cohen, E. (2005). 6-dof haptic rendering using spatialized
normal cone search. In Transactions on visualization and computer graphics (p. 2005).
Jolliffe, I. T. (2002). Principal component analysis. Berlin: Springer. ISBN 0387954422.
Ju, M.-Y., Liu, J.-S., Shiang, S.-P., Chien, Y.-R., Hwang, K.-S., & Lee, W.-C. (2001). Fast
and accurate collision detection based on enclosed ellipsoid. Robotica, 19(4), 381-394.
doi:10.1017/S0263574700003295.

Kallay, M. (1984). The complexity of incremental convex hull algorithms in #¢. Information
Processing Letters, 19(4), 197.

Kamat, V. V. (1993). A survey of techniques for simulation of dynamic collision detection
and response. Computers & Graphics, 17(4), 379-385.

Kay, T. L., & Kajiya, J. T. (1986). Ray tracing complex scenes. SIGGRAPH Computer
Graphics, 20(4), 269-278. doi:10.1145/15886.15916. URL http://doi.acm.org/10.1145/
15886.15916.

Kim, B., & Rossignac, J. (2003). Collision prediction for polyhedra under screw motions. In
ACM symposium in solid modeling and applications (pp. 4—10). New York: ACM Press.
Kim, D., Heo, J.-P., & Yoon, S.-e. (2009). Pccd: parallel continuous collision detec-
tion. In SIGGRAPH ’09: posters, SIGGRAPH ’09 (pp. 50:1-50:1). New York: ACM.
doi:10.1145/1599301.1599351. URL http://doi.acm.org/10.1145/1599301.1599351.

Kim, J.-P,, Lee, B.-C., Kim, H., Kim, J., & Ryu, J. (2009). Accurate and efficient cpu/gpu-
based 3-dof haptic rendering of complex static virtual environments. Presence: Teleoperators
& Virtual Environments, 18(5), 340-360. doi:10.1162/pres.18.5.340.

Kim, Y.-J., Oh, Y.-T., Yoon, S.-H., Kim, M.-S., & Elber, G. (2011). Coons bvh for freeform
geometric models. In Proceedings of the 2011 SIGGRAPH Asia conference, SA 11 (pp.
169:1-169:8). New York: ACM. ISBN 978-1-4503-0807-6. doi:10.1145/2024156.2024203.
URL http://doi.acm.org/10.1145/2024156.2024203.

Kim, Y. J,, Lin, M. C., & Manocha, D. (2002). DEEP: dual-space expansion for estimat-
ing penetration depth between convex polytopes. In /CRA (pp. 921-926). New York: IEEE.
ISBN 0-7803-7273-5.

Kim, Y. J., Otaduy, M. A., Lin, M. C., & Manocha, D. (2002). Fast penetration depth com-
putation using rasterization hardware and hierarchical refinement (Technical report). De-
partment of Computer Science, University of North Carolina. URL ftp://ftp.cs.unc.edu/pub/
publications/techreports/02-014.pdf.

Kim, Y. J., Otaduy, M. A., Lin, M. C., & Manocha, D. (2002). Fast penetration depth
computation for physically-based animation. In Proceedings of the 2002 ACM SIG-
GRAPH/eurographics symposium on computer animation, SCA 02 (pp. 23-31). New
York: ACM. ISBN 1-58113-573-4. doi:10.1145/545261.545266. URL http://doi.acm.org/
10.1145/545261.545266.

Kim, Y. J., Otaduy, M. A., Lin, M. C., & Manocha, D. (2003). Six-degree-of-freedom haptic
rendering using incremental and localized computations. Presence: Teleoperators & Virtual
Environments, 12(3), 277-295. doi:10.1162/105474603765879530.

Kim, Y. J., Lin, M. C., & Manocha, D. (2004). Incremental penetration depth estimation
between convex polytopes using dual-space expansion. IEEE Transactions on Visualization
and Computer Graphics, 10(2), 152-163. doi:10.1109/TVCG.2004.1260767.

Kipfer, P. (2007). LCP algorithms for collision detection using CUDA. In H. Nguyen (Ed.),
GPUGems 3 (pp. 723-739). Reading: Addison-Wesley.

Klein, J., & Zachmann, G. (2003). Adb-trees: controlling the error of time-critical collision
detection. In T. Ertl, B. Girod, G. Greiner, H. Niemann, H.-P. Seidel, E. Steinbach, & R.
Westermann (Eds.), Vision, modeling and visualisation 2003 (pp. 37—-46). Berlin: Akademis-
che Verlagsgesellschaft Aka GmbH. ISBN 3-89838-048-3.

http://dx.doi.org/10.1017/S0263574700003295
http://dx.doi.org/10.1145/15886.15916
http://doi.acm.org/10.1145/15886.15916
http://doi.acm.org/10.1145/15886.15916
http://dx.doi.org/10.1145/1599301.1599351
http://doi.acm.org/10.1145/1599301.1599351
http://dx.doi.org/10.1162/pres.18.5.340
http://dx.doi.org/10.1145/2024156.2024203
http://doi.acm.org/10.1145/2024156.2024203
ftp://ftp.cs.unc.edu/pub/publications/techreports/02-014.pdf
ftp://ftp.cs.unc.edu/pub/publications/techreports/02-014.pdf
http://dx.doi.org/10.1145/545261.545266
http://doi.acm.org/10.1145/545261.545266
http://doi.acm.org/10.1145/545261.545266
http://dx.doi.org/10.1162/105474603765879530
http://dx.doi.org/10.1109/TVCG.2004.1260767

38

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

2 A Brief Overview of Collision Detection

Klein, J., & Zachmann, G. (2004). Point cloud collision detection. In M.-P. Cani & M. Slater
(Eds.), Computer graphics forum (Proc. EUROGRAPHICS), Grenoble, France, Aug. 30—
Sep. 3 (Vol. 23, pp. 567-576). URL http://www.gabrielzachmann.org/.

Klein, J., & Zachmann, G. (2005). Interpolation search for point cloud intersection. In Proc.
of WSCG 2005, University of West Bohemia, Plzen, Czech Republic, January 31-February
7 (pp. 163-170). ISBN 80-903100-7-9. URL http://www.gabrielzachmann.org/.

Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., & Zikan, K. (1998). Efficient
collision detection using bounding volume hierarchies of k-dops. IEEE Transactions on Vi-
sualization and Computer Graphics, 4(1), 21-36. doi:10.1109/2945.675649.

Knott, D., & Pai, D. (2003). Cinder: collision and interference detection in real-time using
graphics hardware. URL citeseer.ist.psu.edu/knottO3cinder.html.

Kobbelt, L., & Botsch, M. (2004). A survey of point-based techniques in computer graphics.
Computers & Graphics, 28(6), 801-814.

Kockara, S., Halic, T., Igbal, K., Bayrak, C., & Rowe, R. (2007). Collision detection: a sur-
vey. In SMC (pp. 4046—4051). New York: IEEE.

