
Chapter 5
Controllability, Lyapunov Exponents,
and Upper Bounds

In this chapter, we restrict our attention to smooth systems given by differential
equations. Under additional controllability assumptions, we derive upper bounds for
the invariance entropy in terms of Lyapunov exponents. These numbers measure the
exponential rates of divergence for nearby trajectories, and hence are indicators for
stability or instability of the system. In the entropy theory of classical dynamical sys-
tems, several relations between entropy and Lyapunov exponents are known. A clas-
sic result in this direction is Pesin’s formula [90] which says that the metric entropy
of a C 2-diffeomorphism f W M ! M on a compact Riemannian manifoldM with
respect to a smooth invariant probability measure � is given by the �-integral over
the sum of the positive Lyapunov exponents which are defined almost everywhere.1

Liu [77] generalized this result to the case of (not necessarily invertible) C 2-maps.
Ruelle [94] (and independently, Margulis) showed that without the assumption of
� being equivalent to the Riemannian volume and only assuming that f is a C 1-
map, the expression in Pesin’s formula is still an upper bound for the entropy.
The crowning achievement finally is a result by Ledrappier and Young [74] which
provides a formula for the metric entropy of a C 2-diffeomorphism which involves
a weighted sum of positive Lyapunov exponents, where the weights are certain
dimension-like characteristics of the conditional measures on unstable manifolds.

In Chap. 3, we have already seen relations between invariance entropy and Lya-
punov exponents for (bi-)linear systems (cf. Theorems 3.1, 3.2, and Corollary 3.2).
In this chapter, we use controllability assumptions to obtain further relations of this
kind for nonlinear systems. The key idea stems from the paper of Nair et al. [85],
who show that the infimal data rate for local uniform asymptotic stabilization of
a discrete-time nonlinear system at an equilibrium pair .u0; x0/ is given by the
sum of the logarithms of the unstable eigenvalues associated with the linearization

1If the invariant measure is ergodic, the Lyapunov exponents are constant almost everywhere, and
hence the integral in Pesin’s formula can be replaced by the integrand, that is, the sum of those
(almost everywhere constant) Lyapunov exponents which are positive. Moreover, the assumption
of f being C 2 can be weakened to C 1C˛ .
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122 5 Controllability, Lyapunov Exponents, and Upper Bounds

at .u0; x0/. An essential assumption needed for the proof of this result is that the
linearization be controllable. This guarantees that appropriate coder–controllers can
be constructed that achieve stabilization with data rates arbitrarily close to the sum
of the unstable eigenvalues.

In this chapter, we are going to exploit this idea to obtain upper estimates for the
invariance entropy in terms of Lyapunov exponents under appropriate infinitesimal
and global controllability assumptions.

5.1 The Upper Bound Theorem for Control Sets

Controllable Topological Systems

Let˙ D .T; X; U;U ; '/ be a topological time-invariant system such thatX has no
isolated points. Recall from Sect. 1.4 that a set Q � X has the no-return property
if x 2 Q, � 2 TC and ! 2 U with '.�; x; !/ 2 Q implies '.Œ0; ��; x; !/ � Q.
That is, trajectories cannot leave the set Q and then return. In particular, all control
sets with nonempty interior have this property (see Corollary 1.1). The following
proposition contains the key observation which makes it possible to use the ideas of
Nair et al. [85] to derive upper bounds for the invariance entropy.

Proposition 5.1. Let Q � X be a set with the no-return property. Assume that
.K1;Q/ and .K2;Q/ are two admissible pairs for ˙ such that K2 has nonempty
interior, and that for every x 2 K1 there exist !x 2 U and �x 2 TC with
'.�x; x; !x/ 2 intK2. Then

hinv.K1;Q/ � hinv.K2;Q/:

Proof. If rinv.�;K2;Q/ D 1 for all � greater than some �0, we have hinv.K2;Q/ D
1 and the assertion becomes trivial. If this is not the case, there exists a sequence
�k ! 1 such that rinv.�k;K2;Q/ is finite for every k, which implies that
rinv.�;K2;Q/ is finite for all � . In this case, for every x 2 K1 let !x 2 U and
�x 2 TC be as in the assumption. Since '.�x; �; !x/ is continuous, we find for
every x 2 K1 an open neighborhood Vx of x such that '.�x; Vx; !x/ � intK2.
By the no-return property we have '.Œ0; �x�; y; !x/ � Q for all y 2 K1 \ Vx .
The family fVxgx2K1 is an open cover of K1 and by compactness there exist
x1; : : : ; xn 2 K1 with K1 � Sn

iD1 Vxi . Now let S D f�1; : : : ; �kg be a minimal
.�;K2;Q/-spanning set for some � . For every index pair .i; j / with 1 � i � n and
1 � j � k such that there exists x 2 K1 with yx WD '.�xi ; x; !xi / 2 intK2 and
'.Œ0; ��; yx; �j / � Q, we can define a control function �ij 2 U which satisfies

�ij .t/ D
�

!xi .t/ for t 2 Œ0; �xi �;
�j .t � �xi / for t > �xi :
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The set QS of all these control functions has cardinality � nk. Let Q� WD
� C min1�i�n �xi . Then, by construction, QS is a . Q� ;K1;Q/-spanning set and
consequently

rinv.�;K1;Q/ � rinv. Q�;K1;Q/ � n � rinv.�;K2;Q/:

By sending � to infinity, the assertion follows. ut
From the properties of control sets (namely, approximate controllability, con-

trolled invariance, and the no-return property), the next corollary immediately
follows.

Corollary 5.1. Let D � X be a control set of ˙ . Further let K1;K2 � D be two
compact sets with nonempty interior. Then .K1;D/ and .K2;D/ are admissible and

hinv.K1;D/ D hinv.K2;D/:

With similar arguments as above, the next result follows.

Proposition 5.2. Let .K;D/ be an admissible pair for ˙ such that D is a control
set. Assume that there exists a nonempty set V � D which is open in X and � 2 U
such that for every x 2 V there is y 2 intD and a sequence tk 2 TC, tk ! 1,
with '.tk; x; �/ ! y. Then hinv.K;D/ D 0.

Proof. By approximate controllability on D, for every x 2 K there exist !x 2 U
and tx � 0 with '.tx; x; !x/ 2 V . By continuity of '.tx; �; !x/, there is a
neighborhoodWx of x with '.tx;Wx; !x/ � V . Since K is compact, finitely many
of these neighborhoods are sufficient to cover K , say Wx1; : : : ;Wxn . We define n
control functions by

�i.t/ WD
�

!xi .t/ for t 2 Œ0; txi �;
�.t � txi / for t > txi :

Then for every x 2 K there exists i 2 f1; : : : ; ng and a sequence tk 2 TC,
tk ! 1, such that '.tk; x; �i / 2 intD for all k 2 N. By the no-return property of
control sets with nonempty interior, this implies '.TC; x; �i / � D. It follows that
rinv.�;K;D/ � n for all � and hence hinv.K;D/ D 0. ut

The assumptions of the proposition are in particular satisfied if there exists
a constant control function � 2 U such that the classical dynamical system
associated with �, that is, the semigroup action TC �X ! X , .t; x/ 7! '.t; x; �/,
has a compact attractor A in intD. Then V can be chosen as an open neighborhood
of A such that A attracts all trajectories with initial values in V .
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Controllable Continuous-Time Smooth Systems

Now we consider a smooth system ˙ D .R;M;Rm;U ; '/ given by differential
equations

Px.t/ D F.x.t/; !.t//; ! 2 U ;

with compact control range ˝ � R
m satisfying int˝ ¤ ;. Moreover, we assume

that M is a C 3-manifold and F 2 C 1.M � R
m; TM/.

First we show that under mild assumptions finiteness of hinv.K;D/ holds for a
control set D.

Proposition 5.3. If D is a control set of ˙ with nonempty interior such that local
accessibility holds on intD, then hinv.K;D/ < 1 for every compact set K � D.

Proof. Any compact subset of D is contained in a compact subset with nonempty
interior. Hence, by Proposition 2.1, we may assume that K has nonempty interior.
Using local accessibility, we can construct a periodic controlled trajectory with
period �� > 0 in D corresponding to some .x�; !�/ 2 intD � U , and by
Proposition 1.23 (iv) it holds that '.RC; x�; !�/ � intD. Since '.RC; x�; !�/ D
'.Œ0; ���; x�; !�/ is compact, we find a compact set QK � intD with nonempty
interior and '.RC; x�; !�/ � int QK. By Corollary 5.1 we may assume thatK D QK.
For every x 2 K � intD we can find a control function !x 2 U and a time
tx � 0 with '.tx; x; !x/ D x� by exact controllability in the interior of D (see
Proposition 1.23 (iii)). By Proposition 1.23 (v) we may assume that tx � T0 for all
x 2 K for some T0 > 0. By switching to the control function !� after time tx we
can assume that

yx WD '.T0; x; !x/ 2 intK for all x 2 K:

Let Vx be a neighborhood of yx with Vx � intK . By continuity there exists a
neighborhood Wx of x with '.T0;Wx; !x/ � Vx � intK . Since fWxgx2K covers
the compact set K , we find x1; : : : ; xn 2 K with K � Sn

jD1 Wxj . Consequently,
the set S WD f!x1; : : : ; !xng is .T0;K;D/-spanning (by the no-return property).
Obviously, one can construct .kT0;K;D/-spanning sets Sk for all k 2 N from S
such that #Sk � nk . This proves that hinv.K;D/ � .logn/=T0 < 1. ut

In the following, we provide a characterization of the interior of U as a subset
of the Banach space L1.R;Rm/. We denote the L1-norm by k � k1.

