
Chapter 2
The Lorentz Transformation

Imagination is more important than knowledge.
—Albert Einstein

2.1 Introduction

Now that we have seen the main consequences of the postulates of Special Relativ-
ity, i.e., the relativity of simultaneity, time dilation, and length contraction it is clear
that the Galilei transformation, with its absolute time, is incorrect. These important
physical phenomena can be seen as direct consequences of the correct transforma-
tion relating inertial frames, the Lorentz transformation. This transformation is the
key for the formulation of Special Relativity in an enlightening four-dimensional
formalism, which we will see in the next chapter. Here we study the Lorentz trans-
formation and its properties and derive length contraction and time dilation directly
from it, in addition to the transformation property of velocities. We must emphasize
that, although the Lorentz transformation was discovered by studying the Maxwell
equations, its validity is more general. The Lorentz transformation relates inertial
frames without reference to the kind of physics studied in them. Lorentz-invariance
is a general requirement for any physical theory, not just for electromagnetism.

2.2 The Lorentz Transformation

The Galilei transformation is not valid for speeds which are not negligible in com-
parison with the speed of light. The correct transformation relating space and time
coordinates in two inertial frames {t, x, y, z} and

{
t ′, x ′, y′, z′

}
moving with relative

velocity v in standard configuration was discovered by Fitzgerald in 1889 and by
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Lorentz in 1892 as the transformation which leaves the Maxwell equations invariant.1

The Lorentz transformation or Lorentz boost is2

x ′ = x − vt
√

1− v2

c2

, (2.1)

y′ = y, (2.2)

z′ = z, (2.3)

t ′ = t − v x
c2

√
1− v2

c2

. (2.4)

The most striking feature of this linear coordinate transformation (bear in mind
that v and γ ≡ (

1− v2/c2
)−1/2

are constants) is that it mixes the space and time
coordinates. As a consequence, time intervals and 3-dimensional lengths are not
invariant under this transformation and, therefore, time intervals and 3-dimensional
lengths are not absolute quantities. The equations of electromagnetism are invariant
under this transformation (it is said that they are Lorentz-invariant) but the equations
of Newtonian mechanics are not.

The inverse Lorentz transformation is obtained by the exchange x ←→ x ′ and
v←→−v according to the Principle of Relativity3:

x = x ′ + vt ′
√

1− v2

c2

, (2.5)

y = y′, (2.6)

1 Lorentz was also trying to explain the null result of the Michelson-Morley experiment by a
physical contraction of the apparatus in the direction of motion. His interpretation, however, is
rather misleading: the Lorentz transformation relates measurements performed in two different
inertial systems.
2 A priori, the constant c appearing in the Lorentz transformation is a fundamental velocity which
needs not coincide with the speed of electromagnetic waves in vacuo, and is only later identified
with it. This is not the historical route, in which the Lorentz transformation was derived from the
Maxwell equations. There are many facets to the quantity c in various areas of physics (see Ref. [1]
for a review).
3 This application of the Principle of Relativity is sometimes called “principle of reciprocity” and
is a consequence of the isotropy of space [2, 3].
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z = z′, (2.7)

t = t ′ + v x ′
c2

√
1− v2

c2

. (2.8)

Although the Lorentz transformation was obtained before the formulation of Special
Relativity as the correct transformation between inertial frames which respects the
Maxwell equations, its meaning was not grasped until Einstein’s 1905 paper.

2.3 Derivation of the Lorentz Transformation

The Lorentz transformation can be derived on the basis of the two postulates of
Special Relativity. First, due to the isotropy of space contained in the second postulate,
we can orient the spatial axes of an inertial frame S′ with those of another inertial
frame S and limit ourselves to considering motion of the two frames in standard
configuration. As a starting point for deducing the transformation relating two inertial
frames S = {t, x, y, z} and S′ = {

t ′, x ′, y′, z′
}

in relative motion with velocity v in
standard configuration, it is reasonable to assume that the transformation is linear

x ′ = G(x − vt), (2.9)

where G is a dimensionless constant that depends only on v/c. This assumption
corresponds to the homogeneity of space and time since G does not depend on (x, t).
Since the spatial part of the Galilei transformation x ′ = x − vt must be recovered in
the limit v/c→ 0, G must tend to unity in this limit.

The laws of physics must have the same form in S and S′, and then one must
obtain the inverse Lorentz transformation by the exchange

(
t ′, x ′

) ←→ (t, x) and
v←→−v (this is the Principle of Relativity again):

x = G(x ′ + vt ′). (2.10)

There is no relative motion in the y and z directions, hence these coordinates must
not be affected by the transformation,

y′ = y, z′ = z. (2.11)

Consider now a spherical pulse of electromagnetic radiation emitted at the origin of
S at t = 0. It is received at a point on the x-axis and, during its propagation,

x = ct. (2.12)
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The same law must be true in S′ due to the constancy of the speed of light,

x ′ = ct ′, (2.13)

or ct ′ = G(ct − vt) from Eq. (2.9), which leads to

t ′ = G
(

t − v

c
t
)
, (2.14)

while
ct = G(ct ′ + vt ′) = G(c + v)t ′. (2.15)

By substituting Eq. (2.14) into Eq. (2.10), one obtains

ct = G(c + v)G(t − v

c
t) = G2

c
(c + v)(c − v)t,

and

G2 = c2

(c + v)(c − v)
.

Therefore, we have

G = 1
√

1− v2

c2

≡ γ,

the Lorentz factor, and
x ′ = γ (x − vt). (2.16)

Use then x = γ (x ′ + vt ′) and x ′ = γ (x − vt) and substitute x ′ into x to obtain

x = γ [γ (x − vt)
︸ ︷︷ ︸

x ′

+ vt ′],

x = γ 2x − γ 2vt + γ vt ′,

from which we obtain

t ′ = x − γ 2x + γ 2vt

γ v

and
t ′ = x

vγ
(1− γ 2)+ γ t.