Kolb, A., Latta, L., & Rezk-Salama, C. (2004). Hardware-based simulation and collision de-
tection for large particle systems. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on graphics hardware, HWWS ’04 (pp. 123-131). New York: ACM. ISBN 3-
905673-15-0. doi:10.1145/1058129.1058147. URL http://doi.acm.org/10.1145/1058129.
1058147.

Kolesnikov, M., & Zefran, M. (2007). Energy-based 6-dof penetration depth computation for
penalty-based haptic rendering algorithms. In /ROS (pp. 2120-2125).

Krishnan, S., Gopi, M., Lin, M., Manocha, D., & Pattekar, A. (1998). Rapid and accurate
contact determination between spline models using shelltrees.

Krishnan, S., Pattekar, A., Lin, M. C., & Manocha, D. (1998). Spherical shell: a higher order
bounding volume for fast proximity queries. In Proceedings of the third workshop on the
algorithmic foundations of robotics on robotics: the algorithmic perspective, WAFR *98 (pp.
177-190). Natick: A. K. Peters, Ltd. ISBN 1-56881-081-4. URL http://dl.acm.org/citation.
cfm?id=298960.299006.

Larsen, E., Gottschalk, S., Lin, M. C., & Manocha, D. (1999). Fast proximity queries
with swept sphere volumes, November 14. URL http://citeseer.ist.psu.edu/408975.html;
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/COLLISION/ssv.ps.

Larsson, T., & Akenine-Moller, T. (2001). Collision detection for continuously deforming
bodies. In Eurographics 2001, short presentations (pp. 325-333). Geneve: Eurographics As-
sociation. URL http://www.mrtc.mdh.se/index.php?choice=publications&id=0354.

Larsson, T., & Akenine-Moller, T. (2003). Efficient collision detection for models de-
formed by morphing. The Visual Computer, 19(2-3), 164-174. URL http://www.mrtc.
mdh.se/index.phtml?choice=publications&id=0551.

Larsson, T., & Akenine-Moller, T. (2006). A dynamic bounding volume hierarchy for gen-
eralized collision detection. Computer Graphics, 30(3), 450-459. doi:10.1016/j.cag.2006.
02.011.

Larsson, T., & Akenine-Moller, T. (2009). Bounding volume hierarchies of slab cut balls.
Computer Graphics Forum, 28(8), 2379-2395. URL http://dblp.uni-trier.de/db/journals/
cgf/cgf28.html#LarssonA09.

Lau, R. W. H,, Chan, O., Luk, M., & Li, F. W. B. (2002). Large a collision detection frame-
work for deformable objects. In Proceedings of the ACM symposium on virtual reality soft-
ware and technology, VRST '02 (pp. 113—-120). New York: ACM. ISBN 1-58113-530-0.
doi:10.1145/585740.585760. URL http://doi.acm.org/10.1145/585740.585760.

Lauterbach, C., Garland, M., Sengupta, S., Luebke, D. P., & Manocha, D. (2009). Fast bvh
construction on gpus. Computer Graphics Forum, 28(2), 375-384. URL http://dblp.uni-trier.
de/db/journals/cgf/cgf28. html#LauterbachGSLMO09.

Lauterbach, C., Mo, Q., & Manocha, D. (2010). gproximity: hierarchical gpu-based opera-
tions for collision and distance queries. Computer Graphics Forum, 29(2), 419-428. URL
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#LauterbachMM10.

http://www.gabrielzachmann.org/
http://www.gabrielzachmann.org/
http://dx.doi.org/10.1109/2945.675649
http://citeseer.ist.psu.edu/knott03cinder.html
http://dx.doi.org/10.1145/1058129.1058147
http://doi.acm.org/10.1145/1058129.1058147
http://doi.acm.org/10.1145/1058129.1058147
http://dl.acm.org/citation.cfm?id=298960.299006
http://dl.acm.org/citation.cfm?id=298960.299006
http://citeseer.ist.psu.edu/408975.html
ftp://ftp.cs.unc.edu/pub/users/manocha/PAPERS/COLLISION/ssv.ps
http://www.mrtc.mdh.se/index.php?choice=publications&id=0354
http://www.mrtc.mdh.se/index.phtml?choice=publications&id=0551
http://www.mrtc.mdh.se/index.phtml?choice=publications&id=0551
http://dx.doi.org/10.1016/j.cag.2006.02.011
http://dx.doi.org/10.1016/j.cag.2006.02.011
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#LarssonA09
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#LarssonA09
http://dx.doi.org/10.1145/585740.585760
http://doi.acm.org/10.1145/585740.585760
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#LauterbachGSLM09
http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#LauterbachGSLM09
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#LauterbachMM10

References 39

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press. Avail-
able at http://planning.cs.uiuc.edu/.

Le Grand, S. (2008). Broad-phase collision detection with CUDA. In GPU gems 3 (pp. 697—
721). URL http://http.developer.nvidia.com/GPUGems3/gpugems3_ch32.html.

Leon, C. A. D, Eliuk, S., & Gomez, H. T. (2010). Simulating soft tissues using a gpu ap-
proach of the mass-spring model. In B. Lok, G. Klinker, & R. Nakatsu (Eds.), VR (pp. 261-
262). New York: IEEE. ISBN 978-1-4244-6258-2.

Leutenegger, S. T., Edgington, J. M., & Lopez, M. A. (1997). Str: a simple and efficient al-
gorithm for r-tree packing (Technical report). Institute for Computer Applications in Science
and Engineering (ICASE).

Lien, J.-M., & Amato, N. M. (2008). Approximate convex decomposition of poly-
hedra and its applications. Computer Aided Geometric Design, 25(7), 503-522.
doi:10.1016/j.cagd.2008.05.003.

Lin, M. C., & Canny, J. F. (1991). A fast algorithm for incremental distance calculation. In
IEEE international conference on robotics and automation (pp. 1008-1014).

Lin, M. C., & Gottschalk, S. (1998). Collision detection between geometric models: a survey.
In Proc. of IMA conference on mathematics of surfaces (pp. 37-56).

Lin, M. C., Otaduy, M., Lin, M. C., & Otaduy, M. (2008). Haptic rendering: foundations,
algorithms and applications. Natick: A. K. Peters, Ltd. ISBN 1568813325.

Lin, Y.-T., & Li, T.-Y. (2006). A time-budgeted collision detection method. In /CRA (pp.
3029-3034). New York: IEEE.

Liu, F,, Harada, T., Lee, Y., & Kim, Y. J. (2010). Real-time collision culling of a million
bodies on graphics processing units. ACM Transactions on Graphics, 29(6), 154:1-154:8.
doi:10.1145/1882261.1866180. URL http://doi.acm.org/10.1145/1882261.1866180.

