Chapter 5
Controllability, Lyapunov Exponents,
and Upper Bounds

In this chapter, we restrict our attention to smooth systems given by differential
equations. Under additional controllability assumptions, we derive upper bounds for
the invariance entropy in terms of Lyapunov exponents. These numbers measure the
exponential rates of divergence for nearby trajectories, and hence are indicators for
stability or instability of the system. In the entropy theory of classical dynamical sys-
tems, several relations between entropy and Lyapunov exponents are known. A clas-
sic result in this direction is Pesin’s formula [90] which says that the metric entropy
of a ¢-diffeomorphism f : M — M on a compact Riemannian manifold M with
respect to a smooth invariant probability measure w is given by the p-integral over
the sum of the positive Lyapunov exponents which are defined almost everywhere. !
Liu [77] generalized this result to the case of (not necessarily invertible) %Z-maps.
Ruelle [94] (and independently, Margulis) showed that without the assumption of
i being equivalent to the Riemannian volume and only assuming that f is a €!-
map, the expression in Pesin’s formula is still an upper bound for the entropy.
The crowning achievement finally is a result by Ledrappier and Young [74] which
provides a formula for the metric entropy of a %2-diffeomorphism which involves
a weighted sum of positive Lyapunov exponents, where the weights are certain
dimension-like characteristics of the conditional measures on unstable manifolds.
In Chap. 3, we have already seen relations between invariance entropy and Lya-
punov exponents for (bi-)linear systems (cf. Theorems 3.1, 3.2, and Corollary 3.2).
In this chapter, we use controllability assumptions to obtain further relations of this
kind for nonlinear systems. The key idea stems from the paper of Nair et al. [85],
who show that the infimal data rate for local uniform asymptotic stabilization of
a discrete-time nonlinear system at an equilibrium pair (o, Xo) is given by the
sum of the logarithms of the unstable eigenvalues associated with the linearization

'If the invariant measure is ergodic, the Lyapunov exponents are constant almost everywhere, and
hence the integral in Pesin’s formula can be replaced by the integrand, that is, the sum of those
(almost everywhere constant) Lyapunov exponents which are positive. Moreover, the assumption
of f being % can be weakened to €' .
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at (1o, xo). An essential assumption needed for the proof of this result is that the
linearization be controllable. This guarantees that appropriate coder—controllers can
be constructed that achieve stabilization with data rates arbitrarily close to the sum
of the unstable eigenvalues.

In this chapter, we are going to exploit this idea to obtain upper estimates for the
invariance entropy in terms of Lyapunov exponents under appropriate infinitesimal
and global controllability assumptions.

5.1 The Upper Bound Theorem for Control Sets

Controllable Topological Systems

Let ¥ = (T, X, U, % . ¢) be atopological time-invariant system such that X has no
isolated points. Recall from Sect. 1.4 that a set Q C X has the no-return property
if x € Q,t € Ty and w € % with ¢(, x,w) € Q implies ¢([0, 7], x,w) C Q.
That is, trajectories cannot leave the set Q and then return. In particular, all control
sets with nonempty interior have this property (see Corollary 1.1). The following
proposition contains the key observation which makes it possible to use the ideas of
Nair et al. [85] to derive upper bounds for the invariance entropy.

Proposition 5.1. Let Q C X be a set with the no-return property. Assume that
(K1, Q) and (K2, Q) are two admissible pairs for X such that K, has nonempty
interior, and that for every x € K there exist oy, € % and t, € T4 with
©(ty, X, wy) € int Ky. Then

hinv(Kh Q) =< hinv(KL Q)

Proof. If ryy (T, K2, Q) = oo for all T greater than some 7, we have hj, (K3, Q) =
oo and the assertion becomes trivial. If this is not the case, there exists a sequence
T — oo such that ry,(tx, K7, Q) is finite for every k, which implies that
rinv(T, K2, Q) is finite for all z. In this case, for every x € K; let w, € % and
7, € T4 be as in the assumption. Since ¢(ty,-, ®,) is continuous, we find for
every x € K, an open neighborhood V, of x such that ¢(zy, Vy,w,) C int K.
By the no-return property we have ¢([0, 7], y,wy) C Q forall y € K; N V;.
The family {Vy}iek, is an open cover of K; and by compactness there exist
Xi,....x, € Ky with Ky C J/_, Vi,. Now let ./ = {j1,..., ik} be a minimal
(z, K3, Q)-spanning set for some 7. For every index pair (i, j) with 1 <i <n and
1 < j < k such that there exists x € K; with y, := ¢(1y,,x, ;) € int K, and
@([0, 7], yx, t;) C Q, we can define a control function v;; € % which satisfies

wy, (t)  fort €0, 1y],

ij (1) =
vy (1) wit —ry) fort > 1.
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The set . of all these control functions has cardinality < nk. Let T :=
T + minj<;<, Ty,. Then, by construction, . is a (7, K, Q)-spanning set and
consequently

rinv(ts K17 Q) S rinv(%v Kls Q) S n- rinv(ts K27 Q)'

By sending t to infinity, the assertion follows. O

From the properties of control sets (namely, approximate controllability, con-
trolled invariance, and the no-return property), the next corollary immediately
follows.

Corollary 5.1. Let D C X be a control set of X. Further let K, K, C D be two
compact sets with nonempty interior. Then (K, D) and (K,, D) are admissible and

hinv(Kls D) = hinv(KZs D)

With similar arguments as above, the next result follows.

Proposition 5.2. Let (K, D) be an admissible pair for ¥ such that D is a control
set. Assume that there exists a nonempty set V.C D which is openin X and jp € U
such that for every x € V thereis y € intD and a sequence ty € T4, ty — oo,
with ¢(tx, x, &) — y. Then hyy (K, D) = 0.

Proof. By approximate controllability on D, for every x € K there exist w, € %
and 7, > 0 with ¢(ty,x,wy) € V. By continuity of ¢(¢,,-, w,), there is a
neighborhood W, of x with ¢(t,, Wy, w,) C V. Since K is compact, finitely many
of these neighborhoods are sufficient to cover K, say Wy, ,..., Wy, . We define n
control functions by

wy, (1) fort € [0,1,,],

Ml(t) = x:( ) [ Xz]
n(t —ty,) fort > t,.

Then for every x € K there exists i € {1,...,n} and a sequence #; € T4,

ty — 00, such that ¢(t, x, ;) € int D for all k € N. By the no-return property of

control sets with nonempty interior, this implies ¢(T+, x, ;) C D. It follows that
Finv(t, K, D) < n for all T and hence A (K, D) = 0. O

The assumptions of the proposition are in particular satisfied if there exists
a constant control function u € % such that the classical dynamical system
associated with p, that is, the semigroup action T x X — X, (¢, x) — ¢(t, x, 1),
has a compact attractor 4 in int D. Then V' can be chosen as an open neighborhood
of A such that A attracts all trajectories with initial values in V.
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Controllable Continuous-Time Smooth Systems

Now we consider a smooth system ¥ = (R, M,R", %, ¢) given by differential
equations

X)) =F(x(),0@), 0%,

with compact control range £2 C R satisfying int£2 # @. Moreover, we assume
that M is a €>-manifold and F € €'(M x R™, TM).

First we show that under mild assumptions finiteness of A,y (K, D) holds for a
control set D.

Proposition 5.3. If D is a control set of X with nonempty interior such that local
accessibility holds on int D, then hiny (K, D) < 00 for every compact set K C D.

Proof. Any compact subset of D is contained in a compact subset with nonempty
interior. Hence, by Proposition 2.1, we may assume that K has nonempty interior.
Using local accessibility, we can construct a periodic controlled trajectory with
period 7* > 0 in D corresponding to some (x*,w*) € intD x %, and by
Proposition 1.23 (iv) it holds that ¢(R4, x*, w*) C int D. Since (R4, x*, 0*) =
@([0, 7%], x*, w*) is compact, we find a compact set K C int D with nonempty
interior and (R4, x*, ™) C int K. By Corollary 5.1 we may assume that K = K.
For every x € K C intD we can find a control function w, € % and a time
ty > 0 with ¢(t, x,w,) = x* by exact controllability in the interior of D (see
Proposition 1.23 (iii)). By Proposition 1.23 (v) we may assume that ¢, < Tj for all
x € K for some Ty > 0. By switching to the control function w* after time ¢, we
can assume that

V= @(To,x,wy) €int K forall x € K.