Lemma 5.1. Let ˝ � R
m be a compact set, .X;A / a measurable space, and

f W X ! R
m a measurable function whose image is contained in ˝ . Further

assume that dist.f .x/;˝c/ < "=3 for all x 2 X and some " > 0. Then there exists
a measurable function g W X ! R

m such that jf .x/ � g.x/j < " and g.x/ 2 ˝c

for all x 2 X .
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Proof. By translation of the set ˝ , we may assume that all coordinate functions
fi W X ! R, i D 1; : : : ; m, are nonnegative measurable functions. It is well-known
that such a function can be approximated by a (monotonically increasing) sequence
of nonnegative simple functions. In particular, there are simple functions

si W X ! R; si .x/ D
niX

jD1
aij1Aij

.x/; i D 1; : : : ; m;

with X D Sni
jD1 Aij for each i , Aij � X measurable, such that

jsi .x/ � fi .x/j < "

3
p
m

for all x 2 X; i D 1; : : : ; m:

Here we used that f is a bounded function, and hence the sequences of simple
functions can be chosen such that the convergence is uniform. By adding sets of
measure zero, we may assume that the numbers ni , i D 1; : : : ; m, are all equal to
each other, say ni D n. Now define the sets

A.j1; : : : ; jm/ WD A1j1 \ : : : \Amjm; jk 2 f1; : : : ; ng:

These sets are obviously measurable and their union is equal to X . We define a
measurable function

s.x/ WD
X

.j1;:::;jm/

.s1.x/; : : : ; sm.x//
T 1A.j1;:::;jm/.x/; s W X ! R

m:

Taking the standard Euclidean norm j � j on R
m, we find that

jf .x/ � s.x/j < "

3
for all x 2 X:

The assumption that dist.f .x/;˝c/ < "=3 implies

dist.s.x/;˝c/ D inf
u2˝c

js.x/ � uj � js.x/ � f .x/j C dist.f .x/;˝c/ <
2"

3

for all x 2 X . By construction, the values of s are the vectors a.j1; : : : ; jm/ WD
.a1j1 ; : : : ; a

m
jm
/T . Therefore, for each .j1; : : : ; jm/, there exists b.j1; : : : ; jm/ WD

.b1j1; : : : ; b
m
jm
/T 2 ˝c with ja.j1; : : : ; jm/ � b.j1; : : : ; jm/j < .2"/=3. Define the

desired function g as

g.x/ WD
X

.j1;:::;jm/

b.j1; : : : ; jm/1A.j1;:::;jm/.x/; g W X ! R
m:
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This gives

jf .x/ � g.x/j � jf .x/ � s.x/j C js.x/� g.x/j < "

3
C 2"

3
D ";

which concludes the proof. ut
Proposition 5.4. For a function ! 2 L1.R;Rm/ it holds that ! 2 int U if and
only if there exists a compact set K � int˝ with !.t/ 2 K for almost all t 2 R.

Proof. We start with the easier direction: Assume that !.t/ 2 K for almost all
t 2 R and a compact set K � int˝ . Then, by compactness, we find " > 0 such
that the "-neighborhood ofK is contained in ˝ . Hence, if k�� !k1 < " for some
� 2 L1.R;Rm/, then �.t/ 2 ˝ almost everywhere, that is, � 2 U . This shows
that ! 2 int U .

Now, conversely, assume that ! 2 int U . Then there exists " > 0 such that
k! � �k1 < " with � 2 L1.R;Rm/ implies � 2 U , that is, if j!.t/ � �.t/j < "

for almost all t 2 R, then �.t/ 2 ˝ for almost all t 2 R.
By a general fact in real analysis, int˝ can be written as the countable union of

the elements of an increasing sequence of compact sets, that is, int˝ D S
n�1 Kn,

Kn compact with Kn � KnC1. Indeed, such a sequence can be constructed as
follows: Let fukg be a countable dense subset of int˝ and consider for each uk
all compact balls centered at uk of rational radius which are contained in int˝ .
The family of all these balls is countable and its union is easily seen to be int˝ .
Enumerate the members of this family and define Kn to be the union of the first
n members. This gives the desired increasing sequence of compact sets. Moreover,
from this construction it can easily be seen that every u 2 int˝ is contained in the
interior of one of the sets Kn.

This construction also implies that there is n0 � 1 such that

u 2 int˝nKn0 ) dist.u;Rmn˝/ < "

3
: (5.1)

We prove this by contradiction: Assume that such n0 does not exist. Then for every
n � 1 there is vn 2 int˝nKn with dist.vn;Rmn˝/ � "=3, that is, jvn � wj � "=3

for all w … ˝ . By compactness of˝ we may assume that vn ! v 2 ˝ . The limit v
on the one hand satisfies jv � wj � "=3 for all w … ˝ . On the other hand, v 2 @˝ ,
since v 2 int˝ implies v 2 intKn1 for some n1 which gives vn 2 Kn1 for all
sufficiently large n, contradicting the definition of the sequence vn.

Now consider the compact setK WD Kn0 � int˝ which satisfies (5.1). We claim
that !.t/ 2 K for almost all t 2 R. Indeed, if this was not true, there would be
a set I � R of positive measure with j!.t/ � wj < "=3 for all t 2 I and all
w … ˝ . By Lemma 5.1 there exists a measurable function � W I ! R

mn˝ with
j�.t/�!.t/j < " for all t 2 I . We can extend this function to a measurable function
� W R ! R

m by putting �.t/ WD !.t/ for all t 2 RnI . This gives k! � �k1 < "

which is a contradiction to the choice of ". ut
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Given a Riemannian metric g on M , to every trajectory '.�; x; !/ of the smooth
system ˙ we can associate a finite set of Lyapunov exponents. For the control
function !, the Lyapunov exponent at x in direction v 2 TxM , v ¤ 0x, is given by

�.v/ D �.vI x; !/ WD lim sup
t!1

1

t
log jdx't;!.v/j 2 R [ f�1;C1g:

We also call these numbers the Lyapunov exponents at .!; x/. Some basic and well-
known properties are summarized in the following proposition (see also Arnold [4,
Sect. 3.2.1]).2

Proposition 5.5. The following assertions hold:

(i) �.˛v/ D �.v/ for all nonzero v 2 TxM and ˛ 2 Rnf0g.
(ii) �.vC w/ � maxf�.v/; �.w/g for all nonzero v;w 2 TxM with w ¤ �v, with

equality if �.v/ ¤ �.w/.
(iii) The number of different Lyapunov exponents �.vI x; !/, v 2 TxMnf0xg, is

bounded by d D dimM .
(iv) If .u; x/ is an equilibrium pair, the Lyapunov exponents �.vI x; u/ are the real

parts of the eigenvalues of rFu.x/ W TxM ! TxM .
(v) If there is a compact set K � M with '.RC; x; !/ � K , then the Lyapunov

exponents �.vI x; !/ are all < 1.
(vi) If two Riemannian metrics are equivalent on the image of a trajectory

'.�; x; !/, then the Lyapunov exponents with respect to these two metrics
are the same. In particular, if M is compact, the Lyapunov exponents of a
trajectory are independent of the metric.

(vii) For a periodic trajectory, the Lyapunov exponents are independent of the
metric.

Remark 5.1. From the statements of Proposition 5.5 we mainly use the fourth and
the seventh. The proof of statement (vii) is contained in the proof of the next
theorem. Statement (iv) is an easy consequence of the Riemannian variational
equation (see Proposition A.3). Indeed, for an equilibrium pair .!; x/ the variational
equation becomes an autonomous linear equation on TxM whose solutions have the
form z.t/ D exp.trF!.x//v, v 2 TxM , which immediately implies the assertion.

Each Lyapunov exponent has a multiplicity which can be defined as follows.
For every .!; x/ let �1.!; x/ < �2.!; x/ < � � � < �s.!;x/.!; x/ be the associated
Lyapunov exponents. Then there exists a filtration

f0xg D V0.!; x/ ¨ V1.!; x/ ¨ � � � ¨ Vs.!;x/.!; x/ D TxM;

2In the dynamical systems literature, usually the notion of Lyapunov exponents refers to the
Lyapunov exponents associated with an invariant measure. Sometimes, the Lyapunov exponents as
we define them are called upper Lyapunov exponents because of the upper limit in their definition.
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such that

Vi.!; x/ D f0xg [ fv 2 TxMnf0xg W �.vI x; !/ � �i.!; x/g :

The multiplicity of the Lyapunov exponent�i .!; x/ is defined as the natural number
dimVi .!; x/ � dimVi�1.!; x/.