Liu, J.-S., Kao, J.-I., & Chang, Y.-Z. (2006). Collision detection of deformable polyhe-
dral objects via inner-outer ellipsoids. In /ROS (pp. 5600-5605). New York: IEEE. URL
http://dblp.uni-trier.de/db/conf/iros/iros2006.html#LiuKC06.

Liu, M., Wang, D., & Zhang, Y. (2010). A novel haptic rendering algorithm for stable and
precise 6-dof virtual assembly. In Proceedings of the ASME 2010 world conference on inno-
vative virtual reality, WINVR2010 (pp. 1-7).

Luebke, D. (2003). The Morgan Kaufmann series in computer graphics and geomet-
ric modeling. Level of detail for 3D graphics. San Francisco: Morgan Kaufmann. ISBN
9781558608382. URL http://books.google.de/books?id=CB 1N 1aaoMIoC.

Luque, R. G., Comba, J. L. D., & Freitas, C. M. D. S. (2005). Broad-phase collision detec-
tion using semi-adjusting bsp-trees. In Proceedings of the 2005 symposium on interactive
3D graphics and games, 13D ’05 (pp. 179-186). New York: ACM. ISBN 1-59593-013-2.
doi:10.1145/1053427.1053457. URL http://doi.acm.org/10.1145/1053427.1053457.

Massie, T. H., & Salisbury, K. J. (1994). Phantom haptic interface: a device for probing
virtual objects. American Society of Mechanical Engineers, Dynamic Systems and Control
Division (Publication) DSC, 55(1), 295-299.

Mazhar, H. (2009). Gpu collision detection using spatial subdivision with applications in
contact dynamics. In ASME IDETC conference.

McGuire, M., & Luebke, D. (2009). Hardware-accelerated global illumination by image
space photon mapping. In Proceedings of the conference on high performance graphics
2009, HPG 09 (pp. 77-89). New York: ACM. ISBN 978-1-60558-603-8. doi:10.1145/
1572769.1572783. URL http://doi.acm.org/10.1145/1572769.1572783.

McNeely, W. A., Puterbaugh, K. D., & Troy, J. J. (1999). Six degrees-of-freedom haptic ren-
dering using voxel sampling. ACM Transactions on Graphics, 18(3), 401-408 (SIGGRAPH
1999).

McNeely, W. A., Puterbaugh, K. D., & Troy, J. J. (2005). Advances in voxel-based 6-dof
haptic rendering. In ACM SIGGRAPH 2005 courses, SIGGRAPH ’05. New York: ACM.
doi:10.1145/1198555.1198606. URL http://doi.acm.org/10.1145/1198555.1198606.
McNeely, W. A., Puterbaugh, K. D., & Troy, J. J. (2006). Voxel-based 6-dof haptic rendering
improvements. Hapticse: The Electronic Journal of Haptics Research, 3(7).

http://planning.cs.uiuc.edu/
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch32.html
http://dx.doi.org/10.1016/j.cagd.2008.05.003
http://dx.doi.org/10.1145/1882261.1866180
http://doi.acm.org/10.1145/1882261.1866180
http://dblp.uni-trier.de/db/conf/iros/iros2006.html#LiuKC06
http://books.google.de/books?id=CB1N1aaoMloC
http://dx.doi.org/10.1145/1053427.1053457
http://doi.acm.org/10.1145/1053427.1053457
http://dx.doi.org/10.1145/1572769.1572783
http://dx.doi.org/10.1145/1572769.1572783
http://doi.acm.org/10.1145/1572769.1572783
http://dx.doi.org/10.1145/1198555.1198606
http://doi.acm.org/10.1145/1198555.1198606

40

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.
164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

2 A Brief Overview of Collision Detection

Mendoza, C., & O’Sullivan, C. (2006). Interruptible collision detection for deformable ob-
jects. Computer Graphics, 30(3), 432-438. doi:10.1016/j.cag.2006.02.018.

Mezger, J., Kimmerle, S., & EtzmufB, O. (2003). Hierarchical techniques in collision detec-
tion for cloth animation. Journal of WSCG, 11(2), 322-329.

Mirtich, B. (1998). Efficient algorithms for two-phase collision detection. In K. Gupta &
A. P. del Pobil (Eds.), Practical motion planning in robotics: current approaches and future
directions (pp. 203-223). New York: Wiley.

Mirtich, B. (1998). V-clip: fast and robust polyhedral collision detection. ACM Transac-
tions on Graphics, 17(3), 177-208. doi:10.1145/285857.285860. URL http://doi.acm.org/
10.1145/285857.285860.

Mirtich, B. (2000). Timewarp rigid body simulation. In Proceedings of the 27th an-
nual conference on computer graphics and interactive techniques, SIGGRAPH ’00 (pp.
193-200). New York: ACM Press/Addison-Wesley Publishing Co. ISBN 1-58113-208-5.
doi:10.1145/344779.344866.

Moller, T. (1997). A fast triangle-triangle intersection test. Journal of Graphics Tools, 2(2),
25-30. URL http://dl.acm.org/citation.cfm?id=272317.272320.

Mosegaard, J., Herborg, P., & Sgrensen, T. S. (2005). A GPU accelerated spring mass system
for surgical simulation. Studies in Health Technology and Informatics, 111, 342-348. URL
http://view.ncbi.nlm.nih.gov/pubmed/15718756.

Munkberg, J., Hasselgren, J., Toth, R., & Akenine-Moller, T. (2010). Efficient bound-
ing of displaced Bezier patches. In Proceedings of the conference on high perfor-
mance graphics, HPG ’10 (pp. 153-162). Aire-la-Ville: Eurographics Association. URL
http://dl.acm.org/citation.cfm?id=1921479.1921503.

Naylor, B. F. (1992). Interactive solid geometry via partitioning trees. In Proceedings of
the conference on graphics interface 92 (pp. 11-18). San Francisco: Morgan Kaufmann
Publishers. ISBN 0-9695338-1-0. URL http://dl.acm.org/citation.cfm?id=155294.155296.
NVIDIA (2012). Nvidia physx. http://www.nvidia.com/object/nvidia_physx.html.

O’Brien, J. F., & Hodgins, J. K. (1999). Graphical modeling and animation of brittle fracture.
In Proceedings of the 26th annual conference on computer graphics and interactive tech-
niques, SIGGRAPH ’99 (pp. 137-146). New York: ACM Press/Addison-Wesley Publishing
Co. ISBN 0-201-48560-5. doi:10.1145/311535.311550.

Ong, C. J., Huang, E., & Hong, S.-M. (2000). A fast growth distance algorithm for incre-
mental motions. IEEE Transactions on Robotics, 16(6), 880-890.

O’Rourke, J. (1984). Finding minimal enclosing boxes (Technical Report). Johns Hopkins
Univ., Baltimore, MD.

Ortega, M., Redon, S., & Coquillart, S. (2007). A six degree-of-freedom god-object method
for haptic display of rigid bodies with surface properties. IEEE Transactions on Visualization
and Computer Graphics, 13(3), 458-469. doi:10.1109/TVCG.2007.1028.