Since
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1− γ 2 = 1− 1

1− v2

c2

= 1− v2

c2 − 1

1− v2

c2

= −( v2

c2 )

1− v2

c2

,

we have

1− γ 2

γ
=

√

1− v2

c2

−( v2

c2 )

(1− v2

c2 )
= − v2

c2
√

1− v2

c2

≡ −γ
v2

c2 ,

t ′ = 1− γ 2

γ

x

v
+ γ t = −γ

v2

c2

x

v
+ γ t,

and, finally,

t ′ = γ
(

t − v

c2 x
)
, (2.17)

which completes the derivation. Equations (2.16), (2.11), and (2.17) constitute the
Lorentz transformation. The fact that the Lorentz transformation can be derived from
the two postulates of Special Relativity is conceptually important: it means that these
two postulates constitute the physical explanation of the mathematical transformation
and that this transformation should not be assumed in place of the two postulates, as
Poincaré seem to have intended. While Poincaré, Lorentz, and FitzGerald stopped
at the transformation (which is an important ingredient of Special Relativity and
unveils the mixing of space and time of the 4-dimensional world view), they tried to
explain it with an ether and with length contraction. It was Einstein’s genius which
reduced the physical explanation of the transformation to two simple and general
postulates and led to a re-examination of the concepts of space and time, developing
the full theory which was missed by other researchers.

2.4 Mathematical Properties of the Lorentz Transformation

Let us examine the properties of the Lorentz transformation.

• Qualitatively, the Lorentz transformation mixes t and x , therefore 3-dimensional
lengths and time intervals cannot be left invariant. Quantitatively, length con-
traction and time dilation can be derived from the Lorentz transformation as a
consequence, which will be done in the following sections.

The quantity

ds2 = −c2dt2 + dx2 + dy2 + dz2

(“Minkowski line element”) is invariant under Lorentz transformations.
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This invariance is easy to see: by using the Lorentz transformation we have

(ds′)2 ≡ −c2(dt ′)2 + (dx ′)2 + (dy′)2 + (dz′)2

= −c2γ 2
(

dt − v

c2 dx
)2 + γ 2 (dx − vdt)2 + dy2 + dz2

= −c2γ 2
(

1− v2

c2

)
dt2 + 2c2γ 2 v

c2 dtdx + γ 2dx2
(

1− v2

c2

)

−2γ 2 v dtdx + dy2 + dz2

= −c2dt2 + dx2 + dy2 + dz2 ≡ ds2.

We will discuss extensively this aspect of Special Relativity in the following
chapters.
• The Lorentz transformation is symmetric under the exchange x ←→ ct :

x ′ = γ (x − vt) ,

y′ = y,

z′ = z,

ct ′ = γ
(

ct − vx

c

)
,

becomes

ct ′ = γ
(

ct − vx

c

)
,

y′ = y,

z′ = z,

x ′ = γ (x − vt).

In standard configuration, the Lorentz transformation is also symmetric under the
exchange y←→ z.
• The Galilei transformation can somehow be recovered from the Lorentz transfor-

mation in the limit of small velocities |v|/c � 1, although the derivation is a bit
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finicky. First, expand the Lorentz factor γ to first order in v/c:

γ ≡ 1
√

1− v2

c2

= 1+ v2

2c2 + ... ≈ 1 (2.18)

and
x ′ ≈ x − vt,

y′ = y,

z′ = z.

Strictly speaking, the transformation of the time coordinate gives, to first order in
v/c,

t ′ = t − v

c2 x,

not t ′ = t as in the Galilei transformation: the relativity of simultaneity persists to
first order (it is a first order effect in v/c). If the Lorentz transformation reduced to
the Galilei transformation to first order, then infinitesimal Lorentz transformations
and infinitesimal Galilei transformations would coincide, which is not the case.4

However, time dilation is computed by considering time differences, recording two

spatial events at the same location. Since Δt ′ = Δt − v

c2 Δx , by setting Δx = 0,

time dilation is eliminated to first order. In practice, when speeds are small, time

intervals Δt are measured over spatial distances Δx such that cΔt � Δx � v

c
Δx

and the Δx term can be dropped. Although the Lorentz transformation does not
quite reduce to the Galilei transformation, which is recovered only in the limit
v/c −→ 0, Newtonian mechanics and the Galilei transformation turn out to be
adequate5 in the limit |v| � c.
• Since the Lorentz transformation is linear and homogeneous, finite coordinate

differences transform in the same way as infinitesimal coordinate differences:

Δx ′ = γ (Δx − vΔt),

Δy′ = Δy,

Δz′ = Δz,

Δt ′ = γ
(
Δt − v

c2 Δx
)
,

and

dx ′ = γ (dx − vdt),

dy′ = dy,

dz′ = dz,

dt ′ = γ
(

dt − v
c2 dx

)
.

4 This point is made clearly in Refs. [4, 5].
5 Our derivation of the Lorentz transformation from the postulates of Special Relativity requires
only that the spatial part of the Lorentz transformation x ′ = G(v) (x − vt) reduces to the spatial
part of the Galilei transformation x ′ = x − vt in the limit |v|/c � 1, from which we deduced that
G → 1. We did not assume that we recover t ′ = t in this limit, hence the proof is correct.



36 2 The Lorentz Transformation

2.5 Absolute Speed Limit and Causality

At this point, you are certainly aware that γ ≡ 1
√

1− v2

c2

, the ratio between coordinate

and proper times, diverges as v→ c. The inequality v > c leads to a purely imaginary
γ , therefore,

the relative velocity of two inertial frames must be strictly smaller than c.

Since an inertial frame can be associated with any non-accelerated particle or
object moving with subluminal (i.e., |v| < c) speed, this statement translates into
the requirement that the speed of particles and of all physical signals be limited by
c (remember that c is the sped of light in vacuo: the speed of particles traveling in a
medium can be larger than the speed of light in that medium).6 Never mind the fact
that the Lorentz factor becomes imaginary: we can agree to define γ as the modulus∣
∣
∣
∣
(

1− v2/c2
)−1/2

∣
∣
∣
∣ if |v| > c. What is truly important7 is that

the restriction |v| ≤ c preserves the notion of cause and effect.