Before we state the main result of this section, let us recall the fundamental
lemma of Floquet theory. A proof can be found, for instance, in Chicone [17,
Theorem 2.47].

Lemma 5.2 (Fundamental Lemma of Floquet Theory). Let C be a nonsingular
real n � n-matrix. Then there exists a (possibly complex) n � n-matrix A with
exp.A/ D C . Moreover, there exists a real n � n-matrix B with exp.B/ D C2.

In the formulation of our theorem we already use the knowledge that the
Lyapunov exponents of a periodic trajectory are metric-independent, as asserted in
statement (vii) of Proposition 5.5. This fact also becomes clear in the first step of
the proof.

Theorem 5.1. Let D � M be a control set with nonempty interior and compact
closure. Let .'.�; x0; !0/; !0.�// be a �0-periodic controlled trajectory which is
regular on Œ0; �0� such that .x0; !0/ 2 intD � int U . Moreover, let �1; : : : ; �r
be the different Lyapunov exponents at .!0; x0/ with corresponding multiplicities
d1; : : : ; dr . Then for every compact subset K � D and every superset Q � D the
pair .K;Q/ is admissible and

hinv.K;Q/ �
rX

jD1
maxf0; dj �j g: (5.2)

The basic idea of the proof of Theorem 5.1 is to steer close to the point x0 on the
periodic trajectory and then use local controllability along the trajectory to stay in a
neighborhood of the periodic orbit for arbitrary future times, that is, to stabilize the
system at the periodic trajectory. This can be done by using a collection of control
functions whose cardinality is arbitrarily close to the sum of the positive Lyapunov
exponents (up to log and dividing by the time), which can be regarded as a measure
for how fast one is driven away from the periodic trajectory on average without
applying controls. The actual proof is quite lengthy and technical, so we give a short
overview of the main ideas involved before we start: We proceed in three steps. In
the first step, we use the fundamental lemma of Floquet theory in order to write the
solutions of the linearization along the controlled trajectory .'.�; x0; !0/; !0.�// in
terms of the matrix exponential of an endomorphismR of Tx0M . Then we construct
an adapted Riemannian metric, which yields an orthonormal Jordan basis for R.
In the second step, we define several constants. In particular, a (large) time step
� 2 �0N and a (small) radius b0 > 0 are defined such that the controllability of
the linearization can be used in order to steer the system from the ball B.x0; b0/
to itself in time � , using a finite number of control functions that is related to the
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eigenvalues of R and hence to the Lyapunov exponents �1; : : : ; �r . This is done in
Step 3 by subdividing a cube of side length 2b0 centered at the origin of Tx0M into
an appropriate number of subcuboids whose midpoints are steered to 0x0 2 Tx0M

in time � via the linearization. Using the Riemannian exponential map at x0, it is
shown that the corresponding control functions also work for the nonlinear system
in order to get back to B.x0; b0/ in time � . This process can be repeated and thus
yields .k�; B.x0; b0/;Q/-spanning sets for all k 2 N. By choosing � big enough
and b0 small enough, the corresponding cardinality growth rate of these sets comes
arbitrarily close to

P
j maxf0; dj�j g. Since hinv.K;Q/ does not depend on the set

K as long as it has a nonempty interior, this proves the assertion.

Proof (of Theorem 5.1). By controlled invariance of D, it is clear that every pair
.K;Q/ with K � D and Q � D is admissible. For brevity in notation, the map
�x0;!0 associated with the linearization along .'.�; x0; !0/; !0.�// is simply denoted
by � (cf. Sect. 1.5). The proof of estimate (5.2) now proceeds in three steps.

Step 1. LetM be endowed with an arbitrary Riemannian metric and consider the
automorphism

A WD D'2�0.x0; !0/.�; 0/ (1.6)D �.2�0; �; 0/ W Tx0M ! Tx0M:

From Proposition 1.26 (iv) it follows that A D �.�0; �; 0/2, and hence from
Lemma 5.2 it follows that there exists R 2 L .Tx0M; Tx0M/ with

A D exp .2�0R/ :

From Proposition 1.26 (iv) we get

�.2�0k; �; 0/ D Ak� D exp .2�0kR/ � for all � 2 Tx0M; k 2 ZC: (5.3)

We claim that the real parts of the eigenvalues of R coincide with the Lyapunov
exponents at .!0; x0/. To show this, we write every t > 0 as t D 2�0k C s with
k 2 ZC and s 2 Œ0; 2�0/. Then for all � 2 Tx0M we obtain

�.t; �; 0/ D �.s; �.k.2�0/; �; 0/; 0/
(5.3)D �.s; �; 0/ exp .2�0kR/ �:

Hence, it follows that

l1 jexp .2k�0R/�j � j�.t; �; 0/j � l2 jexp .2k�0R/�j

with the positive constants

l1 WD min
s2Œ0;2�0�

�
��.s; �; 0/�1���1

; l2 WD max
s2Œ0;2�0�

k�.s; �; 0/k :
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By Proposition 1.26 (ii) we have

dx0't;!0.�/ D �.t; �; 0/;

and hence the exponential growth rate of jdx0't;!0.�/j for t ! 1 equals the growth
rate of j exp.2�0bt=.2�0/cR/�j for all nonzero � 2 Tx0M , which implies the claim.

Now choose a basis Bx0 of Tx0M adapted to the real Jordan structure of R and
let L1.R/; : : : ; Lr .R/ be the different Lyapunov spaces of R, that is, the sums of
the generalized eigenspaces corresponding to eigenvalues with the same real part.
Then we have the decomposition

Tx0M D L1.R/˚ � � � ˚ Lr.R/:

Let dj D dimLj .R/ and denote by �.j / 2 Lj .R/ the j -th component of a vector
� 2 Tx0M with respect to this decomposition. Moreover, denote by �j the common
real part of the eigenvalues corresponding to Lj .R/. The restriction of R to Lj .R/
is denoted by Rj . Now let g be a Riemannian metric on M of class C 2 such that
the basis Bx0 is orthonormal with respect to gx0 , and let % denote the Riemannian
distance induced by g. In order to obtain a metric with this property, one can start
with an arbitrary C 2-metric Qg on M . Then one takes a chart . ; V / around x0 and
an inner product .�; �/ on R

d such thatBx0 is orthonormal with respect to the induced
inner product .dx0 .�/; dx0 .�// on Tx0M . On V consider the pullback Og of .�; �/ by
 , that is,

Og.x/.v;w/ WD .dx .v/; dx .w// for all x 2 V; v;w 2 TxM:

Let 	 W M ! Œ0; 1� be a cut-off function of class C 2 such that supp 	 � V and
	.x/ 	 1 on a compact neighborhoodW of x0 (see Proposition A.6). Define g by

g.x/ WD
�
	.x/ Og.x/C .1 � 	.x// Qg.x/ for all x 2 V;

Qg.x/ for all x 2 MnV:

It can easily be seen that g is a Riemannian metric onM with gx0 having the desired
property.

Step 2. We fix some constants: Let S0 be a real number which satisfies

S0 >

rX

jD1
maxf0; dj�j g:

Choose 
 D 
.S0/ > 0 such that

0 < d
 < S0 �
rX

jD1
maxf0; dj�j g: (5.4)
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Let ı 2 .0; 
/ be chosen small enough such that �j < 0 implies �j C ı < 0 for all
j 2 f1; : : : ; rg. From Lemma B.2 it follows that there exists a constant c D c.ı/ � 1

such that

8j 2 f1; : : : ; rg 8k 2 ZC W ��exp.k�0Rj /
�
� � ce.�jCı/k�0 ; (5.5)

where k�k denotes the operator norm on L .Tx0M; Tx0M/ induced by gx0 . For every
t > 0 we define positive integers

Mj.t/ WD
� be.�jC
/tc C 1 if �j � 0

1 if �j < 0
; j D 1; : : : ; r: (5.6)

Moreover, we define a function ˇ W .0;1/ ! .0;1/ by

ˇ.t/ WD c
p
r max
1�j�r

"

e.�jCı/t
p
dj

Mj .t/

#

: (5.7)

If �j < 0, then (by definition) �j C ı < 0 and Mj.t/ 	 1. This implies that
e.�jCı/t .

p
dj =Mj .t// converges to zero for t ! 1. If �j � 0, we have Mj.t/ �

e.�jC
/t by (5.6) and hence

e.�jCı/t
p
dj

Mj .t/
� e.�jCı/t

p
dj

e.�jC
/t D
q
dj e.ı�
/t :

Since ı 2 .0; 
/, we have ı � 
 < 0 and hence the term above converges to zero for
t ! 1. Thus, also ˇ.t/ ! 0 for t ! 1. This implies that for given " > 0 we can
choose a number � D 2k�0 with k 2 N big enough such that

ˇ.�/ < 1 and
d

�
log.2/ < ": (5.8)