O’Sullivan, C., & Dingliana, J. (1999). Real-time collision detection and response using
sphere-trees.

O’Sullivan, C., & Dingliana, J. (2001). Collisions and perception. ACM Transac-
tions on Graphics, 20(3), 151-168. doi:10.1145/501786.501788. URL http://doi.acm.org/
10.1145/501786.501788.

Otaduy, M. A., & Lin, M. C. (2006). A modular haptic rendering algorithm for stable
and transparent 6-dof manipulation. URL http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.
htm?arnumber=1668258.

Otaduy, M. A., & Lin, M. C. (2003). CLODs: Dual hierarchies for multiresolution collision
detection. In Symposium on geometry processing (pp. 94—101).

Otaduy, M. A., & Lin, M. C. (2005). Sensation preserving simplification for hap-
tic rendering. In ACM SIGGRAPH 2005 courses, SIGGRAPH ’05. New York: ACM.
doi:10.1145/1198555.1198607. URL http://doi.acm.org/10.1145/1198555.1198607.
Otaduy, M. A., Jain, N., Sud, A., & Lin, M. C. (2004). Haptic rendering of in-
teraction between textured models (Technical report). University of North Carolina

http://dx.doi.org/10.1016/j.cag.2006.02.018
http://dx.doi.org/10.1145/285857.285860
http://doi.acm.org/10.1145/285857.285860
http://doi.acm.org/10.1145/285857.285860
http://dx.doi.org/10.1145/344779.344866
http://dl.acm.org/citation.cfm?id=272317.272320
http://view.ncbi.nlm.nih.gov/pubmed/15718756
http://dl.acm.org/citation.cfm?id=1921479.1921503
http://dl.acm.org/citation.cfm?id=155294.155296
http://www.nvidia.com/object/nvidia_physx.html
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1109/TVCG.2007.1028
http://dx.doi.org/10.1145/501786.501788
http://doi.acm.org/10.1145/501786.501788
http://doi.acm.org/10.1145/501786.501788
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1668258
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1668258
http://dx.doi.org/10.1145/1198555.1198607
http://doi.acm.org/10.1145/1198555.1198607

References 41

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

Chapel Hill, April 13. URL http://citeseer.ist.psu.edu/638785.html; ftp://ftp.cs.unc.edu/
pub/publications/techreports/04-007.pdf.

Otaduy, M. A., Chassot, O., Steinemann, D., & Gross, M. (2007). Balanced hierarchies for
collision detection between fracturing objects. In Virtual reality conference, IEEE (pp. 83—
90). New York: IEEE. URL http://doi.ieeecomputersociety.org/10.1109/VR.2007.352467.
Page, F., & Guibault, F. (2003). Collision detection algorithm for nurbs surfaces in interactive
applications. In Canadian conference on electrical and computer engineering, 2003. IEEE
CCECE 2003, May 2003 (Vol. 2, pp. 1417-1420). doi:10.1109/CCECE.2003.1226166.
Pan, J., & Manocha, D. (2012). Gpu-based parallel collision detection for fast motion
planning. The International Journal of Robotics Research, 31(2), 187-200. doi:10.1177/
0278364911429335.

Pan, J., Chitta, S., & Manocha, D. (2011). Probabilistic collision detection between
noisy point clouds using robust classification. In International symposium on robotics re-
search, Flagstaff, Arizona, 08/2011. URL http://www.isrr-2011.org/ISRR-2011//Program_
files/Papers/Pan-ISRR-2011.pdf.

Pan, J., Chitta, S., & Manocha, D. (2012). Proximity computations between noisy point
clouds using robust classification. In RGB-D: advanced reasoning with depth cam-
eras, Los Angeles, California, 06/2012. URL http://www.cs.washington.edu/ai/Mobile_
Robotics/rgbd-workshop-2011/.

Pantaleoni, J. (2011). Voxelpipe: a programmable pipeline for 3d voxelization. In Proceed-
ings of the ACM SIGGRAPH symposium on high performance graphics, HPG 11 (pp.
99-106). New York: ACM. ISBN 978-1-4503-0896-0. doi:10.1145/2018323.2018339. URL
http://doi.acm.org/10.1145/2018323.2018339.

Park, S.-H., & Ryu, K. (2004). Fast similarity search for protein 3d structure databases using
spatial topological patterns. In F. Galindo, M. Takizawa, & R. Traunmiiller (Eds.), Lecture
notes in computer science: Vol. 3180. Database and expert systems applications (pp. 771—
780). Berlin: Springer. doi:10.1007/978-3-540-30075-5_74.

Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAl-
lister, D., McGuire, M., Morley, K., Robison, A., & Stich, M. (2010). Optix: a gen-
eral purpose ray tracing engine. ACM Transactions on Graphics, 29(4), 66:1-66:13.
doi:10.1145/1778765.1778803. URL http://doi.acm.org/10.1145/1778765.1778803.
Ponamgi, M., Manocha, D., & Lin, M. C. (1995). Incremental algorithms for collision de-
tection between solid models. In Proceedings of the third ACM symposium on solid mod-
eling and applications, SMA ’95 (pp. 293-304). New York: ACM. ISBN 0-89791-672-7.
doi:10.1145/218013.218076. URL http://doi.acm.org/10.1145/218013.218076.

Prior, A., & Haines, K. (2005). The use of a proximity agent in a collaborative virtual envi-
ronment with 6 degrees-of-freedom voxel-based haptic rendering. In Proceedings of the first
Jjoint eurohaptics conference and symposium on haptic interfaces for virtual environment
and teleoperator systems, WHC "05 (pp. 631-632). Washington: IEEE Computer Society.
ISBN 0-7695-2310-2. doi:10.1109/WHC.2005.137.

Provot, X. (1997). Collision and self-collision handling in cloth model dedicated to design
garments. In Proc. graphics interface *97 (pp. 177-189).

Quinlan, S. (1994). Efficient distance computation between non-convex objects. In Proceed-
ings of international conference on robotics and automation (pp. 3324-3329).

Raabe, A., Bartyzel, B., Anlauf, J. K., & Zachmann, G. (2005). Hardware accelerated colli-
sion detection—an architecture and simulation results. In Proceedings of the conference on
design, automation and test in Europe, DATE ’05 (Vol. 3, pp. 130-135). Washington: IEEE
Computer Society. ISBN 0-7695-2288-2. doi:10.1109/DATE.2005.167.