Let V, be a neighborhood of y, with V; C int K. By continuity there exists a
neighborhood W, of x with ¢(Ty, Wy, w,) C V, C int K. Since {W,}.ex covers
the compact set K, we find x,...,x, € K with K C U'}Zl Wy, . Consequently,
the set .7 := {wy,,...,wx,} is (To, K, D)-spanning (by the no-return property).
Obviously, one can construct (k Ty, K, D)-spanning sets .7 for all k € N from ./
such that #.7; < n*. This proves that h;,, (K, D) < (logn)/ Ty < 0o. |

In the following, we provide a characterization of the interior of % as a subset
of the Banach space L*°(R, R™). We denote the L°°-norm by || - || co-

Lemma 5.1. Let 2 C R™ be a compact set, (X, /) a measurable space, and
f X — R"™ a measurable function whose image is contained in §2. Further
assume that dist( f(x), 2°) < /3 for all x € X and some ¢ > 0. Then there exists
a measurable function g : X — R" such that | f(x) — g(x)| < € and g(x) € £2¢
forall x € X.
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Proof. By translation of the set £2, we may assume that all coordinate functions
fi: X - R,i =1,...,m, are nonnegative measurable functions. It is well-known
that such a function can be approximated by a (monotonically increasing) sequence
of nonnegative simple functions. In particular, there are simple functions

nj
si o X —> R, s,(x)zZa}]lAi,(x), i=1,....,m,
J
j=1

with X = U’}i=1 A} foreach i, A; C X measurable, such that

lsi (x) — fi(x)| < _t forall xe X,i=1,...,m.

3y/m

Here we used that f is a bounded function, and hence the sequences of simple
functions can be chosen such that the convergence is uniform. By adding sets of
measure zero, we may assume that the numbers n;, i = 1,...,m, are all equal to
each other, say n; = n. Now define the sets

AGr . Jmy=AL nn AT e efl. ).

These sets are obviously measurable and their union is equal to X. We define a
measurable function

Taking the standard Euclidean norm | - | on R™, we find that
€
| f(x) —s(x)| < 3 forall x € X.

The assumption that dist( f(x), £2¢) < &/3 implies

dist(s (), £2°) = inf |s(x) —u| = |s(x) = f(0)] + dist(f(x). £2°) < ?

for all x € X. By construction, the values of s are the vectors a(jy, ..., ju) =
(ajl.l,...,a’j?fn)T. Therefore, for each (ji,..., jn.), there exists b(ji,..., jm) =
(b}, b)Y € Q¢ with |a(ji, ..., jm) = b(j1,..., jm)| < (2¢)/3. Define the

desired function g as



126 5 Controllability, Lyapunov Exponents, and Upper Bounds

This gives
e 2
/) =g = [f() =s()] + [s() =g < 5+ ==,
which concludes the proof. O

Proposition 5.4. For a function w € L% (R,R™) it holds that w € int%Z if and
only if there exists a compact set K C int 2 with w(t) € K for almost all t € R.

Proof. We start with the easier direction: Assume that w(f) € K for almost all
t € R and a compact set K C int£2. Then, by compactness, we find ¢ > 0 such
that the e-neighborhood of K is contained in £2. Hence, if ||t — w||co < & for some
pw € L®R,R™), then u(t) € 2 almost everywhere, that is, u € % . This shows
that w € int % .

Now, conversely, assume that @ € int%/. Then there exists ¢ > 0 such that
lo — pt]loo < & with u € L= (R, R™) implies u € %, that is, if |w(t) — u(t)| < &
for almost all r € R, then u(¢) € §2 for almost all ¢ € R.

By a general fact in real analysis, int §2 can be written as the countable union of
the elements of an increasing sequence of compact sets, that is, int 2 = Un>1 K,,
K, compact with K, C K,+;. Indeed, such a sequence can be constructed as
follows: Let {u;} be a countable dense subset of int {2 and consider for each uy
all compact balls centered at u; of rational radius which are contained in int §2.
The family of all these balls is countable and its union is easily seen to be int §2.
Enumerate the members of this family and define K, to be the union of the first
n members. This gives the desired increasing sequence of compact sets. Moreover,
from this construction it can easily be seen that every u € int §2 is contained in the
interior of one of the sets K,,.

This construction also implies that there is 7y > 1 such that

ueint2\K,, = dist(u,R’”\Q)<§. (5.1)

We prove this by contradiction: Assume that such ny does not exist. Then for every
n > 1 there is v, € int 2\ K, with dist(v,, R"\2) > ¢/3, that s, |v, —w| > ¢/3
for all w ¢ £2. By compactness of £2 we may assume that v, — v € §2. The limit v
on the one hand satisfies |[v — w| > ¢/3 for all w ¢ £2. On the other hand, v € 952,
since v € int§2 implies v € int K,,, for some n; which gives v, € K,, for all
sufficiently large n, contradicting the definition of the sequence v,,.

Now consider the compact set K := K,,, C int {2 which satisfies (5.1). We claim
that w(¢t) € K for almost all 1 € R. Indeed, if this was not true, there would be
aset I C R of positive measure with |w(t) —w| < ¢/3 for all t € [ and all
w ¢ 2. By Lemma 5.1 there exists a measurable function u : I — R™\ 2 with
() —w(t)| < eforallt € I. We can extend this function to a measurable function
@R — R™ by putting u(z) := w(t) forall t € R\ /. This gives ||o — i|loo < €
which is a contradiction to the choice of €. O
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Given a Riemannian metric g on M, to every trajectory ¢(, x, w) of the smooth
system X we can associate a finite set of Lyapunov exponents. For the control
function w, the Lyapunov exponent at x in direction v € Ty M, v # Oy, is given by

1
A(v) = A(v:x, ) := limsup n log |dy¢; (V)| € R U {—00, +00}.
—>00

We also call these numbers the Lyapunov exponents at (w, x). Some basic and well-
known properties are summarized in the following proposition (see also Arnold [4,
Sect.3.2.1]).2

Proposition 5.5. The following assertions hold:

(i) AMav) = A(v) for all nonzero v € TyM and o € R\{0}.
(ii) A(v 4+ w) < max{A(v), A(w)} for all nonzero v,w € TyM with w # —v, with
equality if A(v) # A(w).
(iii) The number of different Lyapunov exponents A(v; x,w), v € TyM\{0,}, is
bounded by d = dim M.
(iv) If (u, x) is an equilibrium pair, the Lyapunov exponents A(v; x, u) are the real
parts of the eigenvalues of VF,(x) : TxM — T, M.
(v) If there is a compact set K C M with p(R+, x,w) C K, then the Lyapunov
exponents A(v; x, w) are all < oo.
(vi) If two Riemannian metrics are equivalent on the image of a trajectory
¢(, x,w), then the Lyapunov exponents with respect to these two metrics
are the same. In particular, if M is compact, the Lyapunov exponents of a
trajectory are independent of the metric.
(vii) For a periodic trajectory, the Lyapunov exponents are independent of the
metric.

Remark 5.1. From the statements of Proposition 5.5 we mainly use the fourth and
the seventh. The proof of statement (vii) is contained in the proof of the next
theorem. Statement (iv) is an easy consequence of the Riemannian variational
equation (see Proposition A.3). Indeed, for an equilibrium pair (w, x) the variational
equation becomes an autonomous linear equation on 7, M whose solutions have the
form z(¢t) = exp(tV F,(x))v, v € Ty M, which immediately implies the assertion.