In fact, consider a process in which an event P causes, or affects, an event Q by
sending a signal containing some information from P to Q. If a signal were sent
from P to Q at superluminal speed u > c in some inertial frame S, we could orient
the axes of S so that both events P and Q occur on the x-axis and their time and
spatial separations satisfy Δt > 0 and Δx > 0 in this frame. Then, in an inertial
frame S′ moving with respect to S with speed v in standard configuration, we would
have

Δt ′ = γ

(
Δt − v

Δx

c2

)
= γΔt

(
1− uv

c2

)
, (2.19)

where we used Δx = uΔt . Now, because u > c it is also −u < −c which, together
with 0 < v < c, implies that −uv < −c2 or −uv/c2 < −1, so

Δt ′ = γΔt
(

1− uv

c2

)
< 0. (2.20)

According to this result, in the frame S′ the event Q precedes P: cause and effect
are reversed or, the signal goes backward in time. The signal reaches Q before being
emitted by P , which creates a logical problem. The fact that there is an absolute
speed limit c comes to the rescue and enforces causality: if both |u|, |v| < c, then
Δt ′ in Eq. (2.19) has the same sign as Δt . The possibility of reversing cause and effect
and travelling in time would lead to logical paradoxes, which have been discussed
at length in the literature (see, e.g., [9] and the references therein).

6 If the particle traveling faster than light in that medium is charged, Cerenkov radiation is emitted.
7 In the past, “tachyons” traveling at speed larger than c and incapable of slowing down to speeds
less than c were considered theoretically and searched for experimentally (see, e.g., [6–8]) but no
tachyon has been convincingly detected.
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Fig. 2.1 If r becomes suf-
ficiently large, a searchlight
spot on a high cloud can attain
an arbitrarily large apparent
linear velocity

Another argument against superluminal travel is the following.8 Suppose that an
observer O , at rest in an inertial frame, emits a flash of laser light in a certain direction
(called the “forward” direction). A second observer O ′ at rest in the same inertial
frame sees the light, measuring that it moves with speed c. A third inertial observer
O ′′ is moving with respect to O and O ′ in the “backward” direction with constant
speed v. According to the second postulate, he measures light moving with speed c
in the “forward” direction. He also sees O and O ′ moving in the “forward” direction
toward him with speed v. Now, it is impossible for this speed v of the observers O
and O ′ measured by O ′′ to be larger than c. For, were this possible, the flash of laser
light, when emitted by O , will remain behind O . According to O ′′, the laser light
would always remain behind O and the observer O ′ (who is “forward” of O) would
never see this light. But then whether O ′ sees the light or not depends on the inertial
frame, which contradicts the Principle of Relativity stating that all inertial frames are
physically equivalent. Therefore, the relative speed of two inertial frames cannot be
larger than c. Formally, the argument works also if the relative speed of inertial frames
equals c for, in that case, light will never reach O ′ according to the observer O ′′.

If there is an absolute speed limit c then, according to the Principle of Relativity,
this limit must be the same in all inertial frames, consistent with the postulate of the
constancy of the speed of light.9

The absolute speed limit refers to physical, propagating signals. Apparent motions
which carry no information can have arbitrarily large speeds. In these cases, certain
motions appear to be faster than light, but they are illusions and not real motions.
For example, consider a searchlight spot on high clouds (Fig. 2.1).

Let Δθ be the angle spanned by the light spot across a cloud in the time Δt . The
linear velocity of the spot perceived by an observer on the ground is rΔθ/Δt , where
r is the distance to the cloud. If Δθ/Δt = 10 rad/s, the apparent linear velocity of
the spot vspot is larger than c if r > 3 · 107 m. This distance is too large for a
searchlight in the atmosphere but it illustrates the principle and it is not too large for
astrophysical phenomena (apparent superluminal motions do occur in astrophysics
and they constituted a puzzle when they were first discovered [11, 12]). In any case,

8 This argument is due to E. F. Taylor [10].
9 When introducing a set of axioms for a theory, one should always worry about the mutual consis-
tency of these axioms. If two axioms are not consistent with each other, one is building an empty
theory.
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everyday experience shows the apparent amplification of velocity when a searchlight
spot moves on clouds.10 The point is, the perceived velocity of the spot is not related
to the velocity of propagation of the light beam.

Unphysical velocities occur also when waves propagate in a dispersive medium.
In general, a wave signal11 is composed of many, or infinite, monochromatic waves
of angular frequencies ω and wave vectors k, with k ≡ |k|. The properties of the
medium are described by a dispersion relation ω = ω(k), a functional relation
between ω and k. The individual monochromatic waves composing the complex
wave propagate at the phase velocity12

vp ≡ ω

k
, (2.21)

while the “envelope” composed of the individual monochromatic waves travels at
the group velocity

vg ≡ dω

dk
. (2.22)

In Eqs. (2.21) and (2.22) the right hand sides must be evaluated at a central value13

of k.
If the dispersion relation ω(k) is linear, the medium is non-dispersive; if this

relation is non-linear, it is dispersive. Then the individual component waves have

phase velocities which depend on their wave vectors (or wavelengths λ = 2π

k
) and

the waveform is altered as it propagates through the medium. Phase velocity and
group velocity then differ, and the physical velocity of the wave (the velocity at which
energy and information propagate) is the group velocity. It is possible that, formally,
phase velocities be larger than c. This fact does not violate Special Relativity because
vp is not the true velocity of propagation of the signal. When wavepackets are not
too spread out and group velocities are well defined and physically meaningful,14

they have values which are no larger than c.
A consequence of the existence of an absolute speed limit is that the idealizations

of rigid body and incompressible fluid used in Newtonian mechanics, which imply
infinite sound speed, are impossible in Special Relativity. By definition, such systems

10 This effect is the same phenomenon used advantageously in the optical lever of the torsion
balance.
11 A general wave, not necessarily electromagnetic, is discussed here. Also, quantum vacuum can
behave as a medium and give rise to apparent velocities larger than c. This is not, however, the
propagation velocity of a physical signal and does not threaten causality [13].
12 The phase velocity is usually identified with the velocity of a point of constant phase, for example
a point where the amplitude of the wavepacket envelope vanishes.
13 For wavepackets which are too spread out, a situation that occurs with high absorption or near reso-
nances, the concepts of group and phase velocity may become largely unphysical and a more detailed
discussion is necessary. No less than eight “wave velocities” can be defined in this case [14, 15].
14 Even group velocities can be larger than c if the wavepacket is too spread out in a medium with
high absorption [16]. Again, we are not talking about physical velocities here.
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would transmit information instantaneously by means of sound waves propagating
with infinite speed.

