Preface

This book is supposed to serve as an introduction to the theory of invariance entropy
which is related to the control task of making a subset in the state space of a control
system invariant. Inspired by the seminal work of Nair et al. [85] about notions of
entropy measuring the complexity of certain control tasks, and the Bowen—Dinaburg
characterizations of topological entropy in metric spaces, Fritz Colonius created the
concept of invariance entropy in 2007. At that time, I started to write my Ph.D. thesis
under his supervision at the Mathematical Institute of the University of Augsburg
and had the pleasure and great opportunity to work on this new topic in the field
of information-based control. The text at hand presents the theory obtained in five
fruitful years of research in Augsburg and during two research stays in Campinas
(Brazil) in August 2010 and in the period from September to November 2011. There
I had the chance to work with Luiz San Martin who showed great interest in our
research and contributed several important ideas. In this text, the theory as presented
so far in the articles [23,63-65] and in the thesis [62] is also put on a new level of
generality. We work with a fairly general definition of control systems which is
basically the one that can be found in Sontag’s book [102]. Despite the fact that this
definition treats discrete- and continuous-time systems simultaneously, the emphasis
in this text clearly lies on continuous-time systems given by differential equations.
However, where it is no great deal to prove a result also in discrete time and/or in a
purely topological setting, we do not hesitate to do so.

The central motivation behind the theory presented in this book comes from
the need to deal with communication constraints in digitally networked control
systems. Here the assumption of classical control theory that information can
be transmitted within control loops instantaneously, lossless, and with arbitrary
precision is no longer satisfied. Realistic mathematical models of many important
real-world communication and control networks have to take into account general
data-rate constraints in the communication channels, time delays, partial loss of
information, and variable network topologies. This raises the question about the
smallest possible information rate above which a given control task can be solved.
Though networked control systems can have a complicated topology, consisting
of multiple sensors, controllers, and actuators, a first step towards understanding
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the problem of minimal data rates is to analyze the simplest possible network
topology, consisting of one controller and one dynamical system connected by a
digital channel with a certain rate in bits per unit time. The problem to determine
such minimal data rates has been considered for more than 20 years. Early
landmarks are the papers by Delchamps [33] who considered quantized information
for stabilization and proposed to use statistical methods from ergodic theory and
by Wong and Brockett [113] who discussed stabilization of linear systems via
coding. From the wealth of literature on this topic there should also be mentioned
Tatikonda and Mitter [107], Delvenne [34], Fagnani and Zampieri [41], Liberzon
and Hespanha [76], Matveev and Savkin [79], De Persis [36], Savkin [96], and Xie
[114]. In these works, mainly linear systems (both deterministic and stochastic) have
been considered, and despite different formulations and assumptions, the results
therein show that the minimal data rate for stabilization only depends on the unstable
open-loop eigenvalues of the system and therefore is independent of the parameters
of the coding and control scheme. Nonlinear systems have been considered in
[76], where the authors show that global asymptotic stabilization at an equilibrium
can be accomplished by using sampled encoded measurements of the state, with
a data rate larger than the product of the right-hand side Lipschitz constant and
the dimension of the state space. Furthermore, nonlinear systems in feedforward
form have been treated in [36], where a hybrid controller is constructed which
achieves stabilization at data rates arbitrarily close to zero, in spite of arbitrarily
large communication delays. Different control problems for nonlinear systems are
treated in [96], namely observability and robustness. Here a systematic approach in
terms of a quantity similar to topological entropy of classical dynamical systems
leads to a description of the minimal data rate. The research monograph [79] by
Matveev and Savkin provides various results concerning state estimation and control
of linear and nonlinear systems over channels of limited capacity, including several
data rate theorems. In particular, the minimal data rate for observability is related to
a notion of topological entropy of the control system. There is much more literature
in this field and I apologize to many authors in advance for not mentioning their
contributions. A comprehensive and detailed survey with an excellent overview of
the literature up to the year 2007 can be found in Nair et al. [86].

The first systematic approach to the problem of minimal data rates for set-
invariance and stabilization of (deterministic, nonlinear) control systems was
presented in the outstanding paper [85] by Nair, Evans, Mareels, and Moran, which
introduced the notion of fopological feedback entropy. This quantity, which is
defined in terms of the open-loop control system, is a measure for the smallest data
rate a communication channel connecting a coder and a controller is allowed to
have if the system is supposed to solve the control task of rendering a compact
subset of the state space invariant. Furthermore, a local version of feedback entropy
at an equilibrium is defined which measures the smallest possible data rate for
local uniform asymptotic stabilization, and its value is determined by the unstable
eigenvalues of the linearization at the corresponding equilibrium.