Each Lyapunov exponent has a multiplicity which can be defined as follows.
For every (w,x) let Aj(w,x) < Az(w,x) < -+ < Agw.x) (@, x) be the associated
Lyapunov exponents. Then there exists a filtration

{Ox} = VO(C’L X) g Vl(a)a X) g e G Vs(w,x)(w7 )C) = TxMa

-=

’In the dynamical systems literature, usually the notion of Lyapunov exponents refers to the
Lyapunov exponents associated with an invariant measure. Sometimes, the Lyapunov exponents as
we define them are called upper Lyapunov exponents because of the upper limit in their definition.
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such that
Vilw,x) = {0} U{v e Ty M\{0,} : A(v;x,w) < A;(w,x)}.

The multiplicity of the Lyapunov exponent A; (w, x) is defined as the natural number
dim V;(w, x) —dim V;_;(w, x).

Before we state the main result of this section, let us recall the fundamental
lemma of Floquet theory. A proof can be found, for instance, in Chicone [17,
Theorem 2.47].

Lemma 5.2 (Fundamental Lemma of Floquet Theory). Let C be a nonsingular
real n x n-matrix. Then there exists a (possibly complex) n x n-matrix A with
exp(A) = C. Moreover; there exists a real n x n-matrix B with exp(B) = C>.

In the formulation of our theorem we already use the knowledge that the
Lyapunov exponents of a periodic trajectory are metric-independent, as asserted in
statement (vii) of Proposition 5.5. This fact also becomes clear in the first step of
the proof.

Theorem 5.1. Let D C M be a control set with nonempty interior and compact
closure. Let (¢(:, X0, w0), wo(:)) be a to-periodic controlled trajectory which is
regular on [0, to] such that (xo,wp) € intD X int%. Moreover, let py, ..., p;
be the different Lyapunov exponents at (wo, xo) with corresponding multiplicities
di,....d,. Then for every compact subset K C D and every superset Q D D the
pair (K, Q) is admissible and

hin(K, Q) < Y " max{0,d,p; }. (5.2)

J=1

The basic idea of the proof of Theorem 5.1 is to steer close to the point x on the
periodic trajectory and then use local controllability along the trajectory to stay in a
neighborhood of the periodic orbit for arbitrary future times, that is, to stabilize the
system at the periodic trajectory. This can be done by using a collection of control
functions whose cardinality is arbitrarily close to the sum of the positive Lyapunov
exponents (up to log and dividing by the time), which can be regarded as a measure
for how fast one is driven away from the periodic trajectory on average without
applying controls. The actual proof is quite lengthy and technical, so we give a short
overview of the main ideas involved before we start: We proceed in three steps. In
the first step, we use the fundamental lemma of Floquet theory in order to write the
solutions of the linearization along the controlled trajectory (¢(-, X9, wo), wo(+)) in
terms of the matrix exponential of an endomorphism R of Ty, M . Then we construct
an adapted Riemannian metric, which yields an orthonormal Jordan basis for R.
In the second step, we define several constants. In particular, a (large) time step
t € 1N and a (small) radius by > 0 are defined such that the controllability of
the linearization can be used in order to steer the system from the ball B(x, by)
to itself in time t, using a finite number of control functions that is related to the
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eigenvalues of R and hence to the Lyapunov exponents py, ..., p,. This is done in
Step 3 by subdividing a cube of side length 25, centered at the origin of 7y, M into
an appropriate number of subcuboids whose midpoints are steered to 0y, € Ty, M
in time t via the linearization. Using the Riemannian exponential map at x, it is
shown that the corresponding control functions also work for the nonlinear system
in order to get back to B(xo, bp) in time t. This process can be repeated and thus
yields (kt, B(x¢, bo), Q)-spanning sets for all k € N. By choosing 7 big enough
and by small enough, the corresponding cardinality growth rate of these sets comes
arbitrarily close to ) ;max{0,d;p;}. Since hiny(K, Q) does not depend on the set
K as long as it has a nonempty interior, this proves the assertion.

Proof (of Theorem 5.1). By controlled invariance of D, it is clear that every pair
(K, Q) with K C D and Q D D is admissible. For brevity in notation, the map
¢ 0“0 associated with the linearization along (¢(:, xo, wo), wo(+)) is simply denoted
by ¢ (cf. Sect. 1.5). The proof of estimate (5.2) now proceeds in three steps.

Step 1. Let M be endowed with an arbitrary Riemannian metric and consider the
automorphism

6
A := Dgag (X0, 00) (-, 0) ‘= (270, 0) : ToyM — T, M.

From Proposition 1.26 (iv) it follows that A = ¢(1o,-, 0)2, and hence from
Lemma 5.2 it follows that there exists R € £ (Ty,M, Ty, M) with

A =exp(2wR).
From Proposition 1.26 (iv) we get
¢ 210k, A,0) = AL = expQrokR)A forallA e T M, k € Zy.  (5.3)
We claim that the real parts of the eigenvalues of R coincide with the Lyapunov

exponents at (wp, Xo). To show this, we write every t > 0 as t = 2ok + s with
k € Z4+ and s € [0,21)). Then for all A € T, M we obtain

53)

¢, A,0) = ¢(s,p(k(210),1,0),0) = ¢(s,-,0)exp (2rokR) A.
Hence, it follows that
I lexp (2kwR) A| < |$(1, A, 0)] < L |exp (2koR) A|
with the positive constants

o= min G077 b= max [lgGs,0)].

s€[0,279] s€[0,270]
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By Proposition 1.26 (ii) we have

dxowf,wo (A) = ¢(l, A, 0)7

and hence the exponential growth rate of |dy,¢: »,, (1)| for ¢t — oo equals the growth
rate of | exp(279|¢/(279) | R)A| for all nonzero A € Ty, M, which implies the claim.

Now choose a basis By, of Ty, M adapted to the real Jordan structure of R and
let Li(R),...,L,(R) be the different Lyapunov spaces of R, that is, the sums of
the generalized eigenspaces corresponding to eigenvalues with the same real part.
Then we have the decomposition

TywM =Li(R)&--- & L, (R).

Let d; = dim L;(R) and denote by A0 e L ;(R) the j-th component of a vector
A e Ty, M with respect to this decomposition. Moreover, denote by p; the common
real part of the eigenvalues corresponding to L ; (R). The restriction of R to L (R)
is denoted by R;. Now let g be a Riemannian metric on M of class % such that
the basis B,, is orthonormal with respect to g,,, and let o denote the Riemannian
distance induced by g. In order to obtain a metric with this property, one can start
with an arbitrary 4-metric & on M. Then one takes a chart (1, V) around x, and
an inner product (-, -) on R such that By, is orthonormal with respect to the induced
inner product (dy, ¥ (-), dx, ¥ (-)) on Ty, M. On V consider the pullback g of (-, -) by
V¥, that is,

gx)(w,w) == (dy¥(v),dyy(w)) forallx €V, v,we T, M.

Let ® : M — [0, 1] be a cut-off function of class ¢ such that supp® C V and
6(x) = 1 on a compact neighborhood W of x; (see Proposition A.6). Define g by

O(x)g(x) + (1 —O(x))g(x) forall x € V,

g0 = 3(x) forall x € M\V.

It can easily be seen that g is a Riemannian metric on M with g, having the desired
property.

Step 2. We fix some constants: Let Sy be a real number which satisfies

So > Zmax{o,dj,oj}.