Example 2.1 The fastest spinning pulsar known to date, PSR J1746-2446ad, spins
with a frequency of 716 Hz [17]. What limit is imposed by fundamental physics on
its radius R?

The answer is that the equatorial speed, which is the largest rotational speed of a
particle on the pulsar, must be less than c, yielding

R <
c

ω
= 3 · 108 m/s

2π · 716 s−1 
 67 km.

Neutron stars are believed to have sizes ∼ 10 − 20 km, which brings them fairly
close to achieving the largest rotational speeds that are possible in nature.

2.6 Length Contraction from the Lorentz Transformation

Length contraction and time delay can be derived directly from the Lorentz transfor-
mation. Consider a rod at rest in the inertial frame S′ = {

t ′, x ′, y′, z′
}

and moving
with speed v with respect to another inertial frame S = {t, x, y, z} as in Fig. 2.2. The
endpoints of the rod are x ′A and x ′B with l0 ≡ x ′B − x ′A the rest length of the rod.
According to the Lorentz transformation, it is

x ′A =
xA − vtA√

1− v2

c2

, x ′B =
xB − vtB√

1− v2

c2

. (2.23)

In order to measure the rod, we must find the coordinates of the endpoints at the
same time tA = tB ≡ t (the two endpoints are observed simultaneously). We have

l0 = x ′B − x ′A =
(xB − vt)− (xA − vt)

√
1− v2

c2

= xB − xA√
1− v2

c2

or
l0 = l

√
1− v2

c2

,

and

l = l0

√

1− v2

c2 , (2.24)

the Lorentz-FitzGerald formula for length contraction.
There is no contraction in the directions transversal to the motion. As a result of

length contraction, a moving rod can be fit momentarily in a space in which it would
not fit at rest (which originates the car-in-the-garage “paradox”). However, nothing
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Fig. 2.2 The inertial frames S and S′

has happened to the rod. If you measure it again in its rest frame, it still has the same
rest length l0.

2.7 Time Dilation from the Lorentz Transformation

Let us now derive time dilation directly from the Lorentz transformation. Let a
clock at rest at x ′ in the inertial frame S′ record two events happening at the same
location x ′ and separated by the proper time interval Δτ . The two events have
coordinates

(
t ′1, x ′, 0, 0

)
and

(
t ′2, x ′, 0, 0

) ≡ (
t ′1 +Δτ, x ′, 0, 0

)
. What is the time

interval measured by a clock in the inertial frame S which is moving with constant
speed v with respect to S′? The inverse Lorentz transformation (2.5)–(2.8) gives, for
these two events,

t1 =
t ′1 + v

c2 x ′
√

1− v2

c2

, t2 =
t ′2 + v

c2 x ′
√

1− v2

c2

(2.25)

and the time interval in S is

Δt ≡ t2 − t1 =
(

t ′2 + v
c2 x ′

)
−

(
t ′1 + v

c2 x ′
)

√
1− v2

c2

= t ′2 − t ′1√
1− v2

c2

or

Δt = Δτ
√

1− v2

c2

≡ γΔτ. (2.26)

A moving clock “runs slower” than a static one by the Lorentz factor γ .
An ideal clock is defined as one that is not affected by acceleration. The finite interval
of proper time recorded by an (ideal) clock between proper instants t0 and t is
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Δτ =
t∫

t0

dt

√

1− v2

c2 . (2.27)

Example 2.2 Because they are light, electrons can be easily accelerated to become
very relativistic. Consider an electron traveling at speed v = 0.99c in an accelerator.
The time interval Δt = 1 s in the laboratory frame corresponds, in the rest frame of
this electron, to the interval Δτ = Δt/γ = √1− 0.992 (1 s) = 0.14 s.

2.8 Transformation of Velocities and Accelerations
in Special Relativity

Contrary to Newtonian mechanics, velocities do not simply “add up” in Special
Relativity, otherwise an observer moving toward a light source would measure the
speed of light to be larger than c, which contradicts the second postulate. In order to
derive the correct formula for the composition of relativistic velocities,15 suppose that
a particle has velocity ux ′ ≡ dx ′/dt ′ relative to an inertial frame S′ = {

t ′, x ′, y′, z′
}
;

we want to find its velocity ux with respect to another inertial frame S = {t, x, y, z},
with respect to which

{
t ′, x ′, y′, z′

}
is moving with constant velocity v (Fig. 2.3).

Remember the convention that the velocity v is positive if the inertial frame S′ is
moving away from S. Differentiate the Lorentz transformation (2.1)–(2.4) to obtain

dx ′ = γ (dx − vdt),

dy′ = dy,

dz′ = dz,

dt ′ = γ
(

dt − v

c2 dx
)
,

and

ux ′ ≡ dx ′

dt ′
= dx − vdt

dt − v
c2 dx

=
dx
dt − v

1− v
c2

dx
dt

= ux − v

1− vux

c2

.

Analogously, dy′ = dy, dz′ = dz, and

15 It is possible to derive the relativistic law of transformation of velocities without using the
Lorentz transformation and relying only on the two postulates (e.g., [18–20]). Here we present only
the “standard” derivation from the Lorentz transformation.
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Fig. 2.3 The composition of velocities v and u′ in Special Relativity

uy′ ≡ dy′

dt ′
= dy

γ
(

dt − v
c2 dx

) =
dy
dt

γ
(

1− vux

c2

) = uy

γ
(

1− vux

c2

) ,

uz′ ≡ dz′

dt ′
= dz

γ
(

dt − v
c2 dx

) =
dz
dt

γ
(

1− vux

c2

) = uz

γ
(

1− vux

c2

) .