Redon, S., Kheddar, A., & Coquillart, S. (2000). An algebraic solution to the
problem of collision detection for rigid polyhedral objects. In Proceedings 2000
ICRA millennium conference IEEE international conference on robotics and automa-
tion symposia proceedings cat NoOOCH37065, April (Vol. 4, pp. 3733-3738). URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=845313.

http://citeseer.ist.psu.edu/638785.html
ftp://ftp.cs.unc.edu/pub/publications/techreports/04-007.pdf
ftp://ftp.cs.unc.edu/pub/publications/techreports/04-007.pdf
http://doi.ieeecomputersociety.org/10.1109/VR.2007.352467
http://dx.doi.org/10.1109/CCECE.2003.1226166
http://dx.doi.org/10.1177/0278364911429335
http://dx.doi.org/10.1177/0278364911429335
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Pan-ISRR-2011.pdf
http://www.isrr-2011.org/ISRR-2011//Program_files/Papers/Pan-ISRR-2011.pdf
http://www.cs.washington.edu/ai/Mobile_Robotics/rgbd-workshop-2011/
http://www.cs.washington.edu/ai/Mobile_Robotics/rgbd-workshop-2011/
http://dx.doi.org/10.1145/2018323.2018339
http://doi.acm.org/10.1145/2018323.2018339
http://dx.doi.org/10.1007/978-3-540-30075-5_74
http://dx.doi.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/1778765.1778803
http://dx.doi.org/10.1145/218013.218076
http://doi.acm.org/10.1145/218013.218076
http://dx.doi.org/10.1109/WHC.2005.137
http://dx.doi.org/10.1109/DATE.2005.167
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=845313

42

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.
204.

2 A Brief Overview of Collision Detection

Redon, S., & Lin, C. M. (2006). A fast method for local penetration depth computation.
Journal of Graphics Tools. URL http://hal.inria.fr/inria-00390349.

Redon, S., Kheddar, A., & Coquillart, S. (2002). Fast continuous collision detection
between rigid bodies. Computer Graphics Forum, 21(3), 279-287. URL http://dblp.
uni-trier.de/db/journals/cgt/cgt21.html#RedonKCO02.

Renz, M., Preusche, C., Potke, M., Kriegel, H.-P., & Hirzinger, G. (2001). Stable haptic
interaction with virtual environments using an adapted voxmap-pointshell algorithm. In Proc.
eurohaptics (pp. 149-154).

Roussopoulos, N., & Leifker, D. (1985). Direct spatial search on pictorial databases us-
ing packed r-trees. In Proceedings of the 1985 ACM SIGMOD international conference on
management of data, SIGMOD 85 (pp. 17-31). New York: ACM. ISBN 0-89791-160-1.
doi:10.1145/318898.318900. URL http://doi.acm.org/10.1145/318898.318900.

Rubin, S. M., & Whitted, T. (1980). A 3-dimensional representation for fast rendering of
complex scenes. In Proceedings of the 7th annual conference on computer graphics and
interactive techniques, SIGGRAPH 80 (pp. 110-116). New York: ACM. ISBN 0-89791-
021-4. doi:10.1145/800250.807479. URL http://doi.acm.org/10.1145/800250.807479.
Ruffaldi, E., Morris, D., Barbagli, F., Salisbury, K., & Bergamasco, M. (2008). Voxel-
based haptic rendering using implicit sphere trees. In Proceedings of the 2008 sym-
posium on haptic interfaces for virtual environment and teleoperator systems, HAP-
TICS 08 (pp. 319-325). Washington: IEEE Computer Society. ISBN 978-1-4244-2005-6.
doi:10.1109/HAPTICS.2008.4479964.

Ruspini, D. C., Kolarov, K., & Khatib, O. (1997). The haptic display of complex graphical
environments. In Proceedings of the 24th annual conference on computer graphics and inter-
active techniques, SIGGRAPH ’97 (pp. 345-352). New York: ACM Press/Addison-Wesley
Publishing Co. ISBN 0-89791-896-7. doi:10.1145/258734.258878.

Salisbury, K., Conti, F., & Barbagli, F. (2004). Haptic rendering: introductory concepts.
IEEE Computer Graphics and Applications, 24, 24-32. URL http://doi.ieeecomputersociety.
org/10.1109/MCG.2004.10030.

Samet, H. (1989). Implementing ray tracing with octrees and neighbor finding. Computers
& Graphics, 13, 445-460.

Schneider, P. J., & Eberly, D. (2002). Geometric tools for computer graphics. New York:
Elsevier Science Inc. ISBN 1558605940.

Schwarz, M., & Seidel, H.-P. (2010). Fast parallel surface and solid voxelization
on gpus. In ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA 10 (pp. 179:1-
179:10). New York: ACM. ISBN 978-1-4503-0439-9. doi:10.1145/1866158.1866201. URL
http://doi.acm.org/10.1145/1866158.1866201.

Selinger, A., & Nelson, R. C. (1999). A perceptual grouping hierarchy for appearance-
based 3d object recognition. Computer Vision and Image Understanding, 76(1), 83-92.
doi:10.1006/cviu.1999.0788.

Shirley, P., & Morley, R. K. (2003). Realistic ray tracing (2nd ed.). Natick: A. K. Peters, Ltd.
ISBN 1568811985.

Six, H.-W., & Widmayer, P. (1992). Spatial access structures for geometric databases. In B.
Monien & Th. Ottmann (Eds.), Lecture notes in computer science: Vol. 594. Data struc-
tures and efficient algorithms (pp. 214-232). Berlin: Springer. ISBN 978-3-540-55488-2.
doi:10.1007/3-540-55488-2_29.

Smith, A., Kitamura, Y., Takemura, H., & Kishino, F. (1995). A simple and efficient
method for accurate collision detection among deformable polyhedral objects in ar-
bitrary motion. In Proceedings of the virtual reality annual international symposium
VRAIS’95 (p. 136). Washington: IEEE Computer Society. ISBN 0-8186-7084-3. URL
http://dl.acm.org/citation.cfm?id=527216.836015.

Smith, R. (2012). Open dynamics engine. http://www.ode.org.

Sobottka, G., & Weber, A. (2005). Efficient bounding volume hierarchies for hair simulation.
In The 2nd workshop in virtual reality interactions and physical simulations (VRIPHYS ’05),
November.

http://hal.inria.fr/inria-00390349
http://dblp.uni-trier.de/db/journals/cgf/cgf21.html#RedonKC02
http://dblp.uni-trier.de/db/journals/cgf/cgf21.html#RedonKC02
http://dx.doi.org/10.1145/318898.318900
http://doi.acm.org/10.1145/318898.318900
http://dx.doi.org/10.1145/800250.807479
http://doi.acm.org/10.1145/800250.807479
http://dx.doi.org/10.1109/HAPTICS.2008.4479964
http://dx.doi.org/10.1145/258734.258878
http://doi.ieeecomputersociety.org/10.1109/MCG.2004.10030
http://doi.ieeecomputersociety.org/10.1109/MCG.2004.10030
http://dx.doi.org/10.1145/1866158.1866201
http://doi.acm.org/10.1145/1866158.1866201
http://dx.doi.org/10.1006/cviu.1999.0788
http://dx.doi.org/10.1007/3-540-55488-2_29
http://dl.acm.org/citation.cfm?id=527216.836015
http://www.ode.org

References 43

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

Sobottka, G., Varnik, E., & Weber, A. (2005). Collision detection in densely packed fiber
assemblies with application to hair modeling. In H. R. Arabnia (Ed.), The 2005 international
conference on imaging science, systems, and technology: computer graphics (CISST’05) (pp.
244-250). Athens: CSREA Press. ISBN 1-932415-64-5.