Jj=1

Choose & = £(Sp) > 0 such that

0<dé<So—> max{0.d;p;}. (5.4)

J=1
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Let § € (0, £) be chosen small enough such that p; < 0 implies p; + 6 < 0 for all
Jj €{l,...,r}.From Lemma B.2 it follows that there exists a constant ¢ = ¢(§) > 1
such that

Vje{l,....,r}Vk e Z4 : ||exp(krORj)|| < celpiTdkn (5.5)

where ||-|| denotes the operator norm on . (T, M, Ty, M ) induced by g,. For every
t > 0 we define positive integers

le®i | +1ifp; >0

L j=1...r 5.6
1 ifp; <0 7 : .6)

Mj(l) = %

Moreover, we define a function § : (0, c0) — (0, c0) by

B(@) == C\/_ [nax |:e(pf+5)’ A:I/;)] (5.7)

If p; < 0, then (by definition) p; + § < 0 and M;(¢) = 1. This implies that
et /d; /M, (t)) converges to zero for t — oo. If p; > 0, we have M;(t) >
e/ 9" by (5.6) and hence

eloj+8r V77 V eloj+8r _V 7J V / e85

M; (t) - elpj +E>r

Since § € (0, &), we have § — & < 0 and hence the term above converges to zero for
t — oo. Thus, also B(¢) — 0 for t — oo. This implies that for given ¢ > 0 we can
choose a number t = 2kt with k € N big enough such that

B(t) <1 and %10g(2) <e. (5.8)

Since we assume regularity of (¢(-, X0, wp), wo(:)) on [0, 7o], by Proposition 1.30
there exists a constant C > 0 with the following property (note that regularity on
[0, 7] implies regularity on [0, t]):

o(t, A, pn) = O,
VA € ToM 3 € L=([0, 7], R") : and (5.9)
el < CIAL

Let W) C Ty,M and W, C M be open neighborhoods of 0y, and xo, respectively,
such that exp,, : Wi — Wris a ¢'-diffeomorphism. The inverse of expy, lw; is
simply denoted by exp;ol. Now choose by > 0 small enough such that the following
conditions are satisfied:
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cl B(Oxoﬂ bO) C Wls

cl B()C(), bo) C D,

cl B(wy(t), C~/dby) C £2  for almost all 7 € [0, 7],
o(t.cl B(xo, by), ) C Wa if |0 — aljo.q) < C~/dby.

(5.10)

The second and third inclusion are possible, since xo € int D and, by Proposi-
tion 5.4, wy(t) is contained in a compact subset of int £2 for almost all ¢ € [0, 7).
The last one is possible by continuity of (x,w) — ¢(z, x, ). By Proposition 1.29
there exists a function{ = ¢ /7. 1 [0,) = R4 (« > 0) with

lexpy! (¢(7. x, ) — ¢ (. expy,' (x), @ — wo)| < {(b)b (5.11)

for all (x,w) € M x % with o(x,x0) < b < by and @ — wyljo.] < Cdb,
and {(b) — 0 for b — 0. We can assume that by < o and hence ¢ (by) is defined.
Because of the strict inequality (t) < 1 we can also assume that b is chosen small
enough such that

Vre(bo) + B(x) < 1. (5.12)

Step 3. By Corollary 5.1 and (5.10) we can assume that K = cl B(xo, b).
Consider a d-dimensional compact cube ¢ in Ty,M centered at the ori-
gin with sides of length 25, parallel to the vectors of the basis By,. Then
exp;o1 (K) = cl B(0y,, bo) C Tx,M, since exp,, is a radial isometry, and hence
exp;ol (K) C €. Partition € by dividing each coordinate axis corresponding to a
component of the j-th Lyapunov space of R into M (t) intervals of equal length.
The total number of subcuboids in this partition is ]_[;=1 M (r)% . Now pick an
arbitrary x € cl B(xo, bg). Let yo : [0, 1] — M be a shortest geodesic from x, to
x and let A, € ¥ be the center of a subcuboid which contains exp;ol (x) = p0(0).
(Note that |pp(0)] = Z(y0) = 0(x0,x) < by.) Then the following estimate
holds, where the additional superscripts denote components of vectors within the
corresponding Lyapunov spaces of R:

4 1/2
10 =20 = | 3~ (o@U" —A¢1)’
L /=1
B 172
b ) I
= = bo.  (5.13)
z; (Mj(f) M)

By (5.9) there exists w, € L°°([0, ], R™) such that ¢(z, A, wy — wy) = 0y, or
equivalently,

¢(Ta Ay, wx) = ¢(T7 Oxova) (5.14)
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and

1/2
roodj /

low —0llpg = ClA =€ | SOSTPUDP | < e Vb,

j=1i=1

since A, € % implies Mij D | < bo for each component. By (5.10) it holds that
wy € % and

o(t,x, wx) € Ws.
Let y; : [0, 1] = M be a shortest geodesic from xg to ¢(z, x, ). Then
1
0 (p(t. x, 1), x0) = ZL(y1) = / [y1(0)] dr = [y1(0)].
0 S——
= constant
By the triangle inequality we have
1OV] =[O = (.70 (0). 0 )|

+ 6z 70(0). g — )|

Since g is chosen such that the Lyapunov spaces of R are orthogonal, for the first
term we obtain

71O = § (2, 70(0), 0 — )|

= |17 (0 = (z.70(0). 0 — )|
< [71(0) = $(z, 76(0), e — )|
= |exp, (07, x, ) — (T, expr (), 0 — o)
S §(bo)bo.
By linearity of ¢ (z, -, ), for the second term we obtain
(2. 70(0), 0 — )P | = [$(z, 70(0), ) = $(z, 01, @0) |
=162, 70(0), 00D = (7, Ar, 00) )|
= |6z 70(0) = 2., 09|

2 lexp@kroR) (0(0) = 21|

= |lexp(zRIGO© — 21|,
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By invariance of the Lyapunov spaces of R under exp(tR), we get

6. 70(0). 01 —w)?)| = [exp(zR)(70(0) — 2)V|
< JlexpeR))| |70 (0) = 10|
"2 et | (0) = ).
Altogether, we have

[71O)D] < £(bo)bo + ce® I |(7%(0) — A)|

(5.13) Jdi
< L(bo)bo + eI YL p

0-
M; ()
By orthogonality of the Lyapunov spaces of R, it follows that

12
o(p(r.x.0)x0) = 11O = [ Y 1@V
j=1

1/2
.

2
Z (é‘ (bo)bo + celPi o ﬂbo)

M;(7)

IA

=1

1/2

A

M) "

. 2
NG Z<ce<m+8>fﬂb)

Jj=1

/d
< Jrt(bo)by + c+/r max | TIT YL |p
1<j<r M;(7)

2)

D[ Jre o) + B@)]bo = bo.

The estimate (A) follows from the triangle inequality in R". Hence, we have proved
that ]_[;.=1 M ()% admissible control functions are sufficient to steer the system
from all states in K back to K in time 7. By the no-return property of control sets it
follows that the trajectories do not leave D within the time interval (0, 7). By iterated
concatenation of these control functions we can construct an (nt, K, D)-spanning
set for each n € N with (]_[;=l M; ()% )" elements and hence we obtain

n n

e K.D) < [[TM,0% | = TT (e o+ .
j=1 Jtpjz0
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which implies

hinV(Kv Q)

IA

1
hiny(K, D) = limsup — log riny(n7, K, D)
nt

n—o0

l Z log(Le("fﬁ)fj—}—l)dj

Jjipj=0

1
= Z djzlog(Le(pr)tJ +1)

Jjipj=0

IA
_

IA

Z d; % log (Ze("f +§)I)

Jipjz0

- Y4 (k’g(z) o+ s))

T
Jjipj=0

IA

d r
—log(2) +dE + > “max{0.d;p;}
j=1

6.4 d (5.8)
< —log(2)+So < So+e.
T

The first equality follows from Proposition 2.6. Since & can be chosen arbitrarily
small and Sy arbitrarily close to Z;zl max{0,d;p,}, the assertion of the theorem
follows. O

Remark 5.2. 1Tt is clear that the above theorem implies the estimate

r(w,x)

hiny(K, Q) < inf ; max{0, d; (w, x)p; (@, )}, (5.15)

where the infimum is taken over all (w,x) € % x M such that the controlled
trajectory (¢(-, x, w), w(-)) is periodic and regular with x € int D and w € int % .
In general, it is not clear if any such trajectory exists. However, in many cases we
can guarantee their existence. A quite general approach in this direction is worked
out in Sect. 5.2.

Remark 5.3. Estimates for the topological entropy of diffeomorphisms, which are
formally similar to (5.15), can be found in the work of Catalan and Tahzibi [16].
However, these results are of generic nature and use the variational principle.

Since an equilibrium pair is a t-periodic controlled trajectory for every t > 0,
the following result immediately follows (using Proposition 5.5 (iv)).
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Corollary 5.2. Let D C M be a control set with nonempty interior and compact
closure. Let (wy, xo) € int§2 x int D be a regular equilibrium pair. Then for every
compact set K C D and every superset Q O D we have

hin(K, Q)< ) max{0,mRe(A)}.

