
Chapter 1
Prerequisites

In this chapter, ten notions or results are gathered, which we assume as background
for the remainder of this monograph.

1.1 Brownian Motion

It is not difficult to show the existence of a probability space on which one can
construct a Gaussian family fB.f /I f 2 L2.RC; dt/g, such that

(i) EŒB.f /� D 0I (ii) EŒ.B.f //2� D
Z

f 2.t/dt:

Indeed, from a functional viewpoint, B is a Hilbert space isomorphism

B W L2.RC; dt/ ! B.� L2.˝//

f ! B.f /

so that:

B.f / D
X
n�1

.f; en/L2Gn

where .enI n � 1/ is an orthonormal basis of L2.RC; dt/, and .GnI n � 1/ is a
sequence of centered, reduced independent Gaussian variables.

We shall call Brownian motion, BM in brief, a continuous modification
fBt ; t � 0g of the Gaussian family

.B.1Œ0;t �/I t � 0/
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2 1 Prerequisites

Once the existence of this continuous modification is established (using
Kolmogorov’s continuity criterion; see Sect. 1.10), it is natural to use (Wiener)
integral notation

Z 1

0

f .t/dBt

instead of B.f / since, in the particular case

f .t/ D
X

�i 1.ti ;tiC1�.t/

one has

B.f / D
X

�i .BtiC1
� Bti /

1.2 Some Extensions

Given any measurable space .T; T / equipped with a positive �-finite measure �,
one can, just as in the previous case, define a so-called Gaussian measure .B.f / �R

f .t/B.�.dt//I f 2 L2.T; T I �/ such that

(i) EŒB.f /� D 0I (ii) EŒ.B.f //2� D
Z

f 2.t/�.dt/:

The Brownian sheet corresponds to T D R
2C (more generally, RnC) and �.dsdt/ D

dsdt the Lebesgue measure.
One can also construct important Gaussian families from a Gaussian measure,

by considering:

Z
˚.t; s/B.�.ds//:

The Lévy’s n-parameter Brownian motions and fractional Brownian motions may
be defined in this way.

1.3 BM as a Continuous Martingale

The following theorem presents Brownian motion as a prototype for continuous
martingales.
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Theorem 1.3.1 (Dubins–Schwarz). Let M be a continuous local martingale such
that M0 D 0 and hM i1 D 1. There exists a BM .BuI u � 0/ such that

Mt D BhM it
:

Next, here is a partial extension of the preceding theorem to multidimensional
continuous martingales.

Theorem 1.3.2 (Knight). Let M .1/; M .2/; : : : ; M .k/ be k continuous local martin-
gales with M

.i/
0 D 0, hM .i/i1 D 1 and hM .i/; M .j /it D 0 for i ¤ j ; then there

exist k independent BM’s .B
.i/
u I u � 0/, i D 1; : : : ; k such that

M
.i/
t D B

.i/

hM .i/it
:

If moreover hM .i/it � hM it for i D 1; : : : ; k, i.e., there is a common time change,
Theorem 1.3.2 implies that Mt D BhM it

where B D .B.1/; : : : ; B.k// and B.i/

are independent BM’s. Such multidimensional martingales are called conformal
martingales (in particular in the case k D 2).

Examples of Conformal Martingales.
Let Zt � B

.1/
t C iB.2/

t be a complex BM. If f 2 H.C/ is an entire function,
which is not constant, then .Mt D f .Zt /I t � 0/ is a conformal (local) martingale.
Then

hM it D
Z t

0

dsjf 0.Zs/j2

and Theorem 1.3.2 implies that there exists a C valued BM . OZuI u � 0/ such that

Mt D OZR t
0 dsjf 0.Zs/j2 :

In a general case (i.e. f 2 C2.R2/ ), Itô’s “complex” formula may be written as:

f .Zt / D f .Z0/ C
Z t

0

@f

@z
.Zs/dZs C

Z t

0

@f

@z
.Zs/dZs C

Z t

0

@2f

@z@z
.Zs/d hZ; Zis

and if f is holomorphic, then:

f .Zt / D f .Z0/ C
Z t

0

f 0.Zs/dZs:
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More generally again, let X D M C V be a continuous semimartingale in R
n and

f 2 C 2.Rn/; then Itô’s formula is

f .Xt / D f .X0/ C
Z t

0

.5f /.Xs/ � dXs C 1

2

Z t

0

X
i;j

@2f

@xi @xj

.Xs/d hX.i/; X.j /is:

For a detailed exposition see [4].

1.4 Girsanov’s Theorem

This fundamental theorem often allows to extend theorems known to be valid for
BM to “mild perturbations of BM”.

On the canonical space C.RC;R/, we consider the canonical process Xt.!/ D
!.t/ and the canonical filtration Ft � �fXsI s � tg.

For every x 2 R, Wx will denote the Wiener measure on F1 such that
Wx.X0 D x/ D 1.