Spillmann, J., Becker, M., & Teschner, M. (2007). Efficient updates of bounding sphere hier-
archies for geometrically deformable models. Journal of Visual Communication and Image
Representation, 18(2), 101-108. doi:10.1016/j.jvcir.2007.01.001.

Stewart, D., & Trinkle, J. C. (1996). An implicit time-stepping scheme for rigid body dy-
namics with coulomb friction. International Journal for Numerical Methods in Biomedical
Engineering, 39, 2673-2691.

Su, C.-J., Lin, F, & Ye, L. (1999). A new collision detection method for csg-represented
objects in virtual manufacturing. Computers in Industry, 40(1), 1-13. doi:10.1016/
S0166-3615(99)00010-X.

Suffern, K. (2007). Ray tracing from the ground up. Natick: A. K. Peters, Ltd. ISBN
1568812728.

Taeubig, H., & Frese, U. (2012). A new library for real-time continuous collision detection.
In Proceedings of the 7th German conference on robotics (ROBOTIK-2012), May 21-22.
Munich, Germany. Frankfurt am Main: VDE.

Tang, C., Li, S., & Wang, G. (2011). Fast continuous collision detection using parallel
filter in subspace. In Symposium on interactive 3D graphics and games, 13D 11 (pp.
71-80). New York: ACM. ISBN 978-1-4503-0565-5. doi:10.1145/1944745.1944757. URL
http://doi.acm.org/10.1145/1944745.1944757.

Tang, M., Kim, Y. J., & Manocha, D. (2009). C2a: controlled conservative advancement for
continuous collision detection of polygonal models. In Proceedings of international confer-
ence on robotics and automation.

Tang, M., Lee, M., & Kim, Y. J. (2009). Interactive Hausdorff distance computation for
general polygonal models. In ACM SIGGRAPH 2009 papers, SIGGRAPH ’09 (pp. 74:1—
74:9). New York: ACM. ISBN 978-1-60558-726-4. doi:10.1145/1576246.1531380. URL
http://doi.acm.org/10.1145/1576246.1531380.

Tang, M., Manocha, D., Otaduy, M. A., & Tong, R. (2012). Continuous penalty forces.
ACM Transactions on Graphics, 31(4) (Proc. of ACM SIGGRAPH). URL http://www.gmrv.
es/Publications/2012/TMOT12.

Tang, M., Tang, M., Curtis, S., Yoon, S.-E., Yoon, S.-E., & Manocha, D. (2008). Iccd: inter-
active continuous collision detection between deformable models using connectivity-based
culling. URL http://www.ncbi.nlm.nih.gov/pubmed/19423880.

Tasora, A., Negrut, D., & Anitescu, M. (2009). Gpu-based parallel computing for the simu-
lation of complex multibody systems with unilateral and bilateral constraints: an overview.
Tavares, D. L. M., & Comba, J. L. D. (2007). Broad-phase collision detection using Delaunay
triangulation (Technical report). Universidade Federal do Rio Grande do Sul (UFRGS).
Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann,
A., Cani, M.-P,, Faure, F., Magnenat-Thalmann, N., Strasser, W., & Volino, P. (2005).
Collision detection for deformable objects. Computer Graphics Forum, 24(1), 61-81.
doi:10.1111/j.1467-8659.2005.00829.x.

Teschner, M., Heidelberger, B., Miiller, M., Pomerantes, D., & Gross, M. H. (2003). Opti-
mized spatial hashing for collision detection of deformable objects. In Proc. 8th international
fall workshop vision, modeling, and visualization (VMV 2003) (pp. 47-54).

Thompson, T. V. I, Johnson, D. E., & Cohen, E. (1997). Direct haptic rendering of sculp-
tured models. In Proceedings of the 1997 symposium on interactive 3D graphics, 13D '97
(pp. 167-176). New York: ACM. ISBN 0-89791-884-3. doi:10.1145/253284.253336. URL
http://doi.acm.org/10.1145/253284.253336.

Torres, R., Martin, P. J., & Gavilanes, A. (2009). Ray casting using a roped bvh with
cuda. In Proceedings of the 2009 spring conference on computer graphics, SCCG ’09 (pp.
95-102). New York: ACM. ISBN 978-1-4503-0769-7. doi:10.1145/1980462.1980483. URL
http://doi.acm.org/10.1145/1980462.1980483.

http://dx.doi.org/10.1016/j.jvcir.2007.01.001
http://dx.doi.org/10.1016/S0166-3615(99)00010-X
http://dx.doi.org/10.1016/S0166-3615(99)00010-X
http://dx.doi.org/10.1145/1944745.1944757
http://doi.acm.org/10.1145/1944745.1944757
http://dx.doi.org/10.1145/1576246.1531380
http://doi.acm.org/10.1145/1576246.1531380
http://www.gmrv.es/Publications/2012/TMOT12
http://www.gmrv.es/Publications/2012/TMOT12
http://www.ncbi.nlm.nih.gov/pubmed/19423880
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x
http://dx.doi.org/10.1145/253284.253336
http://doi.acm.org/10.1145/253284.253336
http://dx.doi.org/10.1145/1980462.1980483
http://doi.acm.org/10.1145/1980462.1980483

44

222.

223.

224,

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

2 A Brief Overview of Collision Detection

Tropp, O., Tal, A., & Shimshoni, I. (2006). A fast triangle to triangle intersection test
for collision detection. Computer Animation and Virtual Worlds, 17(5), 527-535. URL
http://doi.wiley.com/10.1002/cav.115.

Tsingos, N., Dachsbacher, C., Lefebvre, S., & Dellepiane, M. (2007). Instant sound scatter-
ing. In Rendering techniques (Proceedings of the eurographics symposium on rendering).
URL http://www-sop.inria.fr/reves/Basilic/2007/TDLDO7.

Turk, G. (1989). Interactive collision detection for molecular graphics (Technical re-
port). University of North Carolina at Chapel Hill. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.93.4927.

van den Bergen, G. (1998). Efficient collision detection of complex deformable models
using aabb trees. Journal of Graphics Tools, 2(4), 1-13. URL http://dl.acm.org/citation.
cfm?id=763345.763346.