A€0(V Fup (x0)

Corollary 5.3. Consider a linear system ¥ = (R,R?,R™, % ,¢) given by differ-
ential equations associated with a controllable matrix pair (A, B) such that A is
hyperbolic (that is, A has no eigenvalues on the imaginary axis). Further assume
that the control range $2 is a compact and convex set with 0 € int 2. Let D C R?
be the unique control set of X with nonempty interior. Then for every compact set
K C D it holds that

hiny(K. D) < Y max{0.n; Re(1)}. (5.16)
A€o (A)

If, additionally, K has positive Lebesgue measure and Q = cl D, then

hin(K, Q) = hinyou(K, Q) = Y max{0,n; Re(1)}. (5.17)
A€G(A)

Proof. As noted in Remark 3.1, the assumptions about the matrix pair (A4, B)
and the control range {2 guarantee the existence of a unique control set
D = cl 07 (0) N 0~ (0) with nonempty interior and compact closure. In particular,
0 € intD. Then the pair (0,0) € R™ x R? is an equilibrium pair which is
regular by the controllability assumption. Hence, Corollary 5.2 implies (5.16).
Formula (5.17) follows from the combination of Theorem 3.1 with (5.16) and the
fact that Ay ou(K, Q) < hiny(K, Q). O

Recall the definition of inner control sets (Definition 2.6). For such sets,
the estimate of Theorem 5.1 holds for the outer invariance entropy without the
assumption that the periodic trajectory is contained in the interior.

Corollary 5.4. Let D be an inner control set of X with closure Q = cl D. Let
(¢(, x0, wg), wo(+)) be a regular ty-periodic controlled trajectory with xo € Q and
wo € 2. Then

hinv,out(Q) = Z max{O, dj IO]}

j=1
holds, where Ay,...,A, are the different Lyapunov exponents at (wyp, Xo) with
corresponding multiplicities d, . . ., d,.

Proof. Note that the definition of inner control sets implies that Q is compact. From
Theorem 5.1 it follows that
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hin(Q.¢1D,: 5,) <> max{0,d;A;} forall p €[0,1).
j=1

Now for given ¢ > 0 choose p € [0, 1) such thatcl D, C N,(Q). Then
hiny(Q, Ne(Q): o) < hiny(Q, Ne(Q): Xp)

< hin(Q.c1 Dy Ep) <Y max{0.d;A;}.
j=1

The first two inequalities follow from %, C % and Proposition 2.1. Since
Binvout(Q) = limgx o hiny (Q, No(Q); Xo), the assertion follows. O

Remark 5.4. For discrete-time smooth systems given by difference equations
Xk+1 = F(xk,uy) it is no problem to prove the analog of Theorem 5.1. In fact,
the proof of Theorem 5.1 has been developed using a discrete-time blueprint which
can be found in Nair et al. [85, Theorem 3]. As mentioned in the beginning of this
chapter, this result of Nair et al. asserts that the infimal data rate for local uniform
asymptotic stabilization of a discrete-time nonlinear system at a regular equilibrium
pair (ug, xo) is given by the sum of the logarithms of the unstable eigenvalues
associated with the linearization at (1, xo). These numbers are identical with the
positive Lyapunov exponents at (uo, Xo). Essentially, all the arguments needed for a
discrete-time version of Theorem 5.1 are contained in the proof of [85, Theorem 3].

5.2 Approximation Results for Lyapunov Exponents

The main result of the preceding section, Theorem 5.1, naturally leads to the
following questions:

1. Are there easy-to-verify conditions which guarantee that a regular periodic
controlled trajectory as required exists?
2. Can the assumptions of regularity and periodicity be weakened?

In this section, we show that there are indeed conditions which imply the existence
of plenty of regular periodic trajectories in the interior of a control set, and which
in many cases are relatively easy to check. Under a weak hyperbolicity assumption
these trajectories then can be used to weaken the assumptions of regularity and
periodicity in the upper estimate of Theorem 5.1. To this end, we first have to
introduce the notion of strong accessibility. A well-known result of Sontag asserts
that real-analytic systems with this property possess so-called universally regular
control functions. These can be used to construct regular periodic trajectories as
required.
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Strong Accessibility

Assume that ¥ = (R, M,R™, % ,¢) is a smooth system given by differential
equations

X)) =F(x(),0@), owe%,

where M is a real-analytic manifold of dimensiond and F : M xR" — TM is a
real-analytic map. Moreover, assume that the control range §2 C R™ is a compact,
locally path-connected® set with nonempty and connected interior such that 2 =
clint 2. We also consider the associated system X° = (R, M,R", %", ¢°) with
control range £2° := int £ and the same right-hand side F. Then ¢°(¢,x,®) =
o(t,x,w) forall (t,x,w) e Rx M x %°.

Definition 5.1. A topological time-invariant system is called strongly accessible if
for each x € M there is some t > 0 such that int & (x) # @.

Recall from Sect. 1.5 that we call a control function @ regular for a state x
on a time interval [0, 7] if the linearization along (¢(-, X, w), w(-)) is controllable
on [0, 7].

Definition 5.2. A control function w € % is said to be universally regular if it is
regular for every x € M on some time interval [0, 7], T = 7(x) > 0.

The following proposition summarizes some well-known results about strong
accessibility.

Proposition 5.6. The following assertions hold:

(i) Let £ denote the Lie subalgebra of vector fields on M generated by the vector
fields F,, u € int 2. Then X° is strongly accessible if and only if the ideal £,
in £ generated by the vector fields

Fu,v =F,—F,, u,veints2,

satisfies dim £y(x) = d for all x € M, where £y(x) := {f(X)} re. (See
Sussmann and Jurdjevic [106, Corollary 4.7].)

(ii) System X° is strongly accessible if and only if for every x € M there is some
w € %° which is regular for x on some time interval [0, t], T > 0. (See Sontag
[100] and [101, Sect. 1].)

(iii) Ifw € %° is an analytic control function, then w is regular for x € M on some
time interval [0, ], T > 0, if and only if it is regular for x on every interval of
this form. (See Sontag [101, Sect. 1].)

3Recall that a topological space X is called locally path-connected if every neighborhood of a
point x € X contains a path-connected neighborhood of x.
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(iv) Assume that X° is strongly accessible. Then there exists an analytic universally
regular control function v € %°. (See Sontag [101, Theorem 1].)*

(v) Ifthe universal covering space of M is compact, then strong accessibility of X°
is equivalent to local accessibility. (See Sussmann and Jurdjevic [ 106, Theorem
4.9].)

(vi) If X is control-affine with right-hand side F(x,u) = fo+ > i, u; f;, then ¥
is strongly accessible if and only if X° is strongly accessible if and only if the
ideal £y generated by the vector fields fi, ..., fn satisfies dim %(x) = d
forallx e M.

Remark 5.5. Statement (iv) is proved in Sontag [101] for systems whose state
space is an open subset of R?, but can easily be generalized to systems on
arbitrary real-analytic manifolds as noted in [101, Remark 2.3]. Its proof is based
on Sussmann’s theorem about the existence of universally distinguishing control
functions (cf. Sussmann [105, Theorem 2.1]).

Lemma 5.3. Let D C M be a control set of X with nonempty interior. If X° is
strongly accessible, then for every x € int D there exist T > 0 and w € int % such
that (¢(-, x, w), w(-)) is t-periodic and regular on [0, t].