The definition of topological feedback entropy is similar to the open-cover
definition of topological entropy for classical dynamical systems by Adler et al. [1].
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The difference, however, is that for topological feedback entropy only such open
covers of the given compact set K are considered which can be made invariant
in the sense that to each member of the cover a control sequence can be assigned
which allows to steer from every state in this open set into the interior of K. Then
the entropy of that cover is defined analogously as in the open-cover definition of
topological entropy, but the topological feedback entropy of K is defined as the
infimum (instead of the supremum) over all such invariant open covers. Looking at
this definition, one expects that topological feedback entropy has some properties
that are similar to the properties of topological entropy, but that, on the other hand,
the similarity is not going too far.

The richness and maturity of the entropy theory in topological and smooth
dynamics is based in first line on the variety of alternative definitions which are
available next to the open-cover definition. There are the definitions of entropy in
terms of separated and spanning sets introduced by Dinaburg [37] and independently
by Bowen [10]. Another alternative definition due to Bowen [12] resembles
Hausdorff dimension. Arguably the most powerful characterization is given by the
variational principle which asserts that the topological entropy is the supremum over
the metric entropies with respect to all invariant probability measures of the given
system. For topological feedback entropy it was not clear if there was any alternative
approach until the concept of invariance entropy, defined as follows, was introduced.
For a compact and controlled invariant set Q of a continuous-time control system,
one counts for every positive time t the number of open-loop control functions
which are necessary to stay in Q up to time t from any initial state. Then the
exponential growth rate of these minimal numbers as 7 tends to infinity defines
the entropy. The intuition behind this definition is that a controller which receives
a certain amount of information about the state, say » bits, can generate at most 2"
different control functions to steer the system on a finite time interval, and hence the
minimal number of control functions needed to accomplish the control task on this
time interval is a measure for the necessary amount of information.

The definition of invariance entropy is close in spirit to the Bowen—Dinaburg
definition of topological entropy via spanning sets, and because of its conceptual
simplicity it allows to draw plenty of more or less obvious consequences immedi-
ately. As it turns out, for each one of the properties of topological entropy which are
usually considered as elementary the invariance entropy has an analogous property.
For linear control systems the analogy goes even far enough that one can use
Bowen’s formula for the topological entropy of a linear map to give an analogous
formula for the invariance entropy.

By its definition invariance entropy measures how fast the number of open-loop
control functions grows which are needed to stay in Q for longer and longer times.
But next to this obvious meaning it indeed turns out to coincide with topological
feedback entropy after the appropriate adaptations to the setting in which the latter is
defined, and in this sense invariance entropy is really an alternative way of defining
topological feedback entropy.

Before I start to give a description of the book’s contents, I provide an overview
of the mathematical tools used therein. These mainly come from the classical theory
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of dynamical systems, including differential-geometric methods and concepts from
ergodic and dimension theory, as well as from geometric control theory. In particu-
lar, the applied techniques and results have their origins in the following sources:

* the work on entropy in dynamical systems by Adler et al. [1], Bowen [10, 11], Ito
[60], Kolyada and Snoha [70], and many others;

* the work in dimension theory of dynamical systems by Douady and Oesterlé
[38], Temam [108], Boichenko, Leonov, and Reitmann [8,9], Franz [44], Gelfert
[49, 50], and Noack [87];

 the work of Nair et al. [85] on topological feedback entropy;

¢ the control-theoretic work of Colonius and Kliemann (and coauthors) [21,25,26],
in particular the theory of control and chain control sets for systems given by
differential equations;

 the work of Sontag [100, 101] and Coron [30] on controllability and regularity
for control systems given by differential equations;

* the work of Bowen [13], Bowen and Ruelle [14], Young [115], and Liu [78] in
ergodic theory of hyperbolic dynamical systems.

The contents of the book are briefly sketched as follows:

The first chapter serves as the introduction of basic control-theoretic notions. As
mentioned before, we work with a very general definition of control systems due
to Sontag, but we restrict ourselves to time-invariant and complete systems. This
definition is given in Sect. 1.1. After that, several particular classes of systems are
defined, namely topological, linear, and smooth systems. Section 1.2 establishes
the notion of smooth systems given by differential equations which constitute the
most important subclass of smooth systems in this book. In Sect. 1.3, the reader is
reminded of elementary control-theoretic notions such as orbits, accessibility, and
controlled invariant sets. In Sect. 1.4, the control flow of a control-affine system is
introduced and its regularity properties are analyzed. Furthermore, control sets and
chain control sets are defined and their basic properties are studied. Finally, Sect. 1.5
treats the linearization of a smooth system given by differential equations along a
trajectory and the notion of regular control functions.

