Chapter 1
Prerequisites

In this chapter, ten notions or results are gathered, which we assume as background
for the remainder of this monograph.

1.1 Brownian Motion

It is not difficult to show the existence of a probability space on which one can
construct a Gaussian family {B(f); f € L?>(R4.dt)}, such that

O EBOI=0: G EBOY = [ o
Indeed, from a functional viewpoint, B is a Hilbert space isomorphism
B : L*(Ry,df) — B(C L*(2))
f = B(f)

so that:

B(f) =) _(f.e)12G,

n>1

where (e,;n > 1) is an orthonormal basis of LZ(R+,dt), and (G,;n > 1) is a
sequence of centered, reduced independent Gaussian variables.

We shall call Brownian motion, BM in brief, a continuous modification
{B;,t > 0} of the Gaussian family

(B(1jp,1):t = 0)
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2 1 Prerequisites

Once the existence of this continuous modification is established (using
Kolmogorov’s continuity criterion; see Sect. 1.10), it is natural to use (Wiener)
integral notation

o0
| rwas,
0
instead of B( f) since, in the particular case

f(t) = Zkil(ti,l‘pr]](t)

one has

B(f) =) Ai(Byy, — By)

1.2 Some Extensions

Given any measurable space (7, 7) equipped with a positive o-finite measure pu,
one can, just as in the previous case, define a so-called Gaussian measure (B(f) =
[ f(t)B(u(dt)); f € L*(T, T; p) such that

() E[B(/)]=0; (i) E[(B())]= /fz(l)u(dt)-

The Brownian sheet corresponds to T = Ri (more generally, R’} ) and u(dsdt) =
dsdt the Lebesgue measure.

One can also construct important Gaussian families from a Gaussian measure,
by considering:

[ e B@).
The Lévy’s n-parameter Brownian motions and fractional Brownian motions may
be defined in this way.
1.3 BM as a Continuous Martingale

The following theorem presents Brownian motion as a prototype for continuous
martingales.
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Theorem 1.3.1 (Dubins—Schwarz). Let M be a continuous local martingale such
that My = 0 and (M )0 = 00. There exists a BM (B,; u > 0) such that

M: = By,

Next, here is a partial extension of the preceding theorem to multidimensional
continuous martingales.
Theorem 1.3.2 (Knight). Let MO MDD M pek continuous local martin-
gales with MO(I) =0, (MDY = coand (MO, MDY, = 0fori # j; then there
exist k independent BM’s (BL(,'); u>0),i=1,...,k suchthat

@) _ p)
M, = B(M<i>),'
If moreover (M ), = (M), fori = 1,...,k,i.e., there is a common time change,

Theorem 1.3.2 implies that M, = By, where B = (B, ..., B®) and B®
are independent BM’s. Such multidimensional martingales are called conformal
martingales (in particular in the case k = 2).

Examples of Conformal Martingales.

Let Z, = B;l) + iB,fz) be a complex BM. If f € H(C) is an entire function,
which is not constant, then (M; = f(Z;);t > 0) is a conformal (local) martingale.
Then

(M), = /0 ds| f(Z,)

and Theorem 1.3.2 implies that there exists a C valued BM (Zu; u > 0) such that

M= Z 1 41512,

A

In a general case (i.e. f € C2(R?) ), It0’s “complex” formula may be written as:

taZf

Z)dZ, —
( ) + 0 3232

A il (2)d(2.Z)s

t
fzy = 120+ | zodz+ [ L
0 Z 0 aZ
and if f is holomorphic, then:

£(Z) = f(Zo) + /0 £1(2,)dz,.



4 1 Prerequisites

More generally again, let X = M + V be a continuous semimartingale in R” and
f € C*(R"); then Itd’s formula is

02 f
10X

(X)d (XD, x D)y,
ax. .

J

f(X) = f(X0)+/0 (vf)(Xs)-dXS+%/0 3
i.j

For a detailed exposition see [4].

1.4 Girsanov’s Theorem

This fundamental theorem often allows to extend theorems known to be valid for
BM to “mild perturbations of BM”.

On the canonical space C(R,R), we consider the canonical process X;(w) =
(t) and the canonical filtration F; = o{X,;s < t}.

For every x € R, W, will denote the Wiener measure on Fo such that
W,.(Xo=x)=1.

We shall say that a process Y is a mild perturbation of BM if its law Py has the
same null sets as W on each o-field F;, i.e. the measure Py is such that

Pylr, ~W|zg; t>0.

Example 1.4.1.

(a) Brownian motion with drift u.
Let B,(” ) = B; + ut, t > 0; then the associated measure W gatisfies

2
W(“)|f, = exp (pLX, - %t) Wiz.

(b) The Cameron—-Martin formula.