Since we assume regularity of .'.�; x0; !0/; !0.�// on Œ0; �0�, by Proposition 1.30
there exists a constant C > 0 with the following property (note that regularity on
Œ0; �0� implies regularity on Œ0; ��):

8� 2 Tx0M 9� 2 L1.Œ0; ��;Rm/ W
8
<

:

�.�; �; �/ D 0x0
and

k�kŒ0;� � � C j�j:
(5.9)

Let W1 � Tx0M and W2 � M be open neighborhoods of 0x0 and x0, respectively,
such that expx0 W W1 ! W2 is a C 1-diffeomorphism. The inverse of expx0 jW1 is
simply denoted by exp�1

x0
. Now choose b0 > 0 small enough such that the following

conditions are satisfied:
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8
ˆ̂
<

ˆ̂
:

clB.0x0 ; b0/ � W1;

clB.x0; b0/ � D;

clB.!0.t/; C
p
db0/ � ˝ for almost all t 2 Œ0; �0�;

'.�; clB.x0; b0/; !/ � W2 if k! � !0kŒ0;� � � C
p
db0:

9
>>=

>>;
(5.10)

The second and third inclusion are possible, since x0 2 intD and, by Proposi-
tion 5.4, !0.t/ is contained in a compact subset of int˝ for almost all t 2 Œ0; �0�.
The last one is possible by continuity of .x; !/ 7! '.�; x; !/. By Proposition 1.29
there exists a function � D �

�;
p
dC

W Œ0; ˛/ ! RC (˛ > 0) with

ˇ
ˇexp�1

x0
.'.�; x; !// � �.�; exp�1

x0
.x/; ! � !0/

ˇ
ˇ � �.b/b (5.11)

for all .x; !/ 2 M � U with %.x; x0/ � b � b0 and k! � !0kŒ0;� � � C
p
db,

and �.b/ ! 0 for b ! 0. We can assume that b0 < ˛ and hence �.b0/ is defined.
Because of the strict inequality ˇ.�/ < 1 we can also assume that b0 is chosen small
enough such that

p
r�.b0/C ˇ.�/ � 1: (5.12)

Step 3. By Corollary 5.1 and (5.10) we can assume that K D clB.x0; b0/.
Consider a d -dimensional compact cube C in Tx0M centered at the ori-
gin with sides of length 2b0 parallel to the vectors of the basis Bx0 . Then
exp�1

x0
.K/ D clB.0x0 ; b0/ � Tx0M , since expx0 is a radial isometry, and hence

exp�1
x0
.K/ � C . Partition C by dividing each coordinate axis corresponding to a

component of the j -th Lyapunov space ofR intoMj.�/ intervals of equal length.
The total number of subcuboids in this partition is

Qr
jD1 Mj .�/

dj . Now pick an
arbitrary x 2 clB.x0; b0/. Let �0 W Œ0; 1� ! M be a shortest geodesic from x0 to
x and let �x 2 C be the center of a subcuboid which contains exp�1

x0
.x/ D P�0.0/.

(Note that j P�0.0/j D L .�0/ D %.x0; x/ � b0.) Then the following estimate
holds, where the additional superscripts denote components of vectors within the
corresponding Lyapunov spaces of R:

ˇ
ˇ P�0.0/.j / � �.j /x

ˇ
ˇ D

2

4
djX

lD1

� P�0.0/.j;l/ � �.j;l/x

�2

3

5

1=2

�
2

4
djX

lD1

�
b0

Mj .�/

�2
3

5

1=2

D
p
dj

Mj .�/
b0: (5.13)

By (5.9) there exists !x 2 L1.Œ0; ��;Rm/ such that �.�; �x; !x � !0/ D 0x0 or
equivalently,

�.�; �x; !x/ D �.�; 0x0; !0/ (5.14)
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and

k!x � !0kŒ0;� � � C j�xj � C

2

4
rX

jD1

djX

lD1

ˇ
ˇ�.j;l/x

ˇ
ˇ2

3

5

1=2

� C
p
db0;

since �x 2 C implies j�.j;l/x j � b0 for each component. By (5.10) it holds that
!x 2 U and

'.�; x; !x/ 2 W2:

Let �1 W Œ0; 1� ! M be a shortest geodesic from x0 to '.�; x; !x/. Then

% .'.�; x; !x/; x0/ D L .�1/ D
Z 1

0

j P�1.t/j„ƒ‚…
D constant

dt D j P�1.0/j :

By the triangle inequality we have

ˇ
ˇ P�1.0/.j /

ˇ
ˇ �

ˇ
ˇ
ˇ P�1.0/.j / � � .�; P�0.0/; !x � !0/.j /

ˇ
ˇ
ˇ

C ˇ
ˇ�.�; P�0.0/; !x � !0/.j /

ˇ
ˇ :

Since g is chosen such that the Lyapunov spaces of R are orthogonal, for the first
term we obtain

ˇ
ˇ
ˇ P�1.0/.j / � �.�; P�0.0/; !x � !0/.j /

ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇŒ P�1.0/� �.�; P�0.0/; !x � !0/�

.j /
ˇ
ˇ
ˇ

� j P�1.0/� �.�; P�0.0/; !x � !0/j
D ˇ
ˇexp�1

x0
.'.�; x; !x// � �.�; exp�1

x0
.x/; !x � !0/

ˇ
ˇ

(5.11)� �.b0/b0:

By linearity of �.�; �; �/, for the second term we obtain

ˇ
ˇ�.�; P�0.0/; !x � !0/

.j /
ˇ
ˇ D ˇ

ˇ�.�; P�0.0/; !x/.j / � �.�; 0x0; !0/.j /
ˇ
ˇ

(5.14)D ˇ
ˇ�.�; P�0.0/; !x/.j / � �.�; �x; !x/.j /

ˇ
ˇ

D ˇ
ˇ�.�; P�0.0/� �x; 0/.j /

ˇ
ˇ

(5.3)D
ˇ
ˇ
ˇŒexp.2k�0R/. P�0.0/� �x/�

.j /
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇŒexp.�R/. P�0.0/� �x/�.j /

ˇ
ˇ
ˇ :
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By invariance of the Lyapunov spaces of R under exp.�R/, we get

ˇ
ˇ�.�; P�0.0/; !x � !0/.j /

ˇ
ˇ D ˇ

ˇexp.�R/. P�0.0/� �x/
.j /
ˇ
ˇ

� �
�exp.�Rj /

�
�
ˇ
ˇ. P�0.0/� �x/

.j /
ˇ
ˇ

(5.5)� ce.�jCı/� ˇˇ. P�0.0/� �x/
.j /
ˇ
ˇ :

Altogether, we have

ˇ
ˇ P�1.0/.j /

ˇ
ˇ � �.b0/b0 C ce.�jCı/� ˇˇ. P�0.0/� �x/

.j /
ˇ
ˇ

(5.13)� �.b0/b0 C ce.�jCı/�
p
dj

Mj .�/
b0:

By orthogonality of the Lyapunov spaces of R, it follows that

% .'.�; x; !x/; x0/ D j P�1.0/j D
0

@
rX

jD1

ˇ
ˇ P�1.0/.j /

ˇ
ˇ2

1

A

1=2

�
0

@
rX

jD1

 

�.b0/b0 C ce.�jCı/�
p
dj

Mj .�/
b0

!2
1

A

1=2

.
/� p
r�.b0/b0 C

0

@
rX

jD1

 

ce.�jCı/�
p
dj

Mj .�/
b0

!2
1

A

1=2

� p
r�.b0/b0 C c

p
r max
1�j�r

"

e.�jCı/�
p
dj

Mj .�/

#

b0

(5.7)D �p
r�.b0/C ˇ.�/

	
b0

(5.12)� b0:

The estimate .
/ follows from the triangle inequality in R
r . Hence, we have proved

that
Qr
jD1 Mj .�/

dj admissible control functions are sufficient to steer the system
from all states in K back toK in time � . By the no-return property of control sets it
follows that the trajectories do not leaveD within the time interval .0; �/. By iterated
concatenation of these control functions we can construct an .n�;K;D/-spanning
set for each n 2 N with .

Qr
jD1 Mj .�/

dj /n elements and hence we obtain

rinv.n�;K;D/ �
0

@
rY

jD1
Mj .�/

dj

1

A

n

D
0

@
Y

j W �j�0

�be.�jC
/�c C 1
�dj

1

A

n

;
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which implies

hinv.K;Q/ � hinv.K;D/ D lim sup
n!1

1

n�
log rinv.n�;K;D/

� 1

�

X

j W �j�0
log

�be.�jC
/�c C 1
�dj

D
X

j W �j�0
dj
1

�
log

�be.�jC
/�c C 1
�

�
X

j W �j�0
dj
1

�
log

�
2e.�jC
/��

D
X

j W �j�0
dj

�
log.2/

�
C .�j C 
/

�

� d

�
log.2/C d
 C

rX

jD1
maxf0; dj�j g

(5.4)
<

d

�
log.2/C S0

(5.8)
< S0 C ":

The first equality follows from Proposition 2.6. Since " can be chosen arbitrarily
small and S0 arbitrarily close to

Pr
jD1 maxf0; dj�j g, the assertion of the theorem

follows. ut
Remark 5.2. It is clear that the above theorem implies the estimate

hinv.K;Q/ � inf
.!;x/

r.!;x/X

jD1
maxf0; dj .!; x/�j .!; x/g; (5.15)

where the infimum is taken over all .!; x/ 2 U � M such that the controlled
trajectory .'.�; x; !/; !.�// is periodic and regular with x 2 intD and ! 2 int U .
In general, it is not clear if any such trajectory exists. However, in many cases we
can guarantee their existence. A quite general approach in this direction is worked
out in Sect. 5.2.