In Chap. 2, the central notion of invariance entropy for topological time-invariant
systems is established and discussed. Also a related notion, named outer invariance
entropy, is introduced which in general is only a lower bound for the actual
invariance entropy, but in some respect is better behaved. After proving a list
of elementary properties in Sects.2.1 and 2.2, as a first nontrivial example, the
invariance entropy of a scalar linear system given by differential equations is
computed. Here for the first time a volume growth argument is used to derive a
lower bound, which in different variations appears in all of the following chapters
and is one of the main ideas in the theory developed in this book. In the last two
sections, the relations between invariance entropy and topological feedback entropy
as well as minimal data rates are discussed. The central idea here consists in an
alternative characterization of invariance entropy in terms of the entropies of the so-
called invariant covers of the given controlled invariant set. This leads to the main
results, which are the data rate theorem for invariance entropy and a result which
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relates both entropies to each other. Additionally, a proof of the data rate theorem
for topological feedback entropy is given.

Chapter 3 contains the linear theory. The first main result of this chapter gives a
formula for the outer invariance entropy of a linear system. As one expects, under
appropriate assumptions, this quantity is given by the sum of the logarithms of the
unstable eigenvalues. This corresponds with a multitude of results in the control lit-
erature which provide formulas for the minimal data rates for stabilization of linear
systems. An important ingredient in the proof of this result is Bowen’s formula for
the topological entropy of a linear map. The second main result provides an estimate
from below for the invariance entropy of an inhomogeneous bilinear system. This
lower bound is expressed in terms of the minimal volume growth rate on an invariant
subbundle of the control flow of the associated homogeneous system. In continuous
time, one can use Selgrade’s theorem to choose this subbundle such that the volume
growth rate becomes maximal. In this case, the growth rate reduces to the sum of
the unstable eigenvalues again if one considers the special case of a linear system.

In Chap. 4, the development of the nonlinear theory begins. In Sect. 4.1, we first
prove a result for topological systems, which gives an upper bound for the entropy in
terms of a Lipschitz constant and the upper capacitive dimension of the considered
subset of the state space. This result is proved in pretty much the same way as
the analogous result for topological entropy which has its origins in Kushnirenko
[72] and Ito [60] and is nowadays considered as Folklore. The topological result
is then adapted to smooth systems on Riemannian manifolds, both in continuous
and in discrete time. In the continuous-time case, an appropriate Lipschitz constant
can be described in terms of the maximal eigenvalues of the symmetrized covariant
derivatives of the right-hand side vector fields. In Sect.4.2, a general lower bound
for a smooth system on a Riemannian manifold with invertible dynamics is given.
Here again the volume growth argument is used which leads to an expression in
terms of the functional determinants of the transition maps. In the case of a smooth
system given by differential equations, the Liouville formula can be used to relate
this expression to the divergence of the right-hand side vector fields.

In Chap. 5, the invariance entropy of sets with additional controllability proper-
ties is investigated. For simplicity, the main result of this chapter is only proved for
smooth systems given by differential equations. This result gives an upper bound
for the invariance entropy of a control set in terms of the sum of unstable Lyapunov
exponents of a regular periodic trajectory inside the given set. The proof is basically
an adaptation of the proof for a result about topological feedback entropy in Nair
et al. [85]. Here for the first time classical control-theoretic methods for nonlinear
systems enter the scene, and the interplay between the global controllability on the
control set and the local controllability along the periodic trajectory is exploited to
give the announced result. In general, we are not able to answer the question whether
a control set contains regular periodic trajectories. However, for strongly accessible
real-analytic systems, Sontag’s theorem about universally regular controls yields
the existence of plenty of such trajectories, and a more general result of Coron
yields such trajectories under considerably weaker assumptions. These trajectories
can be used to show that the assumptions of regularity and periodicity in the upper
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bound theorem can be weakened under a weak partial hyperbolicity condition. This
is carried out in Sect. 5.2.

In Chap. 6, another variant of the volume argument is used to achieve tighter
lower bounds for the invariance entropy. The basic idea used here again stems from
the classical theory of dynamical systems, more precisely from the theory of escape
rates which is closely related to the classical entropy theory and the thermodynamic
formalism. Section 6.1 explains this idea in detail. Basically, we use the fact that
the invariance entropy is bounded from below by a uniform escape rate from the
considered set. This allows to adapt methods from the classical dynamical systems
theory to describe the lower bound in terms of volume growth rates and expressions
close to topological entropy. Accordingly, instead of control-theoretic assumptions
as in Chap. 5, here additional dynamical assumptions have to be imposed on the
system, namely, hyperbolicity conditions of weaker or stronger form. The most
important ingredients used in this chapter are two volume lemmas for Bowen-balls,
the classical one by Bowen and Ruelle [14], in its nonautonomous version proved
by Liu [78], and another one by Franz [44] and Gelfert [49, 50].