Let B,(f) = B + fot ds f(s) where f € leac (R4); then the corresponding
measure W/) satisfies

Wz =exp ( /0 t f(s)dX, — % /0 [ S 2(s)ds) Wiz,

(c¢) Girsanov’s formula.
LetZ, = B, + fof ds ¢(Z5) where ¢ is a bounded Borel function. The associated
measure P @) satisfies

t 1 t
P((p)lf; = exp (/ (p(Xs)dXs - E / (pZ(XS)dS) WIT;‘
0 0
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All these examples are particular cases of Girsanov’s theorem, of which we now
present the continuous martingale version.

Theorem 1.4.2 (Girsanov—Wong—Van Schuppen). Given a probability measure
P and a (P, F;)-local martingale M such that Q can be defined with the property

Ol = exp (M, = 5 (1)) Pl

Then, if N is a (P,F;)-local martingale, N, — (N,M), is a (Q,F;)-local
martingale.

Corollary 1.4.3. If N is a (F;)-BM under P, then (N = N, — (N, M);; t > 0) is
a BM under Q.

Corollary 1.4.3 holds since (N), = (N), = ¢.

Example 1.4.4. I N = M then M, = M, + (M), where (M,:¢ > 0) is a Q-local
martingale.

Let us see how Girsanov theorem applies to Example 1.4.1(c). Let (X;;¢ > 0) be
a BM, i.e. a W-martingale, then M; = fot ¢(X;)dX, is a W-local martingale. The
theorem implies that )Z, =X, —(X,M);isa P®_Jocal martingale, whence )Z, is
a P@-BM, since (X), = 1.

Note that

<KM»=Aamm.

The other examples can be treated similarly.

1.5 Brownian Bridge

The Brownian bridge b = {b,;0 < u < 1} is defined as the conditioned process
{(Byiu < 1)|B, = 0}.

We shall use the fact that B, = (B; —tB;) + B is the orthogonal decomposition
of B, with respect to L?(a(By)), since:

E[(Bt — IBI)BI] =0.

Now, the Gaussian property implies that (B, — tB;;t < 1) is independent of Bj,
hence:

(B,.t <1|B; = y) ‘2 (B, — 1B, + 1y)
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We can thus represent the bridge between 0 and y during the time interval [0, 1] as

(B, —tB1 +ty;t <1)

and we denote by Wél_)w the associated measure. In general, ngl) y denotes the

measure associated to the bridge between x and y during the time interval [0, 7],
which may be realized as

(x+(Bu—¥B,)+;(y—X):u§t),

where (B,; u < t) is a standard BM starting from 0.

Theorem 1.5.1. Wﬁfl)y is equivalent to Wy on F fors < t.

Proof. Let Fy > 0 be an F;-measurable functional, then
EL[Fy f(X0)] = Ex[Ex(F| X)) f(X0)] = Ex[Fs Pi— f(X))]
where (X;; ¢ > 0) is a Markov process with semigroup
Pi(x,dy) = pi(x, y)dy.

On the other hand,

EL[F, Py f(X,)] = E[F, f POV Dr—s (Xso )] = f FOVELF, pres (Xy. 7))y

and also
ELERIX1 0] = [ /0 ) EL (F)
whence
E,(Ciy(FS) _ Ex[FsPr—s(Xs, Y)] .
pi(x,y)

Thus

_(X;,

PO = P& V)
pe(x.y)

If x = y =0, we have

n/2 2

d —| X
P olr = ) Pol 5.
osolr =|7—5) exp =) ol 7,
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As a consequence, we can write the canonical decomposition of the standard

Brownian bridge (under Po(t_LO) as:

t—u

s Xu
XS:BS—/du , s <t,
0

where (Bs,s < t) is a BM under Po(t_)m. O

1.6 The BES(3) Process as a Doob A-Transform of BM

We use the notation BES,(3) for the three-dimensional Bessel process starting
from a, and Pf) for its law.

Using Girsanov theorem (see Sect. 1.4) one can show the following absolute
continuity relation

POy = (m) W, 7.
a

As an important consequence, if f : Ry x Ry — Ry is a harmonic space-time
function, then (XL, ft, X))t > 0) is a (Pa(B),]-"t) local martingale. The absolute

continuity relation, or /-process relation, between a BES(3) and BM is a key
property to the proof of Williams’ time-reversal theorem.