Remark 5.3. Estimates for the topological entropy of diffeomorphisms, which are
formally similar to (5.15), can be found in the work of Catalan and Tahzibi [16].
However, these results are of generic nature and use the variational principle.

Since an equilibrium pair is a �-periodic controlled trajectory for every � > 0,
the following result immediately follows (using Proposition 5.5 (iv)).
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Corollary 5.2. Let D � M be a control set with nonempty interior and compact
closure. Let .!0; x0/ 2 int˝ � intD be a regular equilibrium pair. Then for every
compact set K � D and every superset Q � D we have

hinv.K;Q/ �
X

�2�.rF!0.x0//
max f0; n� Re.�/g :

Corollary 5.3. Consider a linear system ˙ D .R;Rd ;Rm;U ; '/ given by differ-
ential equations associated with a controllable matrix pair .A;B/ such that A is
hyperbolic (that is, A has no eigenvalues on the imaginary axis). Further assume
that the control range ˝ is a compact and convex set with 0 2 int˝ . Let D � R

d

be the unique control set of ˙ with nonempty interior. Then for every compact set
K � D it holds that

hinv.K;D/ �
X

�2�.A/
maxf0; n� Re.�/g: (5.16)

If, additionally,K has positive Lebesgue measure andQ D clD, then

hinv.K;Q/ D hinv;out.K;Q/ D
X

�2�.A/
maxf0; n� Re.�/g: (5.17)

Proof. As noted in Remark 3.1, the assumptions about the matrix pair .A;B/
and the control range ˝ guarantee the existence of a unique control set
D D cl OC.0/\ O�.0/ with nonempty interior and compact closure. In particular,
0 2 intD. Then the pair .0; 0/ 2 R

m � R
d is an equilibrium pair which is

regular by the controllability assumption. Hence, Corollary 5.2 implies (5.16).
Formula (5.17) follows from the combination of Theorem 3.1 with (5.16) and the
fact that hinv;out.K;Q/ � hinv.K;Q/. ut

Recall the definition of inner control sets (Definition 2.6). For such sets,
the estimate of Theorem 5.1 holds for the outer invariance entropy without the
assumption that the periodic trajectory is contained in the interior.

Corollary 5.4. Let D be an inner control set of ˙ with closure Q D clD. Let
.'.�; x0; !0/; !0.�// be a regular �0-periodic controlled trajectory with x0 2 Q and
!0 2 U1. Then

hinv;out.Q/ �
rX

jD1
maxf0; dj �j g

holds, where �1; : : : ; �r are the different Lyapunov exponents at .!0; x0/ with
corresponding multiplicities d1; : : : ; dr .

Proof. Note that the definition of inner control sets implies thatQ is compact. From
Theorem 5.1 it follows that
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hinv.Q; clD�I˙�/ �
rX

jD1
maxf0; dj�j g for all � 2 Œ0; 1/:

Now for given " > 0 choose � 2 Œ0; 1/ such that clD� � N".Q/. Then

hinv.Q;N".Q/I˙0/ � hinv.Q;N".Q/I˙�/

� hinv.Q; clD�I˙�/ �
rX

jD1
maxf0; dj�j g:

The first two inequalities follow from U� � U0 and Proposition 2.1. Since
hinv;out.Q/ D lim"&0 hinv.Q;N".Q/I˙0/, the assertion follows. ut
Remark 5.4. For discrete-time smooth systems given by difference equations
xkC1 D F.xk; uk/ it is no problem to prove the analog of Theorem 5.1. In fact,
the proof of Theorem 5.1 has been developed using a discrete-time blueprint which
can be found in Nair et al. [85, Theorem 3]. As mentioned in the beginning of this
chapter, this result of Nair et al. asserts that the infimal data rate for local uniform
asymptotic stabilization of a discrete-time nonlinear system at a regular equilibrium
pair .u0; x0/ is given by the sum of the logarithms of the unstable eigenvalues
associated with the linearization at .u0; x0/. These numbers are identical with the
positive Lyapunov exponents at .u0; x0/. Essentially, all the arguments needed for a
discrete-time version of Theorem 5.1 are contained in the proof of [85, Theorem 3].

5.2 Approximation Results for Lyapunov Exponents

The main result of the preceding section, Theorem 5.1, naturally leads to the
following questions:

1. Are there easy-to-verify conditions which guarantee that a regular periodic
controlled trajectory as required exists?

2. Can the assumptions of regularity and periodicity be weakened?

In this section, we show that there are indeed conditions which imply the existence
of plenty of regular periodic trajectories in the interior of a control set, and which
in many cases are relatively easy to check. Under a weak hyperbolicity assumption
these trajectories then can be used to weaken the assumptions of regularity and
periodicity in the upper estimate of Theorem 5.1. To this end, we first have to
introduce the notion of strong accessibility. A well-known result of Sontag asserts
that real-analytic systems with this property possess so-called universally regular
control functions. These can be used to construct regular periodic trajectories as
required.
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Strong Accessibility

Assume that ˙ D .R;M;Rm;U ; '/ is a smooth system given by differential
equations

Px.t/ D F.x.t/; !.t//; ! 2 U ;

where M is a real-analytic manifold of dimension d and F W M � R
m ! TM is a

real-analytic map. Moreover, assume that the control range ˝ � R
m is a compact,

locally path-connected3 set with nonempty and connected interior such that ˝ D
cl int˝ . We also consider the associated system ˙0 D .R;M;Rm;U 0; '0/ with
control range ˝0 WD int˝ and the same right-hand side F . Then '0.t; x; !/ D
'.t; x; !/ for all .t; x; !/ 2 R �M � U 0.

Definition 5.1. A topological time-invariant system is called strongly accessible if
for each x 2 M there is some � > 0 such that int O� .x/ ¤ ;.

Recall from Sect. 1.5 that we call a control function ! regular for a state x
on a time interval Œ0; �� if the linearization along .'.�; x; !/; !.�// is controllable
on Œ0; ��.

Definition 5.2. A control function ! 2 U is said to be universally regular if it is
regular for every x 2 M on some time interval Œ0; ��, � D �.x/ > 0.

The following proposition summarizes some well-known results about strong
accessibility.

Proposition 5.6. The following assertions hold:

(i) Let L denote the Lie subalgebra of vector fields onM generated by the vector
fields Fu, u 2 int˝ . Then ˙0 is strongly accessible if and only if the ideal L0

in L generated by the vector fields

Fu;v WD Fu � Fv; u; v 2 int˝;

satisfies dim L0.x/ D d for all x 2 M , where L0.x/ WD ff .x/gf 2L0 . (See
Sussmann and Jurdjevic [106, Corollary 4.7].)

(ii) System ˙0 is strongly accessible if and only if for every x 2 M there is some
! 2 U 0 which is regular for x on some time interval Œ0; ��, � > 0. (See Sontag
[100] and [101, Sect. 1].)

(iii) If ! 2 U 0 is an analytic control function, then ! is regular for x 2 M on some
time interval Œ0; ��, � > 0, if and only if it is regular for x on every interval of
this form. (See Sontag [101, Sect. 1].)

3Recall that a topological space X is called locally path-connected if every neighborhood of a
point x 2 X contains a path-connected neighborhood of x.
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(iv) Assume that˙0 is strongly accessible. Then there exists an analytic universally
regular control function ! 2 U 0. (See Sontag [101, Theorem 1].)4

(v) If the universal covering space ofM is compact, then strong accessibility of˙0

is equivalent to local accessibility. (See Sussmann and Jurdjevic [106, Theorem
4.9].)

(vi) If ˙ is control-affine with right-hand side F.x; u/ D f0 CPm
iD1 uifi , then ˙

is strongly accessible if and only if ˙0 is strongly accessible if and only if the
ideal L0 generated by the vector fields f1; : : : ; fm satisfies dim L0.x/ D d

for all x 2 M .

Remark 5.5. Statement (iv) is proved in Sontag [101] for systems whose state
space is an open subset of R

d , but can easily be generalized to systems on
arbitrary real-analytic manifolds as noted in [101, Remark 2.3]. Its proof is based
on Sussmann’s theorem about the existence of universally distinguishing control
functions (cf. Sussmann [105, Theorem 2.1]).

Lemma 5.3. Let D � M be a control set of ˙ with nonempty interior. If ˙0 is
strongly accessible, then for every x 2 intD there exist � > 0 and ! 2 int U such
that .'.�; x; !/; !.�// is �-periodic and regular on Œ0; ��.