We shall say that a process Y is a mild perturbation of BM if its law PY has the
same null sets as W on each �-field Ft , i.e. the measure PY is such that

PY jFt � WjFt I t � 0:

Example 1.4.1.

(a) Brownian motion with drift �.
Let B

.�/
t D Bt C �t; t � 0; then the associated measure W.�/ satisfies

W.�/jFt D exp

�
�Xt � �2

2
t

�
WjFt :

(b) The Cameron–Martin formula.
Let B

.f /
t D Bt C R t

0
ds f .s/ where f 2 L2

loc.RC/; then the corresponding
measure W.f / satisfies

W.f /jFt D exp

�Z t

0

f .s/dXs � 1

2

Z t

0

f 2.s/ds

�
WjFt :

(c) Girsanov’s formula.
Let Zt D Bt C

R t

0 ds '.Zs/ where ' is a bounded Borel function. The associated
measure P .'/ satisfies

P .'/jFt D exp

�Z t

0

'.Xs/dXs � 1

2

Z t

0

'2.Xs/ds

�
WjFt :
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All these examples are particular cases of Girsanov’s theorem, of which we now
present the continuous martingale version.

Theorem 1.4.2 (Girsanov–Wong–Van Schuppen). Given a probability measure
P and a .P; Ft /-local martingale M such that Q can be defined with the property

QjFt D exp

�
Mt � 1

2
hM it

�
P jFt :

Then, if N is a .P; Ft /-local martingale, Nt � hN; M it is a .Q; Ft /-local
martingale.

Corollary 1.4.3. If N is a .Ft /-BM under P , then . QN � Nt � hN; M it I t � 0/ is
a BM under Q.

Corollary 1.4.3 holds since h QN it D hN it D t:

Example 1.4.4. If N D M then Mt D QMt C hM it where . QMt I t � 0/ is a Q-local
martingale.

Let us see how Girsanov theorem applies to Example 1.4.1(c). Let .Xt I t � 0/ be
a BM, i.e. a W-martingale, then Mt D R t

0
'.Xs/dXs is a W-local martingale. The

theorem implies that QXt � Xt � hX; M it is a P .'/-local martingale, whence QXt is
a P .'/-BM, since h QXit D t:

Note that

hX; M it D
Z t

0

'.Xs/ds:

The other examples can be treated similarly.

1.5 Brownian Bridge

The Brownian bridge b D fbuI 0 � u � 1g is defined as the conditioned process
f.BuI u � 1/jB1 D 0g.

We shall use the fact that Bt D .Bt � tB1/ C tB1 is the orthogonal decomposition
of Bt with respect to L2.�.B1//, since:

EŒ.Bt � tB1/B1� D 0:

Now, the Gaussian property implies that .Bt � tB1I t � 1/ is independent of B1,
hence:

.Bt ; t � 1jB1 D y/
( law)D .Bt � tB1 C ty/:
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We can thus represent the bridge between 0 and y during the time interval Œ0; 1� as

.Bt � tB1 C tyI t � 1/

and we denote by W.1/
0!y the associated measure. In general, W.t/

x!y denotes the
measure associated to the bridge between x and y during the time interval Œ0; t �,
which may be realized as

�
x C �

Bu � u

t
Bt

� C u

t
.y � x/I u � t

�
;

where .BuI u � t/ is a standard BM starting from 0.

Theorem 1.5.1. W.t/
x!y is equivalent to Wx on Fs for s < t .

Proof. Let Fs � 0 be an Fs-measurable functional, then

ExŒFsf .Xt /� D ExŒEx.FsjXt/f .Xt /� D ExŒFsPt�sf .Xs/�

where .Xt I t � 0/ is a Markov process with semigroup

Pt .x; dy/ D pt .x; y/dy:

On the other hand,

ExŒFsPt�sf .Xs/� D ExŒFs

Z
f .y/pt�s.Xs; y/dy� D

Z
f .y/ExŒFspt�s.Xs; y/�dy

and also

ExŒExŒFsjXt �f .Xt /� D
Z

dyf .y/pt .x; y/E
.t/
x!y.Fs/

whence

E
.t/
x!y.Fs/ D ExŒFspt�s.Xs; y/�

pt .x; y/
:

Thus

P
.t/
x!y jFs D pt�s.Xs; y/

pt .x; y/
Px jFs :

If x D y D 0, we have

P
.t/
0!0jFs D

�
t

t � s

�n=2

exp

� �jXsj2
2.t � s/

�
P0jFs :
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As a consequence, we can write the canonical decomposition of the standard
Brownian bridge (under P

.t/
0!0) as:

Xs D Bs �
Z s

0

du
Xu

t � u
; s � t;

where .Bs; s � t/ is a BM under P
.t/
0!0. ut

1.6 The BES(3) Process as a Doob h-Transform of BM

We use the notation BESa.3/ for the three-dimensional Bessel process starting
from a, and P

.3/
a for its law.