Theorem 1.6.1 (Williams’ time reversal). Letr (B;;t < T1) be a BM starting at 0
and considered up to time T\ = inf{t > 0 : B, = 1}, then

( law
(1= Br_it <T) "2 (Rt <y

where (R;;t < y') denotes a BES(3) process starting at 0 considered up to time
y' =supf{t >0: R, =1}

1.7 The Beta—Gamma Algebra

Let Z, be a random variable having Gamma density h,(t) = "‘a;i—j;t on Ry and
Za. a variable with Beta density fq (1) = % on [0, 1].
If Z, and Z}, are independent, then
. (law)
O Z +(lZ§7 = Zatb
.. aw
(11) Za,b = Z,f!fZ;,

From (i) and (ii), one gets Z, "= Z, » Za+5, which implies
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law
(i) (Za» Zp) Y Zuss(Zap: 1 = Zas)

As an application of (iii), one can show that

(law)

(N2, N "2 21(Z,1-2)

where N and N’ are two independent standard Gaussian r.v.’s, T is an
. . .. 1:
exponential r.v. with parameter 1 and is independent of Z (faw) Z12.1/2,

a so-called arc-sine variable.

1.8 The Law of the Maximum of a Positive Continuous Local
Martingale, Which Converges to 0

The following universal result for such a local martingale is:

law) M,
supM, (faw) —0,
>0 U

where U is uniform and independent from Mj.
This is a simple consequence of the optional stopping theorem. Precisely:

Lemma 1.8.1. Let M be a local continuous martingale with My = a, M; > 0 and
tlim M, = 0. Then
—00

law) a
supM; () 2
1>0 U

where U is a uniform variable on [0, 1].

Proof. Let y > a, then

a = E[Myz,] = yP(T, < 00) = yP(supM, > y),

>0

thus

P(supM; > y) = — = P(— > )

t
O
Exercise 1.8.2. The aim of this exercise is to show the identity:
for F;, > 0, F;-measurable
M, +
E[F,f(l — 7) ] = E[F,l(gggft)], (1.8.1)
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where M; > 0, is a continuous local martingale, and M, t—> 0, and gé‘é) = sup{t :
—>00
Mt = a}

(a) Note that (1.8.1) is equivalent to:

Pel <7y = (1- )"

(b) Deduce (1.8.1) from (ggé) <t) = (supM, < a), then apply Lemma 1.8.1.

u=>t

1.9 A First Taste of Enlargement Formulae

We are concerned here with the following theorem.

Theorem 1.9.1. (a) IfL = sup{t : (t,w) € I'}, where I is a set belonging to the
predictable o-field of (F;), a given filtration, then all (F;) martingales remain
(FL) semimartingales, where (F£ = F, v o(L A t)) is the smallest filtration
containing (F;) and making L a stopping time.

(b) Ifwe define Z, = ZF = P(L > t|F;), then a generic (F;) martingale (M)
becomes a semimartingale in (FL), with canonical decomposition:

ENCg(M, ZE) /’ d(M,1—2ZL),
L

Mtth+/ = 7L

L
0 ZS

We have assumed the hypothesis:
(CA): every (F;) martingale is continuous and, for any (F;) stopping time T,
P(L=T)=0.

Such formulae shall be useful when we shall enlarge a given filtration with, say:
A, = sup{t : R, = a} for some transient process R.
A number of computations of Z% are presented in [3].

1.10 Kolmogorov’s Continuity Criterion

This important lemma allows to construct continuous modification of a process
which satisfies a simple criterion.

Theorem 1.10.1. Let X = (X.).e; be a random process indexed by a bounded
interval 1 of R, and taking values in a complete metric space (M, d). Assume the
existence of three reals p,e, C > 0 such that for every x,y € I:

E[(d(Xx, X,))"] < Clx — y|'*.
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Then, there exists a modification X of this process X whose trajectories are Holder
with exponent «, for any o €]0, %[ This means that for any o €]0, %[, there exists a
constant Cy(w) such that forall x,y € I:

d(X (@), X,(@)) < Ca(@)]x = y|*.

In particular, X is a continuous modification of X.

References

1. T. Jeulin, Semi-martingales et grossissement d’une filtration. Lecture Notes in Mathematics,
vol. 833. (Springer, Berlin, 1980)

2. T. Jeulin, M. Yor, Grossissement de filtrations: exemples et applications. Lecture Notes in
Mathematics, vol. 1118. (Springer, Berlin, 1985)

3. R. Mansuy, M. Yor, Random times and enlargements of filtrations in a Brownian setting. Lecture
Notes in Mathematics, vol. 1873. (Springer, Berlin, 2006)

4. D. Revuz, M. Yor, Continuous martingales and Brownian motion. Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn.
(Springer, Berlin, 1999)



2 Springer
http://www.springer.com/978-3-319-01269-8

Local Times and Excursion Theory for Brownian Motion
A Tale of Wiener and Ito Measures

Yen, |.-Y. Yor, M,

2013, X, 135 p. 9illus., 8 illus. in color., Softcover
ISBEN: 978-3-319-01269-8