Proof. By Proposition 5.6 (iii) and (iv) we can apply a universally regular control
function w« € %° to x and obtain a trajectory @(-, X, ws) which is regular on
every nontrivial interval of the form [0, t;]. For t; chosen sufficiently small we have
o([0, 1], x,ws) C intD. Let y := ¢(11, X, wx). Since w«(¢) € int§2 and wx is
continuous, w« ([0, 7;]) is a compact subset of int £2. Hence, by Proposition 5.4, we
can assume that @, € int % . Strong accessibility implies local accessibility and the
latter implies exact controllability on int D by Proposition 1.23 (iii). Hence, we find
an admissible control function u € % and a time 7, > 0 with ¢(t2, y, ) = x. This
gives the desired periodic trajectory with corresponding period T := t; + 7, and
control function @ := ws«|j ;14" . By Proposition 1.28 this periodic trajectory is
regular on [0, t]. To conclude the proof, we have to show that y can be chosen such
that i € int%/. In fact, we can assume that . is piecewise constant with values in
int £ which by Proposition 5.4 guarantees that y € int %/. This easily follows from
the fact that local accessibility and approximate controllability on D also hold for
the class of piecewise constant control functions with values in int £2. O

The First Approximation Result

The aim of this subsection is to prove an approximation result, which shows that
the sum of positive Lyapunov exponents of an arbitrary periodic trajectory in the

“4Sontag also proves a stronger result which asserts that the set of smooth universally regular control
functions is generic in €°°([0, T'], int £2) for all T > 0.
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interior of a control set can be approximated by the corresponding sums for regular
periodic trajectories. Let the following assumptions be satisfied:

(a) There is a control set D of X' with nonempty interior and compact closure;
(b) System X is strongly accessible.

Furthermore, let g be an arbitrary ¥ *°-Riemannian metric on M .

In the following, we speak of subadditive cocycles over the control flow @ :
Rx (% xM) — % x M of ¥. However, note that we do not impose any continuity
assumptions here (neither on the control flow nor on the cocycles). In particular, we
do not assume that X' is control-affine.

Proposition 5.7. Let (¢(-, x,w),w(:)) be a t-periodic controlled trajectory with
(x,w) € int Dxint % . Moreover, leta : Rx(% xM) — R, (¢, (w, X)) — a;(w, x),
be a subadditive cocycle over the control flow which satisfies the following two
assumptions:

(a) a;(w,x)>0;
(b) ForallT >0,y € M, and w,w; € % it holds that

wi1(t) = wy(t) ae on[0,T] = ar(wy,y) =ar(w,y). (5.18)

Then for every ¢ > 0 there exists a regular periodic controlled trajectory
(0(, X, Wx), W« (+)) With w« € int% and period T« > 0 such that

1 1
—d., (Wx,X) < —a;(w,x) + &.
Tu T

Proof. For the given periodic trajectory ¢(-, x, @) we construct a family of approx-
imating trajectories as follows. By Lemma 5.3 there exists a regular periodic
trajectory ¢(¢, x, i), t € [0, p]. Forevery N € N we define

oy (1) = w(t) fort € [0, N7)
MY wt = Nt fort € [Nt,Nt +p]

and we extend wy (N T+ p)-periodically. By construction and Proposition 5.4, wy is
an admissible control function in int %/. Moreover, from Proposition 1.28 it follows
that wy is regular for x on [0, Nt + p]. Using subadditivity of a, we obtain

N—1
anctp(@N, %) < ap(OnrON. Pyroy (X)) + Y a(Or 0N, Pirwy (X)).
i=0
By construction we have @;. ., (x) = x fori = 0,1,..., N. Moreover, we have

O;;wy(t) = w(t) forallt € [0,t]andi = 0,..., N — 1. By assumption (5.18) this
implies
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anc+p(own,x) < ap(p, x) + Na. (o, x).

Hence, for given ¢ > 0 we can choose N sufficiently large so that

a.(w,x) +

<
aNr+p(0)N,x) = Nt+p Nt+p

m ap(p, x)

=

1
a(w,x)+¢e<—-a,(w,x)+e.
T+ T

=l

In the last inequality we used that a.(w, x) > 0. Consequently, the desired estimate
follows with wx = wy and 7« = Nt + p. O

Next we introduce some notation. For given (¢, x, w) € RxM x% , the derivative
dx@t,w . TXM - T(p(t,x,a))M

is a linear isomorphism between d-dimensional Euclidean spaces, and hence has
well-defined (positive) singular values, which we denote by

oi(t,x,w) >--->04(t,x,w) > 0.
For 0 < k < d, the singular value function of order k of d,¢; , is denoted by

o1(t, x,w)or(t, x,w) ---ox (¢, x,w) fork > 0,

t’ 9 =
(%, ) 1 fork = 0.

Proposition 5.8. Foreveryk € {0,1,...,d} the function
a;‘(a),x) =logop(t,x,w), a* :Rx (% xM)—R,

is a subadditive cocycle over the control flow which satisfies assumption (5.18).
Proof. To prove subadditivity, let #,s € Ry. Then, using Horn’s inequality
(cf. Sect. A.1), we find
af—i—s (Cl), 'x) = IOg (073 (dx(pt+s,a))

= 10g (073 (dga(t,x,w)ﬁos.,@;w o dxﬁotw)

< log ok (dg(r.x.0)@s5.0,0) + log i (dxgr )

= a;‘(a), x) + af(CD,(a), X)).
Finally, assumption (5.18) is satisfied. Indeed, @, (t) = w,(¢) almost everywhere on

[0, 7] implies ¢(t, x,w1) = @(t, x,w,) forall t € [0,7] and x € M. In particular,
¥ro, = Pre, and hence dy @, = dx@r ;- O
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Lemma 5.4. For every k € {1,...,d}and allt > 0, (w,x) € U x M, the
following estimate holds:

t
af(a), x) < k/ Amax (SVFa)(S)(@(Ss X, w)) ds.
0

Therefore, if p(t, x, w) is contained in a compact set for allt > 0, there is a constant
C > 0 (which does not depend on (w, x)) with

a¥(w,x) < Ct forallt > 0. (5.19)
Proof. First note that o (¢, x, w) equals the operator norm of d,¢; ,. Hence,
a(t,x, ) = 01t x,0) - 0p (1.X, 0) < 01(1, x,0)" = [[degol*.

Using the Wazewski inequality (Proposition A.4) gives

t
a¥(w,x) < klog|dvprol <k / Amax (SV Fos)(@(s. x, ) ds.
0
If (¢, x,w) is contained in a compact set K, then C := k maxX( exx2 Amax
(SVF,(2)) gives af(a), x) < Ctforallt > 0. O
We introduce the local Lyapunov exponents at (w, x),> defined recursively by

1
vi(@,x) + -+ vp(w,x) = limsup;af(w,x), k=1,2,...,d.

—>00

Then we obtain the first improvement over Theorem 5.1 which shows that under the
assumption that all periodic trajectories have the same number of positive Lyapunov
exponents, the condition of regularity is no longer necessary.

Lemma 5.5. If the controlled trajectory (¢(-, x, ), () in 2 (the forward lift of
Q = cl D) is periodic, then for every k € {1,...,d} the identities

1
vi(w,x) + -+ v (w,x) = tl_l)r(r}o ;a;‘(a),x)
= A(w,x) + -+ A (@, x)

hold, where Ai(w,x) > --- > Ax(w, x) denote the k largest Lyapunov exponents at
(w, x). In particular, v;(w, x) = Aj(w,x) fori =1,...,d.

5See, for instance, Boichenko et al. [9, Chap. IV, Sect. 8.1].
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Proof. Let t > 0 be the period of (¢(-, x,w), ®(-)) and fix k € {1,...,d}. From
the first step of the proof of Theorem 5.1 we know that there exists a linear operator
R :T M — T,.M such that

dy@rine =R foralln e Z,

and that the Lyapunov exponents are the real parts of the eigenvalues of R. Using
subadditivity of a* and writing each t > 0 as t = 2tn(t) + r(t) with n(t) € Z4
and r(¢) € [0, 27), we find

k k k
a; (w, x) < ayp, (@, X) + a; ) (@, X).