Using Girsanov theorem (see Sect. 1.4) one can show the following absolute
continuity relation

P .3/
a jFt D

�
Xt^T0

a

�
WajFt :

As an important consequence, if f W RC 	 RC ! RC is a harmonic space-time

function, then
�

1
Xt

f .t; Xt /I t � 0
�

is a .P
.3/
a ; Ft / local martingale. The absolute

continuity relation, or h-process relation, between a BES(3) and BM is a key
property to the proof of Williams’ time-reversal theorem.

Theorem 1.6.1 (Williams’ time reversal). Let .Bt I t � T1/ be a BM starting at 0
and considered up to time T1 � infft � 0 W Bt D 1g, then

.1 � BT1�t I t � T1/
( law)D .Rt I t � �1/

where .Rt I t � �1/ denotes a BES(3) process starting at 0 considered up to time
�1 � supft � 0 W Rt D 1g.

1.7 The Beta–Gamma Algebra

Let Za be a random variable having Gamma density ha.t/ D ta�1e�t

� .a/
on RC and

Za;b a variable with Beta density Qha;b.t/ D ta�1.1�t /b�1

ˇ.a;b/
on Œ0; 1�.

If Za and Zb are independent, then

(i) Za C Zb
(law)D ZaCb

(ii) Za;b
(law)D Za

ZaCZb

From (i) and (ii), one gets Za
(law)D Za;bZaCb , which implies
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(iii) .Za; Zb/
(law)D ZaCb.Za;b ; 1 � Za;b/

As an application of (iii), one can show that

.N 2; N 02/ (law)D 2T .Z; 1 � Z/

where N and N 0 are two independent standard Gaussian r.v.’s, T is an

exponential r.v. with parameter 1 and is independent of Z
(law)D Z1=2;1=2,

a so-called arc-sine variable.

1.8 The Law of the Maximum of a Positive Continuous Local
Martingale, Which Converges to 0

The following universal result for such a local martingale is:

sup
t�0

Mt
(law)D M0

U
;

where U is uniform and independent from M0.
This is a simple consequence of the optional stopping theorem. Precisely:

Lemma 1.8.1. Let M be a local continuous martingale with M0 D a, Mt � 0 and
lim

t!1Mt D 0. Then

sup
t�0

Mt
(law)D a

U

where U is a uniform variable on Œ0; 1�.

Proof. Let y > a, then

a D EŒMTy � D yP.Ty < 1/ D yP
�
sup
t�0

Mt � y
�
;

thus

P
�
sup

t
Mt � y

� D a

y
D P

� a

U
� y

�
:

ut
Exercise 1.8.2. The aim of this exercise is to show the identity:
for Ft � 0, Ft -measurable

E
�
Ft

�
1 � Mt

a

�C	 D E
�
Ft 1.g

.a/
1�t /

	
; (1.8.1)
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where Mt � 0, is a continuous local martingale, and Mt �!
t!1 0, and g

.a/1 D supft W
Mt D ag.

(a) Note that (1.8.1) is equivalent to:

P
�
g.a/1 � t jFt

� D
�
1 � Mt

a

�C
:

(b) Deduce (1.8.1) from
�
g

.a/1 � t
� D �

sup
u�t

Mu � a
�
, then apply Lemma 1.8.1.

1.9 A First Taste of Enlargement Formulae

We are concerned here with the following theorem.

Theorem 1.9.1. (a) If L � supft W .t; !/ 2 � g, where � is a set belonging to the
predictable �-field of .Ft /, a given filtration, then all .Ft / martingales remain
.FL

t / semimartingales, where .FL
t � Ft _ �.L ^ t// is the smallest filtration

containing .Ft / and making L a stopping time.
(b) If we define Zt � ZL

t D P.L > t jFt /, then a generic .Ft / martingale .Mt /

becomes a semimartingale in .FL
t /, with canonical decomposition:

Mt D QMt C
Z L^t

0

d hM; ZLis

ZL
s

C
Z t

L

d hM; 1 � ZLis

1 � ZL
s

:

We have assumed the hypothesis:
(CA): every .Ft / martingale is continuous and, for any .Ft / stopping time T ,
P.L D T / D 0:

Such formulae shall be useful when we shall enlarge a given filtration with, say:
�a D supft W Rt D ag for some transient process R.

A number of computations of ZL are presented in [3].

1.10 Kolmogorov’s Continuity Criterion

This important lemma allows to construct continuous modification of a process
which satisfies a simple criterion.

Theorem 1.10.1. Let X D .Xx/x2I be a random process indexed by a bounded
interval I of R, and taking values in a complete metric space .M; d/. Assume the
existence of three reals p; 	; C > 0 such that for every x; y 2 I :

EŒ.d.Xx; Xy//p� � C jx � yj1C	:
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Then, there exists a modification QX of this process X whose trajectories are Hölder
with exponent ˛, for any ˛ 2�0; 	

p
Œ. This means that for any ˛ 2�0; 	

p
Œ, there exists a

constant C˛.!/ such that for all x; y 2 I :

d. QXx.!/; QXy.!// � C˛.!/jx � yj˛:

In particular, QX is a continuous modification of X .
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