Proof. By Proposition 5.6 (iii) and (iv) we can apply a universally regular control
function !� 2 U 0 to x and obtain a trajectory '.�; x; !�/ which is regular on
every nontrivial interval of the form Œ0; �1�. For �1 chosen sufficiently small we have
'.Œ0; �1�; x; !�/ � intD. Let y WD '.�1; x; !�/. Since !�.t/ 2 int˝ and !� is
continuous, !�.Œ0; �1�/ is a compact subset of int˝ . Hence, by Proposition 5.4, we
can assume that !� 2 int U . Strong accessibility implies local accessibility and the
latter implies exact controllability on intD by Proposition 1.23 (iii). Hence, we find
an admissible control function � 2 U and a time �2 � 0 with '.�2; y; �/ D x. This
gives the desired periodic trajectory with corresponding period � WD �1 C �2 and
control function ! WD !�jŒ0;�1���1 . By Proposition 1.28 this periodic trajectory is
regular on Œ0; ��. To conclude the proof, we have to show that � can be chosen such
that � 2 int U . In fact, we can assume that � is piecewise constant with values in
int˝ which by Proposition 5.4 guarantees that � 2 int U . This easily follows from
the fact that local accessibility and approximate controllability on D also hold for
the class of piecewise constant control functions with values in int˝ . ut

The First Approximation Result

The aim of this subsection is to prove an approximation result, which shows that
the sum of positive Lyapunov exponents of an arbitrary periodic trajectory in the

4Sontag also proves a stronger result which asserts that the set of smooth universally regular control
functions is generic in C 1.Œ0; T �; int˝/ for all T > 0.
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interior of a control set can be approximated by the corresponding sums for regular
periodic trajectories. Let the following assumptions be satisfied:

(a) There is a control set D of ˙ with nonempty interior and compact closure;
(b) System ˙0 is strongly accessible.

Furthermore, let g be an arbitrary C 1-Riemannian metric on M .
In the following, we speak of subadditive cocycles over the control flow ˚ W

R�.U �M/ ! U �M of˙ . However, note that we do not impose any continuity
assumptions here (neither on the control flow nor on the cocycles). In particular, we
do not assume that ˙ is control-affine.

Proposition 5.7. Let .'.�; x; !/; !.�// be a �-periodic controlled trajectory with
.x; !/ 2 intD�int U . Moreover, let a W R�.U �M/ ! R, .t; .!; x// 7! at .!; x/,
be a subadditive cocycle over the control flow which satisfies the following two
assumptions:

(a) a� .!; x/ � 0;
(b) For all T > 0, y 2 M , and !1; !2 2 U it holds that

!1.t/ D !2.t/ a.e. on Œ0; T � ) aT .!1; y/ D aT .!2; y/: (5.18)

Then for every " > 0 there exists a regular periodic controlled trajectory
.'.�; x; !�/; !�.�// with !� 2 int U and period �� > 0 such that

1

��
a�� .!�; x/ � 1

�
a� .!; x/C ":

Proof. For the given periodic trajectory '.�; x; !/ we construct a family of approx-
imating trajectories as follows. By Lemma 5.3 there exists a regular periodic
trajectory '.t; x; �/, t 2 Œ0; ��. For every N 2 N we define

!N .t/ WD
�

!.t/ for t 2 Œ0; N�/
�.t �N�/ for t 2 ŒN�;N� C ��

;

and we extend!N .N�C�/-periodically. By construction and Proposition 5.4,!N is
an admissible control function in int U . Moreover, from Proposition 1.28 it follows
that !N is regular for x on Œ0; N� C ��. Using subadditivity of a, we obtain

aN�C�.!N ; x/ � a�.�N�!N ; 'N�;!N .x//C
N�1X

iD0
a� .�i�!N ; 'i�;!N .x//:

By construction we have 'i�;!N .x/ D x for i D 0; 1; : : : ; N . Moreover, we have
�i�!N .t/ D !.t/ for all t 2 Œ0; �� and i D 0; : : : ; N � 1. By assumption (5.18) this
implies
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aN�C�.!N ; x/ � a�.�; x/CNa� .!; x/:

Hence, for given " > 0 we can choose N sufficiently large so that

1

N� C �
aN�C�.!N ; x/ � N

N� C �
a� .!; x/C 1

N� C �
a�.�; x/

� 1

� C �

N

a� .!; x/C " � 1

�
a� .!; x/C ":

In the last inequality we used that a�.!; x/ � 0. Consequently, the desired estimate
follows with !� D !N and �� D N� C �. ut

Next we introduce some notation. For given .t; x; !/ 2 R�M�U , the derivative

dx't;! W TxM ! T'.t;x;!/M

is a linear isomorphism between d -dimensional Euclidean spaces, and hence has
well-defined (positive) singular values, which we denote by

�1.t; x; !/ � � � � � �d .t; x; !/ > 0:

For 0 � k � d , the singular value function of order k of dx't;! is denoted by

˛k.t; x; !/ D
�
�1.t; x; !/�2.t; x; !/ � � � �k.t; x; !/ for k > 0;

1 for k D 0:

Proposition 5.8. For every k 2 f0; 1; : : : ; d g the function

akt .!; x/ WD log˛k.t; x; !/; ak W R � .U �M/ ! R;

is a subadditive cocycle over the control flow which satisfies assumption (5.18).

Proof. To prove subadditivity, let t; s 2 RC. Then, using Horn’s inequality
(cf. Sect. A.1), we find

aktCs.!; x/ D log˛k.dx'tCs;!/

D log˛k
�
d'.t;x;!/'s;�t! ı dx't;!

�

� log˛k
�
d'.t;x;!/'s;�t!

�C log˛k .dx't;!/

D akt .!; x/C aks .˚t .!; x//:

Finally, assumption (5.18) is satisfied. Indeed, !1.t/ D !2.t/ almost everywhere on
Œ0; �� implies '.t; x; !1/ D '.t; x; !2/ for all t 2 Œ0; �� and x 2 M . In particular,
'�;!1 D '�;!2 and hence dx'�;!1 	 dx'�;!2 . ut
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Lemma 5.4. For every k 2 f1; : : : ; d g and all t � 0, .!; x/ 2 U � M , the
following estimate holds:

akt .!; x/ � k

Z t

0

�max
�
SrF!.s/.'.s; x; !/

�
ds:

Therefore, if '.t; x; !/ is contained in a compact set for all t � 0, there is a constant
C � 0 (which does not depend on .!; x/) with

akt .!; x/ � C t for all t � 0: (5.19)

Proof. First note that �1.t; x; !/ equals the operator norm of dx't;! . Hence,

˛k.t; x; !/ D �1.t; x; !/ � � ��k.t; x; !/ � �1.t; x; !/
k D kdx't;!kk :

Using the Wazewski inequality (Proposition A.4) gives

akt .!; x/ � k log kdx't;!k � k

Z t

0

�max
�
SrF!.s/.'.s; x; !/

�
ds:

If '.t; x; !/ is contained in a compact set K , then C WD kmax.z;u/2K�˝ �max

.SrFu.z// gives akt .!; x/ � C t for all t � 0. ut
We introduce the local Lyapunov exponents at .!; x/,5 defined recursively by

�1.!; x/C � � � C �k.!; x/ WD lim sup
t!1

1

t
akt .!; x/; k D 1; 2; : : : ; d:

Then we obtain the first improvement over Theorem 5.1 which shows that under the
assumption that all periodic trajectories have the same number of positive Lyapunov
exponents, the condition of regularity is no longer necessary.

Lemma 5.5. If the controlled trajectory .'.�; x; !/; !.�// in Q (the forward lift of
Q D clD) is periodic, then for every k 2 f1; : : : ; d g the identities

�1.!; x/C � � � C �k.!; x/ D lim
t!1

1

t
akt .!; x/

D �1.!; x/C � � � C �k.!; x/

hold, where �1.!; x/ � � � � � �k.!; x/ denote the k largest Lyapunov exponents at
.!; x/. In particular, �i .!; x/ D �i.!; x/ for i D 1; : : : ; d .