The relativistic velocity addition formulae are, therefore,

ux ′ = ux − v

1− vux

c2

, (2.28)

uy′ = uy

γ
(

1− vux

c2

) , (2.29)

uz′ = uz

γ
(

1− vux

c2

) . (2.30)

Note that we did not assume that the particle has uniform velocity u′ in S; the
derivation is valid for instantaneous velocities. In addition, while |v| is restricted to be
less than c, ux , uy , and uz can be the coordinate velocity components of a light ray.16

Let us consider two limiting cases. In the Newtonian limit |ux |, |v| � c we have,
to first order,

16 This possibility will be applied to the derivation of the laws describing the aberration of light in
Chap. 7

http://dx.doi.org/10.1007/978-3-319-01107-3_7
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ux ′ ≈ ux − v,

uy′ ≈ uy,

uz′ ≈ uz .

In the ultrarelativistic limit ux → c we have ux ′ → c − v

1− v
c

= c, in agreement with

the postulate that the speed of light is c in every inertial frame. This conclusion is
not surprising since it is built into the Lorentz transformation used here to derive the
addition law of velocities.

If the two inertial frames are in standard configuration, planar motions remain
planar under the change of frame. In fact if, for example, the motion of a particle
occurs in the (x, y) plane according to S, then uz = 0 and, according to Eq. (2.30),
also uz′ = 0. A rectilinear motion along the x-axis of O (with uy = uz = 0) appears
as a rectilinear motion along the x ′-axis of O ′ (with uy′ = uz′ = 0). The rectilinear
motion of a particle along the y-axis of O is, of course, distorted according to O ′
(since ux ′ 
= 0, uy′ 
= 0, and uz′ = 0), as is rectilinear motion along the z-axis (since
ux ′ 
= 0, uy′ = 0, and uz′ 
= 0).

According to the Principle of Relativity, the inverse velocity transformation is

obtained with the exchange
(
ui , v

)←→
(

ui ′ ,−v
)

yielding

ux = ux ′ + v

1+ vux ′
c2

, (2.31)

uy = uy′

γ
(

1+ vux ′
c2

) , (2.32)

uz = uz′

γ
(

1+ vux ′
c2

) . (2.33)

2.8.1 Relative Velocity of Two Particles

Consider two particles moving instantaneously along the same line with speeds
v1 and v2 in an inertial frame S = {t, x, y, z}. Their relative velocity is computed
by using an inertial frame S′ = {

t ′, x ′
}

in which particle 1 is at rest. In this frame,
which has a velocity (and speed) v1 with respect to S, particle 2 has the velocity
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ux ′
(2) =

ux − v1

1− ux v1
c2

(2.34)

where ux = −v2 is the velocity of particle 2 in the frame
{
t ′, x ′, y′, z′

}
. This is the

relativistic law of composition of velocities. Then, it is

ux ′
(2) = −

(v1 + v2)

1+ v1v2
c2

. (2.35)

The relative speed of the two particles is given by

β = β1 + β2

1+ β1β2
. (2.36)

Example 2.3 In a science fiction movie two spaceships are moving head-on toward
each other with speeds 0.65c and 0.90c with respect to an observer on earth. What
is the relative speed measured by the astronauts on each ship?
The relative speed is

0.65c − (−0.90c)

1− 0.65c(−0.90c)
c2

= 0.98c,

which is obviously larger than the speed of each spaceship with respect to earth but
still less than c.

* * *

Let us study now the function of two variables

f (x, y) ≡ x + y

1+ xy
(2.37)

appearing in the law of composition of relativistic speeds, in the relevant range
(x, y) ∈ [0, 1]× [0, 1]. Here x ≡ v1/c and y ≡ v2/c. Physics tells us that the value
of this function should never exceed unity, which is confirmed by the following
mathematical considerations. Note that f (0, 0) = 0, f is continuous with all its
derivatives of any order in [0, 1]× [0, 1], f (y, x) = f (x, y),
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Fig. 2.4 The function

f (x, y) = x + y

1+ xy
of

x = v1/c and y = v2/c

0.0
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∂ f

∂x
= 1− y2

(1+ xy)2 ≥ 0 if y ≤ 1,

∂ f

∂y
= 1− x2

(1+ xy)2 ≥ 0 if x ≤ 1,

and ∇ f = (0, 0) at (x, y) = (1, 1). The differential of f is

d f = ∇ f · dx =
(
1− y2

)
dx + (

1− x2
)

dy

(1+ xy)2 .

The maximum of the function f is attained at (x, y) = (1, 1) and

f (1, 1) = 1

hence 0 ≤ f (x, y) < 1 ∀ (x, y) ∈ [0, 1)× [0, 1). The function f (x, y) is plotted
in Fig. 2.4.

2.8.2 Relativistic Transformation Law of Accelerations

In a way similar to how the relativistic transformation law of velocities is derived,
one can obtain the relativistic law of transformation of accelerations under a change
of inertial frames (found by Tolman in 1912 [21])
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ax ′ = ax

γ 3
(

1− vux

c2

)3 , (2.38)

ay′ = 1

γ 2
(

1− vux

c2

)3

[(
1− vux

c2

)
ay + v

c2 uyax
]
, (2.39)

az′ = 1

γ 2
(

1− vux

c2

)3

[(
1− vux

c2

)
az + v

c2 uzax
]
, (2.40)

where γ = γ (v) (the detailed derivation is left as an exercise). From these transfor-
mation properties it follows that all inertial observers agree on whether a particle is
accelerated or not. Moreover, if a particle has 3-dimensional acceleration a =constant
in one inertial frame, its acceleration is necessarily non-constant in another inertial
frame. Finally, we note that in the Newtonian limit v/c −→ 0 the acceleration is
Galilei-invariant, a′ = a, and Newton’s second law is invariant under Galilei trans-
formations, as already discussed.