Van den Bergen, G. (1999). A fast and robust gjk implementation for collision detection
of convex objects. Journal of Graphics Tools, 4(2), 7-25. URL http://dl.acm.org/citation.
cfm?id=334709.334711.

van den Bergen, G. (2001). Proximity queries and penetration depth computation on 3D
game objects. In Proceedings of game developers conference 2001, San Jose, CA, March.
Van Den Bergen, G. (2004). The Morgan Kaufmann series in interactive 3D technology. Col-
lision detection in interactive 3D environments. San Francisco: Morgan Kaufman Publishers.
ISBN 9781558608016. URL http://books.google.com/books?id=E-9AsqZCTSEC.

Volino, P., & Magnenat Thalmann, N. M. (1995). Collision and self-collision detection: effi-
cient and robust solutions for highly deformable surfaces. In Computer animation and simu-
lation *95 (pp. 55-65). Berlin: Springer.

Von Herzen, B., Barr, A. H., & Zatz, H. R. (1990). Geometric collisions for time-dependent
parametric surfaces. In Proceedings of the 17th annual conference on computer graphics and
interactive techniques, SSIGGRAPH "90 (pp. 39—48). New York: ACM. ISBN 0-89791-344-2.
doi:10.1145/97879.97883. URL http://doi.acm.org/10.1145/97879.97883.

Voronoi, G. (1908). Nouvelles applications des parameétres continus a la théorie des
formes quadratiques. Deuxieme mémoire. Recherches sur les parallélloedres primitifs.
Journal fiir die Reine und Angewandte Mathematik (Crelles Journal), 134, 198-287.
doi:10.1515/crll.1908.134.198.

Wald, I. (2007). On fast construction of sah-based bounding volume hierarchies. In Proceed-
ings of the 2007 IEEE symposium on interactive ray tracing, RT 07 (pp. 33-40). Washing-
ton: IEEE Computer Society. ISBN 978-1-4244-1629-5. doi:10.1109/RT.2007.4342588.
Wald, 1., & Havran, V. (2006). On building fast kd-trees for ray tracing, and on doing
that in o(n log n). In Symposium on interactive ray tracing (pp. 61-69). URL http://doi.
ieeecomputersociety.org/10.1109/RT.2006.280216.

Wand, M. (2004). Point-based multi-resolution rendering. PhD thesis, Department of com-
puter science and cognitive science, University of Tiibingen.

Weghorst, H., Hooper, G., & Greenberg, D. P. (1984). Improved computational methods for
ray tracing. ACM Transactions on Graphics, 3(1), 52—-69.

Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids). In Results and new trends
in computer science (pp. 359-370). Berlin: Springer.

Whang, K.-Y., Song, J.-W., Chang, J.-W., Kim, J.-Y., Cho, W.-S., Park, C.-M., & Song,
L-Y. (1995). Octree-r: an adaptive octree for efficient ray tracing. IEEE Transactions on
Visualization and Computer Graphics, 1, 343-349. URL http://doi.ieeecomputersociety.
org/10.1109/2945.485621.

Whitted, T. (1980). An improved illumination model for shaded display. Communica-
tions of the ACM, 23(6), 343-349. doi:10.1145/358876.358882. URL http://doi.acm.org/
10.1145/358876.358882.

Wong, S.-K. (2011). Adaptive continuous collision detection for cloth models using a skip-
ping frame session. Journal of Information Science and Engineering, 27(5), 1545-1559.
Wong, W. S.-K., & Baciu, G. (2005). Gpu-based intrinsic collision detection for deformable
surfaces. Computer Animation and Virtual Worlds, 16(3—4), 153-161. doi:10.1002/cav.104.

http://doi.wiley.com/10.1002/cav.115
http://www-sop.inria.fr/reves/Basilic/2007/TDLD07
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.4927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.4927
http://dl.acm.org/citation.cfm?id=763345.763346
http://dl.acm.org/citation.cfm?id=763345.763346
http://dl.acm.org/citation.cfm?id=334709.334711
http://dl.acm.org/citation.cfm?id=334709.334711
http://books.google.com/books?id=E-9AsqZCTSEC
http://dx.doi.org/10.1145/97879.97883
http://doi.acm.org/10.1145/97879.97883
http://dx.doi.org/10.1515/crll.1908.134.198
http://dx.doi.org/10.1109/RT.2007.4342588
http://doi.ieeecomputersociety.org/10.1109/RT.2006.280216
http://doi.ieeecomputersociety.org/10.1109/RT.2006.280216
http://doi.ieeecomputersociety.org/10.1109/2945.485621
http://doi.ieeecomputersociety.org/10.1109/2945.485621
http://dx.doi.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://doi.acm.org/10.1145/358876.358882
http://dx.doi.org/10.1002/cav.104

References 45

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

Woulfe, M., Dingliana, J., & Manzke, M. (2007). Hardware accelerated broad phase
collision detection for realtime simulations. In J. Dingliana & F. Ganovelli (Eds.),
Proceedings of the 4th workshop on virtual reality interaction and physical sim-
ulation (VRIPHYS 2007) (pp. 79-88). Aire-la-Ville: Eurographics Association. URL
https://www.cs.tcd.ie/~woulfem/publications/paper2007/.

Yilmaz, T., & Gudukbay, U. (2007). Conservative occlusion culling for urban visualiza-
tion using a slice-wise data structure. Graphical Models, 69(3—4), 191-210. doi:10.1016/
j-gmod.2007.01.002.

Yoon, S.-E., Salomon, B., Lin, M., & Manocha, D. (2004). Fast collision detection be-
tween massive models using dynamic simplification. In Proceedings of the 2004 euro-
graphics/ACM SIGGRAPH symposium on geometry processing, SGP 04 (pp. 136-146).
New York: ACM. ISBN 3-905673-13-4. doi:10.1145/1057432.1057450. URL http://doi.
acm.org/10.1145/1057432.1057450.

Yoon, S.-E., Curtis, S., & Manocha, D. (2007). Ray tracing dynamic scenes using selec-
tive restructuring. In ACM SIGGRAPH 2007 sketches, SIGGRAPH ’07. New York: ACM.
doi:10.1145/1278780.1278847. URL http://doi.acm.org/10.1145/1278780.1278847.
Zachmann, G. (1998). Rapid collision detection by dynamically aligned dop-trees.
In Proceedings of the virtual reality annual international symposium, VRAIS 98 (p.
90). Washington: IEEE Computer Society. ISBN 0-8186-8362-7. URL http://dl.acm.org/
citation.cfm?id=522258.836122.

Zachmann, G. (2000). Virtual reality in assembly simulation—collision detection, simulation
algorithms, and interaction techniques. Dissertation, Darmstadt University of Technology,
Germany, May.

Zachmann, G. (2001). Optimizing the collision detection pipeline. In Proc. of the first inter-
national game technology conference (GTEC), January.

Zachmann, G. (2002). Minimal hierarchical collision detection. In Proceedings of the
ACM symposium on virtual reality software and technology, VRST ’02 (pp. 121-128).
New York: ACM. ISBN 1-58113-530-0. doi:10.1145/585740.585761. URL http://doi.
acm.org/10.1145/585740.585761.