5See, for instance, Boichenko et al. [9, Chap. IV, Sect. 8.1].
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Proof. Let � > 0 be the period of .'.�; x; !/; !.�// and fix k 2 f1; : : : ; d g. From
the first step of the proof of Theorem 5.1 we know that there exists a linear operator
R W TxM ! TxM such that

dx'2�n;! D e2�nR for all n 2 Z;

and that the Lyapunov exponents are the real parts of the eigenvalues of R. Using
subadditivity of ak and writing each t � 0 as t D 2� n.t/ C r.t/ with n.t/ 2 ZC
and r.t/ 2 Œ0; 2�/, we find

akt .!; x/ � ak2�n.t/.!; x/C akr.t/.!; x/:

Since ak.�/.!; x/ is bounded on the compact set Œ0; 2�� by Lemma 5.4, we thus obtain

lim sup
t!1

1

t
akt .!; x/ � lim sup

t!1
1

t
ak2�n.t/.!; x/ D 1

2�
lim sup
N3n!1

1

n
ak2�n.!; x/:

On the other hand, for each t � 0 we find n.t/ 2 ZC and r.t/ 2 Œ0; 2�/ such that
t C r.t/ D 2� n.t/. Subadditivity gives ak2�n.t/.!; x/ � akt .!; x/C akr.t/.˚t .!; x//.
Using that '.t; x; !/ is contained in the compact set Q for all t , Lemma 5.4 implies
boundedness of akr.t/.˚t .!; x//. Hence,

1

2�
lim inf
n!1

1

n
ak2�n.!; x/ D lim inf

t!1
1

2� n.t/
ak2�n.t/.!; x/ � lim inf

t!1
1

t
akt .!; x/:

We have the relations .e2�nR/^k D e2�nRk D .e2�Rk /n, where Rk denotes the k-th
derivation operator of R. This gives

1

n
ak2�n.!; x/ D 1

n
log

kY

iD1
�i .e

2�nR/ D 1

n
log

�
�.e2�nR/^k

�
� D 1

n
log

�
�.e2�Rk /n

�
� :

We know that the limit for n ! 1 of the last expression exists and is equal to
the logarithm of the spectral radius of e2�Rk . The eigenvalues of Rk are the sums
�i1 C � � � C �ik , where f�i1; : : : ; �ik g is any subset of the spectrum of R consisting
of k elements. Since the real parts of these eigenvalues are the Lyapunov exponents
�1.!; x/ � � � � � �d .!; x/, it follows that

1

2�
lim
n!1

1

n
ak2�n.!; x/ D �1.!; x/C � � � C �k.!; x/:

Putting everything together, the proof is finished. ut
Proposition 5.9. Assume that every periodic trajectory corresponding to some
.x; !/ 2 intD � int U has exactly k positive Lyapunov exponents (counted
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with multiplicities), where k 2 f0; 1; : : : ; d g. Then for every periodic controlled
trajectory .'.�; x; !/; !.�// with .x; !/ 2 intD � int U and every compact set
K � D it holds that

hinv.K;D/ �
rX

jD1
max

˚
0; dj�j



;

where �1; : : : ; �r are the different Lyapunov exponents at .!; x/ with corresponding
multiplicities d1; : : : ; dr .

Proof. The case k D 0 is trivial, since here anyway hinv.K;D/ D 0 (by Lemma 5.3
combined with Theorem 5.1). Hence, we may assume that 1 � k � d . Given
a �0-periodic controlled trajectory .'.�; x; !/; !.�// with .x; !/ 2 intD � int U ,
we write �1.!; x/ � � � � � �d .!; x/ for the Lyapunov exponents at .!; x/ (here
every Lyapunov exponent can appear several times according to its multiplicity).
By assumption, the first k of these Lyapunov exponents are positive. From
Lemma 5.5 it follows that

�1.!; x/C � � � C �k.!; x/ D �1.!; x/C � � � C �k.!; x/ D lim
t!1

1

t
akt .!; x/:

Now fix some " > 0 and choose n0 2 N sufficiently large such that

ˇ
ˇ
ˇ
ˇ
1

n0�0
akn0�0.!; x/ � lim

t!1
1

t
akt .!; x/

ˇ
ˇ
ˇ
ˇ � "

2
: (5.20)

The limit limt!1.1=t/akt .!; x/ is positive. Hence, we can choose n0 large enough
that also akn0�0.!; x/ > 0. Applying Proposition 5.7, we obtain a regular periodic
trajectory .'.�; x; !�/; !�.�// with !� 2 int U of some period �� > 0 such that

1

��
ak��.!�; x/ � 1

n0�0
akn0�0.!; x/C "

2
: (5.21)

Now Theorem 5.1 gives

hinv.K;D/ � �1.!�; x/C � � � C �k.!�; x/:

The sequence n 7! akn��.!�; x/ is easily seen to be subadditive and hence, the
subadditivity Lemma B.3 implies

lim
n!1

1

n��
akn��.!�; x/ D inf

n2N
1

n��
akn��.!�; x/ � 1

��
ak��.!�; x/

(5.21)� 1

n0�0
akn0�0.!; x/C "

2
:
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Using Lemma 5.5 again, we find

�1.!�; x/C � � � C �k.!�; x/ D lim
t!1

1

t
akt .!�; x/

D lim
n!1

1

n��
akn��.!�; x/ � 1

n0�0
akn0�0.!; x/C "

2
:

Altogether, we obtain

hinv.K;D/ � 1

n0�0
akn0�0.!; x/C "

2

(5.20)� lim
t!1

1

t
akt .!; x/C "

2
C "

2

D �1.!; x/C � � � C �k.!; x/C ":

Since " can be chosen arbitrarily small, this finishes the proof. ut

The Second Approximation Result

Proposition 5.9 shows that under appropriate assumptions we can do without
regularity of the periodic trajectory in Theorem 5.1. Let us impose the same
assumptions on the system ˙ as before (real-analytic, strongly accessible, compact
control range). By using a second approximation result for subadditive cocycles, we
can also weaken the periodicity assumption.

Proposition 5.10. Let a W R � .U � M/ ! R be a subadditive cocycle over
the control flow satisfying assumption (5.18) and the boundedness property (5.19)
of ak . Furthermore, let .x; !/ 2 intD � int U such that '.t; x; !/ is contained in
a compact set K � intD for all t � 0, and suppose that there exists t0 � 0 with
at .!; x/ � 0 for all t � t0. Then for every " > 0 there exists a periodic trajectory
with initial state x corresponding to a periodic control function !� 2 int U of the
same period �� > 0 such that

1

��
a��.!�; x/ � lim sup

t!1
1

t
at .!; x/C ":

Proof. Let .tn/n2N be a sequence of positive times with tn ! 1 such that

� WD lim sup
t!1

1

t
at .!; x/ D lim

n!1
1

tn
atn.!; x/:
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Now define the first hitting time

� WD inf
˚
t � 0 W x 2 OC�t .z/ for all z 2 K
 :

By Proposition 1.23 (v), local accessibility (which follows from strong accessibility)
guarantees that � < 1. There is n1 2 N such that for all n � n1 and all T 2 Œ0; ��
it holds that

1

tn C T
sup

.t;z;�/2Œ0;� ��K�U
'.Œ0;� �;z;�/�Q

jat .�; z/j � "

2
: (5.22)

Finiteness of the above supremum follows from the boundedness assumption
imposed on a. Finally, there is N � n1 such that (by assumption)

atN .!; x/ � 0 (5.23)

and such that
ˇ
ˇ
ˇ
ˇ
1

tN
atN .!; x/ � �

ˇ
ˇ
ˇ
ˇ � "

2
: (5.24)

By definition of � we can choose a control function � 2 U Œ0; T / with T � � and
'.T; '.tN ; x; !/; �/ D x, and we may assume that � is piecewise constant taking
values in int˝ . Define the control function !� on Œ0; tN C T � as

!�.t/ WD
�

!.t/ for t 2 Œ0; tN �
�.t � tN / for t 2 .tN ; tN C T �

;

and extend !� .tN C T /-periodically. This yields a .tN C T /-periodic trajectory in
intD, and !� 2 int U . Then, with �� WD tN C T , we have

1

��
a��.!�; x/ � 1

tN C T
.atN .!�; x/C aT .�tN !�; '.tN ; x; !�///

D 1

tN C T
.atN .!; x/C aT .�; '.tN ; x; !///

(5.22)� 1

tN C T
atN .!; x/C "

2

(5.23)� 1

tN
atN .!; x/C "

2

(5.24)� � C ":

This finishes the proof. ut



5.2 Approximation Results for Lyapunov Exponents 147

Proposition 5.11. Let .x; !/ 2 intD � int U such that '.t; x; !/ is contained in
a compact subset of intD for all t � 0. Furthermore, assume that there exists
k 2 f0; 1; : : : ; d g such that the following assumptions are satisfied:

(i) Every periodic trajectory corresponding to some .y; �/ 2 intD � int U has
exactly k positive Lyapunov exponents (counted with multiplicities);

(ii) There exists t0 � 0 such that akt .!; x/ � 0 for all t � t0.