2.9 Matrix Representation of the Lorentz Transformation

The Lorentz transformation

L̂v :

⎛

⎜
⎜
⎝

ct
x
y
z

⎞

⎟
⎟
⎠→

⎛

⎜
⎜
⎝

ct ′
x ′
y′
z′

⎞

⎟
⎟
⎠

is a linear homogeneous coordinate transformation in the space (ct, x, y, z) and can
be represented by a symmetric 4× 4 matrix L̂v with components given by

L̂v =
(

L(v)
α

β

)
≡

⎛

⎜
⎜
⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠, (2.41)

where β ≡ v/c and γ = 1
√

1− β2
. This is a real symmetric 4×4 matrix parametrized

by the parameter v. To check that this representation is correct, take the product
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⎛

⎜
⎜
⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ct
x
y
z

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

γ ct − γβx
−γβct + γ x

y
z

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

γ
(
ct − v

c x
)

γ (x − vt)
y
z

⎞

⎟
⎟
⎠,

therefore,

ct ′ = γ
(

ct − v

c
x
)
,

x ′ = γ (x − vt),

y′ = y,

z′ = z,

which is the Lorentz transformation.
The matrix L̂v of the Lorentz transformation has unit determinant:

Det
(

L̂v

)
= Det

⎛

⎜
⎜
⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

= γ

∣
∣
∣
∣
∣
∣

γ 0 0
0 1 0
0 0 1

∣
∣
∣
∣
∣
∣
− (−γβ)

∣
∣
∣
∣
∣
∣

−γβ 0 0
0 1 0
0 0 1

∣
∣
∣
∣
∣
∣

= γ · γ + γβ (−γβ) = γ 2
(

1− β2
)
=

(
1

√
1− β2

)2 (
1− β2

)

= 1.

The inverse of the matrix L̂v is the matrix L̂(−v) corresponding to the inverse Lorentz
transformation,

L̂(−v) =

⎛

⎜
⎜
⎝

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠. (2.42)

In fact, we have
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L̂v L̂(−v) =

⎛

⎜
⎜
⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

and

L̂(−v) L̂v =

⎛

⎜
⎜
⎝

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠.

The matrix corresponding to v = 0 and γ = 1 is obviously the identity matrix.

2.10 �The Lorentz Group

As Poincaré realized, the Lorentz transformations L̂v form a group with respect to
the composition of transformations ◦. In fact,

• if L̂u, L̂v are Lorentz transformations, then L̂u ◦ L̂v is a Lorentz transformation
L̂w with parameter

w = − (u + v)

1+ uv
c2

(2.43)

given by the relativistic law of composition of velocities. Of course, one can obtain
this result directly using the matrix representation of L̂u and L̂v , which has the
advantage of providing an alternative derivation of the law of composition of
velocities. Let L̂v and L̂u be Lorentz transformations represented by

⎛

⎜
⎜
⎝

γv −γv
v
c 0 0

−γv
v
c γv 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠
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and ⎛

⎜
⎜
⎝

γu −γu
u
c 0 0

−γu
u
c γu 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠,

respectively. Then

L̂v L̂u =

⎛

⎜
⎜
⎜
⎜
⎝

γvγu

(
1+ uv

c2

)
−γvγu

(v+u)
c 0 0

−γvγu
(v+u)

c γvγu

(
uv
c2 + 1

)
0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

and letting γuγv

(
1+ uv

c2

)
≡ γw, we have

γw ≡ 1
√

1− w2

c2

= 1+ uv
c2

√
1− u2

c2

√
1− v2

c2

,

1− w2

c2 =
(

1− u2

c2

) (
1− v2

c2

)

(
1+ uv

c2

)2 ,

1− w2

c2 =
1− u2

c2 − v2

c2 + u2v2

c4
(

1+ uv
c2

)2 .

Then
(

1+ uv

c2

)2 − w2

c2

(
1+ uv

c2

)2 = 1− u2

c2 −
v2

c2 +
u2v2

c4 ,

1+ u2v2

c4 + 2
uv

c2 −
w2

c2

(
1+ uv

c2

)2 = 1− u2

c2 −
v2

c2 +
u2v2

c4 ,

w2

c2

(
1+ uv

c2

)2 =
(

u + v

c

)2

,

and finally

w = − (u + v)

1+ uv
c2

, (2.44)
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which is the law of composition of velocities. Two consecutive Lorentz transfor-
mations with parallel velocity vectors v1 and v2 commute, i.e., the result of the
combined transformations does not depend on the order in which they are per-
formed. This is no longer true if v1 and v2 are not parallel, contrary to the case
of Galilei transformations. To conclude, the composition of two Lorentz transfor-
mations is a Lorentz transformation.

• The operation ◦ is associative.
• The transformation Îd = (δα

β ) = L̂0 corresponding to v = 0 is the neutral element
of the group.
• For any Lorentz transformation L̂v there is an inverse Lorentz transformation

(
L̂v

)−1 = L̂(−v). (2.45)

The fact that L̂v is invertible follows from the fact that its determinant is unity.

To conclude, the Lorentz transformations
{

L̂v

}
form a group. Since they depend on

a continuous parameter v, this is called a continuous 1-parameter group.
Pure Lorentz transformations in standard configuration form a group but other lin-

ear coordinate transformations which leave the interval ds2 invariant can be added,
including continuous transformations such as purely spatial rotations (which them-
selves form a 3-parameter group called special orthogonal group SO(3)), spatial
translations x −→ x + x(0), and time translations t −→ t + t(0); and discrete
transformations such as reflections of the spatial axes and time reflection. A proper
transformation is one with determinant equal to unity and an orthochronous trans-
formation is one which preserves the time orientation, i.e., L0

0 ≥ 0. The proper
orthochronous Lorentz group is a 6-parameter continuous group consisting of one
Lorentz boost in standard configuration (parametrized by one continuous parameter
v), two spatial rotations needed to align the x-axis of the inertial frame S with the
velocity v of the inertial observer O ′ (which needs two angles as continuous para-
meters), and three spatial rotations to rotate the frame S of the inertial observer O
in the same orientation of the frame S′ of the inertial observer O ′, accounting for
the remaining three continuous parameters, which are rotation angles about the three
spatial axes).