Since af, ) (w, x) is bounded on the compact set [0, 27] by Lemma 5.4, we thus obtain

1 1 1 1
lim sup T4 Fw,x) < hm sup azfn(,)(a) x) = — limsup —a’_, (w, x).
1—00 27 Non—>oo

On the other hand, for each # > 0 we find n(¢) € Z4 and r(¢) € [0,27) such that
t + r(t) = 2zn(t). Subadditivity gives alz‘m(t)(a), x) < ak(w,x) + a’r‘(t)(d% (w,x)).
Using that ¢(z, x, ) is contained in the compact set Q for all ¢z, Lemma 5.4 implies
boundedness of a’r‘(t)(@ (w, x)). Hence,

1
Zlifﬂgéf 3., (@, x) = hggzlf 2tn(t)

1
k o k
aZ‘L’n(t) (Cl), X) = hrlll)ggf 7at (C(), .X).
We have the relations (e?”"®)" = e2™Rx = (e>™Rx )" where R; denotes the k-th
derivation operator of R. This gives

1 1 & . 1 1
;alz‘m(a),x) = - logil:[lcri (62 ”R) = ;log || (eZI”R)Ak || = ;log || (eer")" || .

We know that the limit for n — oo of the last expression exists and is equal to
the logarithm of the spectral radius of "R« The eigenvalues of R are the sums
Aiy + -+ A, where {A;,, ..., A;, } is any subset of the spectrum of R consisting
of k elements. Since the real parts of these eigenvalues are the Lyapunov exponents
M(w,x) >---> A4(w, x), it follows that

1 1
— lim aztn(w x) =AM(w,x) + -+ A (w, x).
2T n—>oo n

Putting everything together, the proof is finished. O

Proposition 5.9. Assume that every periodic trajectory corresponding to some
(x,w) € intD x int%Z has exactly k positive Lyapunov exponents (counted
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with multiplicities), where k € {0,1,...,d}. Then for every periodic controlled
trajectory (¢(-, x,w), w(-)) with (x,w) € intD X int% and every compact set
K C D it holds that

hiw(K, D) < Zmax {0.d;A;},

Jj=1

where Ay, ..., A, are the different Lyapunov exponents at (w, x) with corresponding
multiplicities d1, . .., d;.

Proof. The case k = 0 is trivial, since here anyway Ain (K, D) = 0 (by Lemma 5.3
combined with Theorem 5.1). Hence, we may assume that 1 < k < d. Given
a tp-periodic controlled trajectory (¢(:, X, w), w(:)) with (x,w) € intD x int%,
we write A1(w,x) > --- > A4(w, x) for the Lyapunov exponents at (w, x) (here
every Lyapunov exponent can appear several times according to its multiplicity).
By assumption, the first k of these Lyapunov exponents are positive. From
Lemma 5.5 it follows that

1
M, x)+ -+ A (w,x) =vi(w,x) + -+ vp(w,x) = tl_l)r(r}o ;a;‘(a),x).
Now fix some ¢ > 0 and choose ny € N sufficiently large such that

1 &
k . k
aanm(w,x) —tl_lglo ;at (w,x)| < 3 (5.20)

The limit lim,—, 00 (1/2)a* (w, x) is positive. Hence, we can choose n¢ large enough
that also afjm (w,x) > 0. Applying Proposition 5.7, we obtain a regular periodic
trajectory (¢ (-, X, W+), W« (-)) with w, € int % of some period 74« > 0 such that

1 1
—a]f (wx, x) < —a* _(w,x) + f (5.21)
Ty © noTo 2

noto
*
Now Theorem 5.1 gives

hiny(K, D) < (s, X) 4+« -+ + Ag(ws, x).

The sequence n +— afjt* (w«, x) is easily seen to be subadditive and hence, the

subadditivity Lemma B.3 implies

1 1 1
lim —a* (ws,x) = inf —a* (wx, x) < —ad* (wx, x
n—>00 N Ty nr*( * ) n€EN N Ty nr*( * )_ Tx t*( * )
G2 1 g
k
< —a _(w,x)+ =.
noTo ot ’ 2
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Using Lemma 5.5 again, we find

1
A(@s, X) + -+ 4 A (@, x) = lim —aF (o, x)

t—>oo

1 1 e
. k k

lim —a, (wx,x) < —anom(a),x) + —.

n—>00 NTx noTo 2

Altogether, we obtain

I €
hil’lV(Ks D) = manofo(w’x)—i_ E

620 1 e ¢
< — — —
tl_l)rgo Za, (w,x) + > + >

= M(w,x)+ -+ A(w,x) + &

Since ¢ can be chosen arbitrarily small, this finishes the proof. O

The Second Approximation Result

Proposition 5.9 shows that under appropriate assumptions we can do without
regularity of the periodic trajectory in Theorem 5.1. Let us impose the same
assumptions on the system X' as before (real-analytic, strongly accessible, compact
control range). By using a second approximation result for subadditive cocycles, we
can also weaken the periodicity assumption.

Proposition 5.10. Let a : R X (Z x M) — R be a subadditive cocycle over
the control flow satisfying assumption (5.18) and the boundedness property (5.19)
of a*. Furthermore, let (x,w) € int D x int% such that ¢(t,x, w) is contained in
a compact set K C int D for all t > 0, and suppose that there exists ty > 0 with
a;(w,x) > 0forallt > ty. Then for every ¢ > 0 there exists a periodic trajectory
with initial state x corresponding to a periodic control function wyx € Int% of the
same period T« > 0 such that

1 1
—a., (0, x) < limsup —a,(w, x) + ¢.
Tx t—>o0 1

Proof. Let (t,),en be a sequence of positive times with #, — oo such that

. 1 .1
o :=limsup —a;(w,x) = lim —a, (®, x).
t—oo I n—>00 f,
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Now define the first hitting time
t:=inf{t >0 : x € 0Z,(z) forallz € K} .
By Proposition 1.23 (v), local accessibility (which follows from strong accessibility)

guarantees that t < oo. There is n; € N such that foralln > nyandall T € [0, 7]
it holds that

1 €
su a;,(v,2)| < —=. (5.22)
tn + T (t.z.l))E[O.rﬂKXaZI I t( )| 2
¢([0,7],.z,v)C O

Finiteness of the above supremum follows from the boundedness assumption
imposed on a. Finally, there is N > n; such that (by assumption)

ay(@,x) >0 (5.23)

and such that

1
‘—am(a),x) —o| <% (5.24)
N 2

By definition of T we can choose a control function v € %[0, T) with T < t and
o(T, p(ty, x,®),v) = x, and we may assume that v is piecewise constant taking
values in int £2. Define the control function w, on [0, 1y + T] as

_ w(t) fort € [0, 1y]
(1) = % v(t —ty) fort € (ty.ty + T’

and extend wx (ty + T')-periodically. This yields a (¢y + T')-periodic trajectory in
int D, and w4 € int% . Then, with 7, := ty + T, we have

—dg, (C()*, X) = (atN (C()*, X) + aT(@[NC()*, (p(th X, C()*)))

‘C* ZN + T
1
= m (ary (0, x) +ar(v,¢(tn, x, w)))
(5.22) 1 e
< a (w,x) + =

tin+T 2

(5.23) 1 e (524
< —an(@,x)+z < o+te.
N 2

This finishes the proof. O
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Proposition 5.11. Let (x,w) € int D X int% such that (¢, x, ®) is contained in
a compact subset of int D for all t > 0. Furthermore, assume that there exists
k €{0,1,...,d} such that the following assumptions are satisfied:

(i) Every periodic trajectory corresponding to some (y, ) € int D x int% has
exactly k positive Lyapunov exponents (counted with multiplicities);
(ii) There exists ty > 0 such that af (w,x) >0 forallt > t.