Then for every compact set K � D it holds that

hinv.K;D/ � �1.!; x/C � � � C �k.!; x/:

Proof. Note that the assumptions of Proposition 5.10 are satisfied for the subaddi-
tive cocycle ak . Hence, for given " > 0 we find a periodic controlled trajectory of
the form .'.�; x; !�/; !�.�// with !� 2 int U of some period �� > 0 such that

1

��
ak�� .!�; x/ � lim sup

t!1
1

t
akt .!; x/C "

D .�1.!; x/C � � � C �k.!; x//C ": (5.25)

By Proposition 5.9 we have

hinv.K;D/ � �1.!�; x/C � � � C �k.!�; x/

D lim
t!1

1

t
akt .!�; x/

D lim
m!1

1

m��
akm��.!�; x/

D inf
m2N

1

m��
akm��.!�; x/ � 1

��
ak�� .!�; x/:

Here we used that the sequence m 7! akm��.!�; x/ is subadditive. Combining this
inequality with (5.25) gives the desired result. ut
Remark 5.6. Notice that the assumption that ˙ is real-analytic and strongly
accessible has only been used to guarantee that for every point in the interior of
the given control set there exists a regular periodic trajectory going through this
point. To have that (together with local accessibility) it is sufficient and necessary
that there are two points in the interior of the control set which can be joined by
a regular trajectory. At first sight, this seems to be a much weaker condition than
strong accessibility, but a result of Sontag [100, Proposition 4.2] shows that (under
mild assumptions) for real-analytic systems this is equivalent to strong accessibility.
However, for control-affine systems there is an easy trick which can be used to show
that the assumption of strong accessibility can be weakened to local accessibility.
Moreover, using a result of Coron [30, Theorem 1.3 and Corollary 1.8] it can be
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shown that analyticity can be weakened to smoothness. (In fact, this works not only
for control-affine systems, but we do not go into the quite technical details involved
here.)

Proposition 5.12. Assume that ˙ is control-affine, F.x; u/ D f0.x/ CPm
iD1 uifi .x/ with a (compact and convex) control range with nonempty interior.

Then the assertions of Propositions 5.9 and 5.11 also hold if the vector fields
f0; f1; : : : ; fm are of class C 1 and the Lie algebra rank condition holds on D.

Proof. The proof proceeds in four steps.

Step 1. We show that if˙ satisfies the particular assumptions of Propositions 5.9
and 5.11, then they are also satisfied for each of the time-transformed systems
˙˛ D .R;M;RmC1;U ˛; '˛/, ˛ > 1, given by the differential equations

Px.t/ D �.t/ � F.x.t/; !.t//; .�; !/ 2 U ˛ D V ˛ � U ;

where V ˛ D f� 2 L1.R;R/ W �.t/ 2 Œ1=˛; ˛�g. First we prove that the
trajectories of ˙˛ are just time reparametrizations of the trajectories of ˙ . To
this end, for every � 2 V ˛ define

�.t/ WD
Z t

0

�.s/ds; t � 0:

It is clear that � W RC ! RC is absolutely continuous with �.0/ D 0. It is bijective,
since � � 1=˛ implies that � is strictly increasing and �.t/ ! 1 for t ! 1. We
claim that

'.�.t/; x; !/ D '˛ .t; x; .�; ! ı �// (5.26)

for all x 2 M , ! 2 U , and t � 0. Indeed, for almost all t � 0 we have

d

dt
'.�.t/; x; !/ D P�.t/ � F .'.�.t/; x; !/; !.�.t///

D �.t/ � F .'.�.t/; x; !/; ! ı �.t// :

By uniqueness of solutions, the identity (5.26) follows. From this identity it can
easily be seen that if D is a control set of ˙ , then D is a control set of ˙˛ . Now
assume that every periodic trajectory of ˙ corresponding to some .x; !/ 2 intD �
int U has exactly k positive Lyapunov exponents as required in Proposition 5.9.
Then the analogous statement for ˙˛ is true (with .x; .�; !// 2 intD � int.V ˛ �
U /). Indeed, let .'˛.�; x; .�; !//; .�; !// be a �-periodic controlled trajectory with
x 2 intD and .�; !/ 2 int.V ˛ � U / D int V ˛ � int U . The number of positive
Lyapunov exponents of the given trajectory is given by the number of eigenvalues
of dx'˛�;.�;!/ W TxM ! TxM of absolute value bigger than one. From (5.26) it
follows that dx'˛�;.�;!/ D dx'�.�/;!ı��1 . From �-periodicity of � it follows that
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t C � D ��1.�.t/ C �.�// for all t � 0. This implies .! ı ��1/.t C �.�// D
!.��1.t/ C �/ D !.��1.t//. Hence, ! ı ��1 is �.�/-periodic. Thus, .'.�; x; ! ı
��1/; ! ı ��1/ is a �.�/-periodic controlled trajectory of ˙ with .x; ! ı ��1/ 2
intD�int U and hence has exactly k positive Lyapunov exponents. This implies the
assertion. Analogously, one shows that assumption (ii) in Proposition 5.11 carries
over from˙ to ˙˛ .

Step 2. We show that the invariance entropies of .K;D/ with respect to ˙ and
˙˛ , respectively, are related by

hinv.K;DI˙/ � ˛ � hinv.K;DI˙˛/: (5.27)

To this end, let S � V ˛ � U be a .�;K;D/-spanning set for ˙˛ . We claim that

S 0 WD ˚
! ı ��1 j 9� 2 V ˛ W .�; !/ 2 S




is a .�=˛;K;D/-spanning set for ˙ . Indeed, let x 2 K . Then there is .�; !/ 2 S
with

'
�
�.t/; x; ! ı ��1� D '˛ .t; x; .�; !// 2 D for all t 2 Œ0; ��;

which implies '.t; x; ! ı ��1/ 2 D for all t 2 Œ0; �=˛�, since �.�/ � R �
0
1=˛ds D

�=˛. It follows that rinv.�=˛;K;DI˙/ � rinv.�;K;DI˙˛/ and hence

hinv.K;DI˙/ D lim sup
�!1

˛

�
log rinv.�=˛;K;DI˙/

� lim sup
�!1

˛

�
log rinv.�;K;DI˙˛/ D ˛ � hinv.K;DI˙˛/;

which finishes Step 2.

Step 3. We prove the assertion for the case that f0; f1; : : : ; fm are analytic vector
fields. Since we assume that the Lie algebra rank condition holds for ˙ , the
smallest Lie algebra spanned by the vector fields f0; f1; : : : ; fm has full rank
at every point (see Proposition 1.8). Note that the strong accessibility algebra
of ˙˛ , that is, the ideal generated by the differences vŒf0 C Pm

iD1 uifi � �
v0Œf0 C Pm

iD1 u0
ifi �, contains the vector fields f1; : : : ; fm as well as the vector

field f0 (put .v; u/ WD .˛; 0/ 2 R � R
m and .v0; u0/ WD .1; 0/ 2 R � R

m, then
vŒf0CPm

iD1 uifi ��v0Œf0CPm
iD1 u0

i fi � D .˛�1/f0). By Proposition 5.6 (vii) this
implies that ˙˛ is strongly accessible. Hence, we find that the Propositions 5.9
and 5.11 can be applied to the systems ˙˛ , if f0; f1; : : : ; fm are analytic.
The inequality (5.27) shows that the corresponding estimates for the invariance
entropy hinv.K;DI˙˛/ carry over to hinv.K;DI˙/ by letting ˛ ! 1.
Step 4. We show that the assumption of analyticity can be weakened to
smoothness. Observe that analyticity (in combination with strong accessibility)
was only used in the proof of Lemma 5.3 to show the existence of arbitrarily
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short regular trajectories in the interior of D. However, this also follows as a
consequence of Coron [30, Corollary 1.8] if the right-hand side of the system
is of class C 1 and polynomial with respect to the control variable, and if the
strong accessibility algebra has full rank at every point. Since these assumptions
are satisfied for the time-transformed systems ˙˛ , if the given system is smooth
and satisfies the Lie algebra rank condition, we are done. ut

Remark 5.7.

• Of course, one would like to have a third approximation result to get rid of the
assumptions that '.t; x; !/ be contained in a compact subset of intD and ! 2
int U . As can be seen in Sect. 7.1, for one-dimensional systems things are easier
than in the general case, since here only equilibria instead of arbitrary trajectories
have to be considered. The same holds for particular control sets of projective
systems, as we show in Sect. 7.4.

• The existence of universally regular control functions and regular periodic
trajectories inside of control sets for discrete-time systems has been studied in
Wirth [110–112] and Sontag and Wirth [103]. Hence, it should be an easy task to
adapt the results of this section to the discrete-time setting.

5.3 Comments and Bibliographical Notes

The main theorem of this chapter, Theorem 5.1, has appeared before in Kawan
[62, 64]. All results about the invariance entropy in Sect. 5.2 are new and have
not been published before. The methods used in the proofs of the approximation
results for subadditive cocycles are basically taken from Colonius and Kliemann
[25, Theorem 6.2.17], a result which relates the Lyapunov and Floquet spectra
of certain control systems on vector bundles to each other. Further note that the
estimate for ak given in Lemma 5.4 can be improved (see Boichenko et al. [9,
Chap. I, Corollary 4.2.1]). Of course, the results of this chapter leave many questions
open. For instance, what can be said about the value of hinv.Q/ when Q is the
closure of a relatively compact control set D? Is it the same as hinv.K;Q/ for
K � D or can it be strictly greater? Another question concerns the existence of
regular periodic trajectories without the regularity assumptions of Sect. 5.2. One
could ask, for instance, if they exist generically. Finally, notice that in this chapter we
have seen a second example for the equality hinv;out.K;Q/ D hinv.K;Q/, namely
Corollary 5.3.
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