Zachmann, G., & Langetepe, E. (2003). Geometric data structures for computer graphics.
In Proc. of ACM SIGGRAPH. ACM transactions of graphics, 27-31 July. URL http://www.
gabrielzachmann.org/.

Zachmann, G., Teschner, M., Kimmerle, S., Heidelberger, B., Raghupathi, L., & Fuhrmann,
A. (2005). Real-time collision detection for dynamic virtual environments. In Tutorial #4,
IEEE VR, Bonn, Germany, 12-16 March. Washington: IEEE Computer Society.

Zeiller, M. (1993). Collision detection for objects modelled by csg. In T. K. S. Murthy, J. J.
Conner, S. Hernandez, & H. Power (Eds.), Visualization and intelligent design in engineering
and architecture, April. Amsterdam: Elsevier Science Publishers. ISBN 1853122270. URL
http://www.cg.tuwien.ac.at/research/publications/1993/zeiller- 1993-coll/.

Zhang, D., & Yuen, M. M. F. (2000). Collision detection for clothed human animation.
In Pacific conference on computer graphics and applications (p. 328). URL http://doi.
ieeecomputersociety.org/10.1109/PCCGA.2000.883956.

Zhang, H., & Hoff, K. E. III. (1997). Fast backface culling using normal masks. In
Proceedings of the 1997 symposium on interactive 3D graphics, 13D '97 (pp. 103-
ff). New York: ACM. ISBN 0-89791-884-3. doi:10.1145/253284.253314. URL http://doi.
acm.org/10.1145/253284.253314.

Zhang, H., Manocha, D., Hudson, T., & Hoff, K. E. III. (1997). Visibility culling using hierar-
chical occlusion maps. In Proceedings of the 24th annual conference on computer graphics
and interactive techniques, SIGGRAPH 97 (pp. 77-88). New York: ACM Press/Addison-
Wesley Publishing Co. ISBN 0-89791-896-7. doi:10.1145/258734.258781.

Zhang, L., Kim, Y. J., & Manocha, D. (2007). A fast and practical algorithm for generalized
penetration depth computation. In Robotics: science and systems conference (RSS07).
Zhang, L., Kim, Y. J., & Manocha, D. (2007). C-dist: efficient distance computa-
tion for rigid and articulated models in configuration space. In Proceedings of the

https://www.cs.tcd.ie/~woulfem/publications/paper2007/
http://dx.doi.org/10.1016/j.gmod.2007.01.002
http://dx.doi.org/10.1016/j.gmod.2007.01.002
http://dx.doi.org/10.1145/1057432.1057450
http://doi.acm.org/10.1145/1057432.1057450
http://doi.acm.org/10.1145/1057432.1057450
http://dx.doi.org/10.1145/1278780.1278847
http://doi.acm.org/10.1145/1278780.1278847
http://dl.acm.org/citation.cfm?id=522258.836122
http://dl.acm.org/citation.cfm?id=522258.836122
http://dx.doi.org/10.1145/585740.585761
http://doi.acm.org/10.1145/585740.585761
http://doi.acm.org/10.1145/585740.585761
http://www.gabrielzachmann.org/
http://www.gabrielzachmann.org/
http://www.cg.tuwien.ac.at/research/publications/1993/zeiller-1993-coll/
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2000.883956
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2000.883956
http://dx.doi.org/10.1145/253284.253314
http://doi.acm.org/10.1145/253284.253314
http://doi.acm.org/10.1145/253284.253314
http://dx.doi.org/10.1145/258734.258781

46

257.

258.

259.

260.

261.

262.

2 A Brief Overview of Collision Detection

2007 ACM symposium on solid and physical modeling, SPM 07 (pp. 159-169). New
York: ACM. ISBN 978-1-59593-666-0. doi:10.1145/1236246.1236270. URL http://doi.
acm.org/10.1145/1236246.1236270.

Zhang, L., Kim, Y. J., Varadhan, G., & Manocha, D. (2007). Generalized penetration depth
computation. Computer Aided Design, 39(8), 625-638. doi:10.1016/j.cad.2007.05.012.
Zhang, X., & Kim, Y. J. (2007). Interactive collision detection for deformable models using
streaming aabbs. IEEE Transactions on Visualization and Computer Graphics, 13(2), 318—
329. doi:10.1109/TVCG.2007.42.

Zhang, X., Lee, M., & Kim, Y. J. (2006). Interactive continuous collision detection for non-
convex polyhedra. The Visual Computer, 22(9), 749-760. doi:10.1007/s00371-006-0060-0.
Zhang, X., Redon, S., Lee, M., & Kim, Y. J. (2007). Continuous collision detection
for articulated models using Taylor models and temporal culling. In ACM SIGGRAPH
2007 papers, SIGGRAPH ’07. New York: ACM. doi:10.1145/1275808.1276396. URL
http://doi.acm.org/10.1145/1275808.1276396.

Zhu, X., Ding, H., & Tso, S. K. (2004). A pseudodistance function and its applications. [EEE
Transactions on Robotics, 20(2), 344-352.

Zilles, C. B., & Salisbury, J. K. (1995). A constraint-based god-object method for haptic
display. In Proceedings of the international conference on intelligent robots and systems,
IROS 95 (Vol. 3, p. 3146). Washington: IEEE Computer Society. ISBN 0-8186-7108-4. URL
http://dl.acm.org/citation.cfm?id=846238.849727.

http://dx.doi.org/10.1145/1236246.1236270
http://doi.acm.org/10.1145/1236246.1236270
http://doi.acm.org/10.1145/1236246.1236270
http://dx.doi.org/10.1016/j.cad.2007.05.012
http://dx.doi.org/10.1109/TVCG.2007.42
http://dx.doi.org/10.1007/s00371-006-0060-0
http://dx.doi.org/10.1145/1275808.1276396
http://doi.acm.org/10.1145/1275808.1276396
http://dl.acm.org/citation.cfm?id=846238.849727

2 Springer
http://www.springer.com/978-3-319-01019-9

Mew Geometric Data Structures for Collision Detection
and Haptics

Weller, R

2013, XV, 240 p., Hardcover

ISBM: 878-3-3159-010159-58

	Chapter 2: A Brief Overview of Collision Detection
	2.1 Broad Phase Collision Detection
	2.2 Narrow Phase Basics
	2.3 Narrow Phase Advanced: Distances, Penetration Depths and Penetration Volumes
	2.3.1 Distances
	2.3.2 Continuous Collision Detection
	2.3.3 Penetration Depth
	2.3.4 Penetration Volume

	2.4 Time Critical Collision Detection
	2.4.1 Collision Detection in Haptic Environments
	2.4.1.1 3 DOF
	2.4.1.2 6 DOF

	2.5 Collision Detection for Deformable Objects
	2.5.1 Excursus: GPU-Based Methods

	2.6 Related Fields
	2.6.1 Excursus: Ray Tracing

	References