Then for every compact set K C D it holds that
hiny(K, D) <vi(w,x) + -+ + v (0, x).
Proof. Note that the assumptions of Proposition 5.10 are satisfied for the subaddi-

tive cocycle a*. Hence, for given ¢ > 0 we find a periodic controlled trajectory of
the form (¢(-, X, wx), w«(-)) with w. € int % of some period 7, > 0 such that

1 1
—a , (04, x) < limsup — ak(a) xX)+e¢
Tx t—>00

=@, x)+ -+ v(w,x)) +e (5.25)

By Proposition 5.9 we have

hinv(K, D)

IA

Aws, x) + -+ 4+ A (@x, X)

o1
= lim —af(a)*,x)
t—oo

1
= lim Eamf (@4, x)

1 1
e (@0 X) < oty (@),

Here we used that the sequence m a +, (0, x) is subadditive. Combining this
inequality with (5.25) gives the desired result. O

Remark 5.6. Notice that the assumption that X is real-analytic and strongly
accessible has only been used to guarantee that for every point in the interior of
the given control set there exists a regular periodic trajectory going through this
point. To have that (together with local accessibility) it is sufficient and necessary
that there are two points in the interior of the control set which can be joined by
a regular trajectory. At first sight, this seems to be a much weaker condition than
strong accessibility, but a result of Sontag [100, Proposition 4.2] shows that (under
mild assumptions) for real-analytic systems this is equivalent to strong accessibility.
However, for control-affine systems there is an easy trick which can be used to show
that the assumption of strong accessibility can be weakened to local accessibility.
Moreover, using a result of Coron [30, Theorem 1.3 and Corollary 1.8] it can be
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shown that analyticity can be weakened to smoothness. (In fact, this works not only
for control-affine systems, but we do not go into the quite technical details involved
here.)

Proposition 5.12. Assume that X is control-affine, F(x,u) = fo(x) +
YL ui fi (x) with a (compact and convex) control range with nonempty interior.
Then the assertions of Propositions 5.9 and 5.11 also hold if the vector fields
fos f1s. .., fm are of class €°° and the Lie algebra rank condition holds on D.

Proof. The proof proceeds in four steps.

Step 1. We show that if X' satisfies the particular assumptions of Propositions 5.9
and 5.11, then they are also satisfied for each of the time-transformed systems
X =R, M, R 9% ¢%), a > 1, given by the differential equations

x(t) =y@) - F(x(1), 0(1)), (yw)e %" =7V"xU,

where 7% = {y € L*°(R,R) : y(t) € [1/a,]}. First we prove that the
trajectories of X'* are just time reparametrizations of the trajectories of X'. To
this end, for every y € #'* define

o(t) := /Ot y(s)ds, t>0.

Itis clear that 0 : Ry — Ry is absolutely continuous with (0) = 0. It is bijective,
since y > 1/« implies that o is strictly increasing and o (¢) — oo fort — co. We
claim that

po(1). x.w) = ¢“ (1.x.(y.w 0 0)) (5.26)

forallx €e M,w € % ,and t > 0. Indeed, for almost all # > 0 we have

d
%00 x.0) =6(t) - F (p(0(t). x.0). 0(0(1)))
=y@) - F(pot),x,0),000()).

By uniqueness of solutions, the identity (5.26) follows. From this identity it can
easily be seen that if D is a control set of X, then D is a control set of ¥'*. Now
assume that every periodic trajectory of X' corresponding to some (x, ) € int D x
int% has exactly k positive Lyapunov exponents as required in Proposition 5.9.
Then the analogous statement for X' is true (with (x, (y,®)) € int D x int(¥* x
)). Indeed, let (p*(-, x, (v, w)), (y, w)) be a t-periodic controlled trajectory with
x € intD and (y,w) € int(¥* x %) = int¥* x int% . The number of positive
Lyapunov exponents of the given trajectory is given by the number of eigenvalues
of dxgo‘;(y! o) - TxM — T.M of absolute value bigger than one. From (5.26) it
follows that dxgo‘;(y’ 0 = dx@s (1) wos—1- From z-periodicity of y it follows that
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t+1=0""o() + o(r)) for all t > 0. This implies (w o ™) (t + o(1)) =
w(07'(t) + 1) = w(o7'(t)). Hence, w o 6~ is o (t)-periodic. Thus, (¢(-, x,w o
o™, w007 is a o(r)-periodic controlled trajectory of X with (x,w o 0™!) €
int D xint % and hence has exactly k positive Lyapunov exponents. This implies the
assertion. Analogously, one shows that assumption (ii) in Proposition 5.11 carries
over from X' to X%,

Step 2. We show that the invariance entropies of (K, D) with respect to X' and
X%, respectively, are related by

hin(K, D; X) < a - hiny(K, D; £%). (5.27)
To this end, let .¥ C ¥ x % be a (t, K, D)-spanning set for ¥*. We claim that
S i={woo Iy eV (yo) € .S}

is a (r/a, K, D)-spanning set for X. Indeed, let x € K. Then there is (y, w) € %
with

g(o@t).x,wo007") =¢"(t.x,(y.w)) € D forallt € [0,1],

which implies (7, x,w o 0~") € D forall t € [0, 7/c], since o(t) > [, 1/ads =
t/a. It follows that rig (t/a, K, D; X) < riny(t, K, D; ¥%) and hence

hine (K, D: X) = lim sup — log riny (z/t, K, D; )

=00 T

< lim sup ¢ log riny(t, K, D; X%) = « - hjny(K, D; X9%),

t—>o00 T

which finishes Step 2.

Step 3. We prove the assertion for the case that fo, fi, ..., f,; are analytic vector
fields. Since we assume that the Lie algebra rank condition holds for X, the
smallest Lie algebra spanned by the vector fields fy, fi,..., fn has full rank
at every point (see Proposition 1.8). Note that the strong accessibility algebra
of X%, that is, the ideal generated by the differences v[fo + Y /i, u;i fi] —
V[ fo + DI, Ul fi], contains the vector fields fi, ..., f, as well as the vector
field fo (put (v,u) := (@,0) € R x R" and (v, ') := (1,0) € R x R™, then
v[fo+ X i ui fi]—V'[fo+ X L, ul fi] = (@—1) fo). By Proposition 5.6 (vii) this
implies that X' is strongly accessible. Hence, we find that the Propositions 5.9
and 5.11 can be applied to the systems X%, if fy, fi,..., fin are analytic.
The inequality (5.27) shows that the corresponding estimates for the invariance
entropy hiny (K, D; X'%) carry over to hiy (K, D; X) by letting ¢ — 1.

Step 4. We show that the assumption of analyticity can be weakened to
smoothness. Observe that analyticity (in combination with strong accessibility)
was only used in the proof of Lemma 5.3 to show the existence of arbitrarily
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short regular trajectories in the interior of D. However, this also follows as a
consequence of Coron [30, Corollary 1.8] if the right-hand side of the system
is of class €*° and polynomial with respect to the control variable, and if the
strong accessibility algebra has full rank at every point. Since these assumptions
are satisfied for the time-transformed systems X'¢, if the given system is smooth
and satisfies the Lie algebra rank condition, we are done. O

Remark 5.7.

e Of course, one would like to have a third approximation result to get rid of the
assumptions that ¢(¢, x, @) be contained in a compact subset of int D and o €
int 7. As can be seen in Sect. 7.1, for one-dimensional systems things are easier
than in the general case, since here only equilibria instead of arbitrary trajectories
have to be considered. The same holds for particular control sets of projective
systems, as we show in Sect. 7.4.

e The existence of universally regular control functions and regular periodic
trajectories inside of control sets for discrete-time systems has been studied in
Wirth [110-112] and Sontag and Wirth [103]. Hence, it should be an easy task to
adapt the results of this section to the discrete-time setting.

5.3 Comments and Bibliographical Notes

The main theorem of this chapter, Theorem 5.1, has appeared before in Kawan
[62, 64]. All results about the invariance entropy in Sect.5.2 are new and have
not been published before. The methods used in the proofs of the approximation
results for subadditive cocycles are basically taken from Colonius and Kliemann
[25, Theorem 6.2.17], a result which relates the Lyapunov and Floquet spectra
of certain control systems on vector bundles to each other. Further note that the
estimate for a* given in Lemma 5.4 can be improved (see Boichenko et al. [9,
Chap. I, Corollary 4.2.1]). Of course, the results of this chapter leave many questions
open. For instance, what can be said about the value of A, (Q) when Q is the
closure of a relatively compact control set D? Is it the same as hy, (K, Q) for
K C D or can it be strictly greater? Another question concerns the existence of
regular periodic trajectories without the regularity assumptions of Sect.5.2. One
could ask, for instance, if they exist generically. Finally, notice that in this chapter we
have seen a second example for the equality Ay out(K, Q) = hin(K, Q), namely
Corollary 5.3.
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