By adding the translations in space and time xμ −→ xμ′ = xμ + xμ

(0), where

the xμ

(0) are constants, one obtains the ten-parameter Poincaré group consisting of

linear inhomogeneous transformations xμ −→ xμ′ = Lμ
αxα + xμ

(0) which leave the

interval ds2 invariant.
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2.11 The Lorentz Transformation as a Rotation
by an Imaginary Angle with Imaginary Time

An interesting mathematical representation of the Lorentz transformation is the fol-
lowing. Considering again two inertial frames in relative motion with speed v in
standard configuration, it is straightforward to check that the quantity−c2t2 + x2 is
invariant under Lorentz transformations. Define the imaginary “times” T ≡ ict and
T ′ ≡ ict ′ in the two inertial frames. Then T 2 + x2 is a Lorentz invariant, i.e.,

T 2 + x2 = (
T ′

)2 + (
x ′

)2
.

distance from distance from
the origin in the origin in

the (x, T) plane the
(
x ′, T ′

)
plane

The distance from the origin is invariant under a rotation in the (x, T ) plane described
by

x ′ = x cos θ + T sin θ,

T ′ = −x sin θ + T cos θ,

(2.46)

or, in matrix form, ⎛

⎝
x ′

T ′

⎞

⎠ =
⎛

⎝
cos θ sin θ

− sin θ cos θ

⎞

⎠

⎛

⎝
x

T

⎞

⎠. (2.47)

We see that the T ′-axis has equation x ′ = 0 equivalent to x = vt = v
T

ic
and that a

rotation producing this axis satisfies

x ′
︷︸︸︷

0 =
x cos θ

︷ ︸︸ ︷
vT

ic
cos θ +T sin θ.

Therefore,

tan θ = − v

ic
= iv

c
(2.48)

corresponds to an imaginary rotation angle θ . Since

1+ tan2 θ︸ ︷︷ ︸
1− v2

c2

= 1

cos2 θ
,

we have cos θ =
(

1− v2

c2

)−1/2

and
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x ′ = x cos θ + T sin θ = (x + T tan θ) cos θ

= γ
(
x + iv

c T
) = γ (x − vt),

while
T ′ = −x sin θ + T cos θ = (−x tan θ + T ) cos θ

= γ
(−x iv

c + ict
)
,

or
t ′ = γ

(
t − v

c2 x
)

so that
ct ′ = γ

(
ct − v

c x
)
,

x ′ = γ (x − vt).

Then tan θ = i v/c, cos θ = γ , and sin θ = iγ v/c. It is customary to define the
rapidity φ by17

tanh φ ≡ β or φ ≡ tanh−1
(v

c

)
; (2.49)

then the relation tan θ = i
v

c
gives tanh φ ≡ v

c
= −i tan θ and, using the identity

tanh (iθ) = i tan θ , one obtains − tanh φ = tanh (−φ) = i tan θ = tanh (iθ), or

φ = −iθ ∈ R

and

θ = iφ. (2.50)

We can revisit the fact that Lorentz transformations form a group by viewing Lorentz
boosts as rotations by imaginary angles in a space with imaginary time.

The composition of L̂v1 and L̂v2 is a Lorentz boost L̂w with speed w = − v1+v2
1+ v1v2

c2
.

To prove this statement, note that

17 The name “rapidity” arises from the one-to-one correspondence of φ with the velocity v and the
fact that φ ≈ β for |v| � c.
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Fig. 2.5 A rotation by an
imaginary angle θ in the
(x, T = ict) plane

tan θ = tan (θ1 + θ2) = tan θ1 + tan θ2

1− tan θ1 tan θ2
, (2.51)

or

θ = tan−1
(

i
w

c

)
= − tan−1

(
i v1

c + i v2
c

1− i2 v1
c

v2
c

)
= − tan−1

[
i (v1 + v2)

c + v1v2
c

]
= θ1 + θ2,

(2.52)
in other words, the rapidity φ = −iθ is additive, like all angles (Fig 2.5).

The trivial transformation L̂0 = Îd is a rotation by an angle θ = 0. Moreover,(
L̂v

)−1 = L̂−v because L̂v corresponds to tan θ = i v/c and L̂−v corresponds to

− tan θ = −i v/c.

2.12 �The GPS System

The Global Positioning System (GPS) nowadays used for navigating aircrafts, ship-
ping, in private and commercial vehicles, and for urban navigation and wilderness
recreation, originated in the 1970s for military navigation purposes following a few
predecessors and early ideas dating back to the 1940s [22, 23]. More exotic appli-
cations include the monitoring of shifts in plate tectonics and more mundane appli-
cations include the precise time-stamping of financial transactions. GPS receivers
available in outdoor stores have a typical position accuracy of 15 m, while differen-
tial techniques using multiple receivers next to each other can potentially achieve an
accuracy of centimeters (“survey grade GPS”).

The GPS system consists of a constellation of twenty-four satellites (plus spares)
in six orbital planes, in each of which reside four satellites, in high (∼20000 km
radius) orbits all with a period of twelve hours. Each satellite carries a stable atomic
clock which keeps track of time with fractional stability better than one part in
1013. This network of satellites is designed so that, from any point on the earth with
unobstructed line of sight, at least four satellites are visible above the horizon at any
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time. GPS receivers on the ground, in flight, or on a ship detect signals emitted by
these satellites and determine their own position by means of triangulation.

When a signal is emitted from a satellite, it carries encoded with it information
about the precise time and position at which it was emitted. The distance between
the satellite and a GPS receiver detecting it is the time difference between emission
and detection of this signal multiplied by c. The receiver communicates with several
satellites and it is a straightforward triangulation problem to compute the receiver’s
location using four or more satellites. However, for this task to be performed, the
time must be kept to high accuracy, and this is where relativistic effects come into
play. In order to achieve an accuracy of 15 m, times must be known with an error not
less than 15 m/c = 5 · 10−8 s (50 ns). Since the satellites are moving with respect to
an observer on the ground, a ship, or an aircraft, the relativistic time dilation effect
is present. The linear speed of a satellite in a circular orbit of radius r and angular
velocity ω with respect to the ground is

v = ω r 
 2π

12 · (3600 s)
· (2 · 107 m) 
 3 · 103 m

s

 10−5c.