Finally, Chap.7 presents examples for the application of the nonlinear theory
developed in the preceding three chapters to particular classes of systems. Sec-
tion 7.1 treats one-dimensional control-affine systems which turn out to be the most
nicely behaved class of nonlinear systems. Under appropriate regularity assump-
tions, here the invariance entropy of a control set can be expressed in terms of the
infimum of the Lyapunov spectrum over the control set. If the given system has only
one control vector field, this expression can be reformulated in terms of the drift and
control vector fields and their derivatives. As an application, a model for the inverse
pendulum is studied and the invariance entropy for the region of stabilizability is
computed. In Sect. 7.2, we consider the class of nonlinear systems which are uni-
formly expanding, that is, the systems whose trajectories for a fixed control function
exponentially diverge from each other at a rate which is independent of the control
function. The main result for this class of systems gives an almost-formula for the
invariance entropy of a control set. Section 7.3 again treats inhomogeneous bilinear
systems given by differential equations and gives an improvement over the lower
estimate of Chap.3 by using the methods introduced in Chap. 6, and an almost-
formula in the case of a control set. Finally, Sect. 7.4 treats projective systems, that
is, control-affine systems on projective space which are induced by bilinear systems
in Euclidean space. Under the assumption of local accessibility, a complete picture
of the maximal regions of controllability of such systems is available. In particular,
the control sets with nonempty interior (called main control sets) and the chain
control sets can be described via the semigroup of the bilinear system and its control
flow. Under a hyperbolicity assumption, we are able to provide a formula for the
invariance entropy of the open control set in terms of quantities that can be computed
directly from the right-hand side of the bilinear system. A thorough analysis of the
chain and main control sets shows that these possess a partially hyperbolic structure.
Under specific assumptions about the spectrum of the bilinear system, they have a
uniformly hyperbolic structure, which allows to apply the main results of Chaps. 5
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and 6. However, there are still some unsolved problems that remain if one wants to
give a formula for the invariance entropy of all of these sets.

My intention was to keep the book to a large extent self-contained. However,
there are some well-known results whose proofs are not given such as Krener’s
theorem about accessibility, Sontag’s theorem about existence of universally reg-
ular control functions, Selgrade’s theorem, and the existence of finest Morse
decompositions. I assume that the reader is familiar with the material taught in
standard courses on linear algebra, real analysis, set-theoretic topology, functional
analysis, and measure theory. Some supplementary material can be found in the
two appendices, mostly without proofs. Appendix A treats some more advanced
linear and multilinear algebra as well as basics about differentiable manifolds
and Carathéodory differential equations. In Appendix B, some topics related to
dynamical systems are covered, in particular, chain recurrence, linear flows on
vector bundles, topological entropy, and (sub-)additive cocycles. I hope that the
reader who is familiar with the concepts treated in the appendices can skip reading
them and may only have to check for the notation introduced there.

Given the subject matter, it is natural that the presented theory is rather
incomplete and leaves many questions open. At the end of each chapter, one finds
some questions that might be interesting for further research. My hope is that this
text is of use in a further development of a systematic analysis of minimal data rate
problems in control, and that both mathematicians working in control theory and in
dynamical systems will find the problems in this area appealing from an application-
oriented and a purely mathematical point of view.
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contributions to this piece of work. First of all, there is Fritz who initiated the whole
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Ryuichi Fukuoka, Isabell Graf, Lars Griine, Uwe Helmke, Anne-Marie Hoock, Pei-
Dong Liu, Peter Nagel, Girish Nair, Claudio de Persis, Luiz San Martin, Alexandre
Santana, Adriano da Silva, Marco Spadini, Ursula Weinhuber, and Fabian Wirth.
For proofreading parts of the manuscript I owe thanks to Isabell Graf, Peter Quast,
Alexandre Santana, and Helena Soares. Last but in no respect least, there are the
people who I owe thanks not so much for their help with mathematical problems,
but for their friendship, their hospitality, and their help and support with all kinds of
“real problems”: My parents, my friends Daniela, Helmut, Ingrid, Isabell, Thomas,
and Torben, as well as my Brazilian housemates Amar, Helena, Henrique, Juliana,
and Marcos (not to forget Peter, our neighbor). I also acknowledge the financial
support of the following grants: DFG grants Co 124/17-1 and 17-2 within DFG
Priority Program 1305 and FAPESP grant no. 11/03140-2.
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