The proper time τ of the satellite and the time t of the observer on the ground are
related by Δt = γΔτ ; the ratio Δτ/Δt = √

1− v2/c2 
 1 − v2

2c2 is the percent

frequency shift of a signal δν/ν and
v2

2c2 
 5 · 10−11. Over 24 h, the time error is

5 · 10−11 · (24 · 3600 s) = 4.3 · 10−6 s. A more precise calculation takes into account
the fact that the earth rotates and the position is referred to a rotating reference frame
and not an inertial frame. Moreover, the satellites’ orbits are not exactly circular but
elliptical and are perturbed by the moon and the sun, while the earth is not perfectly
spherical and has local overdensities and underdensities affecting these orbits. When
all these effects are taken into account, the error arising from neglecting Special
Relativity would amount to 7 ms per day. Even more important is a general-relativistic
effect which consists in the slowing down of clocks in a gravitational potential well
with respect to clocks far away. If � is the Newtonian gravitational potential and Δ�

is the difference in the values of this quantity at the emission and detection points,
the frequency shift of a signal is Δ�/c2. This second effect, if not accounted for,
would be responsible for an error of 45µs per day. The two effects subtract from
each other, since a moving click ticks slower than a stationary one while a clock
far away from a mass ticks faster than one closer to it. As a result, there would
be a net error of 38µs per day in neglecting these effects. Since errors larger than
5 · 10−8 s ruin the required 15 m precision, at the rate of 3.8 · 10−5 s/day it would
take 114 s 
 2 minutes to build up the necessary error for the GPS to fail. In a
full day, the accumulated time error of 3.8 · 10−5 s would correspond to a position
error of (3.8 · 10−5 s)c = 11.4 km, certainly not what you want when landing a
commercial aircraft in poor visibility, piloting a large ship in narrow straits, or trying
to find a precise spot on an arctic expedition or crossing a desert. The GPS system
automatically corrects for the general- and special- relativistic effects. Without these
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corrections the GPS system would become completely useless in a matter of minutes
or hours. This example shows how the seemingly abstract theory of Special Relativity
and the seemingly even more abstract theory of General Relativity (whose effects
are actually about six times more pronounced than Special Relativity in the GPS
system), have become essential to the functioning of modern life.

2.13 Conclusion

The theoretical discovery of the Lorentz transformation was an important step of
the learning process leading to Special Relativity, but its deep meaning was not
understood before Einstein. In our presentation we have made it clear that the Lorentz
transformation can be derived from the two postulates of Special Relativity, which are
physically more transparent than what, at first sight, appears “only” as a mathematical
transformation. From the physical point of view it is more satisfactory to construct
the theory beginning from two very clear ideas rather than from a telling, but less
transparent, mathematical symmetry. However, the Lorentz group constitutes the
symmetry group of Special Relativity and suggests a unified view of space and time,
a new way of looking at nature which we present in the next chapter.

Problems

2.1. Write the mathematical expression of a Lorentz boost with the
{
ct ′, x ′, y′, z′

}

inertial frame sliding along the z- (or z′-) axis, and with the x ′- and the y′- axes
parallel to the x-axis and the y-axis, respectively.

2.2. Find eigenvalues and eigenspaces of the matrix describing the Lorentz trans-
formation and interpret them physically.

2.3. In an inertial frame S, two laser pulses are emitted by points on the x-axis 10 km
apart and separated by 3µs. They reach an inertial observer O ′ travelling in
standard configuration with velocity v away from S. O ′ receives the two laser
pulses simultaneously. Find v.

2.4. Show that the rapidity φ satisfies the relations

eφ = γ (1+ β) ,

e−φ = γ (1− β) ,

γ = cosh φ,

βγ = sinh φ,

so that the Lorentz transformation can be written as
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ct ′ = ct cosh φ − x sinh φ,

x ′ = −ct sinh φ + x cosh φ.

2.5. Show that, given the two events xμ

(1,2) =
(

ct(1,2), x(1,2)

)
, the quantity

I
(

xμ

(1), xμ

(2)

)
≡ (x1 − ct1)(x2 + ct2)

(x1 + ct1)(x2 − ct2)

is an invariant of the Lorentz transformation (2.1)–(2.4) [24, 25].
2.6. Derive the inverse law of addition of velocities (2.31)–(2.33) without invoking

the Principle of Relativity, i.e., without the exchange
(
ui , v

)←→
(

ui ′ ,−v
)

.

2.7. Derive the relativistic law of transformation of accelerations (2.38)–(2.40) under
a change of inertial frames, and its inverse. Argue that all inertial observers agree
on whether a particle is accelerated or not, however, if a particle has uniform
acceleration in one inertial frame, its acceleration is necessarily non-uniform
in another inertial frame.

2.8. A laser beam is shone from the surface of the earth onto the moon and the
laser spot sweeps the surface of the full moon in the time Δt = 0.010 s. The
radius of the moon is Rm = 1.737 · 106 m and the earth-moon distance is
d = 3.844 · 108 m. What is the linear velocity of the laser spot? Comment.

2.9. The dispersion relation of electromagnetic waves propagating in a dilute plasma
is

ω(k) =
√

c2k2 + ω2
p,

where the constant ωp (plasma frequency) is given by

√
4πe2ne

me
for non-

relativistic electrons and by
1

γ

√
4πe2ne

me
for relativistic electrons, where ne

is the number density of electrons (with charge e and mass me). Compute the
phase velocity and group velocity as functions of k and sketch their graphs. Dis-
cuss their magnitudes with respect to c and compute their geometric average√

vp vg . Discuss the propagation of a plane monochromatic electromagnetic
wave with electric field E = E0 ei(kx−ω t) as the ratio ω/ωp varies (here E0 is a
constant amplitude).
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